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Preface

It is our pleasure to welcome you to the 31st International Symposium on Temporal Repres-
entation and Reasoning (TIME 2024), held in Montpellier, France, from October 28 to 30,
2024. For over three decades, TIME has been the premier forum for researchers from various
disciplines to share their latest findings and insights in the field of temporal representation
and reasoning.

This year’s symposium continues the tradition of bringing together researchers from
diverse areas such as artificial intelligence, database management, logic, and verification.
The interdisciplinary nature of TIME fosters rich discussions and collaborations, pushing the
boundaries of our understanding of temporal aspects in computer science and related fields.

We received a total of 26 submissions, representing a wide range of research topics. After
a rigorous review process, 17 papers were selected for presentation at the symposium. The
accepted papers cover various aspects of temporal representation and reasoning, including but
not limited to temporal logics, planning, temporal databases, and spatio-temporal reasoning.
We are honored to have three distinguished keynote speakers this year:

Sophie Pinchinat (Inria-IRISA, Rennes, France)
Guido Sciavicco (University of Ferrara, Italy)
Przemysław Wałęga (Queen Mary University of London & University of Oxford, UK)

Their talks promise to provide valuable insights into the current state and future directions
of our field. We would like to express our gratitude to the Program Committee members and
additional reviewers for their thorough and timely reviews. Their expertise and dedication
have been crucial in maintaining the high scientific standards of the symposium. We also
thank the authors for their high-quality submissions and their contributions to the field.

Our sincere appreciation goes to the local organizing committee for their hard work in
ensuring a smooth and enjoyable symposium experience. We are also grateful to our sponsors
- Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM),
Pôle Mathématiques, Informatique, Physique, Systèmes (MIPS) of the Université de Mont-
pellier, the Department of Computer Science of the University of Verona, and EurAI - for
their generous support.

Lastly, we would like to thank LIPIcs for publishing the proceedings and for their continued
support of open-access dissemination of scientific research.

We hope that TIME 2024 will be a stimulating and enriching experience for all participants,
fostering new ideas, collaborations, and advances in the field of temporal representation and
reasoning.

Pietro Sala, University of Verona, Italy
Michael Sioutis, LIRMM UMR 5506, Université de Montpellier & CNRS, France
Fusheng Wang, Stony Brook University, NY, USA

TIME 2024 Program Committee Co-Chairs
September 7th, 2024
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A General Logical Approach to Learning from Time
Series
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Abstract
Machine learning from multivariate time series is a common task, and countless different approaches
to typical learning problems have been proposed in recent years. In this talk, we review some basic
ideas towards logic-based learning methods, and we sketch a general framework.
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1 Extended Abstract

Time series are temporally ordered observations. Time series can be univariate or multivariate,
depending on whether there is a single one or multiple measurements, and each measurement,
known as temporal variable can be either numerical or categorical.

Time series are ubiquitous in computer science. In some areas, data have naturally the
form of multivariate time series; this is the case, for example, of predictive maintenance [5]
in industry, usually obtained via the recording of sensors’ values (e.g., vibration sensors, gas
exhaust sensors), of (hospitalized) patients’ monitoring [2], during which the value of vital
signs (e.g., oximetry, blood pressure, temperature) is recorded in order to quickly identify
variations or deterioration of the condition. In other areas, time series arise from data whose
temporal nature is often overlooked; examples range from acoustic data [3] (e.g., voice, cough
samples, breath samples), in which case the data becomes temporal when audio is separated
into its frequency component (for example via a Fourier transform) whose power changes
over time – in the scale of the milliseconds, to brain waves recording data [4] (e.g from an
electroencephalogram), in which the electrical power at different frequencies (again, after
a Fourier transform) changes over time and across different electrodes, up to textual data:
tokens (e.g., words) follow a linear order, and their different characterizations (e.g., syntactic
type, semantic value) can be seen as temporal variables, implying that even text, in a sense,
can be interpreted as a multivariate time series [1].

A collection of data instances, or dataset, is associated to several classic problems. Given
a single multivariate time series, seen as its own dataset, the most natural machine learning
problem is that of forecasting, defined as the problem of establishing the next value of a
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1:2 A General Logical Approach to Learning from Time Series

specific temporal variable given the past values of all variables. Otherwise, given a dataset of
several multivariate time series, one can formulate a classification problem: if the dataset if
labelled, then the problem is supervised classification/regression, and if it is not, it becomes
unsupervised classification. The typical approaches to forecasting are based on examining the
values of the time series in the last temporal points preceding the one for which the forecasting
is required; by partitioning the time series into several chunks, each labeled with the value
of the variable to be forecasted, then a single time series becomes a dataset itself, and
forecasting can be reduced to regression). Moreover, both supervised classification/regression
and unsupervised classification are pattern-searching problems; in the former case the search
of patterns is guided by some measure of information on the class (e.g., entropy), and in the
latter case by some measure of information on the pattern itself (e.g., frequency). In this
sense, it can be said that with time series, at some abstract level there is only one machine
learning paradigm of interest, that is, classification, or pattern extraction.

In this talk we focus on logical pattern extraction of datasets of multivariate time series.
Patterns can be written in different logical languages, from propositional, to modal (temporal),
to first-order, and beyond. One common idea to all symbolic methods and techniques is
that a multivariate time series can be seen as a model of a logical framework, and pattern
extraction is essentially a model-checking exercise.

Although the logical languages may vary, it is possible to give a general definition of
propositional letter/atomic relation, that serves as a starting point. To this end, we consider
a set of time points (e.g., from moment 𝑡1 to moment 𝑡2), and the value of all variables at
those points (e.g„ the level of vibration picked up by sensors 𝐴 and 𝐵); then we apply a
function to the set all values (e.g., the average). Finally, we compare the result to a constant,
ending up with an atomic sentence (e.g., the average vibration between sensors 𝐴 and 𝐵 is
below 100𝐻𝑧). By varying the parameters that govern such generic atomic statements, one
obtains a wide range of basic alphabets, which can be combined with different languages.

As we shall see, logical pattern extraction from datasets of time series has been and can be
approached in ways that range from very simple (i.e., using propositional logic), to relatively
complex (i.e., using point-based or interval-based temporal logics), to very complex (i.e.,
using higher order logics). Standard symbolic machine learning methods (e.g., decision trees
and lists learning algorithms) are designed for propositional logic, but they are progressively
adapting to more complex languages, and in this talk we give an overview of this landscape.
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Strategic Reasoning Under Imperfect Information
with Synchronous Semantics
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Abstract
Dynamic Epistemic Logic is a modal logic dedicated to specifying epistemic property changes along
the dynamic behavior of a multi-agent system. The models that underlie this logic are (epistemic)
states together with transitions caused by events, the occurrence of which may modify the current
state. We first develop a setting where the entire dynamics of the system starting from an initial
state is captured by a single infinite tree, in a way similar to what has been considered for Epistemic
Temporal Logic, and second go through the current state-of-the-art regarding strategic reasoning,
with a focus on planning problems in this infinite structure.
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1 Extended Abstract

Strategic reasoning is a field of formal methods that focuses on the quest for mathematical
settings that allow for specifying and verifying properties in a multiplayer game-like framework
where the focus is put on quantifying over strategies of individual players to achieve some
goals. The game arena arises from a compositional operational semantics of some multi-agent
system, that gives rise to infinite-horizon computations one wants to reason about. Not
surprisingly, the kind of goals involved in strategic reasoning resembles the one used in
formal verification, and is considered to be specified in temporal logic, the simplest ones
being reachability properties. Additionally, and contrary to many approaches for system
verification, the need for handling imperfect information is central: this is because, in
multi-agent systems, the limited information available to each agent/player of the system
prevents her from knowing the global state of the system. With this limited player ability of
observing the system, strategic reasoning becomes hard to deal with. Indeed, while in a full
information setting a strategy can be seen as a subtree of the full computation tree of the
system’s behavior, in a partial information setting, one has to deal with an extra property of
these subtrees that guarantees the consistency of players’ decision with their observation,
known as uniformity [5]: in two different executions of the system that look the same to a
player, the player’s decision should be the same.

The uniformity property requires to reasoning about infinite trees that involve binary
relations between nodes not considered in classical logic for trees [9] and that threatens the
decidability of the resulting logics. Typically, extending monadic second-order logic (MSO)
on trees with the extra binary “equal level” predicate makes it undecidable [10].

The purpose of this talk is to describe a setting where the uniformity property of players’
decision can be handled. This setting is borrowed from the automated planning field where
the Dynamic Epistemic Logic (DEL) [11] was introduce to provide one-player games with
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2:2 Strategic Reasoning Under Imperfect Information with Synchronous Semantics

imperfect information and compute (uniform) strategies (there named “plans”) to achieve
reachability epistemic goals. One major feature of the DEL setting is to deal with synchronous
semantics of the players’ observation.

The talk consists in presenting a restricted version of the DEL setting where one-player
uniform strategies for arbitrary omega-regular linear-time temporal goals can be represented
by finite-state automata and makes strategic reasoning computable. We resort to fairly recent
results from the authors and colleagues [2, 3, 8] that exhibit decidable strategic reasoning
decision problems and strategy synthesis. A central tool is the class of automatic structures
[4, 1], a class of possible infinite-state models with a decidable first-order theory, as well as
the subclass of regular automatic trees [3] where chain-MSO becomes decidable, as opposed
to the former.

Due to time limitation, it is unlikely that we discuss the multi-player extensions as done
afterward in [6, 7].
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Exploring DatalogMTL
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Abstract
I will introduce DatalogMTL – an extension of Datalog, augmenting it with operators known from
metric temporal logic (MTL). DatalogMTL is an expressive language which allows us for complex
temporal reasoning over a dense timeline and, at the same time, remains decidable. I will provide
an overview of research on DatalogMTL by discussing its computational complexity, syntactic and
semantic modifications, practical reasoning approaches, applications, and future research directions.
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Extended Abstract

DatalogMTL [2] is a temporal extension of Datalog which allows one to perform complex
reasoning over a dense timeline, using metric temporal logic (MTL) operators. For example
it makes it possible to write temporal rules involving recursion over time, as in the program:

TransactionChain(x, y)← Transaction(x, y) ∧ RedList(x),
TransactionChain(x, z)← ♢−[0,24]TransactionChain(x, y) ∧ Transaction(y, z),

⊞[0,∞)Suspect(y)← TransactionChain(x, y) ∧HighRisk(y).

The first two rules recursively define relation TransactionChain. The first rule initialises the
definition by stating that TransactionChain holds between x and y at some time point, if
at that time point a financial Transaction was recorded between x and y, and moreover,
x was on a bank’s RedList. The second rule, in turn, states that TransactionChain holds
between x and z at a time point t, if TransactionChain(x, y) did hold sometime in the
interval [t− 24, t] (expressed with the MTL operator ♢−[0,24]) and Transaction(y, z) holds at
t. Hence, TransactionChain(x, y) means that there is a chain of transactions from x to y,
such that the period between consecutive transactions in this chain is at most 24 hours and
x was on RedList at the time of the first transaction. The third rule states that if y is in
a TransactionChain (started by some x) and they are a HighRisk customer, then y will be
treated as a Suspect in indefinite future (expressed with ⊞[0,∞)).
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3:2 Rule-Based Temporal Reasoning: Exploring DatalogMTL

The above program shows some non-trivial temporal reasoning aspects allowed by Data-
logMTL, which involve recursion over time as well as reasoning about time intervals and
time distances. Due to succinct representation and high modeling capabilities, Datalog-
MTL has been applied to a number of tasks, including temporal ontology-based query
answering, stream reasoning, modelling smart contracts, verification of banking agreements,
fact-checking economic claims, and even for describing dance movements. On the other hand,
the high expressive power of DatalogMTL leads to challenging computational behaviour,
namely consistency checking and fact entailment are EXPSPACE-complete in combined
complexity [2] and PSPACE-complete in data complexity [4]. As a result, research on
DatalogMTL has been concentrated on establishing low complexity fragments and developing
practical reasoning algorithms.

The main approaches to obtaining low complexity fragments consist in: restricting the
form of rules, for example by assuming their linearity or by limiting the form of allowed
temporal operators, assuming a discrete time line, and considering an alternative event-
based semantics. There are also several extensions of DatalogMTL, allowing for additional
features such as temporal aggregation, existential rules, and (stratified and non-stratified)
negation-as-failure under the stable model semantics [6].

Regarding the practical reasoning approaches, non-recursive programs can be rewritten
into SQL, which was implemented within a temporal extension of the Ontop platform [3].
For DatalogMTL programs which are finitely materialisable [8] – that is the forward-chaining
procedure for them takes a finite number of steps – reasoning can be performed using a
standard chase, which was implemented within Vadalog system [1]. The first system allowing
for reasoning in full DatalogMTL, called MeTeoR [5], combines materialisation-based and
automata-based techniques, and has also been applied for solving stream reasoning tasks [7].

During the talk, I will describe both the theoretical results and practical reasoning
approaches established for DatalogMTL. I will also present the ongoing and future research
directions.
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Abstract
Simple temporal networks with uncertainty (STNUs) have achieved wide attention and are the basis
of many applications requiring the representation of temporal constraints and checking whether
they are conflicting. Dynamic controllability is currently the most relaxed notion to check whether
a system can be controlled without violating temporal constraints despite uncertainties. However,
dynamic controllability assumes that the actual duration of a contingent activity is only known when
the end event of this activity takes place. The recently introduced notion of agile controllability
considers when this duration is known earlier, leading to a more relaxed notion of temporal feasibility.
We extend the definition of STNUs to STNUOs (Simple Temporal Networks with Uncertainty and
Oracles) to represent the point in time at which information about a contingent duration is available.
We formally define agile controllability as a generalization of dynamic controllability considering the
timepoints of information availability. We propose a set of constraint propagation rules for STNUOs
leading to an algorithm for checking agile controllability.
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An important question in all these applications is whether the constraints modeled in an
STNU are temporally correct: can the controller derive a schedule for a process observing
all constraints? Can the controller steer the execution of a process without violating any
constraint? Are the elicited temporal requirements in conflict? Although the notion of
satisfiability is sufficient for STNs, uncertainty in STNUs requires a more sophisticated
notion of correctness. Dynamic controllability [17] is currently the most studied notion for
the temporal correctness of STNUs. It requires a viable execution strategy (assignment
of values to timepoints) that does not violate any constraint and where later timepoints
may depend on earlier timepoints but not vice versa. For checking dynamic controllability,
effective and efficient methods with polynomial complexity have been proposed [16, 4, 12].

However, dynamic controllability assumes that the duration of contingent activities, hence
the values of contingent timepoints, are only known when they happen. This is adequate in
many applications where the actual duration of some activity is only known when the end
event of this activity is observed. An example of such an activity is a money transfer in the
EU, where there is a legal requirement that the transfer does not last longer than four days.
However, the actual duration is only known when the amount is credited to the receiver’s
account. In this case, the controller cannot schedule an event that has to occur exactly
one day before the contingent timepoint (the receipt of the transferred amount) without
(potential) violation of this temporal constraint.

However, in other applications, the duration of a contingent activity can be known earlier.
For example, a delivery time between 4 and 6 weeks is guaranteed in order processing.
However, the delivery date is communicated within a week after placing the order. In this
case, it is perfectly feasible for the controller to schedule an event precisely two days before
the contingent timepoint (day of the delivery). For such a scheduling decision, the controller
recognizes that the duration of the contingent activity is known before the contingent
timepoint takes place.

Now the question arises of how the notion of dynamic controllability can be generalized
such that in a viable execution strategy, a timepoint may depend not only on timepoints
which are earlier, but also which are known earlier. We call this novel notion of controllability
agile because information about future timepoints may be used as soon as it is available.

This notion of agile controllability has first been introduced in [22, 21] together with
an algorithm to check agile controllability based on the propagation rules in [16]. Here,
we further formalize the extension of STNUs by introducing the notion of oracles, which
represent the timepoints when the duration of a contingent activity is revealed. We formally
define agile controllability by extending the notion of a viable execution strategy based on the
available information of durations rather than only the occurrence of events. Furthermore, we
develop an algorithm for checking agile controllability based on an extension of the constraint
propagation rules presented in [4].

Therefore, the original contributions of this paper are:
1. The formal definition of STNUO (Simple Temporal Network with Uncertainty and

Oracles).
2. A formal definition of Agile Controllability.
3. ORUL, a set of rules for propagating constraints in STNUOs.
4. An algorithm for checking Agile Controllability of STNUOs.
5. A proof-of-concept implementation of the checking algorithm.

The rest of the paper is organized as follows. In Section 2, we review related work and
introduce the basic terms and definitions. In Section 3, we define STNUOs as an extension of
STNUs with so-called oracles and define Agile Controllability as an extension of the notion
of viable execution strategy. Section 4.1 discusses using oracles in execution strategies and
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presents ORUL, a set of propagation rules to derive implicit constraints, and a backtracking
algorithm to check agile controllability based on ORUL. Section 5 discusses the experimental
evaluation of a proof-of-concept implementation of the checking algorithm, and finally, in
Section 6, we draw some conclusions.

2 Background and Related work

2.1 Simple Temporal Networks with Uncertainty
The Simple Temporal Network with Uncertainty (STNU) is a data structure that models
temporal problems in which the execution of some events cannot be controlled. The STNU
comprises a set of timepoints and a set of temporal constraints. The timepoint set is
partitioned into controllable (executable) timepoints and uncontrollable (contingent) ones;
the constraint set is partitioned into regular and contingent ones.

The following is a formal definition of the STNU adapted from [11]:

▶ Definition 1 (STNU). An STNU is a triple (T , C, L), where:
T is a finite, non-empty set of real-valued variables called timepoints. T is partitioned
into TX , the set of executable timepoints, and TC , the set of contingent timepoints.
C is a set of binary (ordinary) constraints, each of the form Y −X ≤ δ for some X, Y ∈ T
and δ ∈ R.
L is a set of contingent links, each of the form (A, x, y, C), where A ∈ TX , C ∈ TC

and 0 < x < y < ∞. A is called the activation timepoint; C contingent timepoint. If
(A1, x1, y1, C1) and (A2, x2, y2, C2) are distinct contingent links, then C1 ̸= C2.

The tuple (T , C) forms a Simple Temporal Network (STN), a data structure proposed by
Dechter et al. in [5] to study the Simple Temporal Problem, that is, the satisfiability of a set
of (controllable) temporal constraints. An STN is satisfiable if it is possible to determine an
assignment (schedule) to timepoints such that all the constraints are satisfied. We say that a
controller executes an STN when it schedules its timepoints.

The STNU model extends the STN one by adding contingent timepoints and links.
The contingent link bounds cannot be modified, and the schedule of contingent timepoints
is decided by nature/environment, who determines the duration of each contingent link.
Therefore, given a contingent link (A, x, y, C), once the controller executes the activation
timepoint A, the environment decides the duration d ∈ [x, y] and reveals it at time A + d,
that is C = A + d.

