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Abstract. The problem of robust line planning requests for a set of
origin-destination paths (lines) along with their traffic rates (frequencies)
in an underlying railway network infrastructure, which are robust to
fluctuations of real-time parameters of the solution.

In this work, we investigate a variant of robust line planning stemming
from recent regulations in the railway sector that introduce competition
and free railway markets, and set up a new application scenario: there is
a (potentially large) number of line operators that have their lines fixed
and operate as competing entities struggling to exploit the underlying
network infrastructure via frequency requests, while the management of
the infrastructure itself remains the responsibility of a single (typically
governmental) entity, the network operator.

The line operators are typically unwilling to reveal their true incentives.
Nevertheless, the network operator would like to ensure a fair (or, socially
optimal) usage of the infrastructure, e.g., by maximizing the (unknown to
him) aggregate incentives of the line operators. We show that this can be
accomplished in certain situations via a (possibly anonymous) incentive-
compatible pricing scheme for the usage of the shared resources, that is
robust against the unknown incentives and the changes in the demands
of the entities. This brings up a new notion of robustness, which we
call incentive-compatible robustness, that considers as robustness of the
system its tolerance to the entities’ unknown incentives and elasticity
of demands, aiming at an eventual stabilization to an equilibrium point
that is as close as possible to the social optimum.

1 Introduction

An important phase in the strategic planning process of a railway (or any public
transportation) company is to establish a suitable line plan, i.e., to determine
the routes of trains that serve the customers. In the line planning problem, we
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are given a network G = (V, L) (usually referred to as the public transporta-
tion network), where the node set V' represents the set of stations (including
important junctions of railway tracks) and the edge set L represents the direct
connections or links (of railway tracks) between elements of V. A line is a path
in G. Typically, a line pool is also provided, i.e., a set of potential lines among
which the final set of lines will be decided. The frequency of a line [ is a rational
number indicating how often service to customers is provided along ! within the
planning period considered. For an edge ¢ € L, the edge frequency f; is the sum
of the frequencies of the lines containing ¢ and is upper bounded by the capacity
cg of £, i.e., a maximum edge frequency established for safety reasons. The goal
of the line planning problem is to provide the final set of lines offered by the
public transportation company along with their frequencies (also known as the
line concept).

The line planning problem has mainly been studied under two main ap-
proaches (see e.g., [6,7]). In the cost-oriented approach, the goal is to minimize
the costs of the public transportation company, under the constraint that all
customers can be transported. In the customer-oriented approach, the goal is
to maximize the number of customers with direct connections (under a similar
constraint), or at least minimize the traveling time of the customers. A recent ap-
proach aims at minimizing the travel times over all customers including penalties
for the transfers needed [9, 11].

The aforementioned approaches do not take into account certain fluctuations
of input parameters; for instance, due to disruptions to daily operations (e.g.,
delays), or due to fluctuating customer demands. This aspect introduces the
so-called robust line planning problem: provide a set of lines along with their
frequencies, which are robust to fluctuations of input parameters. Very recently,
a game theoretic approach for robust line planning was presented in [10]. In that
model, the lines act as players and the strategies of the players correspond to
line frequencies. Each player aims to minimize the expected delay of her own
lines. The delay depends on the traffic load and hence on the frequencies of all
lines in the network. The objective is to provide lines that are robust against
delays. This is pursued by distributing the traffic load evenly over the network
(respecting edge capacities) such that the probability of delays in the system is
as small as possible.

In this work, we investigate a different perspective of robust line planning
stemming from recent regulations in the railway sector (at least within Europe)
that introduce competition and free railway markets, and set up a new appli-
cation scenario: there is a (possibly large) number of line operators that should
operate as commercial organizations, while the management of the network re-
mains the responsibility of a single (typically governmental) entity; we shall refer
to the latter as the network operator. Under this framework, line operators act as
competing entities for the exploitation of shared goods and are (possibly) unwill-
ing to reveal their actual level-of-satisfaction functions that determine their true
incentives. Nevertheless, the network operator would like to ensure the maximum
possible level of satisfaction of these competing entities, e.g., by maximizing the
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(unknown due to privacy) aggregate levels of satisfaction. This would establish
a notion of a socially optimal solution, which could also be seen as a fair solution
in the sense that the average level of satisfaction is maximized. Additionally, the
network operator should ensure that the operational costs of the whole system
are covered by a fair cost sharing scheme announced to the competing entities.
This implies that a (possibly anonymous) pricing scheme for the usage of the
shared resources should be adopted that is robust against changes in the de-
mands of the entities (line operators). That is, we consider as robustness of the
system its tolerance to the entities’ unknown incentives and elasticity of demand
requests, and the eventual stabilization at an equilibrium point that is as close
as possible to the social optimum.

