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Abstract. The train timetabling problem considered is to find conflict
free routes for a set of trains in a given railway network so that cer-
tain time window conditions are satisfied. We deal with the very large
scale problem of constructing such timetables for the German railway
network. A number of restrictions on different train types like freight
trains or passenger trains have to be observed, e.g., sequence dependent
headway times, station capacities, and stopping times. In order to handle
the enormous number of variables and constraints we employ Lagrangian
relaxation of the conflict constraints combined with a cutting plane ap-
proach. The model is solved by a bundle method; its primal aggregate
is used for separation and as starting point for rounding heuristics. We
present some promising results towards handling a test instance com-
prising ten percent of the entire network.

1 Introduction

One of the main tasks in strategic railway planning is timetable construction,
i.e., to find feasible arrival and departure times for a set of trains with predefined
routes. The generated timetables should satisfy a number of different constraints
like headway times and station capacities, passenger train stops should lie in
given time windows.

This problem is known in the literature as Train Timetabling Problem (TTP)
and has received considerable attention in the last decades. The T'TP is related
to the so called Periodic Event Scheduling Problem introduced in [1], where
periodic timetables are considered, e.g., for subway or fast-train networks, see
[2] for a detailed survey on this topic.

Most approaches to the (non-periodic) TTP are based on formulations in
the form of Integer Linear Programs (ILP) representing train routes by time
discretised networks, see [3, 4, 5, 6]. This helps to deal with headway restrictions.
Some authors have shown how other types of constraints like station capacities or
prescribed timetables can be handled, see, e.g., [7]. The solution methods include
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heuristic and exact branch-and-bound based approaches using LP relaxations
and Lagrangian relaxations of the ILP, see [4, 8].

In this paper we deal with very large scale real world instances of the German
railway company Deutsche Bahn AG (DB) as they arise in the strategic long term
planning process of DB. The largest test instance comprises roughly ten percent
of the entire German network with approximately 3000 trains to be scheduled
for a time period of six hours.

For instances of this size the (in general exponential) number of constraints
ensuring sufficient headway time between successive trains on each track necessi-
tates the use of a primal cutting plane approach. A column generation approach
for generating the single train schedules would therefore have to include dyna-
mically the effect of the constraints separated so far, e.g., by solving a shortest
path problem on a time discretised network showing the effect of the current
constraints on the new variables in each time period. In essence, this is exactly
what one obtains by classical Lagrangian relaxation of the conflict constraints,
which decomposes the problem into shortest path problems on time discretised
networks for each train. In this setting, optimizing the dual Lagrange multipliers
by simple subgradient methods is not an option, as we need good approxima-
tions to the primal solutions for separating the headway constraints in the primal
cutting plane approach. The less classical bundle cutting plane approach of [9]
offers exactly what we need: it is a bundle method for optimizing the Lagrange
multipliers of the dual and generates at the same time a primal approximate so-
lution, the primal aggregate, which we use for primal separation of the headway
constraints and station capacities. In our instances we deal with different train
types and predefined timetable conditions for some of the trains. The Lagrangian
relaxation of the model is solved using the ConicBundle package [10].

Our paper is structured as follows. In the next section we give a formal
description of the TTP and introduce our model. Section 3 describes the solution
methods and finally in section 4 we present preliminary computational results
of our approach on our real world test instances.

2 The Train Timetabling Problem

Our TTP can be formally described as follows. We are given an infrastructure
digraph D = (V, A) representing the railway network, where V is a finite set
of nodes (e.g. stations, track switches, ...) and A is the set of directed arcs
representing a direction in which the corresponding track can be used. If the
locations corresponding to two nodes u,v € V are connected by two tracks,
one for each direction, both arcs uv and vu are in A. We also have two arcs
if they are connected by a single track that is used in both directions, i.e., if
these two arcs belong to the same physical track. All arcs of the latter kind
are collected in the set As C A. Let T be the set of trains and m(j) € M be
the train-type of j € T where M = M,UM; is the union of passenger train
types My, and freight train types My. The train-type classifies the speed, length
and other properties of the train as needed for strategic planning. A train may