An important property of the STNU is the dynamic controllability. To define it, we must
formally introduce some concepts we recall from [11].

▶ Definition 2 (Situation). If (A1, x1, y1, C1), . . . , (AK , xK , yK , CK) are the K contingent
links in an STNU N = (T , C, L), then the corresponding space of situations for N is
Ω = [x1, y1] × · · · × [xK , yK ]. Each situation ω = (ω1, . . . , ωK) ∈ Ω represents one possible
complete set of values for the duration of the contingent links of N (chosen by nature).

▶ Definition 3 (Schedule). A schedule for an STNU N = (T , C, L) is a mapping ξ : T ∪{⊥} →
R, where we assume that ξ(⊥) = +∞. Ξ denotes the set of all schedules for an STNU. For
historical reasons, we represent ξ(X) as [X]ξ.

After having formally introduced the durations decided by nature, i.e., a situation, and
the schedules of an STNU, i.e., the assignments of all timepoints to real values, we have to
merge such aspects, to consider a strategy that, given a situation decided by nature, finds a
suitable schedule.

TIME 2024
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▶ Definition 4 (Execution Strategy). An execution strategy S for an STNU N = (T , C, L)
is a mapping S : Ω → Ξ.

▶ Definition 5 (Viable Execution Strategy). An execution strategy S for an STNU N =
(T , C, L) is viable if for each situation ω ∈ Ω the schedule S(ω) is a solution for N , i.e., an
assignment that satisfies all the constraints in the network.

▶ Definition 6 (Dynamic Execution Strategy). An execution strategy for an STNU N =
(T , C, L) is dynamic if, for any two situations ω′, ω′′ and any executable timepoint X ∈ TX ,
it holds that:

if [X]S(ω′) = k and S(ω′)≤k = S(ω′′)≤k, then [X]S(ω′′) = k,

where S(ω′)≤k is the set of contingent link durations observed up to and including time k,
called history1 until k. Since history also considers contingent durations observed at instant k,
we say that the dynamic execution strategy implements the instantaneous reaction semantics.

An STNU is dynamically controllable if there exists a viable dynamic execution strategy
for it, that is, an execution strategy that assigns the executable timepoints with the guarantee
that all constraints will be satisfied, irrespectively of the duration values (within the specified
bounds) the contingent links will be revealed to take [11].

2.2 Checking Dynamic Controllability
Each STNU S = (T , C, L) has a corresponding graph G = (T , Eo ∪ Elc ∪ Euc), also called
distance graph, where the timepoints in T serve as the graph’s nodes and the constraints in
C and L correspond to labeled, directed edges. In particular:

Eo = {X δ Y | (Y − X ≤ δ) ∈ C}
Elc = {A c:x C | (A, x, y, C) ∈ L}, and
Euc = {C

C:−y
A | (A, x, y, C) ∈ L}.

The so-called lower-case (LC) edge A c:x C represents the uncontrollable possibility that
the duration (C − A) might take on its minimum value x, while the so-called upper-case
(UC) edge C

C:−y
A represents the uncontrollable possibility that (C − A) might take on its

maximum value y. Such edges may be respectively notated as (A, c:x, C) and (C, C:−y, A),
while constraints in C and edges in Eo may be called ordinary constraints and edges to
distinguish them from the LC and UC edges.

Constraint propagation algorithms based on applying constraint propagation rules on
the corresponding graph have been proposed to check whether an STNU is dynamically
controllable [17, 16, 3, 12, 13]. A constraint propagation algorithm applies constraint
propagation rules to derive implicit constraints from existing ones in the STNU. The
algorithm terminates when either reaching network quiescence, i.e., no new constraints can be
derived (the network is dynamically controllable), or a negative cycle is found (the network
is not dynamically controllable). From now on, given a set of propagation rules R, we will
call closure of a set N of temporal constraints the set of constraints derived by applying the
propagation rules in R.

Morris and Muscettola were the first to propose in [17] an algorithm based on constraint
propagation that exhibits time complexity O(n5). In contrast, Cairo et al. proposed in [3] a
new set of rules that improve the time complexity of the dynamic controllability (DC) check

1 Also called pre-history in previous work [11, 2].
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Table 1 Edge-generation rules used by RUL [4, Fig. 2].

Rule Pre-existing and
generated edges Applicability Conditions

(R) XYW
uv

u + v
none

(U) ACX
v

c:x
C: − y

max{v − y, −x}

(A, x, y, C) ∈ L

(L) ACX
c:xv

x + v
v ≤ 0 or X ∈ TC , X ̸≡ C, ∃(B, s, t, X) ∈ L,
v ≤ t

algorithm to O(mn + k2n + kn log n), where n is the number of timepoints, m is the number
of constraints, and k is the number of contingent links. Table 1 shows the propagation rules
proposed by Cairo et al., which we will use in the following.

2.3 Related Work: Making Contingent Links Flexible
The motivation to study the flexibility for contingent links comes from different application
domains, such as business process modeling [23, 21, 20], robotics [24], and so on. Here, we
briefly introduce different approaches to managing such flexibility.

The first, proposed in [23, 19], introduces the concept of guarded link: it is a contingent
link, and thus its duration is not controlled by the system but has bounds that can be shrunk
until some specific durations, named guards. In [23], the authors extend STNUs’ propagation
rules to deal with such guarded links. In contrast, in [19], the propagation rules for checking
DC are also extended to deal with conditional execution paths, where, according to some
conditions set during the network execution, only specific time points are executed.

In a second research line, in [1], the authors discuss some degrees of strong and dy-
namic controllability for STNUs, evaluating how far a network is from being controllable.
Such metrics approximate the probability that an STNU can be dispatched offline (strong
controllability) or online (dynamic controllability). Here, the focus is on uncontrollable
networks. Such metrics are further generalized to Probabilistic Simple Temporal Networks
(PSTNs). Taking into account even more recent research results, in [24], the authors discuss
the robustness measure of PSTNs, that is, the probability of success in execution. They
introduce and discuss degrees of weak/strong/dynamic controllability, robustness under a
predefined dispatching protocol, and the PSTN expected execution utility.

There are several approaches that allow the representation of a timepoint when a con-
tingent duration is revealed. The approach proposed in [25] proposes weak controllability,
where all contingent durations are already known at the beginning of the process. Weak
controllability can be seen as a special case of agile controllability proposed here.

The temporal variables considered in [6] are means of receiving temporal information
from the process environment, for example, as output of process activities.

In [9], the authors introduce a further character of flexibility in the context of temporal
business processes, making the durations of non-contingent activities known earlier. Indeed,
they introduce and discuss the concept of semi-contingent task duration: it is a duration under
the system’s control until the task is initiated. Then, such duration becomes only observable
but not under the system’s control. Simple Temporal Networks with Semi-Contingency and
Uncertainty (STNSUs) are then introduced, and dynamic controllability is studied for this
new kind of temporal constraint network.
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In [8, 10], the authors introduce a further flexibility aspect as they extend STNUs and
Conditional Simple Temporal Networks with Uncertainty (CSTNUs) also to include a new
kind of timepoints named parameters, whose occurrence must be fixed as soon as the network
execution starts. A dynamic controllability check algorithm is proposed for this new kind of
network.

3 Extending STNUs with Oracles

As the STNU does not allow decoupling the value of a contingent duration and the time of
occurrence of the associated timepoint, we introduce a new kind of timepoint called oracle.
An oracle OC is a timepoint associated with a contingent link (A, C). When OC is executed,
it reveals the associated contingent link duration. In other words, OC can reveal the duration
of the contingent link before the contingent timepoint C occurs. We extend the formal
definition of an STNU in [11] with oracles as follows:

▶ Definition 7 (STNU with Oracles). An STNU with Oracles (STNUO) is a tuple (T , C, L, O),
where:

T is a finite, non-empty set of real-valued variables called timepoints. T is partitioned into
TX , the set of executable timepoints and TC , the set of contingent timepoints. TO ⊆ TX ,
is the set of oracle timepoints.
C is a set of binary (ordinary) constraints, each of the form Y −X ≤ δ for some X, Y ∈ T
and δ ∈ R.
L is a set of contingent links, each of the form (A, x, y, C), where A ∈ TX , C ∈ TC

and 0 < x < y < ∞. A is called the activation timepoint; C contingent timepoint. If
(A1, x1, y1, C1) and (A2, x2, y2, C2) are distinct contingent links, then C1 ̸= C2.
O : TC → TO ∪ {⊥} is a function that associates a contingent timepoint with its corre-
sponding oracle, if any. For the sake of simplicity and without loss of generality, we
assume that each oracle is associated with a single contingent timepoint.

The environment decides the duration d of a contingent link (Ai, xi, yi, Ci), revealed
at time Ai + d or when the associated oracle Oi is executed. The requirement that only
non-contingent nodes can be oracles does not reduce expressiveness, as oracles can be closely
linked to contingent nodes. If O(C) = ⊥, the contingent node C does not have an oracle.

In the following, we extend the concept of dynamic execution strategy, replacing the
concept of history with the concept of Oracle-extended History (OH) to consider also the
presence of oracle timepoints. Therefore, we prefer to call this new dynamic execution
strategy as agile execution strategy. Then, we introduce the concept of Agile Controllability.

The definitions of situation, schedule, execution strategy, and viable execution strategy
are straightforward extensions of Definitions 2–5, respectively, to also include oracle time
points.

In the definition of dynamic controllability, the history until k is the set of all contingent
durations whose contingent timepoints occurred before or at time k. For STNUOs, the
concept of history must also include all the durations revealed by oracles executed before or
at k. Therefore, we call such history as Oracle-extended History (OH) at time k. Thus, OH
contains information about the past and already-known information about the future.

▶ Definition 8 (Oracle-extended History (OH)). Given a schedule ξ for an STNUO N =
(T , C, L, O), and a time k, the Oracle-extended History (OH) until k is:

ξ≤k = {ωi | ωi = [C]ξ − [A]ξ and min{[C]ξ, [O(C)]ξ} ≤ k}.
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Figure 1 An STNUO with contingent link (A, 10, 20, C). Oracle OC is associated to C.

▶ Definition 9 (Agile Execution Strategy with Oracles). Let N = (T , C, L, O) be an STNUO.
An execution strategy with oracles SO for N is agile if, for any two situations ω′, ω′′ and
any executable timepoint X ∈ T , it holds that:

if [X]SO(ω′) = k and SO(ω′)≤k = SO(ω′′)≤k, then [X]SO(ω′′) = k

where SO(ω) is a schedule determined by the execution strategy with oracles SO given the
situation ω, and SO(ω)≤k is OH until k. Since OH also considers contingent durations
observed and revealed until time k, we say that the dynamic execution strategy implements
the instantaneous reaction semantics.

▶ Definition 10 (Agile Controllability (AC)). An STNUO N = (T , C, L, O) is agilely control-
lable if it admits a viable agile execution strategy with oracles. We refer to agile controllability
(AC) as the property of being agilely controllable.

▶ Example 11. Let us consider an STNUO N = (T , C, L, O) as depicted in Figure 1, where
OC is the oracle for C that must be executed 3 time units after the activation timepoint A.
Let d ∈ [10, 20] be the duration revealed by the oracle OC .
V can neither be scheduled with nor without an oracle because if the contingent link lasts 10,
the oracle is executed too late to allow V to be executed, satisfying the constraint with C. W

must be scheduled before the oracle to satisfy the constraint with C. Therefore, the oracle is
not relevant for scheduling W . X can be scheduled without oracle (for example, X = A + 2)
or with oracle (for example, X = OC − 3 + d − 4 = A + d − 4, where 4 is one of the possible
values to choose.) Y can be scheduled only with oracle: Y = OC − 3 + d − 5 = A + d − 5.
Thus, Y can be executed only after OC .

The notion of agile controllability is strictly more general than the notion of dynamic
controllability.

▶ Lemma 12. Let N = (T , C, L, O) be an STNUO. If the STNU N ′ = (T , C, L) is dynami-
cally controllable, then N is agilely controllable.

Proof. The lemma follows directly from the definition as if N satisfies the requirements for
dynamic controllability; it also satisfies those of agile controllability, as any viable dynamic
execution strategy is also a viable agile execution strategy. ◀

4 Checking Agile Controllability of STNUO

This section presents a procedure for checking whether an STNUO is agilely controllable.
The procedure is based on the rules introduced in Table 1. For the following considerations,
let X be a non-contingent node, C a contingent node (with activation node A), and m/M

the minimum/maximum duration of the considered contingent link (A, m, M, C).
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4.1 On The Usage of Oracles
The canonical problem we deal with here arises when a timepoint X depends on a future
contingent timepoint C, i.e., there is a constraint X ≤ C + δ, where δ < 0. The standard
STNU semantics assumes that the value of a contingent timepoint, here C, is only revealed
when C occurs. Therefore, the value for X must not violate the constraint for any possible
C, i.e., ∃X∀C | X ≤ C + δ. Such a set is only possible if X ≤ A + m + δ, which is the
constraint derived by the L rule in Table 1, i.e., at the latest, X has to be executed at least
δ time units before the earliest execution of C.

On the other hand, if there is a constraint C ≤ X + δ′, 0 ≤ δ′, then STNU is DC
only if M − m ≤ δ + δ′, that is, if the difference between the smallest and the greatest
distance between X and C is larger than the contingency of C (i.e., the difference between
the maximum and minimum distances between A and C); otherwise, the constraints conflict.

▶ Example 13. The node X in Figure 1 can be scheduled since the contingency of C is 10
smaller than 18, the range of possible distances between C and X. For node Y , these values
are 10 and 2. Applying the rules U and L to X, C, and A leads to a negative cycle.

However, if the duration of contingent activity is revealed earlier by an oracle at time
point OC , then it is sufficient that ∀C∃X | X ≤ C + δ. However, the following constraint
has to hold: OC ≤ X and consequently OC ≤ C + δ. So, the essence of using an oracle is
that the sequence of quantifiers is changed from ∃X∀C to ∀C∃X. However, the price is the
introduction of an additional constraint, which could conflict with other constraints.

For the propagation of constraints, this has the following consequences:
(1) If the oracle is not used, then the L and U rules must be applied.
(2) If the oracle is used, then the L and U rules must not be applied on X and C, but the

additional constraint Oc ≤ X must be added to the OSTNU.

Generally, the STNUs derived in (1) or (2) are not equivalent and admit different closures.
Moreover, one closure could contain a negative cycle, and the other not.

▶ Example 14. Using the oracle avoids the negative cycle resulting from propagation in
case (1), such as Y in Figure 1. On the other hand, using the oracle as in case (2) might
lead to a conflict that was not there, such as W in Figure 1.

These possible configurations are all considered in the definition of a viable execution
strategy: the value of X may be a function of the duration of a contingent activity d if C

is in the history of X (i.e., is before X), or OC is in the oracle-extended history of X (i.e.,
OC is before X). The disjunction in the definition of oracle-extended history also leads to a
choice in applying rules to propagate constraints.

▶ Example 15. In Figure 1, for timepoint X, there is the choice to either apply the rules L
and U or consider the oracle OC and introduce constraint Oc ≤ X.

An interesting question is determining when an oracle is necessary to guarantee Agile
Controllability. Basically, we can only use an oracle if there is one for a contingent node.
Then, we only have to consider whether to use an oracle if there is a negative link from
the considered contingent node to a non-contingent node. This link could be the result of
constraint propagation.

We call U = {(X, C) | X ∈ TX , C ∈ TC , O(C) ̸= ⊥} the set of all potential oracle
candidates. If there is constraint X ≤ C + δ, or a constraint C ≤ X + δ′ with C ∈ TC ,
O(C) ̸= ⊥, X ∈ TX , δ < 0, and 0 ≤ δ′, then we call (X, C) an oracle candidate since a
viable execution strategy could require the usage of the oracle.
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Table 2 ORUL: propagation rules extending RUL ones for checking Agile Controllability of
STNUO. U+ is the set of all oracle candidates for which the oracle should be used, and U− is the
set of all oracle candidates for which the oracle should not be used.

Rule Pre-existing and
generated edges

Conditions

Relax (REL) XYW
uv

u + v
none

Upper (UPP) ACX
v

c:x
C: − y

max{v − y, −x}

(X, C) ∈ U− or O(C) = ⊥ or X ∈ TC

Lower (LOW) ACX
c:xv

x + v

X ∈ TX ,

((X, C) ∈ U− or O(C) = ⊥), v ≤ 0, or
X ∈ TC , X ̸≡ C, ∃(B, w, y, X) ∈ L, v ≤ y

Oracle (ORC) ACX

OC

c:x
C: − yv

0

X ∈ TX , (X, C) ∈ U+

▶ Example 16. In Figure 1, all pairs (V, C), (W, C), (X, C), (Y, C) are oracle candidates.

Now consider the case where there are a pair of constraints, X ≤ C + δ and C ≤ X + δ′,
with δ < 0, and δ + δ′ ≤ M − m, the contingency of C. In such a configuration, there is no
viable execution strategy without using the oracle OC . Therefore, we call (X, C) oracle
dependent.

▶ Example 17. In Figure 1, (Y, C) is oracle dependent.

Constraints can only become stricter (and never removed) during constraint propagation.
Therefore, if an oracle candidate (X, C) becomes oracle dependent due to the propagation of
constraints, it will remain oracle dependent.

While for oracle-dependent pairs, any viable solution must use the oracle, constraint
propagation could, but not necessarily, make oracle dependent some oracle candidates.
Whether a pair becomes an oracle candidate or oracle dependent might also depend on which
oracles are used for constraint propagation and which are not.

As there is no way of deciding upfront whether a (X, C) pair will become oracle dependent,
it will be necessary for oracle candidates, which are not oracle dependent, to explore both
options: to use oracle and not to use the oracle. For a particular constraint propagation, it
is necessary to decide for which (X, C) pairs to use the oracle.

4.2 Propagation rules for STNUOs
In the previous section, we argued that exploring whether an oracle has to be used for an
oracle candidate might be necessary. For guiding the propagation of constraints, we maintain
two sets of oracle candidates:

U+ is the set of all oracle candidates for which the oracle has to be used, and
U− is the set of all oracle candidates for which the oracle has not to be used.

In Table 2, we propose ORUL, a set of constraint-propagation rules based on RUL set [4],
modified for checking agile controllability. ORUL uses sets U+ and U− to guide the rules’
application. Briefly, the REL rule is the same as the R rule in Table 1. The conditions for
the UPP and LOW rules are extended with additional restriction (X, C) ∈ U− such that the
rules are only applied if oracles should not be used. The new ORC rule inserts the necessary
constraints for using an oracle when (X, C) ∈ U+.
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The following theorem states conditions on U+ and U− to guarantee AC.

▶ Theorem 18. Let N = (T , C, L, O) be an STNUO and let U = {(X, C) | X ∈ TX , C ∈
TC , O(C) ̸= ⊥} be the set of all possible pairs (ordinary node, contingent node) where the
contingent node has its corresponding oracle.

