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Abstract. One of the basic problems in strategic planning of public and
rail transport is the line planning problem to find a system of lines and
its associated frequencies. The objectives of this planning process are
usually manifold and often contradicting. The transport operator wants
to minimize cost, whereas passengers want to have travel time shortest
routes without any or only few changings between different lines. The
travel quality of a passenger route depends on the travel time and on the
number of necessary changings between lines and is usually measured
by a disutility or impedance function. In practice the disutility strongly
depends on the line plan, which is not known, but should be calculated.
The presented model combines line planning models and traffic assign-
ment model to overcome this dilemma. Results with data of Berlin’s city
public transportion network are reported.
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1 Related literature

In the last years a lot of mathematical integer programming models have been
proposed (see e.g. [1–3, 6, 10]). The line plan model presented by Borndörfer,
Grötschel and Pfetsch [1, 2] minimizes the combination of line costs and system
travel time disregarding transfers between lines and waiting times. To make
the model feasible for real instances of local traffic systems, the line frequency
variables are not forced to be integer, however knowing that the fractual solution
can be quite far from the integer optimum. Because in general the minimum
system travel time (called Beckmann-User-Equality) do not really reflect the
passenger’s ”selfish” behavior, the use of the system travel time seems to be
disadvantageous.

Both facts are respected in the model of Schöbel and Scholl [11]. This line plan
model minimizes the passengers inconvenience under the restriction of a fixed
budget for all line costs, whereas the passengers inconvenience is the sum of the
travel time and the time needed for transfers concerning one origin-destination
relation. The model in [11] assumes that the given passenger travel demand must
be satisfied by the line plan. For all origin-destination pairs the passengers will
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travel on a time shortest path. In the model presented here not all passenger
demand must be covered. This is controlled by a limited budget for the opera-
tional cost of the line plan. For larger networks the model of Schöbel and Scholl
suffers from large memory requirements for solving the shortest path problem in
the change& go network, which contains for each line and each pair of consec-
utive served stations a special travel edge. Large number of lines and stations
requires a big amount of memory. We try to overcome this problem by the use of
a column generation scheme. The resulting pricing problem for those passenger
flow variables is a shortest path problem.

2 The Basic Combined Model

2.1 General notations

The proposed model is restricted to the case to find a line plan for one homoge-
neous transport carrier. Each of the edges e ∈ E of the underlying network (V, E)
is assigned with a homogeneous travel time te. The nodes or vertices n ∈ V of
the network represent stations. Terminal stations are nodes, at which a line is
allowed to start or to terminate. By a potential line L we will understand a path
between two terminal nodes, which running time is in maximum the product of
the detour factor ρ and the shortest travel time between the two terminal nodes.
For simplicity we use the notation e ∈ L to indicate, that the line L uses edge e.
By L|(A,B) we denote the set of all edges, which are used by line L running from
station A to station B. This set might be empty, if A and B are not served by
L.

2.2 Traffic Assignment

The traffic assignment problem is modelled by some kind of multi-commodity
flow problem, where we consider for each travel demand pair (O, D) and lines

L ∈ L partial passenger routes p
O,D

(A,B),L. The variables

ϕ
O,D

(A,B),L

define the traffic flow of all OD-passengers using line L between station A and
station B.

A total passenger route p from the origin node O to the destination node
D is simply the concatenation of partial routes (see figure 1). The disutility of
impedance of a passenger route is a measure for the inconvenience for the trip by
this route. In traffic assignment theory this impedance is modelled in dependence
of the travel time, the number of changings and the frequency of the service. In
practice, there are used rather complex and nonlinear models for this function
(see e.g. [4, 7]). Here, we simplify the model by using a linear approximation: For
a path p denote the travel time by t(p) and define the number of line changings
by c(p), which are penalized by the parameter β. Then imp(p) := t(p) + βc(p)
is a reasonable measure for the disutility of using the trip route p.
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Fig. 1. Partial passenger route flow variables

In order to keep the resulting model linear, we do not use the common
approach ([4]) to measure quality or utility by a function f(p) ∼ 1

imp(p) , but

define the travel quality by

ω(p) = ρ · t∗OD − t(p) − βc(p) (1)

t∗OD denotes the minimum possible travel time from origin O to destination D.