In this paper, we explore this rationale by considering the case where the
(selfishly motivated) line operators request frequencies (traffic demands) over a
pool of already fixed line routes (one per line operator). Rather than requesting
end-to-end frequencies, the line operators offer bids, which they (dynamically)
update, for buying frequencies. Each line operator has a utility function deter-
mining her level of satisfaction that is private; i.e., she is not willing to reveal it
to the network operator or her competitors, due to her competitive nature. The
network operator announces an (anonymous) resource pricing scheme, which in-
directly implies an allocation of frequencies to the line operators, given their own
bids. By applying techniques from the network congestion control literature, we
show that for the case of a single pool of routes, there exists a distributed, dy-
namic, (user) bidding and (resource) price updating protocol, whose equilibrium
point is the unknown social optimum. We first study the single pool case, as-
suming strict concavity and monotonicity of the private utility functions. All
dynamic updates of bids or prices may be done at the line operator or resource
level, based only on local information, that concerns the particular line opera-
tor or resource. The key assumption is that the line operators can control only
a negligible amount of frequency along a single line compared to its total fre-
quency. We extend our technique to the case of multiple line pools, whose mix is
determined by the network operator for the sake of social optimality, and prove
similar results.

Our solution is robust against the imperfect knowledge imposed by the pri-
vate (unknown) utility functions and the arbitrary (dynamically updated) bids,
since the proposed protocol enforces convergence to an equilibrium which is the
social optimum. Our approach introduces a new notion of robustness, which we
call incentive-compatible robustness, that is complementary to the notion of re-
coverable robustness introduced in [2]. The latter appears to be more suitable in
the context of railway optimization, as opposed to the classical notion of robust-
ness within robust optimization; see [2] for a detailed discussion on the subject
as well as for the limitations of the classical approach as suggested in [4].

Recoverable robustness is about computing solutions that are robust against
a limited set of scenarios (that determine the imperfection of information) and
which can be made feasible (recovered) by a limited effort. One starts from a
feasible solution x of an optimization problem which a particular scenario s, that
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introduces imperfect knowledge (i.e., by adding more constraints), may turn to
infeasible. The goal is to have handy a recovery algorithm A that takes x and
turns it to a feasible solution under s (i.e., under the new set of constraints).
In other words, in recoverable robustness there is uncertainty about the fea-
sibility space: imperfect information generates infeasibility and one strives to
(re-)achieve feasibility.

Incentive-compatible robustness is about computing an incentive-compatible
recovery scheme for achieving robustness (interpreted as convergence to opti-
mality). By an incentive-compatible scheme, we mean that the players act (up-
date their bids, in our application) in a selfish manner during the convergence
sequence. In this context, the feasibility space is known and incomplete informa-
tion refers to complete lack of information about the optimization problem, due
to the unknown utility functions. The goal is to define an incentive-compatible
(pricing) scheme so that the players converge (recover) to the system’s optimum.
In other words, in incentive-compatible robustness there is uncertainty about the
objectives: feasibility is guaranteed, since imperfect knowledge does not intro-
duce new constraints, and one strives to achieve optimality, exploiting the selfish
nature of the players.

Note that incentive-compatible robustness is different from the concept of
game-theoretic robustness as developed in [1]. The approach in [1] is a central-
ized, deterministic paradigm to uncertainty in strategic games, mainly in the
flavor of the Bertsimas and Sim approach [4] to robust LP optimization. Our
approach differs from that in the following: (i) It is decentralized to a large
extent, based only on local information that the participating entities (line oper-
ators and resources) have at any time; (ii) we impose no restriction on the kind
of the utility functions of the players, other than their strict concavity, whereas
the approach in [1] has to somehow quantify the “magnitude” of uncertainty of
the constraints and/or the payoffs, in order to keep the solvability of the problem
comparable to that of the nominal counterpart; (iii) the solvability of the robust
counterpart in [1] is largely based on the solvability of the nominal counterpart
(which is strongly questionable for the general game-theoretic framework).