stop and possibly wait at a node u € V or may pass through the node without
stopping. Let Bg = {wait, pass} denote the stopping behaviours of a train. For
each arc the train may stop or pass at the start or at the end node and we
collect these acceleration modes in the set B = Bs X Bg. Then for each arc
uv € A we are given a mapping tIt : M x Bg — Z, where t£ (m,b) denotes the
running time of a train of type m over the arc uv with respect to its acceleration
mode b in minutes, and a mapping t : M x B x M x B — Z., where
tfv (mq, b1, M2, bs) denotes the minimal headway time of a train of type my with
acceleration mode b; followed by a train of type ms with acceleration mode bo
in minutes. If uv € Ag, we have additional headway times for two trains passing
the arc in opposite directions t2%: M x Br x M x Bp — 7 with the same
interpretation as above.

For each train j € T the predefined route is given by the ordered sequence
of nodes U(j) = (ul,... ,u{”) with n; € IN, no other nodes are visited. The

timetable for a train may be restricted in the following way. For each node uz we
have a stopping-interval I} = [tf’a,tiE’J] C Z U {+oo} and a minimal stopping
time d] € Z. The train j has to arrive at node u;] before the end of its stopping

interval tf” is not allowed to leave the node before tf"j + d{ and has to wait

at the node for at least d{ minutes. A waiting time d{ = 0 signals that train
j does not need to stop at node uf . For freight trains there are no stopping
restrictions on the nodes except for the first node ujl Here the interval has the
form If = [tls’j, oo] specifying the train’s starting time.

Important constraints on the timetables arise from the capacity of stations.
We denote the absolute capacity of a node v € V by ¢, € IN, it specifies the
maximal number of trains allowed to visit node v at the same time. In many
stations the capacity also depends on the direction from which the trains enter
the node. For an arc uv € A the directional capacity of the node v is ¢y, € IN
and describes the maximal number of trains that may stop at or pass through
node v at the same time when arriving over arc uv. Clearly, ¢,, < ¢, for all
uv € A.

We model the problem in a classical way via time discretised networks for
the single train routes and by using coupling constraints for the capacity and
headway restrictions. Let S = {1,..., N} denote the discretised time steps cor-
responding to minutes. For each train j € T we have a network G/ = (VJ, A7)
defined as follows. The node set V7 is a subset of {07, 77 }U(Bg x {1,...,n,} x9),
where o7 is an artificial source node and 79 an artificial terminal node, while,
e.g., a node (wait,i,t)’ has to be interpreted as train j stops in node u] at time
t.

The arc set A7 is built of the following subsets:

— a set of waiting arcs ((wait,i,t)7, (wait,i,t + 1)7), for each i € {1,...,n;}
and ¢t € {1,..., N — 1} for nodes where the train may stop;

— a set of running arcs ((bl, i,t)7, (ba,i + 1, + tR)j)) connecting two succes-
sive nodes for i € {1,...,n; — 1}, where tf* = tf{,ufﬂ(m(j)’ (b1,b2)) gives

the running time with respect to the stopping behaviours b1 and bs;



— a set of starting arcs of the form (o7, (wait, 1,t)7) corresponding to feasible
starting times at the first node;

— a set of ending arcs of the form ((wait,n;,t)?,77) collecting all possible
arrivals at the last node;

— a set of infeasible arcs ((b,i,t)7,77) allowing the train to go from each inter-
mediate node directly to the terminal node.

Of course, the graph G7 contains only those arcs that are valid for the train j
with respect to the stopping intervals and minimal stopping times.