The detour factor ρ ≥ 1 should be defined in such a way, that passengers will
accept all those routes for which the travel time added with the change penalty
is at most a ρ− multiple of the minimum travel time. The quality measure ω(p)
can be interpreted as that time, what a passenger can save by using a connection
p compared to the maximal accepted travel time for that OD-relation.

The best quality is given by t∗OD ·(ρ − 1). If the travel time or/and the number
of necessary changings becomes too large, the quality turns out to be negative.
If there exists no alternative, more favourable path with positive quality, we will
assume to ’loose’ those passengers. Figure 2 illustrates this approach.

In order to split the total travel time onto the line parts, we define tL;(A,B)

to be the travel time of line L from station A to station B. The quality weights

ω
O,D

(A,B),L :=







−tL;(A,B), ifA = O and B 6= D

−tL;(A,B) − β, ifA 6= O and B 6= D

ρt∗OD − tL;(A,B) − β, ifA 6= O and B = D

ρt∗OD − tL;(A,B), ifA = O and B = D

obviously have the property, that its sum on each total path from origin node O

to destination node D equals with (1) (see Figure 3).

Combining flow conservation laws and travel demand leads to the traffic as-
signment model:
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ω(p)

t(p)
t∗OD

t∗OD · (ρ − 1)

loss of passengers

Fig. 2. Quality measure for passenger routes.

Traffic Assignment Model

∑

O,D,A,B,L

ω
O,D

(A,B),Lϕ
O,D

(A,B),L → max

∑

L,A

ϕ
O,D

(A,D),L ≤ vOD

∑

L,A

ϕ
O,D

(A,X),L −
∑

L,B

ϕ
O,D

(X,B),L = 0 forall X 6∈ {O, D}

ϕ
O,D

(A,B),L ∈ R
+

Note that this model maximizes travel quality.

2.3 Line planning model

For the line planning part of our model we use the basic linear programming
approach of M. Bussieck ([3]), who defines for each line L a frequency variable
xL ∈ Z

+, which gives the service frequency of the line per time unit, say one hour.
xL = 0 implies, that L is not considered in the line plan. Values xL = 1, 2, ...

indicate, that this line is served once, twice,... per time period. Since we consider
a homogeneous line system, we may assume that the passenger capacity of all
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O

A B

D

−tL1;(O,A)

−tL2;(A,B) − β

ρ · t∗OD − tL3;(B,D) − β

ω(p) = ρ · t∗OD − t(p) − 2β

= −tL1;(O,A) − tL2;(A,B) − β + ρ · t∗OD − tL3;(B,D) − β

Fig. 3. Splitting route quality to the partial passenger route flows.

single trains is defined by a constant value C. Infrastructural capacity constraints
for edges and nodes can be simply modelled by the restrictions

∑

e∈L

xL ≤ f(e) (µe)

∑

L serves node n

xL ≤ f(n) (νn)

To model operational cost, we use a simple, linear approach and define the
costs for serving line L with frequency xL, by cLxL. Operational costs are dis-
cussed in more detail by K.-F. Jerosch (see [5]).

2.4 Combining traffic assignment and line planning

Traffic assignment and line planning are combined by the capacity constraints
∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L ≤ CxL

which guarantees for each edge e that the line plan provides enough capacity
for the passengers. The right side of this inequality is the amount of available
capacity provided by the line L with frequency xL. The left hand summarizes
the passengers from all origin-destination pairs (O, D) and all route parts (A, B),
which are using the line L on edge e. The modelling approach allows two different
possibilities to treat operational cost:

1. Operational cost may be placed into the objective

max
∑

O,D,A,B,L

ω
O,D

(A,B),Lϕ
O,D

(A,B),L − α

(
∑

L

cLxL

)
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2. Operational may be restricted by a given budget, which leads to the con-
straint

∑

L

cLxL ≤ cmax

In summary, we obtain the full model

Full model

∑

O,D,A,B,L

ω
O,D

(A,B),Lϕ
O,D

(A,B),L → max

∑

L,A

ϕ
O,D

(A,D),L ≤ vOD

∀X 6∈ {O, D} :
∑

L,A

ϕ
O,D

(A,X),L −
∑

L,B

ϕ
O,D

(X,B),L = 0

∀e ∈ E, L ∈ L :
∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L ≤ CxL

∑

L

cLxL ≤ cmax

∑

e∈L

xL ≤ f(e)

∑

L serves node n

xL ≤ f(n)