Related to our work is that of Borndorfer et al [5] that considers the allocation
of slots in railway networks. That work considers the improvement of existing
schedules of lines and frequencies, by reconsidering the allocation of (scarce)
bundles of slots (i.e., lines with given frequencies in our own terminology) that
have positive synergies with each other. The remaining schedule is assumed to
remain intact, so that the resulting optimization problem is solvable. Initially, the
involved users (line operators) make some bids and consequently a centralized
optimization problem is solved to determine the changes in the allocation of these
slots so as to maximize the welfare of the whole system. This approach is different
from ours in the following points: (i) It assumes no incentive-compatibility for
the involved users and the eventual allocation is determined by a centralized
scheduler. In our case, there is a simple pricing policy per resource (track), which
is a priori known to all the players, and the winner is determined by the players’
bids. The selfish behavior of the line operators (in our case) is, not only taken
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into account, but also exploited by the system in order to assure convergence
to the social optimum of the whole network. (ii) The approach in [5] makes
some local improvements in hope of improving the whole system, but does not
exclude being trapped at some local optimum, which may be far away from the
social optimum of the system. Our proposed scheme provably converges towards
the social optimum, even if changes in the parameters of the game (e.g., in the
players’ secret utilities) change in the future. (iii) In [5], it is required that a
centralized optimization problem is solved (considering the data regarding the
whole network) and its solution is enforced in the current schedule. In our work
(at least for the single-pool case) there is no need for global knowledge of the
whole network. Fach player dynamically adapts her bids according to her own
(secret) utility and the aggregate cost she faces along her own path.

The rest of this paper is organized as follows. Section 2 provides the set up
of our modeling. The decentralized pricing mechanism both for the single and
the multiple line pool case is given in Section 3. We conclude in Section 4.

2 The Model

Suppose that a set P of line operators behave as competing service providers,
willing to offer regular train routes to the end users of a railway public trans-
portation system. The railway network operator provides the (aforementioned)
public transportation network G = (V, L), with the set L of edges (railway tracks
connecting directly two nodes of G) being the resources of the network. These
resources are assumed to be subject to (fixed) capacity constraints, described by
the capacity vector ¢ = (¢)eer, > 0. The capacity of each edge is considered as
a shared resource provided by the network operator.

There is a fixed pool of routes (i.e., origin—destination paths), one per line
operator, that the line operators are willing to use. This pool is represented
by a routing matrix R € {0, 1}/%/*IPI in which each row Ry, corresponds
to a different edge ¢ € L, and each column R, , corresponds (actually, is the
characteristic vector of) the route of a distinct line operator p € P. Each line
operator p € P has complete control over the frequency or traffic rate (of trains)
she decides to route over her path, R, ,, given that no edge capacity constraint
is violated in the network. A utility function U, : R — R determines the level
of satisfaction of the line operator p € P for committing an end-to-end traffic
rate £, > 0 along her route R, ,, for the purposes of her clients. These utility
functions are assumed to be strictly increasing, strictly concave, nonnegative
real functions of the end-to—end traffic rate x, allocated to the line operator
p € P. It is also assumed that these functions are private: Each line operator is
not willing to reveal it to the network operator or her competitors, due to her
competitive nature.

The railway network operator is only interested in having a socially optimal
(fair) solution. This is usually interpreted as maximizing the aggregate satisfac-
tion of the line operators. Therefore, the social welfare objective is considered
to be the maximization of the aggregate utilities of the line operators, subject
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to the capacity constraints. That is, the network operator is interested in the
solution of the following convex optimization® problem:

max ZUp(xp):Rxgc; x>0

peP

Since all utility functions are strictly concave, then has a unique op-
timal solution, which is the social optimum. To solve directly, the
network operator, apart from the inherent difficulty in centrally solving (even
convex) optimization programs of the size of a railway network, faces the addi-
tional obstacle of not knowing the exact shape of the objective function. More-
over, there exist some operational costs that have to be split among the line
operators who use the infrastructure, and this has to be done also in a fair way:
Each line operator should only be charged for the usage of the resources stand-
ing on her own route. In addition, the per—unit cost for using a line should be
independent of the line operator’s identity (i.e., we would like to have an anony-
mous pricing scheme for using the resources). But of course, this cost depends
on the aggregate congestion induced by all the line operators in these edges, due
to the congestion effect. Indeed, it would be desirable for the network operator
to be able to exploit the announcement of a pricing scheme not only for covering
these operational costs, but also in such a way that a fair solution for all the line
operators is induced, despite the fact that there is no global knowledge of the
exact utility functions of the line operators.