N is Agilely Controllable if ∃ U+, U− such that U = U+ ∪ U−, U+ ∩ U− = ∅, and the
closure of N considering U+, U− for the propagation rules in Table 2 does not include a
negative cycle.

Proof Sketch. We show that ORUL is sound, i.e., if ORUL does not lead to a negative cycle,
then the STNUO is AC. It is straightforward to show that the propagated constraints are
finite if no negative cycle is derived. Hence, let N ∗

O be the closure of N with respect to
ORUL, and N ∗

R be the set of all constraints derived by RUL. Cairo and Rizzi showed that
the constraints of N ∗

R are necessary and sufficient to decide whether N is DC [4]. We show
that N ∗

O contains all the constraints of N ∗
R except those that are not necessary if oracles

are used, while it includes all the constraints needed for the oracle candidates in U+. It also
excludes all constraints that are derived from unnecessary ones. Hence, N ∗

O is sufficient to
decide whether N is AC.

If U+ = ∅, and thus U− = U , then the rules in Table 2 are the same as in Table 1, and
N ∗

R = N ∗
O. As in [4], we can conclude that the STNUO is DC and hence AC if no negative

cycle is derived.
If U+ ̸= ∅, let (X, C) ∈ U+, (A, m, M, C) ∈ L, (X − C ≤ δ) ∈ C, (C − X ≤ δ′) ∈ C,

δ < 0 < δ′, 0 ≤ δ′ + δ < M − m, and O(C) = O. Since oracle O is used for X, (O − X ≤
0) ∈ N ∗

O and the LOW and UPP rules are not applied for the triple ⟨X, A, C⟩. Hence, the
LOW- and UPP-derived constraints between A and X are not in N ∗

O. For a viable execution
strategy, these constraints are not necessary, as for any duration d of the contingent activity
(A, m, M, C), C = A + d. There exists a value for X that satisfies constraints (X − C ≤ δ)
and (C − X ≤ δ′). In fact, both X and A are executable timepoints, and d is available
before X, therefore X = A + d + δ is admissible and allows for the satisfaction of constraints
(X − C ≤ δ) and (C − X ≤ δ′). Therefore, if the propagation of such constraints does not
determine negative cycles, then the network is AC.

We may also observe that any constraint that can be derived from N by rules in Table 1
which is not in N ∗

O, would be the result of a sequence of rule applications, starting by
applying the UPP or LOW rules to some ⟨X, A, C⟩, where (X, C) in U+, and hence is not
necessary. ◀

4.3 A Checking Algorithm
We propose the backtracking Algorithm 1 to check whether an STNUO is agilely controllable.

The algorithm aims to check whether there exist sets U+ and its complementary U−

such that the propagation with these sets does not lead to a negative cycle. As outlined at
the end of Section 4.1, there is no way to know in advance sets U+ and U−. Therefore, the
algorithm computes these sets incrementally and with backtracking. To reduce the effort
of backtracking, the general strategy is to delay decisions about potential membership of a
pair (X, C) in these sets as late as possible, but for those having an explicit condition for
membership to U+ or U−. For this reason, U+ and U− are both empty when the algorithm
starts, and only at the end, if the network is agilely controllable, they satisfy the conditions
of Theorem 182.

2 More precisely, U+∩U− = ∅ and U+∪U− ⊆ U . Indeed, the algorithm does not consider pairs (X, C) for
which there are no explicit constraints. Such possible pairs are not effective with respect to constraint
propagations.
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Algorithm 1 CheckAC.

Input: N an STNUO, U−, U+

Output: Agile controllability status
1 ok ← applyRules(N ,U−,U+);
2 if ok then
3 save(N ,U−,U+);
4 U0 ← getOpenOracles(N ,U−,U+);
5 if U0 ̸= ∅ then
6 (X, C)← select(U0);
7 if interval(X, C) > contingencyInterval(C) then
8 U− ← U− ∪ {(X, C)};
9 ok ← checkAC(N ,U−,U+);

10 if not ok then
11 restore(N ,U−,U+);

12 if (X, C) ̸∈ U− then
13 U+ ← U+ ∪ {(X, C)};
14 ok ← checkAC(N ,U−,U+);
15 if not ok then
16 restore(N ,U−,U+);

17 return ok

The algorithm is recursive. It starts with applying all the rules in Table 2. If the check is
positive (no negative cycle was discovered), it determines which oracle-dependent pairs have
not yet been considered and tries to assign each to U− or U+ recursively. When a negative
cycle is discovered, the STNUO with the current sets U+ and U− is not agilely controllable
and, therefore, backtracking is required (procedure restore). If there is no negative cycle,
the algorithm checks whether there are still undecided oracle candidates. Heuristically, one
undecided candidate pair (X, C) is chosen. Suppose a solution without applying the oracle
for this pair is still possible (no oracle dependency). In that case, we decide not to use the
oracle (i.e., inserting (X, C) in U−) and proceed recursively, invoking the checking procedure.
If it fails, we restore the STNUO and continue with the decision to use the oracle (i.e.,
inserting (X, C) in U+) and recursively invoke the checking procedure.

When constraints lead to an oracle-dependent pair (X, C) (line 12 of Algorithm 1), such a
pair is inserted into U+. When a constraint C v X with a non-positive v is derived, (X, C) is
inserted into U− (line 8 of Algorithm 1). The procedure terminates when either no additional
constraints can be derived, and the procedure returns true, or a negative cycle is detected,
and the procedure returns false.

The algorithm uses the following auxiliary procedures.

getOpenOracles(N , U−, U+)

It returns the set of oracle candidates (X, C), i.e., the set of all pairs (X, C) for which either
a constraint C v X with a non-positive v or a constraint X w C with a non-negative w

exist and (X, C) is neither in U− nor in U+.

select(U0)

It returns one of the oracle candidate pairs (X, C), not yet in U− neither in U+. Heuristically,
it returns the pair with the smallest difference between its interval and the contingency
interval of C.
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applyRules(N , U−, U+)

It iteratively applies rules of Table 2 to generate additional constraints. It returns false if a
negative cycle is discovered; true, otherwise.

save(N , U−, U+)

It saves the current set of constraints such that restore(N , U−, U+) can reconstruct the
set of constraints as they were when the corresponding save(N , U−, U+) was executed.
These procedures support backtracking if a negative cycle is found based on a decision on
the inclusion of pairs in U− resp. U+.

interval(X, C)

It returns the value δ + δ′ derived by the constraints (X − C ≤ δ) and (C − X ≤ δ′).

contingencyInterval(C)

It returns the value u − l relative to the contingent link (A, l, u, C) associated with the input
contingent timepoint C.

▶ Example 19. Figure 2 presents the process of applying the algorithm on an example
STNUO where (A, 20, 30, C) is a contingent link, OC is its oracle, and X and Y are non-
contingent nodes. Propagated self-loops (e.g., from X to X) are excluded from the figure
for readability reasons except for negative cycles. In one step, newly propagated constraints
by the rules in Table 2 are depicted as follows: rules propagated by REL are colored gray,
by UPP orange, by LOW olive, and by ORC blue. Negative cycles are marked in red.
Pre-existing or pre-propagated constraints are black.

The algorithm starts with empty U+ and U−. In the first step (line 1 of Algorithm 1),
the rules are applied by propagating three new constraints via REL as presented in Figure 2
(step I). This intermediate STNUO is checked for a negative cycle. Since it does not have one
(is ok), the algorithm proceeds with saving this state and getting the open oracles (lines µ3
and 4 of Algorithm 1). U0 includes then the following pairs: (X, C) and (Y, C).

Next, (X, C) is selected to check whether to use the oracle for it (line 6 of Algorithm 1). In
this case, interval(X, C) = 15 − (−4) = 19 and contingencyInterval (X, C) = 30 − 20 =
10. Since the contingency interval is smaller, (X, C) is put in U− (lines 7-9 of Algorithm 1).

CheckAC calls itself. The rules are applied, and new constraints are propagated via REL
as presented in Figure 2 (Step II). The STNUO now has a negative cycle. Indeed, the
self-cycle in A equal to −1 is derived. More precisely, applying rule REL on timepoints A,
X, and C, we obtain (A, C) = 16 + 13 = 29; then, applying rule UPP on A, C, A, we obtain
the negative self-cycle 29 − 30 = −1 in A.

Thus, the status is not ok, and the algorithm backtracks (lines 10 and 11 of Algorithm 1):
The STNUO from step (I) is restored (see step III in Figure 2) and (X, C) is removed from
U−. Thus, the algorithm checks what happens if the oracle is used for (X, C) (lines 12-16 of
Algorithm 1). (X, C) is put in U+.

CheckAC calls itself. The rules are applied again, and new constraints are propagated
(see step IV in Figure 2). This STNUO is without a negative cycle (status is ok). The
algorithm stores this state and gets again the open oracles. U0 now includes only (Y, C).
For this pair, interval(Y, C) = ∞ (since there is only the constraint C − Y ≤ 9) and
contingencyInterval(Y, C) = 30 − 20 = 10. Since the contingency interval is smaller,
(Y, C) is put in U−.
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CheckAC calls itself again, and the rules are applied (see Step V in Figure 2). No
constraint leading to a negative cycle was propagated (status is ok). This state is saved, and
the algorithm checks for open oracles. None are found; hence, U0 is empty. The algorithm
ends with the result that the STNUO is agilely controllable.

4.3.1 Computational Complexity

Since CheckAC is a recursive backtracking algorithm, it is possible to give an upper bound
to its space complexity assuming the worst case that each oracle must be paired with each
other timepoint. In such a case, the depth of the recursion is O(kn) (assuming that each of
k contingent timepoints has an oracle). For each level of recursion, it is necessary to store
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Figure 2 Applying CheckAC on an STNUO example.
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(save procedure) the configuration of the network and the two sets U+ and U−. Such an
operation requires space O(n2), where n is the number of all timepoints. Therefore, the
computational space required by the algorithm is O(kn3).

5 Experimental Evaluation

The algorithm for checking the agile controllability of an STNUO presented in Section 4.3
has been implemented as a proof-of-concept prototype to test the algorithm’s correctness
and analyze its feasibility.

The algorithm has been implemented in Java. Experiments with this implementation
were executed on an Ubuntu 22 machine having 16GB of RAM and an AMD EPYC-Rome
(8) @ 2.6GHz CPU. The experiments use as input data from the OSTNU benchmark, which
is available online3.

The benchmark includes 30 random STNUO instances with 30 nodes (5 contingent and 2
oracles). In all cases, the implementation produced the correct result. We ran the checking
algorithm 100 times on each example and determined the average AC checking execution
time. All execution average times are below 3 s. Therefore, our approach to determining
the AC property is comparable to that presented by Posenato et al. [22]. This allows us to
conclude that the algorithm is feasible for realistically sized STNUOs. Nevertheless, we will
continue optimizing the algorithm and its implementation. For example, we will want to
consider the DC checking algorithm in [13], which implements a DC checker based on the
rules in Table 1 in a more efficient way, for the applyRules(N , U−, U+) procedure, and to
improve the heuristics for the select(U0) procedure.

The source code of the prototype implementation, the parser of the data sets used for
the experiments, and the complete results are publicly available in an online repository4.

6 Discussion and Conclusions

We proposed agile controllability (AC) as a proper generalization of the well-established
notion of dynamic controllability for STNUs, leading to a more relaxed notion of temporal
correctness, which is still strong enough to guarantee that a controller can steer the execution
of a process in a way that no temporal constraint is violated despite uncertainties. The main
distinction to dynamic controllability is that available information about future durations
of contingent links can be utilized for scheduling and dispatching timepoints. STUNOs,
Simple Temporal Networks with Uncertainty and Oracles, can express when information
about the timepoint of future contingent links is available. We presented a formal definition
of viable execution strategies that utilize such advanced information. We also presented a set
of rules for propagating constraints, leading to an algorithm that effectively checks whether
an STNUO is agilely controllable.

AC is expected to support a wide range of applications as it provides a less restrictive
notion of temporal correctness of plans, processes, requirements, contracts, etc. The pre-
sented algorithm seems feasible for typical problem sizes in many of these application areas.
Nevertheless, improving implementations of this algorithm will further extend the approach’s
applicability. Indeed, the algorithm CheckAC and its related proof-of-concept implementation,

3 https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.
tgz [18]

4 https://git-isys.aau.at/ics/Papers/stnuo.git

https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.tgz
https://profs.scienze.univr.it/~posenato/software/benchmarks/OSTNUBenchmarks2024.tgz
https://git-isys.aau.at/ics/Papers/stnuo.git
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as it is presented here, is intended to demonstrate the existence of an effective backtracking
algorithm to check the agile controllability of an STNUO. It is not optimized, and exploring
numerous possibilities to develop a significantly more efficient implementation of this basic
algorithm is the subject of ongoing research.
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Abstract
This article presents Open the Chests, a novel benchmark environment designed for simulating
and testing activity recognition and reactive decision-making algorithms. By leveraging temporal
logic, Open the Chests offers a dynamic, event-driven simulation platform that illustrates the
complexities of real-world systems. The environment contains multiple chests, each representing an
activity pattern that an interacting agent must identify and respond to by pressing a corresponding
button. The agent must analyze sequences of asynchronous events generated by the environment
to recognize these patterns and make informed decisions. With the aim of theoretically grounding
the environment, the Activity-Based Markov Decision Process (AB-MDP) is defined, allowing to
model the context-dependent interaction with activities. Our goal is to propose a robust tool for the
development, testing, and bench-marking of algorithms that is illustrative of realistic scenarios and
allows for the isolation of specific complexities in event-driven environments.
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Keywords and phrases Event-Based Decision Making, Activity Recognition, Temporal Logic, Re-
inforcement Learning, Dynamic Systems, Complex Event Processing, Benchmark Environment,
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Supplementary Material Software (Source Code): https://github.com/ThalesGroup/open-the-
chests, archived at swh:1:dir:4c883ad251fc88889142844a79d0d71cc667dd40

1 Introduction

The emergence of smart technologies and automated information processing has generated
an increasing interest in the fields of activity recognition [17, 8] and sequential event-based
decision making [52, 12]. These fields are characterised by the identification and interpretation
of behaviours as they occur and the optimisation of subsequent choices of reaction. They
allow multiple applications ranging from monitoring and assisting in smart environments
to enhance user convenience and safety [43, 13, 53], to automating cyber-security protocols
for real time threat detection and response [15, 22, 18], and applying control in industrial
settings to improve operational efficiency. However, the development of robust and reliable
models for these domains has been challenged by the inherent complexity of their associated
environments and the limited availability of suitable test-beds for evaluation [9, 33, 47].
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5:2 Open the Chests

Figure 1 Overview of the Open The Chests environment. The figure shows the event stream
being generated, the observation of events on the screen, and the corresponding interactions with
chests based on significant sequence detection.

Environments in these fields are typically characterised by multiple interconnected activ-
ities evolving concurrently over time, observable indirectly through sensors and detection
mechanisms. They often exhibit complex dynamics [44, 25], where activities are defined as
significant patterns of observations characterized by complex temporal relationships and inter-
dependencies. In the case of the event-driven paradigm [11, 9], observations are processed in
order to extract significant changes in the environment under the form of data instances, also
referred to as events. These events arrive asynchronously and provide temporal and attribute
information on the occurred changes, constituting an event stream. The goal of the system
interacting with the environment is to identify activities by analysing event signatures and
selecting adapted reactions.

A key challenge for solutions and simulations lies in capturing the contextual and history-
dependent nature of behaviors present in the event stream [5, 37, 42]. The significance
and interpretation of an event are highly dependent on its surrounding context and the
sequence of prior events. Additional challenges include heterogeneous data sources, complex
temporal inter-dependencies [40], and uncertainty [2], which make it difficult to develop
robust and adaptable systems. These challenges also complicate the process of obtaining
large-scale datasets and conducting controlled simulations, thereby hindering the advancement
of solutions [25, 20, 55]. Collecting and annotating datasets is expensive, time-consuming,
and often impractical due to the vast number of scenario configurations and complexity levels
required. Capturing the full range of variability, uncertainty, and asynchrony in event-driven
environments often necessitates multiple datasets, further complicating the process. On the
other hand, simulators must balance application specificity and simplicity. While a highly
detailed, application-specific simulator might closely mimic real-world conditions, it can also
make it difficult to isolate and evaluate specific complexities objectively. Conversely, overly
simplified simulations may miss critical nuances, leading to gaps in testing.

To address this issue, we introduce Open The Chests 1, illustrated in Figure 1, a novel
reinforcement learning environment that simulates a gamified scenario of activity recognition
and sequential decision-making. Modeled after popular Reinforcement learning environ-
ments [51], the environment is designed to represent the complexities of real-world scenarios,
where the significance of observations and appropriate reactions are highly dependent on
temporal context and the history of events. Its configurable nature allows for multiple
levels of complexity, enabling users to isolate specific challenges and systematically evaluate

1 https://github.com/ThalesGroup/open-the-chests

https://github.com/ThalesGroup/open-the-chests
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various aspects of decision-making processes. This article details the core complexities of
the environment, formalizes the main elements of the problem, and introduces Open The
Chests as a versatile tool for such evaluations.

2 Background and Related Work

Multiple domains developing solutions to the challenges of reactive decision-making could
benefit from the usage of standardized benchmarks, particularly in event-driven environments.
Complex Event Processing (CEP) and Complex Event Recognition (CER) systems [36, 14, 24]
are methods designed to identify and recognize intricate patterns within streams of events
using predefined rules. Examining complexities such as uncertainty, noise, and varying
context lengths could be crucial in assessing the robustness and reliability of these systems
in diverse scenarios. Similarly, when extracting rules and patterns for these domains [19, 32],
exploring how the accuracy and interpretability of results vary with scenario complexity could
provide valuable insights into the adaptability of these approaches. For the temporal interval
pattern mining community [38, 41, 6], comparisons across algorithms could be enriched by
considering their computational efficiency and limits, especially in the context of standardized
benchmarks. Other approaches to monitoring activities involve using probabilistic methods,
often combined with logic-driven techniques [26, 2]. These methods typically estimate
the likelihood of events, and exploring their adaptability in less predictable contexts can
provide insights into their ability to maintain accuracy under varying conditions. Finally,
Reinforcement Learning [48], which is showing growing interest in real-world scenarios [20],
would gain from frameworks that allow thorough testing of long-term, contextual dependencies
and delayed rewards.

Current benchmarks and datasets for event-driven environments typically fall into two
distinct categories, focusing either on the classification of activities [54] or sequential decision-
making [51]. Classification methods, which involve identifying and categorizing specific
patterns of behavior or events, are often driven by deep learning techniques or knowledge-
based methods [12, 8]. Several datasets are available for these purposes [8, 4], offering a
range of scenarios for recognition. However, while effective in controlled, static settings, these
classification methods often struggle to adapt to the dynamic nature of realistic environments,
as they typically do not account for the impact of interaction. Conversely, sequential decision-
making frameworks, such as those in Reinforcement Learning, focus on optimizing decisions
based on the system’s current state, making them well-suited for dynamic environments.
Despite their strengths, these methods often rely on simplified environmental models, which
can limit their real-world applicability [9]. Specifically, many existing simulators fail to account
for the complexities of history dependence, context dependence, and inter-dependencies within
the environment. Active research is working to address these challenges by incorporating
more complex environmental features into these frameworks [7, 34]. These benchmarks
challenge agents with higher-level tasks, requiring memory and goal abstraction. However, to
our knowledge, none of them specifically address the task of activity recognition, motivating
our development of the Open The Chests environment.