ϕ
O,D

(A,B),L ∈ R
+

xL ∈ N

2.5 Model strengthening by cutting planes

Using standard techniques from integer programming (see e.g. [8]), it is easy to
see that

ϕ −

(

b − C

⌊
b

C

⌋)

x ≤

[

C −

(

b − C

⌊
b

C

⌋)]⌊
b

C

⌋

(2)

is a valid inequality of the polyhedron

P = {(ϕ, x) ∈ R × Z | ϕ − Kx ≤ 0; ϕ ≤ b}

Due to limited travel demand, the passenger flows

ϕmax
e :=

∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L
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are bounded from above. Reasonable bounds can be calculated from the origin-
destination matrix and the detour factor ρ. Such bounds are discussed by M.
Bussieck ([3]) and can be calculated in polynomial time. Define ’reduced’ capac-
ity by

C̃e :=

(

ϕmax
e − C

⌊
ϕmax

e

C

⌋)

and the residual capacity by

C∗
e :=

[

C −

(

ϕmax
e − C

⌊
ϕmax

e

C

⌋)]⌊
ϕmax

e

C

⌋

,

then by (2) the valid inequality

∑

e

∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L − C

(
∑

L:e∈L

xL

)

≤ 0 (3)

implies the cutting plane

∑

e

∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L − C̃e

(
∑

L:e∈L

xL

)

≤ C∗
e (4)

For the case, that ϕmax
e < C, we have C∗

e = 0 and C̃e ≤ C. Then we may replace
the inequality (3) by the more tighten inequality (4).

3 Solution Methods

3.1 Overview Solution Approach

In real world examples, there will arise a huge amount of possible passenger
flow parts. Hence, those variables can only be handled by the use of a column
generation scheme. For the potential lines (i.e. all frequency variables are con-
tained in the model) the resulting pricing problem is quite straightforward and
leads to a shortest path problem with non-negative arc weights. If the potential
line frequency variables are not known a priori, the approach becomes much
more complicated, since xL and passenger route variables must be generated
simultaneously.

The following algorithm summarizes the discussed method for the case that
we use a fixed line pool. A more detailed description of the algorithm steps is
given in the next sections.

Algorithm 1

1. Calculate the pool of potential lines.
2. Calculate an initial line plan, which is feasible with the budget constraint.
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3. Solve the relaxation of the initial linear model.

4. Pricing iteration:

(a) solve the pricing problem for the passenger flow variables and add those
with negative reduced cost to the formulation

(b) resolve relaxation. Otherwise stop, the optimal solution has been found.

(c) solve the knapsack problem (3.3) and the flow problem (3.3)1 to calculate
an upper bound of the problem.

(d) in case of fractional variables x̃L apply the primal heuristic to find a
possibly improved solution.

3.2 Column Generation

In the following we consider the normalized model with associated dual variables
given in brackets on the right side.

∑

O,D,A,B,L

ω
O,D

(A,B),Lϕ
O,D

(A,B),L → max

∑

L,A

ϕ
O,D

(A,D),L ≤ vOD

(
πOD

D

)

∀X 6∈ {O, D} :
∑

L,A

ϕ
O,D

(A,X),L −
∑

L,B

ϕ
O,D

(X,B),L = 0
(
πOD

X

)

∀e ∈ E, L ∈ L :
∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L − CxL ≤ 0 (ξe,L)

∑

L

cLxL ≤ cmax (γ)

∑

e∈L

xL ≤ f(e) (µe)

∑

L serves node n

xL ≤ f(n) (νn)

ϕ
O,D

(A,B),L ∈ R
+

xL ∈ N

The dual potential variables πOD
X of the underlying passenger route flow problem

are only defined for X 6= O. For technical reasons we define πOD
O = 0 2

1 The solution requires no extra effort, because this problem is already solved during
the pricing problem for the passenger flow variables.