In this work, we explore the possibilities of having such a pricing and traffic
rate allocation mechanism. We would like this mechanism to depend only on the
information affecting either a specific line operator (e.g., the amount of money
she is willing to spend) or a specific resource (e.g., the aggregate congestion
induced by the line operators’ demands on this resource), but as we shall see
this is not always possible.

As for the line operators (the players), each of them is interested in selfishly
utilizing her own payoff, which is determined by the difference of the private
utility value minus the operational cost that the network operator charges her
for claiming an amount of traffic rate along her own route. The strategy space
of a line operator is to claim (via bidding) the value of the traffic rate she is
willing to buy, subject to the global capacity constraints (for all the players).
It is mentioned here that this linear combination of the private utility and the
cost share is not a real restriction, as there is no restriction for the shape of the
utility function, other than the strict concavity and the monotonicity, which are
quite natural assumptions.

We make the tacit assumption that convex optimization refers to minimizing a con-
vex function f, which is equivalent to maximizing the concave function —f.
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3 A Decentralized Pricing Scheme

The selfish perspective of the competing line operators (the players) implies
a strategic game among them, in which the network operator intervenes only
implicitly (as the game designer), by setting the resource usage (per—unit) costs.
In order to study the effect of the selfish behavior in this setting, we consider
the following Frequency Game in Line Planning:

— Each player p € P is a line operator, whose strategy is to choose a line
frequency (traffic rate) over her (already fixed) route R, , connecting her
own origin-destination pair (s,,t,) of stations/stops.

— The strategy space for all the players is the set of feasible flows from origin to
destination nodes, so that the edge capacity constraints are preserved. That
is, the strategy space of the game is the set of vectors {x € RLPOl : Rx < c}.

— Each player’s payoff is determined both by the value of the private utility
function U, (z,) (for having a traffic rate of x, over her route) and the oper-
ational cost C)p(x) she has to pay along her own route, due to the required
traffic rate vector x induced by all the players in the network. Hence, player
p’s individual payoff is defined as: IP,(zp,x—p) = Up(zp) — Cp(p, X—p),
where x_, is the traffic rate vector for all the players but for player p.
Therefore, the sole goal of player p € P is to choose her traffic rate so as to
maximize her individual payoff:

USER | max {IP(zp,x_p) = Up(zp) — Cp(zp,x_p) 1 p > 0}

— We consider as shared resources the capacities of the available network edges,
for which the line operators compete with each other.

As we shall see shortly, we will allow the players to affect their own choices
(traffic rates) only indirectly, via bidding. That is, each player is not assumed to
freely choose her own traffic rate along her route, but rather offer a larger bid
for (hopefully) getting higher traffic rate.

3.1 Describing the Social Optimum

Due to our assumption on the convexity of | SOCIAL |, we know that a traffic rate
vector X is optimal for it (we call it the social optimum) if there exists a vector of

Lagrange Multipliers \ = (5\5) rer, satisfying the following Karush-Kuhn-Tucker
(KKT) conditions (see e.g., [3, Chap. 3]):

KKT-SOCIAL
Ul(&p) = A" R.p, VpEP,

(
Ai(co— Ry, %) =0, Vlel, (2

(

(

Ri,-%<c¢y, VIEL,
Lx>0
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Of course, the problem with the | KKT-SOCIAL | system is that the utility

functions (and hence their derivatives) are unknown to the system. The question
is whether there exists a way for the network designer to enforce the optimal so-
lution of , also described in , without demanding this
knowledge. The answer to this is partially affirmative, and this is by exploiting
the selfish nature of the players (line operators) as we shall see shortly.