Now we introduce for each arca € A = UjeT AJ a binary variable z,, € {0,1}
equal to one if and only if the path associated with train j contains arc a. Let
5% (v) and 8~ (v) denote the (possibly empty) sets of arcs leaving and entering
node v € V.={;cp V3. Likewise we define for v € V,t € S

5= (v,1) = {((b’, 7Y (b0 b)) € A ul = v}

which is the set of all train arcs arriving at the infrastructure node v at time t,
and for uv € At € S

6 (uv, t) = {((b’,i’,t’)j, (b,i,t)7) € A: u!_ ul = uv}

which is the set of train arcs arriving at the infrastructure node v at time ¢
over the arc wv. With appropriate arc costs w,,a € A (see Section 4), the ILP
formulation reads (later we prefer the dual to be a minimization problem, so we
use maximization here)

maximize Z TqWq (1)
acA
subject to
S w1, JET. @)
a€d+(od)
S wa= > jeT,veVi\{o, 7}, (3)
a€dt(v) a€d— (v)
Y wma<o, veVites, (4)
a€d— (v,t)
Z Ta < Cyv, uv € A,t S S, (5)
a€d~ (uv,t)
> w. <1, cee, (6)
acC
zq € {0,1}, a€A. (7)

The set € contains the (in general exponentially large) family of maximal sets
C C A that hold pairwise conflicting arcs. We say two arcs

((blﬂil’tl)j’(aniQatQ)j) € Al and ((bllvillatll)j/a(béaiéaté)j/) € Aj/



with ¢; < t] conflict if either

— wlul, = ulud, = wv € Aand  + tl,(m(5), (b1, ba), m(7'), (b, b)) > £, or
—ulud, =l = uv € Ag and ty + 15 (m(j), (b1, ba), m(3"), (0, 05)) > 1,

i.e., they violate the headway times.

In the objective function (1) the infeasible arcs should have costs with a
sufficiently penalizing effect. Constraints (2) ensure that exactly one path per
train will be used. Constraints (3) are the flow conservation constraints. The
node capacities are imposed by (4) for the absolute capacities and by (5) for
the directional capacities. Finally the clique constraints (6) forbid the use of
conflicting arcs.

3 Solution Methods

Our solution method is based on the Lagrangian dual of the model (1)-(7) ob-
tained by relaxing the coupling constraints (4)-(6). In order to explain the de-
composition approach, we collect the coupling constraints (4)-(6) in the system
Dz < d and denote by D7, j € T, the columns corresponding to the z,,a € A7.
Furthermore for j € T

= {z e RY . 1 fulfills (2), (3) and (7) for fixed j}

represents the set of all feasible flows in Graph G7. The Lagrangian dual problem
reads

min o(y)
where
o) =d"y+ > @),

JeET

with
@;(y) = max Y zew, —y’ D'z. (8)
xeXI )
ac Al

Obviously, the ¢; are convex functions because they are maxima over affine func-
tions. For each y the evaluation of ¢(y) requires the solution of |T'| independent
shortest path problems (8). Let 2:(y) be the optimal solution of the shortest path
problems for given y, then g(y) = d — Dx(y) is a subgradient of ¢ at y.

The ConicBundle library [10] implements a bundle method to solve problems
of type

21213 fy)



where f(y) is a convex function given by a first-order oracle, i.e., for given y the
oracle returns f(y) and a subgradient g(y) of f at the point y.

The method generates a sequence (zx)ren of primal aggregates that are con-
vex combinations of the primal optimizers giving rise to the subgradients of the
;. For an appropriate subsequence L C IN each cluster point of (x;)ier, lies in
the set of optimal solutions of the LP relaxation (if such solutions exist), see
[9, 11] for technical aspects. Note, the xj are in general not feasible for our
primal problem because they violate the coupling constraints, but they yield
successively better approximations to primal optimal solutions.

Since the number of constraints (6) is exponential, we separate the constraints
based on the primal aggregates zj generated by the bundle method, i.e., we add
constraints to the model that we find violated by x; and that are not yet present
in the relaxation, see [9, 12] for more information on separation and convergence
aspects in bundle methods.

The capacity constraints (4)-(5) are separated by complete enumeration.