3 Formalising Activities using Temporal Logic and Attribute Filters

The development of robust algorithms and reliable simulations for event-driven environments
requires the precise formalization of events, activities, and interactions. This formalization
provides a foundation for understanding system dynamics and guiding the construction of
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the environment. In particular, activities are critical constructs in reactive decision-making
systems, serving as the basis for identifying relevant scenarios and triggering appropriate
responses. By integrating both temporal and attribute constraints on the event stream, activ-
ities enable the precise encoding of complex semantics as high-level abstractions, capturing
meaningful patterns of behavior over time.

3.1 Definition of Events
Events are the fundamental building blocks of the environment, representing significant
changes that occur over time. Formally, an event e can be represented as a tuple:

e = (sym, Attr, tstart, tend, )

where:
sym is a symbolic identifier that categorizes the type of event, facilitating its recognition
and interpretation within the system.
Attr = {attr1, . . . attrn} represent a set of attributes that provide additional information
about the event. These attributes can include, but are not limited to, spatial coordinates,
intensity levels, source identifiers, and other domain-specific parameters.
tstart and tend denote the timestamps marking the initiation and conclusion of the event,
respectively. These temporal markers are crucial for understanding the duration and
sequence of events.

Events arrive asynchronously and are processed to form a history, or event stream. It is
denoted as ht, where t represents the current discrete time step, or the number of the last
received event:

ht = ⟨e1, e2, . . . , et⟩

The temporal aspect of events allows for identifying relationships between them, enabling
the construction of higher-level abstractions. Attributes enrich event representation by
encoding domain-specific information, facilitating more sophisticated analysis and reasoning
about the state of the environment.

3.2 Temporal Relations between Events

Figure 2 Allen’s 13 temporal interval relations: before, after, meets, met-by, overlaps, overlapped-
by, starts, started-by, during, contains, finishes, finished-by, equal.
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Encoding temporal relationships between events is a key aspect of an activity’s repres-
entation, capturing their relative order, duration, and overlaps. Various formalisms have
been proposed for representing temporality, each with its own trade-offs in expressiveness
and computational complexity [16, 27]. For the Open The Chests environment, we leverage
Allen’s Interval Algebra [3] due to its expressivity in capturing temporal relations and its
established use in the activity recognition community [13, 39]. This algebra defines a set of
thirteen mutually exhaustive temporal relationships between two time intervals. As depicted
in Figure 2, each relation imposes a unique constraint on the start and end times of the
two considered events. Leveraging these concepts, we establish the temporal relation Tallen

between two events ei and ej :

Tallen(ei, ej) =
{

True, if ei.tstart, ei.tend, ej .tstart, ej .tend respect conditions.
False, otherwise

(1)

Each relation captures a specific temporal interaction between intervals, enabling the
precise modeling of complex temporal sequences. Specific Allen relations are denoted by
using subscripts such as Tbefore(ei, ej).

3.3 Attribute Filtering
In addition to temporal relationships, activities are characterized by dependencies between
event attributes. Specifically, recognizing an activity relies on recognizing the specific
attribute values associated with events. For example, in a smart-home scenario, the location
attribute may be crucial for identifying activities such as “cooking” or “watching TV”. Thus,
the definition of an activity can be refined by imposing constraints on the attribute values of
its constituent events, introducing the notion of filtering. To formalize this, we define an
attribute filter function Fa that evaluates the relevance of an event’s attributes:

Fa(e) =
{

True, if the attributes of e satisfy the filter conditions.
False, otherwise

(2)

Comparing the attribute values of two events can also determine their relevance to the
same activity, which is crucial for accurately linking contextually connected events. For
instance, in a surveillance system, two events occurring in the same area might need to share
the same location attribute to accurately recognize a security breach or suspicious behavior.
To formalize this, we define a relative attribute filter function Fr that evaluates the relevance
of a pair of events’ attributes:

Fr(e1, e2) =
{

True, if the attributes of e1, e2 jointly satisfy the filter conditions.
False, otherwise

(3)

3.4 Composition and Definition of Activities
Formally, an activity A is a temporally-structured sequence of m events which follow specific
temporal and attribute relationships. The recognition of an activity is formalized by the
function RA, which combines these temporal and attribute relations to determine whether a
given set of events constitutes a recognized activity. This can be expressed as:

RA(e1, . . . , em) =
m∧

i=1
Fai(ei) ∧

m−1∧
i=1

n∧
j=i+1

Fr i,j(ei, ej) ∧
m−1∧
i=1

m∧
j=i+1

Talleni,j (ei, ej) (4)
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We assume that an environment is constituted of n activities {A1, . . . An} with corres-
ponding recognition functions {RA1 , . . . RAn

}.

4 Defining Interaction within the Environment

The interaction between the system and its environment evolves continuously. A stream
of events is presented to the agent, generated by an underlying set of activities which
prompt interaction. For realism, it is crucial to model not only the activities themselves
but also the impact of interactions on the environment. Specifically, the agent’s decisions
have meaningful effects on the state of the environment, creating a closed-loop dynamic
interaction. Traditionally, this decision-making process is modeled as a Markov Decision
Process (MDP) [23] or a Partially Observable Markov Decision Process (POMDP) [46].
However, these approaches often fall short in capturing the complexities of event-driven
environments, particularly those that exhibit rich contextual and historical dependencies [44].

4.1 Challenges in Decision making and Modeling as an MDP

The challenges frameworks face can be categorized into three main areas:

State Space Complexity: The asynchronous and concurrent nature of activities, along
with their inter-dependencies, significantly expands the state space. Each activity, defined
by its events, attributes, and temporal dependencies, has multiple states of advancement.
With multiple activities occurring simultaneously in the environment, representing states
as the compounded relations of these activities becomes complex. The coupling of events
from different activities creates a multi-dimensional activity space, where the complexity
increases due to their inter-dependencies and overlapping temporal dynamics. The number
of possible event combinations and correlations grows exponentially with the number
of actors, activities, and attributes, complicating the transition function and leading to
modeling complexity [45, 35, 29].

Contextual and Historical Dependencies: The state of activities is not directly
observable by the agent, which must rely on the history of events to make inferences.
Because individual events cannot be fully understood without their associated temporal
and attribute relations, the agent is compelled to consider the entire event stream to
accurately infer the underlying activities. This process underscores the critical role of
context and history in determining the significance of events. The reliance on historical
context and continuous event streams breaks the Markov assumption, which assumes that
future states depend only on the current state and not on the sequence of past events
[5, 50].

Temporally-Structured Nature of Activities: Events and activities are inherently
dependent on time and structured in complex temporal patterns, rather than being
independent, instantaneous transitions. The temporal relations between events are crucial
for recognizing activities and must be specifically captured. This temporal structuring is
essential because activities often span multiple time steps and involve events that interact
over time. Therefore, enriched state representations that incorporate these temporal
dynamics are necessary to accurately reflect real-world scenarios and support effective
decision-making processes [44, 49].
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4.2 Defining an Activity-Based MDP
To address these limitations, we propose a novel formulation of the decision-making problem
in event-driven environments by building on the fundamentals of activity recognition. We
define the Activity-Based Markov Decision Process (AB-MDP), which integrates principles of
Activity Recognition within the Markov Decision Process framework. Similar to Contextual
Markov Decision Processes [28] and Dynamic Contextual Markov Decision Processes [50], the
state space in the AB-MDP is expanded to include not only the observable state information
but also additional contextual information. History dependence is captured by a contextual
variable that indicates whether an activity has been completed, conditioning rewards and
transitions. This contextual variable is latent to the agent, making it a special case of POMDP.
In this version of the AB-MDP, illustrated in Figure 3, we assume that interventions are
relevant only when activities have been completed. This simplification allows the model to
focus on the state of recognized activities rather than the entire event sequence.

Figure 3 Causal diagram depicting the dependencies in an AB-MDP. Green circles represent
unobserved variables. Here st and st+1 are the current and next states, ct and ct+1 are the current
and next context variables, ht and ht+1 are the current and next histories and at is the applied
action.

▶ Definition 1 (Activity-Based MDP). Supposing an environment is defined by the presence
of n activities, an AB-MDP is defined by the tuple ⟨S, E, C, A, T, R⟩

S is the observable space of the environment, constituted by any observable information
outside of events.
E is the space of events observations.
C is a contextual vector of size n. Each element ci indicates the completion status of
the i-th activity, with ci ∈ {True, False}. It is latent to the learning agent and must be
inferred from the history of observations.
A is the finite action space defined by the possible responses or reactions the system can
take.
T is a context dependent transition function defined as T (st, at, ct, st+1) = Pr(st+1 |
st, at, ct), with st, st+1 ∈ S, at ∈ A and ct ∈ C. The transition is influenced by the
actions taken and the currently active activities.
R is the reward function defined as R(s, a, c) = r, which evaluates the success of actions
in reacting to recognized activities.
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▶ Example 2. To illustrate the components of the AB-MDP, consider the example of an
autonomous drone monitoring a restricted area. The state at each step st represents the
drone’s current position, battery level, and basic environmental data like wind speed. In
contrast, events et capture instantaneous occurrences such as detecting movement near a
perimeter fence, the activation of a door sensor, or an alarm signal triggered by unauthorized
entry. The context variable ct indicates whether specific activities, like unauthorized entry,
have been completed, while the action at might involve the drone adjusting its position,
zooming its camera, or sending an alert to security personnel.

At each time step t, the contextual variable ci specifies whether there exists a subset
of events {e1, . . . , em} in the event history ht ∈ H that satisfy the predicate conditions for
activity i.

ci =
{

True, {e1, . . . , em} ⊂ ht|RAi
(e1, . . . , em) = True

False, otherwise
(5)

This means that the next context occurs with a probability dependent on the history of
events. Since this variable is latent to an observer of the environment, its values must be
inferred from the observed events.

5 Description of the Open the Chests Environment

The Open The Chests environment implements an AB-MDP to simulate the complexities
of real-world event-driven systems, providing a configurable platform for testing activity
recognition and reactive decision-making algorithms. The environment models a scenario
where an agent interacts with a series of chests that can be opened based on specific, unknown
patterns of events. The agent’s primary goal is to recognize these patterns by processing
the observable event stream and deciding which buttons to press to open the appropriate
chest. The environment’s role is to generate events that respect the configured activities and
allow interaction with their corresponding chests. This setup illustrates the dynamic and
context-dependent nature of real-world systems, where recognizing event sequences allows
the agent to modify the environment.

5.1 Game Mechanics

(a) (b) (c)

Figure 4 The main elements of the Open The Chests environment: (a) boxes and their respective
states (active, ready, open); (b) event observations with their symbol, attributes (background
color, foreground color) and temporal information (start, end); (c) buttons for interacting with
chests to modify their state.

The Open the Chests environment consists of several key elements, each playing a
critical role in the simulation: chests, observations, buttons, and rewards. Figure 4 illustrates
how these elements are presented in the environment.
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Event Observations: Event observations are the event symbols, attributes and temporal
information presented to the agent. These observations form the event stream that
the agent must analyze to recognize patterns and make decisions. At each step, the
environment emits last occurred event (see Sec.5.2), generated according to the activities
present in the environment (see Sec.5.3).
Chests: Chests represent the activities present in the environment that the agent needs
to recognize and address. Each chest corresponds to a specific pattern of events within
the observable event stream. The state of chests is partially observable: the information
of whether a chest is open or active is known, while the information of a chest being ready
is hidden (see Sec.5.4).
Buttons: Buttons are the interactive elements associated with each chest representing
actions. Pressing the corresponding button allows opening the chest if the associated
pattern of events is present in the event history, i.e. if the chest is ready (see Sec.5.4).
Rewards: Rewards are the feedback which the environment provides to the agent based
on its actions. If the button is pressed at the correct time, the corresponding chest opens
and a positive reward is given; otherwise, a negative or no reward is received (see Sec.5.5).

The environment continuously generates events based on predefined activities until
all chests are recognized and opened. To solve this, the agent must monitor the event
stream history, detect patterns, and infer the latent context. Upon recognizing a pattern
corresponding to a chest activity, the agent must decide to press the appropriate button,
linking the pattern, chest, and action.

5.2 Event Observation and Interaction Time

Events are displayed as symbols with varying values, colors, and background colors, repres-
enting different types of detections in the environment (Figure 5). Each event also carries
continuous time information, indicating its start and end times. These events are presented
to the agent one by one upon completion, allowing the agent to make decisions based on
fully observed events. This approach ensures that the environment operates in discrete steps.
While the timeline of events is not directly visible to the agent, it is implicitly understood
through the sequence displayed on the observation screen. The environment allows for vari-
ation in event length during configuration, adding complexity and realism to the simulation.
This variability challenges the agent to adapt to different event durations, enhancing the
robustness of pattern recognition algorithms.

Figure 5 Possible
events symbols and their
attributes represented by
symbols and colors.

Figure 6 An event is communicated to the agent at its completion.

TIME 2024



5:10 Open the Chests

▶ Example 3. Consider an activity defined by two overlapping events, both marked with
the symbol C, as shown in the Figure 6. The activity recognition rule RA(e1, e2) =
Fa(e1, C, green, yellow) ∧ Fa(e2, C, red, red) ∧ Tcontains(e1, e2) involves detecting event e1 with
the attributes C, green, and yellow, and event e2 with the attributes C, red, and red, while
maintaining the temporal relation Tcontains(e1, e2). Since the contains relation requires that
tende1

< tende2
, event e1 will be generated and communicated first, along with its specified

colors and timestamps.

5.3 Defining event patterns and generating events

When configuring event patterns for each chest, we use Temporal and Attribute relations as
defined in Equation 4. To facilitate the management of these relations, we use Höppner’s
matrix form [30] to transform them into a structured format, which makes it easier to check
for continuity and detect any contradictions. To handle event generalisation and simplify
the complexity of multiple concurrent activities, we represent patterns as memory-enriched
automata [31]. Their goal is to track both current and pending events, while storing relevant
past events that are needed for generation. During execution, the next event to generate is
thus selected with respect to all activities and their current execution step. Each activity
is configured to begin after a certain delay, which can be specified during its definition.
Additionally, Allen Relations can be parameterized to introduce varying delays between
events, adding complexity and realism to the simulation. Finally, empty filters can be defined,
allowing for variations in attributes during event generation.

Figure 7 An illustration of a
defined pattern and its associated
matrix representation.

INSTANTIATE
- name: e1

type: A
params:

fg: red
bg: blue

duration:
mu: 5
sigma: 2

- name: e2
type: C
params:

fg: blue
bg: yellow

duration:
mu: 6
sigma: 2

Figure 8 Defining the
events and attribute filters of
a two-event pattern.

RELATIONSHIP:
- type: after

events:
- e1
- e2

other:
gap_dist:

mu: 4
sigma: 1

Figure 9 Defining the rela-
tions of a two-event pattern.

▶ Example 4. To define a pattern consisting of two events where one occurs before the
other, and where the events are represented by symbols A and C, we start by specifying
their attributes and relations, as shown in Figures 8 and 9. We use the parameters mu and
sigma to define a normal distribution that will be used to sample the duration of events or
the time between events. In this case, the matrix representation of this pattern (Figure 7)
includes only one temporal relation between the two events.
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Complexity is added to the environment by introducing noise and randomness into the
event stream, simulating some of the inherent uncertainty of real-world systems. Specifically,
patterns can be generated with varying degrees of noise, enabling the system to add events
to the stream that are unrelated to the execution of current activities.

5.4 Chests and Buttons: Interaction and Box States

Chests represent activities in the environment, each with three binary state values: active,
ready, and open. At the start of the game, all chests are closed (not open). A chest becomes
active once it starts generating events that are observed in the event stream. When the
sequence of events is fully generated and present in the stream, the corresponding chest
becomes ready to open by pushing a button. If the button is pushed, the chest is marked as
open, its pattern is removed from the environment, and it stops generating further events. If
the button is not pushed, the pattern generation continues and eventually restarts. Until a
chest is opened, its associated pattern continues to repeat, providing the agent with multiple
opportunities to recognize and interact with the sequence. The active and open states
represent the observable part of the environment and are communicated to the agent with
each event observation. The ready state serves as the activity context, determining the
outcome of button actions.

Figure 10 The state transition graph of a single chest. A chest is initially active and not open.
Its transitions are conditioned by the pushing buttons and on its associated ready value.

▶ Example 5. Suppose that only one chest is defined in the environment using the activity
definitions in Example 3. Initially it is active and generates events one by one. Once both its
associated events have been observed it will pass to the state ready, meaning its associated
context variable c1 = True will indicate activity completion. If the button is correctly
pressed, the chest will open and no further events will be generated. Otherwise, the chest is
deactivated and goes back to the active state after a delay. This transition is illustrated in
Figure 10.
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5.5 Rewards
Reward is defined in terms of the number of correctly opened chests NCO, incorrectly opened
chests NIO, correctly unopened chests NCU , and incorrectly unopened chests NIU . These
notions are equivalent to true positives, true negatives, false positives, and false negatives,
respectively. The action at ∈ {True, False}n defines the chests the agent attempted to open
and the time at which the agent pressed the button corresponding to each chest. We use the
vector ct ∈ {True, False}n to represent which of the chests were ready to open at time t. We
can thus define the following:

NCO = at ∧ ct meaning all correctly opened chests
NIO = at ∧ (¬ct) meaning all incorrectly attempted chests
NCU = (¬at) ∧ (¬ct) meaning all correctly unopened chests
NIU = (¬at) ∧ ct meaning all incorrectly unattempted chests

We define a reward for each type of chest: rCO, rIO, rCU , rIU , allowing us to calculate
the final reward r.

r = rCO · NCO + rIO · NIO + rCU · NCU + rIU · NIU

For the time being, we set the values rCO = 1, rIO = −1, rCU = 0, and rIU = −1.

6 Validation of the Open The Chests Environment

The goal of our validation was to ensure the proper execution of the OpenTheChests
environment and to establish performance baselines using two algorithms: Deep Q-Network
(DQN) and Deep Transformer Q-Network (DTQN) [21]. Successfully generating meaningful
and consistent results across both algorithms confirms that the environment functions as
intended, providing a reliable platform for testing and comparing different algorithms. This
validation also demonstrates the environment’s capability to effectively differentiate between
the performance and behavior of distinct decision-making approaches, ensuring its integration
with existing methods.