3.2 Setting the Right Pricing Scheme for the Players

In order to allow usage of his resources (the capacities of the edges in the net-
work), the network operator has to define a pricing scheme that will (at least)
pay back the operational costs of the edges. This scheme should be anonymous,
in the sense that all the line operators willing to use a given edge, will have
to pay the same per—unit—of-frequency price for using it. But these prices may
vary for different edges, depending on the popularity and the availability of each
edge.

For the moment let’s assume that we already know the optimal Lagrange
Multipliers, (5\@)@6 1, of . Interpreting these values as the per—
unit—of—frequency prices of the resources, we have a pricing scheme for the traffic
induced by the line operators to their own routes: Each line operator pays exactly
for the marginal cost of her own traffic rate at the resources she uses in her route.
That is,

Vp € P, Cp(xp,X—p) = fip - Tp

where fip =3 e g, 1 A¢ = ATR, , is the per—unit price for committing a unit
of traffic along the route R, , of player p € P.

One should mention here that indeed there is an indirect effect of the other
players’ congestion in the marginal cost of each player, despite the fact that this
seems to be only linear in her own traffic rate. This is because the scalar fi,
actually depends on the optimal primal-dual pair (X, 5\)

We next assume that the players are actually controlling only negligible
amounts of traffic rates compared to the aggregate ones?. Then, their effect
in the total congestion (and therefore in the values of the marginal prices) is
also negligible. This implies that the players consider the per-unit-prices they
face to be constant, even if this is actually affected by the traffic rate vector as
well. In such a case we say that the players are price takers, i.e., they accept
the prices without anticipating to have an effect on them by their own strategy.
In such a case each player solves the following optimization problem:

USER-I| max {Uy(zp) — fipxp : x,p > 0}
Due to the convexity of | USER-1|, #, > 0 is an optimal solution if U} (%) = fi,.

That is, each player (selfishly) tries to satisfy her own part of the first set of
equalities in | KKT-SOCIAL | Of course, we still have to deal with the crucial

2 For the considered application scenario, this is not unrealistic.
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problem that the optimal Lagrange Multipliers (that define the marginal prices
for the users) cannot be directly computed, due to both the size of
and the lack of knowledge of the private utility functions, in the framework of
railway optimization.

In order to handle this situation, we consider the following two-level scenario
for dynamically setting per—unit prices of the edges and frequencies of the selfish
players: Initially each player p € P announces a bid w, > 0 concerning the total
amount of money she is willing to pay for buying traffic rate along her own
route. The exact amount of traffic rate that she will eventually buy, depends on
the per-unit price that will be announced by the network operator, and is not
yet known to her. Consequently, the network designer considers the following
optimization problem, whose Lagrange Multipliers define the per—unit prices of
the edges:

NETWORK | max Z wp - log(zp) tRx <c; x>0

pEP

That is, the network operator considers that the private utility Up,(xp) is sub-
stituted by the (also strictly concave and increasing) function w,, log(z,). The
choice of this function along with the selfishness of the players allows us to ob-
tain a convex program with linear inequalities, whose KKT system is very similar

(except for the first line) to | KKT-SOCIAL |

KKT-NETWORK

% _XT.R,, VpeP (5)
Tp
/_\g (Cg — Rf,* . )_() =0, Vil e L, (6)
Ré,* "X < ey, NIAS La (7)
AX>0 (8)

At this point, one could argue that the convex program | NETWORK | could
be directly solved, and compute (along with | KKT-NETWORK ‘) the requested
Lagrange Multipliers. The huge scale of a railway network optimization instance

makes this approach rather unappealing. Therefore, we shall compute an optimal
solution of | NETWORK | in a distributed fashion, as follows:

— Each edge is equipped with a dynamically updated charging mechanism,
which is the same (per—unit) price for all the line operators using it. This
charging mechanism is updated according to the following system of differ-
ential equations:

Ve e L, A(t) =max{ye(t) — ce,0} - Ipa, iy=op + (We(t) — o) - Ipa )01 (9)

where yy(t) = ZPEB:RM:I zp(t) = Ry - x(t) is the cumulative traffic rate
committed at edge £ € L at time ¢ > 0, and I¢¢y is the indicator variable of
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the truth of a logical expression €. The system of differential equations (9)
is obtained from the well-known approach (see e.g., [12]) that considers the
Lagrange multipliers of an optimization problem as the (per unit) prices of
the resources corresponding to the constraints represented by each Lagrange
multiplier. Therefore, the above system has the following intuitive interpre-
tation. For each resource ¢ that currently has a zero price, the tendency is to
increase the price only if this resource is over-used (i.e., the aggregate traf-
fic rate exceeds the capacity of the resource). When a resource has positive
price, then the tendency is either to increase or reduce this price, depend-
ing on whether its current traffic rate is below or exceeds the capacity of
the resource, respectively. Thus, the only stable situation is only when a
resource is either under-used and has zero price (since there is no interest
in using the residual capacity), or its traffic has already reached its capac-
ity. Observe that the equilibrium of this system of differential equations has
Ve Ly =R, -X=c V A = 0. That is, the complementarity con-
ditions of both | KKT-SOCIAL | and [ KKT-NETWORK | (equations (2) and
(6)) are satisfied.

— Each line operator p € P is charged an instantaneous per-unit price p,(t) =
> er: Rep=1 Ae(t) = At)T - R, ,, at any time ¢t > 0. Therefore, given their
commitment on spending w), for buymg traffic rate, at equilibrium player p
is allocated a traffic rate z, = ﬁp From this we deduce that at equilibrium

also the equations (5) of ’ KKT-NETWORK ‘ are satisfied.

The above distributed scheme is a congestion control algorithm, in which each
player (line operator) reacts to signals she gets about the congestion along her
route. These signals are the per-unit prices p,(t) that the line operator gets from
the network operator at any time.

The question is whether the above system converges at all. This is indeed
true, if we assume that the routing matrix R has full rank. This assures that given
a set A(t) = (Ae(t))eer of instantaneous per-unit prices at the resources, the set
w(t) = (pp(t))pep of per-unit prices for the line operators, that is computed as
the solution of the system p(t) = RT - A(t), is unique. Using a proper Lyapunov
function argument, it can be shown (cf. [8, Chapter 22]) that this dynamic
(and distributedly implemented) pricing scheme, for fized player bids (wp)pep,

is stable and converges to the optimal solution (%, \) of | NETWORK |.

In particular, consider the Lyapunov function V(A(t)) = L (A(t)

3 T —

A). To show stability of our scheme, it suffices to show that dV (\(t))/dt < 0.
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Then we have:

dV (A1)

g = E;(/\e(t) — o) - A1)
B eez;wu) = Ae) - [max{ye(t) — ce, 0} - Tpa,=0p + (We(t) — co) T, >03]
< EZ;(AN) — o) - (ye(t) = co)
= ;Zme = Ae) - [(ye(t) = Fe) + (e — co)]
< ;2;(/\@@) — o) - (ye(t) — )
= gw(t) —Ae) - Ry - (x(t) — %)

= (up(t) = fip) - (wp(t) — Tp)

pEP
<0

The first inequality holds because: V£ € L, (i) if Ag(t) > 0 then \(t) = yr — cy;
(ii) if Ao(t) = 0 then max{y, —c;, 0} > 0 and \;(t) —A¢ = —Ay < 0. Therefore, for
Ae(t) = 01t holds that (Ag(t)—M¢) max{ye(t)—ce, 0} = Y, max{ye(t)—ce, 0} < 0.
But so long as A(t) = 0, it holds that the total flow y,(t) is at most as large as the
capacity ¢y (otherwise the price for this resource would have raised earlier). That
is, 0 < —Xg(ye(t) — c¢). The second inequality holds because at equilibrium no
aggregate flow g, can exceed the capacity c; of the resource, and A\¢(g; —c;) = 0.
The third inequality holds because Vz > 0, z + % >2=2—z— % < 0. We have
also exploited the facts that V¢t > 0, y(¢t) = R-x(t) and u(t) = \#)T - R.