The separation of the maximal clique constraints (6) is not trivial. This is
because the headway times tZ and tZ% may be different for each train-type
and for each stopping behaviour. [13] gives an extensive analysis of the structure
of clique constraints arising from headway times in TPP and proves that the
time window of interest is bounded by twice the maximum headway time. In our
case this may be quite large. Therefore, we use a greedy heuristic to find large
violated cliques as described in Algorithm 1. For any arc a € A with positive
flow value we find all arcs in conflict with a and sort them non-increasingly with
respect to their flow value. Starting with the single clique {a} we successively
try to add the next arc in the sequence to all existing cliques. If the new arc
does not enlarge the clique, we add the largest subclique containing it. If an
upper limit N¢ on the number of cliques is exceeded, we eliminate the cliques
of minimal weight. The maximal cliques of each a are added as cutting planes if
their weight is greater than one and if they are not yet contained in the problem.
The routine is called after each descent step of the bundle method.

The last step is the computation of an integral solution. Let x be a primal
aggregate returned by the bundle method. In our current approach we create
an ordering of the incoming and outgoing trains for each node based on z as
follows. Let u € V' be an arbitrary node and let j € T' be a train with u = u] for

some i € {2,...,n,}. The average arrival time of j at u is given by
t-x,
a=((b',i=1,t"),(b,i,t)) €A
th— = u=u]
b
Zq
a=((b',i=1,t"),(b,i,t))€AI
u:uz

These average arrival times define an arrival order on the arriving trains visiting
node u, i.e., we say for two trains j, j € T visiting node u

. — . j,— "7_
J23L ) =t <t



Algorithm 1 Separation of clique constraints on primal aggregate x

Catr — 0
for a€ A: 2z, >0 do
Ac — {b€ A: ais in conflict with b}
C — {{a}} “C is the set of new cliques.”
while Ac #0 do
Find ¢ € Argmax{zy: b € Ac} “Find conflicting arc ¢ so that x. mazimal.”
for C €C do
“Try to add c to each clique C.”
if CU{c}is a clique then
¢ —(C\{CHu{CU{c}}
else
“If not possible, find (weight-)mazimal subclique of C' containing c.”
C « {d € C: d conflicts with c}
e—Cu{C}
if |G| > N¢ then
“Only keep a bounded number of cliques.”
€ — €\ {argmin{}_, s z.: C € C}}
end if
end if
end for
end while
Can — CouuC
end for
return {C € Cun: Y .o Te > 1}

Similarly one can define average departure times and a departure order <} on
the departing trains. Then we run a simulation on the trains, letting the trains
arrive and leave as early as possible with respect to the orderings, headway times,
stopping intervals and stopping times. Furthermore the data of the running
times is a tight upper bound on the fastest possible traversal of the trains, so
in the simulation trains may go slower over an arc. In our first experiments
those constraints were never violated, but we observed some unexpected delays
of passenger trains, so the approach certainly needs further improvement.

The rounding heuristic is called several times to generate timetables for a
group of trains. In particular, first only long-distance trains are simulated and
the corresponding arcs in the train graphs are fixed to 1. Then a new relaxation is
computed for the non-fixed trains and the rounding heuristic is used to generate
a timetable for the short-distance trains. Finally in a third iteration the freight
trains are handled in the same way.

Since the rounding heuristic had yielded bad results for some test instance,
we tried another simple heuristic. We fix successively those arcs to 1, whose
values in the relaxation are above 0.8 or, if no such arc exists, the arc with
the largest value. When 95% of the arcs have been fixed, we call the rounding
heuristic above to generate an integral solution.



4 Numerical Results

We implemented our model in C++ using CPLEX 9.1 [14] and the ConicBundle
library [10]. All computations were done on an Intel Xeon Dual Core, 3 GHz,
16 GB RAM. The test data is the south-west subnet of the network of DB
(roughly Baden-Wuerttemberg). This subnet has about 10% of the size of the
whole German network. We considered three test cases of different size:

1. A small part of the network containing the five most frequently used arcs.
2. The main long-distance and freight traffic route along the river Rhine.
3. The whole subnet.