To achieve this, we configured three scenarios with varying levels of complexity. Each
configuration contained 5 chests but differed in the number of events per activity: 1, 8, and
16 events. The simplest configuration associates one unique event per chest, meaning it
doesn’t require additional temporal or context dependencies. Once the event is observed,
the expected response is to identify the appropriate chest and press its button. Conversely,
the environments with eight and sixteen events per chest require identifying sequences of
appropriate length as well as their respective attribute and temporal relations. To configure
these patterns, we randomly selected the corresponding number of event filters and Allen
temporal interval relations. Finally, the environment was configured with varying levels
of noise per activity, ranging from 0.1 to 0.3, meaning that a proportionate amount of
non-relevant events was generated alongside the activity patterns. Our evaluations is shown
in Figure 11, where each learning curve presents the success rate of the agents during training
across the three different environments. To asses the performance in both algorithms, we
measured the success rate in each scenario, reflecting the ability of agents to correctly identify
and interact with the appropriate chests. We utilized the rliable library [1] to calculate
the Interquartile Mean (IQM), which provides a robust measure of central tendency, along
with stratified bootstrap confidence intervals to capture the variability of the results across
five random seeds. These metrics were plotted over the course of training, allowing us to
observe the learning progress and stability of each algorithm in handling the varying levels
of complexity within the environments.
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(a) DQN.

(b) DTQN.

Figure 11 Success rates of DTQN and DQN across three environments during training with 1,
8, and 16 events per activity. Each pattern was configured with a noise value between 0.1 and 0.3.
Values are measured across 5 random seeds.

Both DQN and DTQN algorithms were successfully integrated with the environment
by leveraging the standardised gym framework. As expected, DQN performed poorly in
scenarios requiring historical context and complex temporal dependencies. The algorithm
struggled to effectively handle tasks that demanded memory of past events or intricate event
interd-ependencies, which are critical in the Open The Chests environment. DQN’s design,
optimized for simpler, state-based decisions, lacks the mechanisms necessary to process and
utilize long-term dependencies, leading to suboptimal performance in these context-sensitive
scenarios. Interestingly, we also observed struggles in simpler scenarios without history
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dependence, likely due to the challenges posed by multiple parallel activities and the multi-
dimensional nature of the actions required. DTQN demonstrated superior performance,
especially in more complex scenarios, due to its ability to incorporate past observations. The
use of transformer architectures allows DTQN to maintain and utilize a memory of sequential
events, enabling it to make more informed decisions based on the historical context. However,
as the scenarios became increasingly complex with longer contexts, DTQN’s performance
began to decline, likely due to limitations in the model’s parameter settings, such as the
fixed context window size, which may not fully capture extended dependencies, as well as
its capacity to effectively separate parallel activities. Further exploration of these methods,
particularly through the use of custom configurations to isolate specific complexities, would
allow for a better understanding of the algorithms’ limitations. This underscores the value
of the Open The Chests environment. Additionally, the lack of interpretability in both
algorithms remains an important consideration for future development, as it impacts their
practical applicability in real-world scenarios.

7 Conclusion and Perspectives

The OpenTheChests environment facilitates defining benchmarks of varying complexities,
depending on the number of chests and the complexity of their corresponding patterns.
Integrated with the gym [10] framework, it models dynamic, interactive scenarios where the
agent must recognize patterns of events and make timely decisions, illustrating real-world
system complexities. Through the integration of Activity-Based Markov Decision Processes
(AB-MDP), OpenTheChests simulates context-dependent, sequential decision-making tasks,
facilitating comprehensive testing and development of advanced algorithms.

Looking ahead, several enhancements are planned to further develop the capabilities of
OpenTheChests. These include:

Dependence Between Activities and Model Expansion: Introducing mechanisms
where activities can influence each other, creating more complex inter-dependencies and
richer scenarios for testing decision-making strategies. We aim to develop an advanced
AB-MDP that considers intermediate activity states.
Event Sharing Between Activities: Implementing various event consumption policies
that govern how events are shared or partitioned among concurrent activities, enabling
the exploration of different coordination strategies.
Advanced Attribute Relations: Developing more sophisticated attribute relations
that can span multiple events, enhancing the ability to model and recognize complex
patterns and dependencies.

Future research will focus on expanding the complexity of the OpenTheChests environment
and exploring its applications in various real-world scenarios. While initial results showed
good performance, both DQN and DTQN lacked interpretability. Further goals include
improving the interpretability of the algorithms, enabling clearer insights into decision-making
processes, and enhancing the overall robustness of the environment.
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A Example configuration

This appendix provides an example configuration for the Open The Chests environment,
illustrating how to set up chests with patterns of multiple events. The first step to configuring
the environment is to define a set of event types along with their foreground and background
colors. This is done by specifying the sets of all possible event types along with all possible
foreground and background colors, as follows:

Types = {A, B, C, D, E, F, G, H, I, J}
Background Colors = {red, blue, green, orange, pink}
Foreground Colors = {red, blue, green, orange, pink}

The next step would be to define activities using filters and Allen Relations. Below is an
example for one chest, showing how to specify the events and their temporal relations.

Ractivity(e1, . . . , e8) =Fa1(e1, B, pink, orange)
∧ Fa(e2, D, red, green)
∧ Fa(e3, E, orange, blue)
∧ Fa(e4, G, blue, pink)
∧ Fa(e5, H, green, red)
∧ Fa(e6, I, pink, orange)
∧ Fa(e7, J, green, blue)
∧ Fa(e8, C, orange, pink)
∧ Fr(e2, e3, {4, 1})
∧ Fr(e4, e5, {5, 2})
∧ Fr(e7, e8, {3, 1})
∧ Tduring(e1, e2)
∧ Tafter(e2, e3)
∧ TmetBy(e3, e4)
∧ Tafter(e4, e5)
∧ Tduring(e5, e6)
∧ TmetBy(e6, e7)
∧ Tafter(e7, e8)

In this example, Fai(ei, type, fg, bg) specifies the type, foreground, and background colors
for each event ei. This means that during generation, only events that satisfy the provided
symbols and attributes will be selected. Relations like Tduring(e1, e2) and TmetBy(e6, e7)
guide the generation of the start and end times for the events e1 through e8, ensuring that
these events occur in a sequence that adheres to the specified temporal constraints. Finally
relative filters, like Fr(e2, e3, {4, 1}, allow us to define the relative distance between events
in relations like “before” and “after,” which imply a gap between the events, with this gap
being determined by sampling from a normal distribution characterized by a mean of µ and
standard deviation σ. The temporal relations between events in this configuration can also
be summarized using a matrix of interval relations, as shown in Table 1.



I. Stoyanova, N. Museux, S. M. Nguyen, and D. Filliat 5:19

Table 1 Interval relation matrix representing the temporal relations between events e1 to e8 as
specified in the configuration.

e1 e2 e3 e4 e5 e6 e7 e8

e1 = d
e2 = >
e3 = mi
e4 = >
e5 = d
e6 = mi
e7 = >
e8 =

The defined pattern is then transformed into a memory-enriched automaton, where
each state corresponds to the generation of an event. Relevant temporal data, such as the
initialization time of the activity and past generated events, is stored in memory, ensuring
the consistent generation of complex event sequences.
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1 Introduction

Composite event recognition (CER) involves the detection of composite activities by reasoning
over streams of time-stamped, symbolic events [16, 20]. A CER framework employs an activity
specification language, where it is possible to express the spatio-temporal combinations of
input events that form each activity of interest in some application domain. In human activity
recognition, e.g., we may specify the time periods during which two people are “gathering”
using a pattern stating that at least one of the two people is walking towards the other one,
while, at the same time, the distance between them is a few meters and they are facing each
other. As another example, in the task of monitoring composite maritime activities, we may
define “trawling”, i.e., a type of fishing activity that involves several consecutive turns, as a
sequence of “change in heading” events.

The literature contains numerous CER frameworks [1, 20], several of which are automata-
based [32, 39, 21]. CORE, e.g., is a formal automata-based CER system that has proven to be
more efficient than other contemporary automata-based engines [10]. CORE is restricted to
unary relations, while the composite activities derived by CORE cannot be used as building
blocks in other patterns. In other words, CORE does not support relational and hierarchical
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composite activity specifications. There are also logic-based CER formalisms [17, 11, 8]. For
instance, there are several frameworks supporting fragments of the LARS language [5] that
are suitable for CER [6, 4, 18]. MeTeoR is a logic-based CER engine whose language extends
DatalogMTL with windowing [37, 38]. The Chronicle Recognition System (CRS) represents
composite activities as sets of events that are associated with time constraints [17]. The
language of CRS includes several operators, such as sequencing, iteration and negation. These
formalisms support relational composite activities, as well as compositional specifications,
paving the way for hierarchical definitions. Moreover, logic-based formalisms typically exhibit
a formal and declarative semantics, as opposed to automata-based approaches, which do not
always come with a clear semantics, making them hard to evaluate and generalise [21].

The Event Calculus is a logic programming formalism for representing and reasoning
about events and their effects over time [24]. The Event Calculus may be used as an
activity specification language for CER, as it exhibits a formal, declarative semantics, while
supporting relational and hierarchical activity specifications that may include background
knowledge [27, 20]. Moreover, the Event Calculus includes a built-in representation of inertia,
allowing for succinct composite activity patterns, and thus code maintenance. The Event
Calculus has been employed in various settings, including mobility assistance [9], reactive and
proactive health monitoring [13, 22] and simulations with cognitive agents [34]. The “Macro
Event Calculus”, e.g., uses “macro-events” to support composite event operators, such as
sequence, disjunction, parallelism and iteration [12]. The “Interval-based Event Calculus”
incorporates durative events and supports sequencing, concurrency and negation [28]. jREC
is a reactive implementation of the Cached Event Calculus [14] which is optimised for
CER [7, 19]. The Run-Time Event Calculus (RTEC) extends the Event Calculus with
optimisation techniques for CER, such as windowing, indexing and caching [3]. In order
to perform CER with minimal latency, RTEC processes hierarchies of composite activity
definitions bottom-up, while caching and reusing the derived instances of composite activities,
thus avoiding re-computations. RTEC has proven highly efficient in demanding CER
applications, including city transport management [3], maritime situational awareness [30]
and commercial fleet management [36], outperforming the state-of-the-art [26, 25, 36].

RTEC does not support every possible composite activity definition that may be expressed
in the Event Calculus. In human activity recognition, e.g., there is a need to model composite
activities defined in terms of the concept “movement(P1 , P2 )”, expressing the relative
movement between persons P1 and P2 . For instance, “movement(P1 , P2 ) = gathering”
expresses that P1 and P2 are moving towards one another in order to have a meeting,
and “movement(P1 , P2 ) = abrupt_gestures” denotes that, while P1 and P2 are talking to
each other, one of them is moving his arms abruptly. Furthermore, it may be desirable
to express that P1 and P2 may be making abrupt gestures to each other only after they
have gathered close to one another, i.e., movement(P1 , P2 ) = abrupt_gestures depends on
movement(P1 , P2 ) = gathering. RTEC does not support Event Calculus definitions where
composite activities characterised by the same underlying concept, such as movement(P1 , P2 ),
depend on each other. To address this issue, we propose an extension of RTEC that supports
an arbitrary set of Event Calculus definitions.

Our starting point is RTEC◦, an extension of RTEC that supports Event Calculus
definitions with cyclic dependencies, which are often required for CER [26], and propose
RTECfl, an extension of RTEC◦ that supports every possible set of composite activity
definitions in the Event Calculus. Our contributions are the following. First, we present the
semantics of RTECfl . Second, we present a compiler for RTECfl , identifying the reasoning
algorithm that needs to be used at run-time in order to resolve each condition of a composite
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activity definition. Third, we outline the time complexity of RTECfl, demonstrating that
its cost is the same as RTEC◦, while supporting a wider range of temporal specifications.
RTECfl and its compiler are publicly available1.

2 Background

Our starting point is RTEC◦, i.e., a recent extension of the Run-Time Event Calculus (RTEC)
that supports efficient reasoning over temporal specifications with cyclic dependencies [26]
(the other extensions of RTEC are orthogonal to this work). We present the syntax, semantics
and reasoning algorithms of RTEC◦. In Section 3, we outline the limitations of RTEC◦, and,
in Section 4, we present an extension of RTEC◦ that supports every set of Event Calculus
definitions.

2.1 Syntax & Semantics

The language of RTEC◦ follows the Event Calculus, which is many-sorted, including sorts
for representing time, instantaneous events and “fluents”, i.e., properties that may have
different values at different points in time. The time model comprises a linear time-line with
non-negative integer time-points. happensAt(E , T ) signifies that event E occurs at time-point
T . initiatedAt(F = V , T ) (resp. terminatedAt(F = V , T )) expresses that a time period during
which a fluent F has the value V continuously is initiated (terminated) at time-point T .
holdsAt(F = V , T ) states that F has value V at T , while holdsFor(F = V , I ) expresses that
the “fluent-value pair” (FVP) F=V holds continuously in the maximal intervals included in
list I .

In CER, happensAt is used to express the input events of the stream, while FVPs express
composite activities. A formalisation of the activity specification of a domain in the Event
Calculus is called event description.

▶ Definition 1 (Event Description). An event description E is a set of:
ground happensAt(E , T ) facts, expressing a stream of event instances, and
rules with head initiatedAt(F = V , T ) or terminatedAt(F = V , T ), expressing the effects of
events on FVP F=V .

▶ Definition 2 (Syntax of the Rules in the Event Description). initiatedAt(F = V , T ) rules have
the following syntax:

initiatedAt(F = V , T )←
happensAt(E1, T )[[, [not] happensAt(E2, T ), . . . , [not] happensAt(En, T ),
[not] holdsAt(F1 = V1, T ), . . . , [not] holdsAt(Fk = Vk, T )]].

(1)

The first body literal of an initiatedAt rule is a positive happensAt predicate; this is followed by a
possibly empty set, denoted by “[[ ]]”, of positive/negative happensAt and holdsAt predicates. “not”
expresses negation-by-failure [15], while “[not]” denotes that “not” is optional. All (head and
body) predicates are evaluated on the same time-point T . The bodies of terminatedAt(F = V , T )
rules have the same form.

1 https://github.com/aartikis/RTEC
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▶ Example 3 (Event Description for Human Activity Recognition). In human activity recog-
nition, we apply rules on streams containing symbolic representations of video feeds [2].
In general, such rules are constructed in collaboration with domain experts or learned
from data [23]. We use the fluent interaction(P1 , P2 ) to express that people P1 and P2
are interacting, while the value of interaction(P1 , P2 ) denotes the stage of the interac-
tion. The “greeting” stage of interaction(P1 , P2 ) denotes that P1 and P2 are greeting each
other at a distance. Below, we outline a set of rules included in the specification of FVP
interaction(P1 , P2 ) = greeting:

initiatedAt(interaction(P1 , P2 ) = greeting, T )←
happensAt(active(P1 ), T ), happensAt(active(P2 ), T ),
holdsAt(distance(P1 , P2 ) = mid, T ), holdsAt(orientation(P1 , P2 ) = facing, T ).

(2)

terminatedAt(interaction(P1 , P2 ) = greeting, T )←
happensAt(walking(P1 ), T ),
not holdsAt(orientation(P1 , P2 ) = facing, T ).

(3)

terminatedAt(interaction(P1 , P2 ) = greeting, T )←
happensAt(walking(P2 ), T ),
not holdsAt(orientation(P1 , P2 ) = facing, T ).

(4)

According to rule (2), P1 and P2 start greeting when both of them are “active”, i.e., moving
their arms while in the same position, the distance between them is a few meters, denoted
by the value “mid”, and they are facing towards one another. Rules (3)–(4) express that
P1 and P2 stop greeting when one of them starts walking, while they are not facing each
other. The FVPs distance(P1 , P2 ) = mid and orientation(P1 , P2 ) = facing are defined based
on the coordinates and the orientation of the tracked people, which are provided in the input
stream.

Moreover, we may use the fluent movement(P1 , P2 ) to express the relative movement
between people P1 and P2 and the value “gathering” of movement(P1 , P2 ) to denote that P1
and P2 are approaching one another. The specification of FVP movement(P1 , P2 ) = gathering
includes the following rules:

initiatedAt(movement(P1 , P2 ) = gathering, T )←
happensAt(walking(P1 ), T ),
holdsAt(distance(P1 , P2 ) = mid, T ), holdsAt(orientation(P1 , P2 ) = facing, T ).

(5)

initiatedAt(movement(P1 , P2 ) = gathering, T )←
happensAt(walking(P2 ), T ),
holdsAt(distance(P1 , P2 ) = mid, T ), holdsAt(orientation(P1 , P2 ) = facing, T ).

(6)

terminatedAt(movement(P1 , P2 ) = gathering, T )←
happensAt(active(P1 ), T ), not happensAt(walking(P2 ), T ). (7)

terminatedAt(movement(P1 , P2 ) = gathering, T )←
happensAt(active(P2 ), T ), not happensAt(walking(P1 ), T ). (8)

Rules (5)–(6) state that P1 and P2 start gathering when one of them is walking towards
the other person, while their distance is a few meters and they are facing each other. Rules
(7)–(8) express that P1 and P2 stop gathering when one of them is being active, while the
other person is not walking.

The dependencies among the FVPs in an event description can be expressed in the form
of a dependency graph.
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orientation(P1,P2)=facing

movement(P1,P2)=gathering

interaction(P1,P2)=greeting

interaction(P1,P2)=talking

distance(P1,P2)=short

distance(P1,P2)=mid movement(P1,P2)=abrupt_gestures

(a) The dependency graph GE1 of event description E1 (continuous lines), the dependency graph GE2 of
event description E2 (continuous and dashed lines), and the dependency graph GE3 of event description
E3 (all lines). For simplicity, a vertex vj is displayed as j.

orientation(P1,P2)

interaction(P1,P2)movement(P1,P2)
distance(P1,P2)

(b) The fluent dependency graph Gfl
E2

of E2 . The
contracted fluent dependency graph Gcdfl

E2
of E2 is the

same as Gfl
E2

.

orientation(P1,P2) interaction(P1,P2)

movement(P1,P2)distance(P1,P2)

(c) The fluent dependency graph Gfl
E3

of E3 .

orientation(P1,P2)
movement(P1,P2),
interaction(P1,P2)

distance(P1,P2)

(d) The contracted fluent dependency
graph Gcdfl

E3
of E3 . We display a vertex

vSi of a contracted fluent dependency
graph, where Si is a SCC of the cor-
responding fluent dependency graph,
as the set of fluents whose vertices are
in Si .

Figure 1 Dependency graphs, fluent dependency graphs and contracted fluent dependency graphs.
We use distinct shapes for the vertices of each type of graph to aid the presentation.

▶ Definition 4 (Dependency Graph). The dependency graph of an event description is a
directed graph G =(V, E), where:
1. V contains one vertex vF = V for each FVP F = V .
2. E contains an edge (vFj = Vj , vFi = Vi ) iff there is an initiatedAt or terminatedAt rule for Fi = Vi

having holdsAt(Fj = Vj , T ) as one of its conditions.