2 This allows to model the dual shortest path problem by regarding πOD

Y −πOD

X to be
a shortest path length from node X to node Y.
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Pricing of partial travel routes In dependence on the nodes A, B define

s(A,B) :=







0, ifA = O and B 6= D

−β, ifA 6= O and B 6= D

ρt∗OD − β, ifA 6= O and B = D

ρt∗OD, ifA = O and B = D

Then, the reduced cost of a partial travel route flow variable ϕ
O,D

(A,B),L are given

by

rω
O,D

(A,B),L) = −ω
O,D

(A,B),L +
∑

e∈L|(A,B)

ξe,L + πOD
B − πOD

A

= −s(A,B) +
∑

e∈L|(A,B)

te +
∑

e∈L|(A,B)

ξe,L + πOD
B − πOD

A

= −s(A,B) +
∑

e∈L|(A,B)

(ξe,L + te) + πOD
B − πOD

A

In order to find flow variables with negative reduced cost, we have to minimize
the generalized path length α∗ := minL

∑

e∈L|(A,B)
(ξe,L + te) and compare this

shortest path length by

r < 0 ⇐⇒ α∗ < s(A,B) + πOD
B − πOD

A

Note, that the right side s(A,B) + πOD
B − πOD

A is independently from line L.
In summary, pricing out partial passenger routes can be solved by a shortest

path problem from node A to node B with respect to non-negative edge cost
ξe,L + te ≥ 0.

Pricing of line variables The reduced cost of a frequency line variable xL is
given by

r(xL) = γcL − C
∑

e∈L

ξe,L +
∑

e∈L

µe +
∑

L serves node n

νn

Setting νe = νn for e = (n, x) and using a linear approximation

cL =
∑

e∈L

ce,L

for the operational costs, we receive reduced cost as path length

r(xL) = γcL − C
∑

e∈L

ξe,L +
∑

e∈L

µe +
∑

L serves node n

νn

=
∑

e∈L







γce,L + µe + νe
︸ ︷︷ ︸

shadow cost

− Cξe,L
︸ ︷︷ ︸

shadow profit






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The dual variables of the arc cost split into

– a cost part γce,L +µe + νe which are shadow cost with respect to infrastruc-
tural capacity limits (µ and ν) and budget restriction γce,L and

– a negative signed gain part Cξe,L which may be interpreted as some kind of
income in the context of the active line system. Large positive values of ξe,L

indicate mismatched supply and demand (large demand or small supply).

Hence, the negative value −r(xl) =
∑

e∈L(Cξe,L) −
∑

e∈L(γce,L + µe + νe) can
be interpreted to be some kind of profit = income - expenditures, which should
be maximized during the pricing step.

Theorem Line pricing

Line pricing is a longest path problem, i.e. to find an elementary (cycle free)
path with maximum ’profit’

δe := Cξe,L
︸ ︷︷ ︸

shadow profit

− γce,L + µe + νe
︸ ︷︷ ︸

shadow cost

3.3 Lagrange Relaxation

Lagrangian relaxation is a standard technique which moves hard constraints into
the objective. Traffic assignment and line planning model are only coupled by
the constraints

∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L ≤ CxL ⇐⇒
∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L − CxL ≤ 0

By using the associated dual variables ξe,L, the movement of those constraints
leads to the Lagrangian objective

∑

O,D,A,B,L

ω
O,D

(A,B),Lϕ
O,D

(A,B),L +
∑

e,L

ξe,L



CxL −
∑

O,D,A,B,L:e∈L

ϕ
Q,Z

(A,B),L





=
∑

Q,Z,A,B,L

(

ω
O,D

(A,B),L −
∑

L:e∈L

ξe,L

)

ϕ
O,D

(A,B),L

︸ ︷︷ ︸

flow part

+ C
∑

e,L

ξe,LxL

︸ ︷︷ ︸

line plan part

,

which separates into the sum of two linear terms depending either on the pas-
senger flow variables or the line plan variables. Hence, solving the problems
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FlowProblem

ϕ∗ :=
∑

O,D,A,B,L



ω
O,D

(A,B),L −
∑

O,D,A,B,L:e∈L

ξe,L



ϕ
O,D

(A,B),L → max

∑

L,A

ϕ
O,D

(A,D),L ≤ vOD

∀X 6∈ {O, D} :
∑

L,A

ϕ
O,D

(A,X),L −
∑

L,B

ϕ
O,D

(X,B),L = 0

ϕ
Q,Z

(A,B),L ∈ R
+

Generalized Knapsack Problem

ξ∗ := C
∑

e,L

ξe,LxL → max

∑

L

cLxL ≤ cmax

∑

e∈L

xL ≤ f(e)

∑

L serves node n

xL ≤ f(n)

xL ∈ N

leads to the upper bound ϕ∗ + ξ∗.