All tests searched for a timetable of six hours. Table 1 shows the instance sizes
(the columns Nodes and Arcs refer to the infrastructure network) as well as the
number of variables in the resulting model.

Table 1. Test instances.

Instance Nodes Arcs Passenger Freight Variables
1 104 193 242 9 317336
2 656 1210 50 67 2448842
3 2103 4681 2501 659 8990060

The cost coefficients w,, a € A, have been chosen so that all trains profit from
travelling as early as possible, but our tests were focused on the construction of
feasible and not necessarily optimal timetables.

—(10000 — i) a = ((b,i,t)?,77) € A,i € {1,...,n; — 1} (infeasible arc),
we = —(nj —1) a=((bi,t)7,(b,i+1,t'))e Al ie{l,...,n; —1}
0 otherwise.
Because of the large amount of memory that the model requires, we were
only able to solve instances 1 and 2 with CPLEX. All instances could be solved

by the bundle method mentioned above. Table 2 shows the time and the memory
required to solve the models.

Table 2. Solution times of the relaxation.

Instance CPLEX ConicBundle Size
1 33s 12s 160 MB
2 1945s 341s 1 GB
3 - 2512s 6 GB

In order to illustrate the development and progress of the bundle cutting
plane approach we present the development of the objective function in Figure



1, the development of the number of constraints and their violation in Figure 2
and Figure 3.
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Fig. 1. Development of the objective function for Cplex (x) and ConicBundle (o) of
instance 2.
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Fig. 2. Development of the number of newly separated (4) and active (x) constraints
for Cplex and the number of newly separated (o) and active () constraints for Conic-
Bundle of instance 2.
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Fig. 3. Development of the maximum (o) and average (J) violation of capacity con-
straints and the maximum (%) and average (+) violation of clique constraints for Co-
nicBundle of instance 2 and 3.

As expected, the objective value shows a strong tailing-off effect which re-
sults from the combination of the respective effects for bundle and cutting plane
methods. In contrast to the simplex method, the violation of active constraints
that are already present in the model stays relatively high over a long time but
finally tends to zero in accordance with theory.

Using the rounding heuristic described above, we generated integer solutions
for all instances. For instances 1 and 2 the resulting timetable seems to be
rather good with almost no delays for the passenger trains (compared with the
predefined timetables). Unfortunately, the results for instance 3 are quite bad.
In this case, many trains are infeasible (i.e. they use an infeasible arc) and
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many passenger trains have significant delays. Therefore we used the successive
fixing heuristic on that instance. This approach yielded better but not really
good results (see table 3). In view of the many further possibilities to exploit
structural properties and dual sensitivity information, we are confident that we
shall be able to improve in the near future.

Table 3. Results of the rounding heuristic (instances 1, 2, 3) and successive fixing
heuristic (instance 3b).

Instance Time Infeasible trains Late trains Average delays
1 39s 0 0 0
2 697s 0 0 0
3 3182s 40 906 865s
3b 10h 9 778 603s

Remark:

— Infeasible trains are those who use infeasible arcs.

— Late trains are passenger trains arriving more than 5 minutes later compared with
the predefined timetable at at least one station.

— Average delays shows the average number of seconds those trains arrive later at
their stations compared with the predefined timetable.

5 Conclusion

Relaxations of real world timetabling problems seem to lead to very large scale
instances that are not easily solvable by commercial state-of-the-art software,
but can be successfully attacked by Lagrangian relaxation combined with bundle
methods. For the whole network of DB, however, more work has to be done to
reduce the model size on the one hand and to separate the clique constraints
more efficiently on the other hand. The solutions of the relaxation show that
almost all trains use arcs only in a small time interval, so it should be possible
to omit large parts of the train networks at the beginning and generate new
arcs dynamically when they are required. More work needs to be invested into
developing better rounding heuristics.
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