The vertices and edges of Figure 1a that are drawn with continuous lines, e.g., comprise
the dependency graph GE1 of event description E1 , which contains rules (2)–(8) of Example 3.

Based on the dependency graph of an event description, it is possible to define a function
level that maps the FVPs of the event description to the positive integers. Towards defining
an FVP level function, we define the level of a vertex in a directed acyclic graph as follows:

▶ Definition 5 (Vertex Level). Given a directed acyclic graph, the level of a vertex v is equal
to:
1. 1 , if v has no incoming edges.
2. n, where n > 1 , if v has at least one incoming edge from a vertex of level n−1 , and zero

or more incoming edges from vertices of levels lower than n−1 .

A dependency graph may or may not be acyclic. Given an acyclic dependency graph, the
level of an FVP F=V is defined as the level of vertex vF = V in the dependency graph. In the
acyclic dependency graph of Figure 1a, e.g., vinteraction(P1 ,P2 ) = greeting has level 2 , and thus
FVP interaction(P1 , P2 ) = greeting has level 2 . In order to handle cyclic dependency graphs,
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we employ the contracted dependency graph of an event description, which is, by definition,
acyclic. Then, we define the level of an FVP based on the level of the corresponding vertex
in the contracted dependency graph.

A directed graph becomes acyclic by contracting its strongly connected components
(SCC)s into single vertices.

▶ Definition 6 (SCC Contracted Graph). Given a directed graph G =(V, E) and the SCCs
S1 , S2 , . . . , Sn of G, the SCC contracted graph Gcd =(Vcd , Ecd) of G is defined as follows:
1. Vcd =

⋃
1≤i≤n{vSi}.

2. (vSi , vSj ) ∈ Ecd iff ∃vi , vj ∈ V, such that vi ∈ Si, vj ∈ Sj, Si ̸= Sj and (vi , vj) ∈ E.

▶ Definition 7 (Contracted Dependency Graph). Consider an event description with de-
pendency graph G. The contracted dependency graph of the event description is the SCC
contracted graph of G.

The dependency graph GE1 in Figure 1a is acyclic, i.e., every SCCs of GE1 contains one
vertex. As a result, the contracted dependency graph Gcd

E1
of GE1 is the same as GE1 .

▶ Definition 8 (FVP Level in RTEC◦). Consider an event description with dependency graph
G and contracted dependency graph Gcd. The level of an FVP F=V , such that vertex vF = V
is included in SCC Si of G, is equal to the level of vertex vSi in Gcd.

RTEC◦ supports event descriptions where FVPs with the same fluent have the same
FVP level. For such an event description, a local stratification may be constructed as follows.
The first stratum contains all groundings of happensAt. The remaining strata are formed by
following, in a bottom-up fashion, the levels of FVPs. For each FVP level l without cyclic
dependencies, we have one stratum containing the ground predicates for FVPs with level l.
For each FVP level l with cyclic dependencies, the ground predicates for FVPs with level
l have to be stratified further in terms of their time-stamp. We introduce an additional
stratum for each time-point of the window, i.e., the finite portion of the stream currently
being processing by RTEC◦.

▶ Proposition 9 (Semantics of RTEC◦). Consider an event description E where the FVPs
with the same fluent have the same FVP level (see Definition 8). E is a locally stratified logic
program [33].

2.2 Reasoning & Complexity
The key reasoning task of RTEC◦ is the computation of holdsFor(F = V , I ), i.e., the list of
maximal intervals I during which each FVP F=V of the event description holds continuously.
Recall that, in CER, FVPs express the composite activities that we are interested in detecting.
RTEC◦ computes list I in holdsFor(F = V , I ) as follows. First, it computes the initiations of
F = V based on the rules of the event description with head initiatedAt(F = V , T ). Second,
if there is at least one initiation of F=V , then RTEC◦ computes the terminations of
F = V based on the rules with head terminatedAt(F = V , T ), as well as the rules with head
initiatedAt(F = V ′, T ), where V ′ ̸= V . Third, RTEC◦ computes the maximal intervals of
F = V by matching each initiation Ts of F = V with the first termination Te of F = V after
Ts, ignoring every intermediate initiation between Ts and Te. holdsAt(F = V , T ) may then
be evaluated by checking whether T belongs to one of the maximal intervals of FVP F=V .

RTEC◦ processes FVPs in a bottom-up manner, computing and caching their intervals
level-by-level. In order to derive the initiations and the terminations of an FVP F=V , we eval-
uate the initiatedAt and terminatedAt rules defining F=V . The body of such a rule may include
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a holdsAt(F ′ = V ′, T ) condition (see rule schema (1)), leading to an edge (vF′ = V ′ , vF = V )
in the dependency graph (see Definition 4). We distinguish two cases for the evaluation of
holdsAt(F ′ = V ′, T ):
1. Vertices vF′ = V ′ and vF = V are not part of a cycle in the dependency graph. In this

case, vF′ = V ′ and vF = V are in different SCCs of the dependency graph and, based on
edge (vF′ = V ′ , vF = V ), F ′ = V ′ has a lower level than F=V (see Definition 8). Since
RTEC◦ processes FVPs in ascending FVP level order, at the time of processing F=V , the
intervals of F ′ = V ′ that are required to compute holdsAt(F ′ = V ′, T ) have been derived
and cached at a previous step. As a result, holdsAt(F ′ = V ′, T ) is resolved by fetching
the intervals of F ′ = V ′ from the cache and checking whether T belongs to one of those
intervals, without the need for re-computation.

2. Vertices vF′ = V ′ and vF = V are part of a cycle in the dependency graph. In this case,
vF′ = V ′ and vF = V are in the same SCC of the dependency graph, and thus F ′ = V ′ and
F=V have the same level (see Definition 8). As a result, RTEC◦ may process F=V
before F ′ = V ′, in which case the intervals of F ′ = V ′ are not be present in the cache at
the time of processing F=V . To address this issue, RTEC◦ computes holdsAt(F ′ = V ′, T )
using the incremental caching techniques presented in [26].

3 Problem Statement

Towards a more accurate domain specification for human activity recognition, we may extend
event description E1 of Example 3 with a definition for an FVP expressing that two people
are talking.

▶ Example 10 (Representing interaction(P1 , P2 ) = talking (Example 3 cont’d)). After having
approached one another, persons P1 and P2 may start talking, in which case the value of
the interaction(P1 , P2 ) fluent should change from “greeting” to “talking”. The specification
of FVP interaction(P1 , P2 ) = talking includes the following rules:

initiatedAt(interaction(P1 , P2 ) = talking, T )←
happensAt(active(P1 ), T ),
holdsAt(distance(P1 , P2 ) = short, T ), holdsAt(orientation(P1 , P2 ) = facing, T ),
not holdsAt(movement(P1 , P2 ) = gathering, T ).

(9)

initiatedAt(interaction(P1 , P2 ) = talking, T )←
happensAt(active(P2 ), T ),
holdsAt(distance(P1 , P2 ) = short, T ), holdsAt(orientation(P1 , P2 ) = facing, T ),
not holdsAt(movement(P1 , P2 ) = gathering, T ).

(10)

terminatedAt(interaction(P1 , P2 ) = talking, T )←
happensAt(inactive(P1 ), T ), happensAt(inactive(P2 ), T ). (11)

According to rules (9)–(10), P1 and P2 start talking when one of them is being active, while
their distance is about one meter, denoted by “short”, they are facing one another and their
relative movement is not “gathering”, i.e., P1 and P2 are not moving towards one another.
Rule (11) denotes that P1 and P2 stop talking when neither of them is being active.

A fluent cannot have more than one value at any time; an initiation of an FVP F = V1 implies
a termination of FVP F = V2 , where V1 ̸= V2 . As a result, there are implicit dependencies
among FVPs with the same fluent. For instance, in the event description of Example 10,
FVPs interaction(P1 , P2 ) = greeting and interaction(P1 , P2 ) = talking implicitly depend on
each other.
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The vertices and edges of Figure 1a that are drawn with continuous or dashed lines
comprise the dependency graph GE2 of event description E2 , i.e., the extension of event
description E1 with rules (9)–(11) of Example 10. FVPs interaction(P1 , P2 ) = greeting and
movement(P1 , P2 ) = gathering have level 2 , while FVP interaction(P1 , P2 ) = talking has
level 3 (see Definition 8).

Event description E2 contains FVPs with the same fluent and different levels, which is com-
mon in CER specifications. In city transport management, e.g., fluent “punctuality(Vh)” may
be used to monitor the punctuality level of a vehicle Vh over time [3]. punctuality(Vh) = low
may be initiated when Vh leaves a stop earlier than scheduled while punctuality(Vh) = mid
holds. As another example, in maritime activity monitoring, we may employ the fluent
“fishing_trip(Vl)” to survey a fishing trip of a vessel Vl [30]. FVP fishing_trip(Vl) = ended
may depend on FVP fishing_trip(Vl) = returning, which expresses the previous stage
of the trip. In these cases, FVP punctuality(Vh) = low has a higher level than FVP
punctuality = mid, and FVP fishing_trip(Vl) = ended has a higher level than FVP
fishing_trip(Vl) = returning (see Definition 8).

RTEC◦ does not support event descriptions, such as E2 , where FVPs with the same
fluent have different levels. Suppose that FVP F = V1 has level n and FVP F = V2 has level
m, where n < m, and that RTEC◦ is currently processing the FVPs with level n. When
processing F = V1 , RTEC◦ needs to evaluate the rules with head initiatedAt(F = V2 , T ), as
the initiation of F = V2 constitute terminations of F = V1 . Such a rule may include a body
condition referring to an FVP F ′ = V ′ with level n′, where n ≤ n′ < m. Since F ′ = V ′ has a
lower level than F = V2 , RTEC◦ attempts to evaluate holdsAt(F ′ = V ′, T ) by retrieving the
intervals of F ′ = V ′ from the cache, in order to check whether T belongs to one of them.
However, the cache of RTEC◦ may not contain the intervals of F ′ = V ′ at this time, because
F ′ = V ′ has level n′ and RTEC◦ is currently processing the FVPs with level n, where n ≤ n′,
compromising correctness.

In the case of event description E2 , when processing interaction(P1 , P2 ) = greeting,
RTEC◦ evaluates the initiations of interaction(P1 , P2 ) = talking, as they are terminations of
interaction(P1 , P2 ) = greeting. According to rules (9)–(10) of event description E2 , the initi-
ations of interaction(P1 , P2 ) = talking depend on FVP movement(P1 , P2 ) = gathering, whose
intervals may not present in the cache at the time of processing interaction(P1 , P2 ) = greeting.
For this reason, RTEC◦ does not support event description E2 .

One way to address this issue is to assign to FVP interaction(P1 , P2 ) = greeting a higher
level than the level of FVP movement(P1 , P2 ) = gathering. According to dependency graph
GE2 (see Figure 1a), since there is no FVP that depends on FVP interaction(P1 , P2 ) = greeting,
we may increase the level of interaction(P1 , P2 ) = greeting to 3 without producing an FVP
level assignment that compromises the correctness of the bottom-up processing of RTEC◦. In
this way, movement(P1 , P2 ) = gathering is processed before interaction(P1 , P2 ) = greeting,
and thus, at the time of processing interaction(P1 , P2 ) = greeting, the maximal intervals of
movement(P1 , P2 ) = gathering are present in the cache of RTEC◦, avoiding the aforemen-
tioned error.

However, it is not always possible to circumvent the issues introduced by FVPs with the
same fluent and different levels by increasing the level of an FVP. Consider the following
example, where we extend event description E2 with a definition for an FVP expressing that
two people are making abrupt movements while talking.

▶ Example 11 (Representing movement(P1 , P2 ) = abrupt_gestures (Example 10 cont’d)).
While people P1 and P2 are talking, they may start moving their arms abruptly, possibly
indicating that a fight between P1 and P2 is about to start. The specification of FVP
movement(P1 , P2 ) = abrupt_gestures includes the following rules:
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initiatedAt(movement(P1 , P2 ) = abrupt_gestures, T )←
happensAt(abrupt(P1 ), T ),
holdsAt(interaction(P1 , P2 ) = talking, T ).

(12)

initiatedAt(movement(P1 , P2 ) = abrupt_gestures, T )←
happensAt(abrupt(P2 ), T ),
holdsAt(interaction(P1 , P2 ) = talking, T ).

(13)

terminatedAt(movement(P1 , P2 ) = abrupt_gestures, T )←
happensAt(active(P1 ), T ), not happensAt(abrupt(P2 ), T ). (14)

terminatedAt(movement(P1 , P2 ) = abrupt_gestures, T )←
happensAt(active(P2 ), T ), not happensAt(abrupt(P1 ), T ). (15)

Rules (12)–(13) denote that movement(P1 , P2 ) = abrupt_gestures is initiated when one of
the people P1 and P2 starts moving abruptly while the two of them are talking. Rules
(14)–(15) express that we have a termination of movement(P1 , P2 ) = abrupt_gestures when
one of the two people starts being active while the other one is not moving abruptly.

All the vertices and edges in Figure 1a compose dependency graph GE3 of event description
E3 , i.e., the extension of event description E2 with rules (12)–(15). According to dependency
graph GE3 , FVP movement(P1 , P2 ) = abrupt_gestures has level 4 .

Event description E3 contains FVPs with the same fluent and different levels. The FVPs
interaction(P1 , P2 ) = greeting and interaction(P1 , P2 ) = talking have level 2 and 3 , respect-
ively, while FVPs movement(P1 , P2 ) = gathering and movement(P1 , P2 ) = abrupt_gestures
have level 2 and 4 . As a result, RTEC◦ does not support event description E3 . When
processing FVP movement(P1 , P2 ) = gathering, RTEC◦ may need to evaluate its termina-
tions, which include the initiations of FVP movement(P1 , P2 ) = abrupt_gestures. Accord-
ing to rules (12)–(13), the initiations of movement(P1 , P2 ) = abrupt_gestures depend on
interaction(P1 , P2 ) = talking, whose intervals are not present in the cache at this time.

In this case, it is not possible to set the level of movement(P1 , P2 ) = gathering to 4 , with
the goal of processing interaction(P1 , P2 ) = talking before movement(P1 , P2 ) = gathering, be-
cause there is an edge (vmovement(P1 ,P2 ) = gathering, vinteraction(P1 ,P2 ) = talking) in GE3 , implying
that we cannot process interaction(P1 , P2 ) = talking before movement(P1 , P2 ) = gathering.
These FVPs should have the same level. Moreover, interaction(P1 , P2 ) = greeting depends on
interaction(P1 , P2 ) = talking, and vice versa, which means that these FVPs should also have
the same level. Therefore, movement(P1 , P2 ) = gathering, interaction(P1 , P2 ) = greeting,
interaction(P1 , P2 ) = talking and movement(P1 , P2 ) = abrupt_gestures should have the same
level, i.e., 2 , implying that these FVPs must be processed with incremental caching (see the
second case presented in Section 2.2).

4 Proposed Solution

We propose RTECfl, an extension of RTEC◦ that supports event descriptions where the
vertices of FVPs with the same fluent may have different levels, such as event descriptions E2
and E3 . To achieve this, RTECfl incorporates a new definition for FVP level that takes into
account the implicit dependencies between FVPs with the same fluent. We demonstrate that,
based on the definition of FVP level in RTECfl , we may construct a local stratification for
every possible event description. Afterwards, we propose a compiler for RTECfl , identifying
the holdsAt(F = V , T ) conditions that need to be resolved with the incremental caching
technique proposed in [26], because the intervals of F=V may not be present in the cache
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at the time of evaluating holdsAt(F = V , T ). We outline the cost of RTECfl, showing that
it is the same as the cost of RTEC◦. Therefore, RTECfl extends the range of temporal
specifications supported by RTEC◦, while maintaining its high reasoning efficiency.

4.1 Syntax & Semantics
In RTECfl , all FVPs with the same fluent have the same level. This is achieved by determining
FVP level based on the fluent dependency graph of the event description, which is defined as
follows:

▶ Definition 12 (Fluent Dependency Graph). Consider an event description with dependency
graph G =(V, E). The fluent dependency graph of the event description is a directed graph
Gfl =(Vfl , Efl), where:
1. Vfl contains one vertex vF for each fluent F .
2. Efl contains an edge (vF1 , vF2 ), where F1 ̸= F2 , iff there is an edge (vF1 = V1 , vF2 = V2 ) in
E, where V1 and V2 are values of fluents F1 and F2 , respectively.

Figure 1b, e.g., depicts the fluent dependency graph Gfl
E2

of event description E2 of
Example 10. Vertex vinteraction(P1 ,P2 ) of Gfl

E2
corresponds to vertices vinteraction(P1 ,P2 ) = greeting

and vinteraction(P1 ,P2 ) = talking of GE2 , inheriting their incoming edges.
The fluent dependency graph Gfl

E2
is acyclic. Therefore, we may assign to each FVP F=V

of event description E2 the level of vertex vF in the fluent dependency graph Gfl
E2

, which is
derived by following Definition 5. It could be the case, however, that the fluent dependency
graph of an event description contains cycles. Figure 1c, e.g., depicts the fluent dependency
graph Gfl

E3
of event description E3 . Gfl

E3
includes a cycle, while, according to Definition 5,

the level of a vertex is defined only on acyclic graphs. To address this issue, we contract the
vertices of the fluent dependency graph that are in the same strongly connected component
(SCC), leading to an acyclic graph. We define the contracted fluent dependency graph as
follows:

▶ Definition 13 (Contracted Fluent Dependency Graph). Consider an event description with
fluent dependency graph Gfl. The contracted fluent dependency graph Gcdfl of the event
description is the SCC contracted graph of Gfl.

Consider, e.g., the fluent dependency graph Gfl
E2

of Figure 1b. Gfl
E2

is acyclic, and thus every
SCC of Gfl

E2
contains one vertex. As a result, the contracted fluent dependency graph Gcdfl

E2

of Gfl
E2

is the same as Gfl
E2

. As another example, Figure 1d presents the contracted fluent
dependency graph Gcdfl

E3
corresponding to the fluent dependency graph Gfl

E3
in Figure 1c,

which is produced by contracting vertices vmovement(P1 ,P2 ) and vinteraction(P1 ,P2 ) of Gfl
E3

, as
these vertices are in the same SCC of Gfl

E3
. Due to this contraction of vertices, Gcdfl

E3
is

acyclic.
We may assign a level to each vertex in a contracted fluent dependency graph by following

Definition 5. We define the level of an FVP in RTECfl as follows:

▶ Definition 14 (FVP Level in RTECfl). Consider an event description with fluent dependency
graph Gfl and contracted fluent dependency graph Gcdfl. The level of an FVP F=V , such
that vertex vF is included in SCC Si of Gfl, is equal to the level of vertex vSi of Gcdfl.