Let’s now return to the line operators. We have assumed that these players
announce some fixed bids, but the truth is that since the pricing scheme changes
over time, it is in the interest of each of them to vary her own bid. Indeed,
if the players are assumed to be price takers and act myopically (i.e., without
anticipating to affect the prices via their own pricing policy), then they will try
to solve the following system, which is parameterized by the instantaneous set of
per—unit prices u(t) = (up(t))pep (seen as constants) they are charged at time
t>0:

USER-IT maX{Up < ot > —wy i wy > 0}

tp(t)

Due to convexity, the optimal solution w,(¢) of this unconstrained optimization
program, will be the bid chosen by player p € P at time ¢ > 0, and is be given
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by:
L (a0
e U”(w@)) b
Uy @yt = U (520 ) = pl0)
F (O (1)) = 1p(0) - Tp(8) = T (1)

That is, the price taking, myopic players have an incentive to set their bids
properly so that Vt > 0,Yp € P,wy(t) = z,(t)U,(wp(t)). This will also hold at

equilibrium, i.e., Vp € P,w, = 7,U,(7,). But when this is true, it also holds that

KKT-NETWORK | and | KKT-SOCIAL | coincide. Therefore, the selfish behav-
ior of the myopic, price taking players, under the dynamic price setting mecha-
nism and bidding scheme, converges to the optimal solution (%X, A) of | SOCIAL |.

3.3 Extension to Multiple Pools of Routes

In this subsection we extend the freedom of the railway network operator, as-
suming that he can periodically use different pools of routes for the players,
from a set K of pools. The set of different pools is motivated by the fact that
usually there are dependencies between lines; for instance, the choice of a high-
speed line affects the choice of lines for other trains. These dependencies split
naturally the set of all lines into a small number of subsets determined by the
network operator, resulting in different line pools.

Each pool k € K is represented by its routing matrix R(k) € {0, 1}|L‘X‘P|, as
before. The line operators still try to have (indirect) control only over the end-
to-end traffic rates they get by the network operator. We assume that player
p € P gets a unique traffic rate x,, for the whole period of time considered. It
is up to the network operator to decide how to multiplex the distinct pools of
routes, in order to achieve the optimal social welfare value. That is, the network
operator now directly participates in the optimization problem, via the variables
fr + k € K indicating the portion of time each pool consumes over the whole
time period we study. This social welfare optimization problem is the following:

| MULTI-SOCIAL |

max Y Up(zy) : V€ LVk € K, (R(k))ew - X <o fr; > fo <13 x,£2>0
peEP keK

The Lagrangian function is the following:
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L(x,f,4,¢)

=D Uplap) = DD Avse - [(R(F))es - x —co- fi] — [Z fk_1‘|
pEP el keK ke K

=S| U) = 303 Arse - (R(E)ep - ap| + D i [T A — ] +¢
peEP leL keK keK

If we set pp(A4) = >pep Dper Aok - (B(E))ep = Dper /1*7;@T(R(l<;))*,p, the
system of KKT conditions of ’ MULTI-SOCTAL ‘ is written as follows:

KKT-MULTI-SOCIAL

U'(Zp) = fip=pp(Ad), VpeP, (10)
" A=Y Aip-ee = ( VEEK, (11)

el
Ao [(ROew % —co fi] = 0, weLvkek, (12)
¢ (Zﬁ—l) = 0 (13)

keK
(R(k))es % < cofr, VEL, (14)
fo <L (15)

keK

x>0, £>20,A>0,(>0 (16)

Observe that, by equation (11), in the optimal solution all the pools have the
same weighted aggregate price, equal to é‘ , if we use the edge capacities as
weights. Moreover (due to equation (13)), unless this optimal aggregate price
is zero, it holds that the edge capac1tles are totally distributed among the dis-
tinct pools: if ¢ > 0 then Y okek fo =

‘We can once more set the 1nstantaneous per-unit prices for the players as a
(linear) function of the Lagrange Multipliers, as follows:

Vt >0, Vp € P, p,l(t Z Z Api(t) - (R(K))ep = Z (Ae@)" - (R(K)),
teL keK ke

The congestion at edge ¢ € L due to route R(k) at time ¢ > 0, is given by
Yo r(t) = (R(k))es - x(t). A dynamic (by the edges) pricing scheme, is described
by the following system of differential equations:

Vle L, Vk € K,

Ag () = max{ye k() = cofi, 0} - Tya, o ty=01 + (Wek(t) = cofie) - Tga, . 0>637)
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This differential system would then assure the validity of equations (12), at
equilibrium, if the pool frequencies provided by the network operator were fixed.
Assuming again that the players announce (instantaneous) bids, and providing
them with a traffic rate z,(¢t) = w,(t)/up(t) at any time, along with their price
taking and myopic behavior, would also assure (at equilibrium) the validity of
equations (10).