Any integer solution (x̃L)L∈L of the generalized knapsack problem leads to
feasible line plan of the origin problem and can therefore be used to generate a
primal feasible solution by solving the traffic assignment problem.
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Primal Heuristic Traffic Assignment

∑

O,D,A,B,L

ω
O,D

(A,B),Lϕ
O,D

(A,B),L → max

∑

L,A

ϕ
O,D

(A,D),L ≤ vOD

∑

L,A

ϕ
O,D

(A,X),L −
∑

L,B

ϕ
O,D

(X,B),L = 0 forall X 6∈ {O, D}

∀e ∈ E, L ∈ L :
∑

O,D,A,B:e∈L|(A,B)

ϕ
O,D

(A,B),L ≤ Cx̃L

ϕ
O,D

(A,B),L ∈ R
+

4 Computational Results

4.1 The Traffic Sample

The software tool LINOP, developed by the Technical University Dresden, Fac-
ulty of Traffic Sciences, Institute for Logistics and Aviation, includes the pre-
sented mathematical model. Linear programs are solved by using the COIN-
BCP-Solver.

We applied our method to the bus network of Berlin city. By kindly support
of the Berlin city authority of city development and transportation we used
origin destination data, which are not allowed to be published. For this reason
the computational results do not report the total passenger demand. Instead, the
results are given in percentage of optimal travel quality. 100% percent means,
that for each origin destination pair a direct connection could be provided by
the line plan.

Using an origin-destination matrix of passenger demands including all stops
of Berlin city, it was necessary to add tramway, subway and the local train
network to the existing bus infrastructure. A system split (see [9]) splits the
total origin destination matrix into separate matrices for the tramway, subway,
local train, express bus and bus.

4.2 Instance 1: Bus network of Berlin City

The modeled infrastructure consists of 2.590 nodes and 3.200 edges represents
the Berlin city public bus network of July 2005. Bus stops are defined as nodes
and edges describe possible connections beetween two bus stops. There are three
different kinds of bus services operating on the Berlin infrastructure network,
called express bus, metro bus and local bus. The bus services are different con-
sidering operation time, frequency or travel time. For instance the expressbus
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Fig. 4. Resulting bus line plan

stops not as often as a local bus and consequently the expressbus has a reduced
travel time. Due to large differences of the travel times we defined the expressbus
as independent transportation product in our model. However the metro bus and
the local bus are very similar and consequently these bus services are combined
in the model as one transport carrier.

Table 1. characteristics of one bus line plan

parameter value

minimum length of a line: 10 minutes travel time
budget: 7755 minutes operation time
changing penalty: 1 min/changing
detour factor: 1.1
number of lines: 119 lines
lines with frequency of 10 minutes: 33 lines
lines with frequency of 20 minutes: 86 lines
optimization objective value (travel quality): 914.354

For the most challenging instance, what is the expressbus and bus network,
we performed for different budget parameter up to 3 pricing iterations, (see table
1), each of which took approximately 40 minutes. The instance was computed
by an UNIX-PC with 2x3,2 Ghz and 8 gigabyte RAM. Due to the huge amount
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of memory needed (Out of memory!), for the bus network only a few number of
iterations could be performed.

A typical solution is reported by the Figure 4 and Table 1.

4.3 Instance 2: Tram network of Berlin city

Fig. 5. tramway infrastructure

The second instance is the tram network of Berlin city. Which is of much
smaller size compared to the bus network. The initial heuristic solution has an
objective of 66.20, which could be improved during the iterations up to a travel
quality of 71.00. By Langrange Relaxation we obtained the best upper bound
by 89.45.The characteristics are presented in table 2 and in figure 6.

Table 2. characteristics of one tramway line plan

parameter value

nodes 382
edges 435
minimum length of a line: 20 minutes travel time
budget: 1905 minutes operation time
changing penalty: 5 min/changing
detour factor: 1.2
number of lines: 18 lines
lines with frequency of 10 minutes: 18 lines
optimization objective value (travel quality): 71.000
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Figure 6 illustrates the performance of the algorithm. Please note that the
first line plan represents the start heuristic solution. Initialisation and pre-
processing took approximately 10 minutes. The best solution with our hardware-
performance for the tram network is found after 12 minutes. The tram line plan
was solved with the same hardware as the bus network. In contrast to the bus
network for this smaller instance the route node of the branch and bound tree
was priced out rather quickly. But after a branch and bound depth of 120 the
computer run out of memory again.
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Fig. 6. objective value (example tram line plan of Berlin city)
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