Based on Definition 14, FVPs with the same fluent have the same level. In the case of
event description E2 , e.g., where the contracted fluent dependency graph Gcdfl

E2
of E2 matches

with the fluent dependency graph in Figure 1b, FVPs interaction(P1 , P2 ) = greeting and
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Algorithm 1 compile(E).

1: Gcdfl
E ← construct_contracted_fluent_dependency_graph(E)

2: level ← compute_fvp_level(Gcdfl
E )

3: for each rule r in E do
4: F = V ← get_fvp_in_head(r)
5: for each condition “[not] holdsAt(F ′ = V ′, T )” in the body of r do ▷ not is optional.
6: if level[F ′ = V ′] = level[F = V ] then
7: replace “[not] holdsAt(F ′ = V ′, T )” with “[not] holdsAtCyclic(F ′ = V ′, T )” in r
8: return E

interaction(P1 , P2 ) = talking have level 3 because the level of vertex vinteraction(P1 ,P2 ) in
Gcdfl

E2
is 3 . In the case of event description E3 , the vertex of the contracted fluent dependency

graph corresponding to fluents movement(P1 , P2 ) and interaction(P1 , P2 ) has level 2 (see
Figure 1d). Thus, FVPs interaction(P1 , P2 ) = greeting, movement(P1 , P2 ) = gathering,
interaction(P1 , P2 ) = talking and movement(P1 , P2 ) = abrupt_gestures have level 2 .

We can devise a local stratification of an event description by following bottom-up the
levels of FVPs, as specified in Definition 14. For each level with cyclic dependencies, we
introduce an additional stratum per time-point, following an ascending temporal order.

▶ Proposition 15 (Semantics of RTECfl). An event description is a locally stratified logic
program.

According to Proposition 15, RTECfl supports every event description E that follows
Definition 1. If the dependency graph of E contains FVPs with the same fluent whose vertices
are in different levels of the graph, then these FVPs are assigned the same level, following
the definition of FVP level in RTECfl (see Definition 14), avoiding the issues described in
Section 3.

4.2 Compiler
We developed a compiler that assigns a level to each FVP of an input event description
E and marks the holdsAt body conditions of the rules in E that must be evaluated with
incremental caching, in order to guarantee correct reasoning. The compilation is performed
before the commencement of run-time reasoning, in a process transparent to the event
description developer. Algorithm 1 outlines the compilation steps. First, we derive the
levels of FVPs by following Definitions 13 and 14. We construct the contracted fluent
dependency graph Gcdfl

E of E (line 1 of Algorithm 1). Then, we assign a level to each FVP
in E based on the level of the corresponding vertex of Gcdfl

E (line 2). In order to identify
the holdsAt conditions that need to be evaluated with incremental caching, the compiler
works as follows. For each holdsAt(F ′ = V ′, T ) or “not holdsAt(F ′ = V ′, T )” condition in the
body of a rule in E , the compiler checks whether the level of FVP F ′ = V ′ is equal to the
level of the FVP in the head of the rule (lines 3–6). If this is the case, then we translate
condition holdsAt(F ′ = V ′, T ) (resp. “not holdsAt(F ′ = V ′, T )”) into holdsAtCyclic(F ′ = V ′, T )
(resp. “not holdsAtCyclic(F ′ = V ′, T )”) (line 7). At run-time, RTECfl evaluates the conditions
with holdsAtCyclic using incremental caching (recall the second case presented in Section 2.2)
and the conditions with holdsAt using the interval retrieval operation (see the first case of
Section 2.2). A further discussion on run-time reasoning is presented in the section that
follows.

TIME 2024
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We tested the compiler of RTECfl on event descriptions from various CER applications,
including human activity recognition [2], city transport management [3] and maritime
situational awareness [29, 30]. Moreover, we have used our compiler in applications that
involve the monitoring of the normative positions of agents in multi-agent systems, such as
e-commerce [35] and voting protocols [31]. In all cases, the compilation time amounted to a
few milliseconds, and thus we do not show these times here. The compiler is available with
the code of RTECfl

1.

4.3 Reasoning & Complexity
RTECfl follows RTEC◦ and processes FVPs in ascending FVP level order. When processing
a rule that includes a holdsAtCyclic(F ′ = V ′, T ) condition, RTECfl computes the changes in
the value of F ′ between Tleq and T , where Tleq is the last time-point before T where the
truth value of holdsAt(F ′ = V ′, Tleq) has been evaluated and cached. In the worst-case, the
cost of this process is O(ωk), where ω is the size of the window and k is the cost of computing
whether an FVP is initiated or terminated at a given time-point (see [3] for an estimation
of k). This is the same incremental caching technique as the one used in RTEC◦, thus
yielding the same cost [26]. In the case of a holdsAt(F ′ = V ′, T ) condition, RTECfl retrieves
the maximal intervals of F ′ = V ′ from its cache and checks whether T belongs to one of
the retrieved intervals. Since the cached intervals are temporally sorted, this is achieved
with a binary search, while the number of cached intervals of F ′ = V ′ is bounded by ω.
Therefore, the cost of an interval retrieval operation in RTECfl is O(log(ω)), which is the
same as the cost of this operation in RTEC◦. As a result, RTECfl yields the same worst-case
time complexity as RTEC◦, while supporting a wider range of temporal specifications. By
following Definition 14 for FVP level, RTEC◦ reasons with incremental caching only when it
is necessary, i.e., only when the required intervals may not be present in the cache.

5 Summary and Future Work

We proposed RTECfl , an extension of RTEC◦, which detects composite activities based on
their Event Calculus definitions, in order to support every possible set of such definitions. We
described the syntax and semantics of RTECfl , demonstrating that activity specifications in
RTECfl are locally stratified logic programs. Afterwards, we proposed a compiler for RTECfl ,
identifying the conditions of activity definitions that may be evaluated with an efficient cache
operation, without sacrificing correctness, with the goal of improving reasoning efficiency at
run-time. We outlined the worst-case time complexity of RTECfl , showing that it yields the
same cost as RTEC◦. As a result, RTECfl supports a wider range of temporal specifications
than RTEC◦, while maintaining its high reasoning efficiency. The code of RTECfl is publicly
available1.

In the future, we aim to compare RTECfl with automata-based activity recognition
frameworks, such as [10, 40].
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Abstract
Many-valued logics, often referred to as fuzzy logics, are a fundamental tool for reasoning about
uncertainty, and are based on truth value algebras that generalize the Boolean one; the same logic
can be interpreted on algebras from different varieties, for different purposes and pose different
challenges. Although temporal many-valued logics, that is, the many-valued counterpart of popular
temporal logics, have received little attention in the literature, the many-valued generalization of
Halpern and Shoham’s interval temporal logic has been recently introduced and studied, and a sound
and complete tableau system for it has been presented for the case in which it is interpreted on some
finite Heyting algebra. In this paper, we take a step further in this inquiry by exploring a tableau
system for Halpern and Shoham’s interval temporal logic interpreted on some finite FLew-algebra,
therefore generalizing the Heyting case, and by providing its open-source implementation.
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1 Introduction

Many-valued logics, also called fuzzy logics, extend beyond the binary truth values of classical
logic by allowing formula truth to be graded. These logics are defined over algebraic systems,
or algebras. Unlike classical logic, which is grounded in the Boolean two-valued algebra,
many-valued logics involve a more complex algebraic framework, thereby supporting a richer
set of truth values. Such generalizations have led to the development of a sophisticated
algebraic taxonomy, accommodating different types of underlying domains and the properties
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of algebraic operators, which in turn influence the interpretation of logical connectives [10].
Noteworthy examples of varieties of algebras on which many-valued logics have been defined
include Gödel algebras (G) [2], MV-algebras [8] on which Łukasiewicz logic is based [31],
product algebras (Π) [22], and Heyting algebras (H) on which intuitionistic logic is based [15].

In practical applications, the supporting algebra is often assumed to be linearly ordered,
that is, a chain. Prominent examples falling under this assumption are algebras defined on
the interval [0, 1] in R; in this case, an algebra is termed standard. When an algebra only
has a finite number of elements, instead, is known as a finite algebra; finite algebras may or
may not be chains. Choosing among these types depends on the intended applications and
the availability of reasoning tools.

Many-valued logics are crucial in several mathematics and computer science areas,
particularly within artificial intelligence and symbolic machine learning. These logics are
predominantly employed in rule-based classifier learning [24], enhancing the flexibility and
expressive power of such systems. Less frequently, many-valued logics are used to refine
decision-tree classifiers by supporting more granular decision-making processes [9]. In the
context of subsymbolic machine learning, many-valued logics find their use in fuzzy neural
networks, which aid in managing the inherent uncertainty in data, thereby improving network
adaptability and performance [7].

In terms of temporal logics, only a few attempts have been made to study point-based
temporal languages in the many-valued case. These include early contributions, such
as [14, 26, 33], which are characterized by the fact that, in the proposed languages, only the
propositional side of formulas is fuzzified, and more recent proposals, such as [18], in which
the authors provide a generalization of LTL that allows one to express uncertainty in both
atomic propositions and temporal relations. In all such cases, however, standard underlying
algebras are assumed.

While many-valued logics based on standard algebras are relatively common in practical
applications, the practical necessity for an infinite set of truth values is often debatable; for
example, in the context of machine learning, it is immediate to observe that datasets contain
only a finite number of distinct values, and therefore give rise to a finite number of distinct
situations. At the same time, the conventional reliance on chain algebras can sometimes
restrict modeling capabilities, for example disallowing the possibility of reasoning about
different, and incomparable, experts’ viewpoints. A more general approach to many-valued
modal (and therefore also temporal) logics is that of Fitting [16]. Fitting’s formalization is
applicable to any modal (temporal, spatial, and so on) logic and any algebra. In particular,
in the case of interval temporal logic, this has been done in [11, 12, 13], where a many-valued
extension of Halpern and Shoham’s interval temporal logic (HS [23]) over a Heyting algebra
(the resulting logic was denoted FHS, that is, fuzzy HS) has been introduced and studied,
along with a tableau system for it in the case of finite algebras.

In this paper, we explore a further generalization of HS based on FLew-algebras [10]. An
FLew-algebra is defined over a bounded commutative integral residuated lattice and naturally
generalizes several common frameworks, including G, MV, Π, and H. In order to uniform the
terminology, we shall use the term Many-Valued Halpern and Shoham’s interval temporal
logic, that is, MVHS. We extend Fitting’s tableau system to deal with MVHS over some
finite FLew-algebra, we provide a working implementation for it as a part of our open-source
reasoning and learning framework, and we test it to assess its practical usefulness. It is
important to notice that extending the tableau rules from H to FLew does not require much
work; on the other hand, implementing the resulting system is not trivial.
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Table 1 Allen’s interval relations.

relation definition example

x y

w z

w z

w z

w z

w z

w z

after [x, y]RA[w, z] ⇔ y = w

later [x, y]RL[w, z] ⇔ y < w

begins [x, y]RB [w, z] ⇔ x = w ∧ z < y

ends [x, y]RE [w, z] ⇔ y = z ∧ x < w

during [x, y]RD[w, z] ⇔ x < w ∧ z < y

overlaps [x, y]RO[w, z] ⇔ x < w < y < z

This paper is organized as follows. In Section 2 we recall some basic notions of both the
crisp version of the interval temporal logic HS and the most common algebras that have some
role in the literature of many-valued logic. In Section 3 we present MVHS, its syntax and
semantics, several application examples, and our adaptation of Fitting’s tableau system for
it. Finally, in Section 4 we present our implementation and the results of several systematic
tests, before concluding.

2 Preliminaries

Halpern and Shoham’s Interval Temporal Logic. Several different interval temporal logics
have been proposed in the recent literature [21], mostly in the point-based setting. In
the interval-based setting, however, Halpern and Shoham’s Modal Logic for Time Intervals
(HS) [23] can be considered the formalism that has received the most attention.

Let D = ⟨D,<⟩ be a (strict) linear order with domain D; in the following, we shall use D
and D interchangeably. A strict interval over D is an ordered pair [x, y], where x, y ∈ D and
x < y. If we exclude the identity relation, there are 12 different binary ordering relations
between two strict intervals on a linear order, often called Allen’s interval relations [1]:
the six relations RA (adjacent to), RL (later than), RB (begins), RE (ends), RD (during),
and RO (overlaps), depicted in Tab. 1, and their inverses, that is, RX = (RX)−1, for each
X ∈ {A,L,B,E,D,O}. We interpret interval structures as Kripke structures, with Allen’s
relations playing the role of accessibility relations. Thus, we associate an existential modality
⟨X⟩ with each one of Allen’s relations RX . Moreover, for each X ∈ {A,L,B,E,D,O}, the
transpose of modality ⟨X⟩ is the modality ⟨X⟩ corresponding to the inverse relation RX of
RX . Now, let X = {A,A,L, L,B,B,E,E,D,D,O,O}; well-formed HS formulas are built
from a set of propositional letters P, the classical connectives ∨ and ¬, and a modality for
each Allen’s interval relation, as follows:

φ ::= p | ¬φ | φ ∨ φ | ⟨X⟩φ,

where p ∈ P and X ∈ X . The other propositional connectives and constants (i.e., ψ1 ∧ ψ2 ≡
¬ψ1 ∨ ¬ψ2, ψ1 → ψ2 ≡ ¬ψ1 ∨ ψ2 and ⊤ = p ∨ ¬p), as well as, for each X ∈ X , the universal
modality [X] (e.g., [A]φ ≡ ¬⟨A⟩¬φ) can be derived in the standard way. The set of all
subformulas of a given HS formula φ is denoted by sub(φ).
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The strict semantics of HS is given in terms of interval models of the type M = ⟨I(D), V ⟩,
where D is a linear order (in this context, an interval frame), I(D) is the set of all strict
intervals over D, and V is a valuation function V : P → 2I(D) which assigns to every atomic
proposition p ∈ P the set of intervals V (p) on which p holds. The truth of a formula φ on a
given interval [x, y] in an interval model M , denoted by M, [x, y] ⊩ φ, is defined by structural
induction on the complexity of formulas, as follows:

M, [x, y] ⊩ p if and only if [x, y] ∈ V (p), for each p ∈ AP ,
M, [x, y] ⊩ ¬ψ if and only if M, [x, y] ̸⊩ ψ,

M, [x, y] ⊩ ψ1 ∨ ψ2 if and only if M, [x, y] ⊩ ψ1 or M, [x, y] ⊩ ψ2,

M, [x, y] ⊩ ⟨X⟩ψ if and only if there is [w, z] s.t. [x, y]RX [w, z] and M, [w, z] ⊩ ψ,

where X ∈ X .
Given a model M = ⟨I(D), V ⟩ and a formula φ, we say that M satisfies φ if there exists

an interval [x, y] ∈ I(D) such that M, [x, y] ⊩ φ. A formula φ is satisfiable if there exists an
interval model that satisfies it. Moreover, a formula φ is valid if it is satisfiable at every
interval of every (interval) model or, equivalently, if its negation ¬φ is unsatisfiable.

FLew-algebras. An algebraic structure

⟨A,∩,∪, ·,+, ↪→, 0, 1⟩,

where we define a binary relation ⪯ as a ⪯ b if and only if a∩ b = a, is called an FLew-algebra
if

⟨A,∩,∪, 0, 1⟩ is a bounded lattice with upper bound 1 and lower bound 0 (and hence
⪯ is a partial order)
⟨A, ·, 1⟩ and ⟨A,+, 0⟩ are commutative monoids
· and + are monotone w.r.t. ⪯, i.e., if γ ⪯ α, δ ⪯ β, then γ · δ ⪯ α · β, γ + δ ⪯ α+ β

for each a, b, c ∈ A, a · b ⪯ c if and only if a ⪯ b ↪→ c

We refer, as it is customary, to ∩ as meet, ∪ as join, ↪→ as implication, · as t-norm,
and + as t-co-norm. If the lattice order is complete (that is, each subset has infimum and
supremum), we call the structure a complete FLew-algebra. In this case, given a subset
A′ ⊆ A, we denote the infimum and the supremum of A′ respectively as

∧
A and

∨
A. An

FLew-algebra is termed linearly ordered (or chain) if its lattice order is total, standard if its
lattice reduct is the real unit interval [0, 1], and finite if its lattice comprises only a finite
number of elements. A many-valued logic, which generalizes Boolean logic, may derive
its truth values from an FLew-algebra, interpreting logical conjunctions, disjunctions, and
implications as the t-norm, t-co-norm, and implication operations of the algebra, respectively.

In the context of many-valued propositional logics, the most common and well-known
examples include Gödel algebra (G) [2], MV algebra (MV) [31], and product (Π) algebra [22].

In their typical formulation, they are based on the interval [0, 1] in R, and are, therefore,
chains. However, they can all be considered special cases of FLew-chains. In particular, Gödel
algebra, interprets conjunction as the minimum; so, for example, if high fever has truth value
1/3 and pain has truth value 2/3, then the sentence high fever and pain evaluates to 1/3,
illustrating Gödel’s conservative nature: if we know something about two facts, we know
the minimum of them about their conjunction. In the case of MV, the conjunction α · β is
computed as max{0, α+ β − 1}, implying that, in the same scenario as before, the sentence
would evaluate to 0, which highlights MV pessimistic approach: if we do not know enough
about two facts, we do not know anything about their conjunction. Conversely, conjunction
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Figure 1 On the left, a taxonomy of well-known many-valued algebras. On the right, some
examples of algebra lattices that will be used in our experiments. Note how G3 and MV3 (resp. G4
and MV4) differ because of the t-norm, but share the same lattice structure.

is the real product in product algebra, evaluating the same sentence as 2/9, thus reflecting a
probabilistic interpretation of independent events. Similarly, a Heyting algebra (H) [15, 17]
is an FLew-algebra in which · is defined as ∩ and + as ∪, and the underlying lattice is not
necessarily a chain. For instance, if high fever is evaluated as α by some expert and pain as
β some other expert, and α and β are not necessarily comparable to each other, then the
sentence high fever and pain is evaluated as γ, where γ is the maximum value less than, and
comparable with, both α and β. FLew-algebras thus generalize all four prominent cases.

Fig. 1 (left-hand side) provides a partial taxonomy of algebra varieties corresponding
to various many-valued logics, with the variety corresponding to classical logic (the one
generated by the two-valued Boolean algebra) denoted by B. In this diagram, a higher element
is less general than a lower one. So, Boolean algebras are generalized by algebras in the Gödel
variety, the product variety, and the MV variety, whereas the last three are incomparable
to each other. Similarly, a Heyting algebra is a generalization of a Gödel algebra (precisely,
the class of Gödel algebras is the variety generated by linearly ordered Heyting algebras),
and, finally, the variety of FLew-algebras is more general than all of the above. In Fig. 1
(right-hand side), we give examples of specific algebra lattices from these varieties also used
later in our experiments. For example, G3 is the Gödel algebra with 3 elements; it is linearly
ordered, and meet/join are defined following the general specification for the Gödel variety.
As we shall see, we can define a many-valued version of interval temporal logic by plugging
in any specific algebra within FLew; similarly, our tableau system works in any such case, for
as long as the underlying lattice is finite.