But we also have to assure the validity of equations (11) and (13). In order
to achieve this, we study the dual of ’ MULTI-SOCIAL ‘: The dual problem of

| MULTI-SOCIAL | is the following:

[ DUAL-MULTI-SOCIAL | max {D(A,() : Ve € L,k € K, Ay, > 0;¢ > 0}

where:

D(A,¢) = max {L(x,f,A,¢) : x,f > 0}

=max 0 > \Uplap) = 32> Avg (R(K)) ey - x]

peEP lEL keEK
W%{wa [ZAemc }+<
- keK leL

Observe that the dual objective D(4, () is split in two parts. The first part

=N A (R(K))ep - x,,]
el keK

is a maximization problem similar to the one already dealt with in the single
pool case of the previous section. The second part
¢ } +¢

G(4, Igiai{ka Z/le,k'ce—
=1;133<{ka T Ak) ¢ (1—ka>}

keK Lel
keK keK

F(A) = max Z

x>0
peP

It is now clear that so long as there exists a pool with weighted aggregate price
(using the capacities as weights) strictly larger than the value of ¢, the optimal
choice of f is to be a probability distribution that assigns positive mass only to
pools of maximum aggregate price (according to A). Therefore:

_ (T _ T
G(A, Q) = I {I;( fi- (c A*,k)} max {c"A i}
:min{z i2-17 > CTA}

We augment our price updating scheme described in the system (17) as follows:
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— After the players having announced the current bids (wy(t)),ep and (conse-
quently) the edges having updated their current prices in each pool (A x(t))ee L ke,
¢(t) is set to the average price of a pool:

c(t) = ﬁ S T (A®)). (18)

keK

— The network operator then updates the portions of time granted to each of
the pools, so that pools exceeding the current average price tend to increase
their portion of time (in hope of decreasing their weighted cost), while pools
that are cheaper than the average price slightly decrease their portion of
time. That is:

Vk € K, fir(t) = ¢-max {0, (A(t))r — C(t)} (19)

where, ¢ > 0 is a scaling factor ensuring that the resulting vector f is again
a probability distribution over the pools.

Observe that, at equilibrium (fc,f' , /i,é ), our augmented pricing scheme has all
pools with the same aggregate price: Vk € K,&’ - /i*’k = é It is only then
that the time portions of the pools stabilize (cf. equation (19)). This assures
the validity of equations (11). Moreover, by brute force we assure the validity of
equation (13).

It is mentioned at this point that the two updating schemes concerning the
average pool price and the vector of time portions of the pools, have to be
centrally computed by the network operator, since it is his decision how to
change them and these changes take into account the state of the whole network.
Unfortunately we cannot (at least in this approach) avoid this bottleneck, since
we involve the network operator in the competing environment.

4 Conclusions and Open Issues

We presented a distributed protocol for a new application scenario in line plan-
ning that achieves incentive-compatible robust solutions. Our protocol allows line
operators to negotiate line frequencies over fixed lines in a dynamic fashion. In
a broader context, our approach comprises a generic technique to set up a dy-
namic market for (re-)negotiating usage of resources over subsets of resources.
Consequently, it could be applied to set up a dynamic frequency market over
other transportation settings (e.g., in the airline domain).

A crucial question would be to devise protocols that demonstrate fast con-
vergence to the equilibrium point, even approximately. Additionally, it would be
interesting to find ways to tackle the assumption on price taking and myopic
behavior of the users. It would be nice to do this even at the cost of suboptimal
equilibrium points. It is noted that when the players are not price takers and
myopic (they are called then price anticipators in the congestion control jargon),
then the above scheme does not lead to socially optimal solutions, even for the



16

Spyros Kontogiannis and Christos Zaroliagis

case where there is only a single resource to share. Nevertheless, it would be quite
interesting to know how far one can be from the social optimum, given that a
distributed (and localized) updating scheme is adopted for the user requests and
the prices of the resources.
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and Sebastian Stiller for their comments on an earlier draft of this work, and to
Kostas Tsihlas for many fruitful discussions.
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