3 Many-Valued Interval Temporal Logic

Many-valued linear orderings. In [11, 12, 13], a many-valued generalization of HS based on
Heyting algebras has been proposed and studied. As we shall see, its further generalization to
the case of FLew-algebras is syntactically and semantically quite similar; however, decoupling
conjunction (resp., disjunction) and t-norm (resp., t-co-norm) increases the flexibility and
adaptability of the language to practical situations.

We start off by defining the many-valued generalization of a linearly ordered set.

▶ Definition 1. Let A = ⟨A,∩,∪, ·,+, 0, 1⟩ a complete FLew-algebra. A many-valued linear
order is a structure of the type

D̃ = ⟨D, <̃, =̃⟩,

where D is a domain (again, we identify D with D̃) enriched with two functions <̃, =̃ : D×D →
A, for which the following conditions apply for every x, y, and z:
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=̃(x, y) = 1 iff x = y,

=̃(x, y) = =̃(y, x),
<̃(x, x) = 0,
<̃(x, z) ⪰ <̃(x, y) · <̃(y, z),
if <̃(x, y) ≻ 0 and <̃(y, z) ≻ 0, then <̃(x, z) ≻ 0,
if <̃(x, y) = 0 and <̃(y, x) = 0, then =̃(x, y) = 1,
if =̃(x, y) ≻ 0, then <̃(x, y) ≺ 1.

There are several possible definitions of non-crisp linear orders. For example, Zadeh [34],
defines a similarity relation in a set, imposing that it is reflexive, symmetric, and transitive, as
well as a notion of many-valued ordering, antisymmetry, and totality. Similarly, Bodenhofer [3]
advocates for the use of similarity-based many-valued orderings, in which the linearity is
in a strong form; the same notion is also used in [25]. Ovchinnikov [30] proposes a notion
of many-valued ordering with a non-strict ordering relation. A common denominator to all
such proposals is the definition of a very weak version of the transitivity property, which
allows one to obtain very general definitions. A many-valued linear order defined as above is
similar to Zadeh’s, only slightly modified to take into account both the many-valued linear
order and the many-valued equality in the same structure. This is motivated by the fact
that many-valued Allen’s relations involve both equality and linear order.

Given a many-valued linear order D̃ = ⟨D, <̃, =̃⟩, we define the crispification of D̃ to be
the crisp linear order D = ⟨D,<⟩, where x < y if and only if <̃(x, y) ̸= 0. It is easy to verify
that D = ⟨D,<⟩, so defined, is, in fact, a linear order.

Later we shall refer to the set of all possible many-valued linear orders as D.

Many-valued Halpern and Shoham’s Interval Temporal Logic. As in the crisp case,
formulas of the many-valued version of Halpern and Shoham’s interval temporal logic are
based on a set of propositional letters.

▶ Definition 2. Let P be a set of propositional letters, and let A be a complete FLew-algebra.
Then, a well-formed many-valued Halpern and Shoham’s interval temporal logic formula (or
MVHS-formula, for short) is obtained by the following grammar:

φ ::= α | p | φ ∨ ψ | φ ∧ ψ | φ → ψ | ⟨X⟩φ | [X]φ,

where α ∈ A, p ∈ P, and, X ∈ X .

In the following, we shall use ¬φ to denote the formula φ → 0, and L̃MVHS to denote the
smallest set that contains all formulas generated by the previous definition.

As for the semantics of MVHS-formulas, given a many-valued linearly ordered set we
define the set of fuzzy strict intervals in D̃ as

I(D̃) = {[x, y] | <̃(x, y) ≻ 0},

and, generalizing classical Boolean evaluation, propositional letters are directly evaluated in
the underlying algebra A by defining a many-valued valuation function, as follows:

Ṽ : P × I(D̃) → A.

Moreover, given a fixed many-valued linear order we also need to define the many-valued
generalization of Allen’s relations between intervals (many-valued Allen’s relations), which is
obtained by substituting every = with =̃ and every < with <̃ in the original, crisp definition,
as shown in Tab. 2.
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Table 2 Many-valued version of Allen’s interval relations.

relation definition example

x y

w z

w z

w z

w z

w z

w z

after R̃A([x, y], [w, z]) = =̃(y, w)

later R̃L([x, y], [w, z]) = <̃(y, w)

begins R̃B([x, y], [w, z]) = =̃(x, w) · <̃(z, y)

ends R̃E([x, y], [w, z]) = <̃(x, w) · =̃(y, z)

during R̃D([x, y], [w, z]) = <̃(x, w) · <̃(z, y)

overlaps R̃O([x, y], [w, z]) = <̃(x, w) · <̃(w, y) · <̃(y, z)

Many-valued Allen’s relations should be interpreted with caution. A many-valued linear
order cannot be graphically represented as a crisp linear order, but it is abstractly defined by
explicitly listing the value of each relation for each pair of points. Similarly, for example, one
interval [w, z] that is after an interval [x, y] cannot be simply depicted “after” [x, y] itself.
However, to help the intuition, many-valued Allen’s relations can be used to interpret a crisp
linear order; in this case, it would be natural to consider, for instance, as “equal” two points
that are in fact “close” to each other, leading to the possibility of picturing Allen’s relations
similarly to the crisp case.

▶ Definition 3. Let P be a set of propositional letters, and let A be a complete FLew-
algebra. Then, a many-valued Halpern and Shoham’s interval temporal logic interpretation
(MVHS-interpretation, for short) is a tuple of the type:

M̃ = ⟨I(D̃), Ṽ ⟩

where D̃ is a many-valued linear order and Ṽ is a fuzzy valuation function. Given an
MVHS-formula φ and an MVHS- interpretation, the valuation of φ on Ṽ and [x, y] ∈ I(D̃)
is computed as follows:

Ṽ (α, [x, y]) = α,

Ṽ (φ ∧ ψ, [x, y]) = Ṽ (φ, [x, y]) · Ṽ (ψ, [x, y]),
Ṽ (φ ∨ ψ, [x, y]) = Ṽ (φ, [x, y]) + Ṽ (ψ, [x, y]),
Ṽ (φ → ψ, [x, y]) = Ṽ (φ, [x, y]) ↪→ Ṽ (ψ, [x, y]),
Ṽ (⟨X⟩φ, [x, y]) =

∨
{R̃X([x, y], [w, z]) · Ṽ (φ, [w, z])},

Ṽ ([X]φ, [x, y]) =
∧

{R̃X([x, y], [w, z]) ↪→ Ṽ (φ, [w, z])},

where X ∈ X and where [w, z] varies in I(D̃). We say that a formula of FHS φ is α-satisfied
at an interval [x, y] in a fuzzy interval model M̃ if and only if

Ṽ (φ, [x, y]) ⪰ α.

Moreover, a formula φ is α-satisfiable if and only if there exists a fuzzy interval model and
an interval in that model in which it is α-satisfied, and it is satisfiable if it is α-satisfiable
for some α ∈ H, α ̸= 0; similarly, a formula is α-valid if it is α-satisfied at every interval in
every model, and valid if it is 1-valid.
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Observe that since an FLew-algebra, in general, does not encompass classical negation,
and since our definition of satisfiability is graded, instead of absolute, then the usual duality
of satisfiability and validity does not hold anymore.

Applications. Interval temporal logic is designed to describe situations in which events
have a duration, and are therefore not necessarily instantaneous. Even if a pure qualitative
language such as the one of HS does not allow the specification of metric duration, the
relative temporal position of different events can be expressed.

Temporal datasets are typically provided in the form of sets of multivariate time series.
Time series are observations interpreted over a linear order; in some data science contexts,
they are also called single dimension data. Observations can be univariate if there is only
one measurement, or multivariate if there is more than one; observed data type can be
numerical or categorical. Temporal datasets are common in several research areas, spanning
from medicine to industry, among many others. In some cases, information can be extracted
from a multivariate time series in the form of point-based temporal logic formulas, in which
propositional letters symbolically represent instantaneous values (e.g., the fever is over 37.5
degrees, or the vibration sensor marks below 3 mm/s). More commonly, however, it is often
the case that relevant events are better described as intervals so that a propositional letter
represents some properties of some function of some variable (e.g., the average fever is over
37.5 degrees). Such functions are generally referred to as feature extraction functions. In this
sense, interesting properties of a time series, or, better, of a temporal dataset of time series,
could be expressed in propositional interval temporal logic.

One relevant example of how MVHS can be used to describe interesting situations is that
of multivariate time series in psychology and psychiatry. A single patient can be described
by several independent variables that help physicians identify his/her psychological status
across some observation time. Each variable may be specific to some behavior treat, so
that several symptoms can be identified. In the case of clinical depression, for example,
such symptoms range from depressed mood to diminished interest, to insomnia/hypersomnia,
among many others. Each one of them, clearly, can be associated with one or more periods
of time during the observation. In major depression, in particular, the role of overlapping
symptoms has been debated [4]. The presence of two such overlapping symptoms in a patient
can be expressed, for example, as the HS formula

⟨G⟩(depressed mood ∧ ⟨O⟩insomnia),

where ⟨G⟩ is the (definable) existential operator, that makes true a formula on some interval
in the model. Statements such as the one above can, in fact, be automatically learned
by a system such as [6, 32, 28], from suitable datasets of patients, and the problem of
distinguishing, for instance, which pairs of overlapping symptoms more often lead to a major
depression diagnosis can be solved as a temporal classification problem.

Operating with a crisp logic, however, one may incur in extracting less-than-optimal
knowledge, for two reasons. First, single events labeled with symptoms may not necessarily
be clearly identified, as is often the case in medicine. Second, minimal temporal variations
may cause sharp changes in the labeled temporal relation (e.g., a patient with both symptoms,
not overlapping but only by a relatively small amount of time, would not satisfy the above
formula). Extracting many-valued logic statements, expressed in MVHS for example, would
allow one to avoid both potential problems, as both the propositional letters and the temporal
relations are given a degree of truth (in the above example, a patient with both symptoms,
not overlapping but only by relatively small amounts of time, would still satisfy the formula,
only to a slightly lower degree).
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4 Reasoning in Many-Valued Halpern and Shoham’s Interval
Temporal Logic

A tableau system. In this section, we consider the problem of reasoning with MVHS
formulas. Tableau systems have been introduced in [5, 19, 20, 29] for variants, fragments,
and generalizations of crisp HS, and in [17] for many-valued modal logics. The case of MVHS
interpreted on a finite Heyting algebra has been tackled in [13]. Here, we generalize the rules
to cover the case of a finite FLew-algebra. From a theoretical point of view, the difference
between the two systems is limited; therefore, we shall focus on the problems that having a
functioning implementation raises, and, then, on the results of a set of systematic tests.

A tableau for an MVHS formula is a directed tree, in which every node is associated
with a truth judgment, a pair formula/interval, and a finite many-valued linear order; these
elements, altogether, form a decoration.

▶ Definition 4 (decoration). Given an FLew-algebra A, an MVHS formula φ, and a finite
many-valued linear order D̃, a decoration is an object of the type

Q(α ⪯ φ, [x, y], D̃), or Q(φ ⪯ α, [x, y], D̃),

where α ∈ A and Q ∈ {T, F} is a judgment. The expression α ⪯ φ (φ ⪯ α) is an assertion
on [x, y] ∈ I(D̃). The universe of all possible decorations is denoted by D.

▶ Definition 5 (tableau). Given a finite FLew-algebra A and an MVHS formula φ, a tableau
τ for φ and α ∈ A is defined as a tuple

τ = ⟨V , E , d, f, c⟩,

where ⟨V , E⟩ is a tree with nodes in V and edges in E, and whose set of branches is denoted
by B. The vertices are partially ordered by a relation ◁, which is induced by the edges. The
function

d : V → D

is a node labeling function that assigns each node ν a decoration of the form Q(β ⪯ ψ, [w, z], D̃)
or Q(ψ ⪯ β, [w, z], D̃), where β ∈ A and ψ is a subformula of φ (denoted as ψ ∈ sub(φ)).
The function

f : V → {0, 1}

is a node flag function indicating whether nodes are expanded (1) or not expanded (0). The
function

c : B → D

is a branch labeling function that associates to every branch the finite many-valued linear
order that belongs to the decoration of its leaf. The initial tableau τ0 is

⟨{ν0}, ∅, {ν0 7→ (T (α ⪯ φ), [x, y], {<̃(x, y) = β})}, {ν0 7→ 0}, {ν0 7→ {<̃(x, y)) = β}}⟩

or

⟨{ν0}, ∅, {ν0 7→ (F (α ⪯ φ), [x, y], {<̃(x, y) = β})}, {ν0 7→ 0}, {ν0 7→ {<̃(x, y)) = β}}⟩

for some β ∈ A, and it evolves by iteratively applying the branch expansion rule (see Fig. 2)
or, if not applicable, the reverse rule in (see Fig. 3). These rules are applied to the node ν
closest to the root such that f(ν) = 0, affecting every descendant leaf ν′ for which ν ◁ ν′. An
application of either rule to ν where f(ν) = 0 will result in setting f(ν) to 1.
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T (β ⪯ (ψ ∧ ξ), [x, y], C)
(T∧)

T (β1 ⪯ ψ, [x, y], C(B)) | . . . | T (βn ⪯ ψ, [x, y], C(B))
T (γ1 ⪯ ξ, [x, y], C(B)) | . . . | T (γn ⪯ ξ, [x, y], C(B))

where β ̸= 0, (βi, γi) ∈ A × A so that β ⪯ βi · γi and there is no

other (β′
i, γ

′
i) ∈ A × A such that β ⪯ β′

i · γ′
i, β

′
i ⪯ βi and γ′

i ⪯ γi.

F (β ⪯ (ψ ∧ ξ), [x, y], C)
(F∧)

T (ψ ⪯ β1, [x, y], C(B)) | . . . | T (ψ ⪯ βn, [x, y], C(B))
T (ξ ⪯ γ1, [x, y], C(B)) | . . . | T (ξ ⪯ γn), [x, y], C(B)

where β ̸= 0, (βi, γi) ∈ A × A so that β ⪯̸ βi · γi and there is no

other (β′
i, γ

′
i) ∈ A × A such that β ⪯̸ β′

i · γ′
i, βi ⪯ β′

i and γi ⪯ γ′
i.

T ((ψ ∨ ξ) ⪯ β, [x, y], C)
(T∨)

T (ψ ⪯ β1, [x, y], C(B)) | . . . | T (ψ ⪯ βn, [x, y], C(B))
T (ξ ⪯ γ1, [x, y], C(B)) | . . . | T (ξ ⪯ γn, [x, y], C(B))

where β ̸= 1, (βi, γi) ∈ A × A so that βi + γi ⪯ β and there is no

other (β′
i, γ

′
i) ∈ A × A such that β′

i + γ′
i ⪯ β, βi ⪯ β′

i and γi ⪯ γ′
i.

F ((ψ ∨ ξ) ⪯ β, [x, y], C)
(F∨)

T (β1 ⪯ ψ, [x, y], C(B)) | . . . | T (βn ⪯ ψ, [x, y], C(B))
T (γ1 ⪯ ξ, [x, y], C(B)) | . . . | T (γn ⪯ ξ, [x, y], C(B))

where β ̸= 1, (βi, γi) ∈ A × A so that βi + γi ⪯̸ β and there is no

other (β′
i, γ

′
i) ∈ A × A such that β′

i + γ′
i ⪯̸ β, β′

i ⪯ βi and γ′
i ⪯ γi.

T (β ⪯ (ψ ↪→ ξ), [x, y], C)
(T ↪→)

T (ψ ⪯ β1, [x, y], C(B)) | . . . | T (ψ ⪯ βn, [x, y], C(B))
T (γ1 ⪯ ξ, [x, y], C(B)) | . . . | T (γn ⪯ ξ, [x, y], C(B))

where β ̸= 0, (βi, γi) ∈ A × A so that β ⪯ βi ↪→ γi and there is no

other (β′
i, γ

′
i) ∈ A × A such that β ⪯ β′

i ↪→ γ′
i, βi ⪯ β′

i and γ′
i ⪯ γi.

F (β ⪯ (ψ ↪→ ξ), [x, y], C)
(F ↪→)

T (β1 ⪯ ψ, [x, y], C(B)) | . . . | T (βn ⪯ ψ, [x, y], C(B))
T (ξ ⪯ γ1, [x, y], C(B)) | . . . | T (ξ ⪯ γn, [x, y], C(B))

where β ̸= 0, (βi, γi) ∈ A × A so that β ⪯̸ βi ↪→ γi and there is no

other (β′
i, γ

′
i) ∈ A × A such that β ⪯̸ β′

i ↪→ γ′
i, β

′
i ⪯ βi and γi ⪯ γ′

i.

Figure 2 Propositional rules.
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T (β ⪯ ψ, [x, y], C)
(T ⪰)

F (ψ ⪯ γ, [x, y], C(B))
where φ ̸= α, β ̸= 0 and γ is any maximal

element not above β, i.e., γ ̸⪰ β

F (β ⪯ ψ, [x, y], C
(F ⪰)

T (ψ ⪯ γi, [x, y], C(B)) | . . . | T (ψ ⪯ γn, [x, y], C(B))
where φ ̸= α, β ̸= 0 and γ1, . . . , γn are all maximal

elements not above β, i.e., γ1, . . . , γn ̸⪰ β

T (ψ ⪯ β, [x, y], C)
(T ⪯)

F (γ ⪯ ψ, [x, y], C(B))
where φ ̸= α, β ̸= 1 and γ is any minimal

element not below β, i.e., γ ̸⪯ β

F (ψ ⪯ β, [x, y], C)
(F ⪯)

T (γi ⪯ ψ, [x, y], C(B)) | . . . | T (γi ⪯ ψ, [x, y], C(B))
where φ ̸= α, β ̸= 1 and γ1, . . . , γn are all minimal

elements not below β, i.e., γ1, . . . , γn ̸⪯ β

Figure 3 Reverse rules.

T (β ⪯ [X]ψ, [x, y], C)
(T□)

T ((β · γ1) ⪯ ψ, [z1, t1], c(B))
. . .

T ((β · γn) ⪯ ψ, [zn, tn], c(B))
T (β ⪯ [X]ψ, [x, y], c(B))

where γi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),
γi ≻ 0, and β · γi ̸= 0

T (⟨X⟩ψ ⪯ β, [x, y], C)
(T♢)

T ((ψ ⪯ (γ1 ↪→ β), [z1, t1], c(B))
. . .

T (ψ ⪯ (γn ↪→ β), [zn, tn], c(B))
T (⟨X⟩ψ ⪯ β, [x, y], c(B))

where γi = RX ([x, y], [zi, ti]), [zi, ti] ∈ o(c(B)),
γi ≻ 0, and γi ↪→ β ̸= 1

F (β ⪯ [X]ψ, [x, y], C)
(F□)

F ((β · γ1) ⪯ ψ, [z1, t1], c(B)) | . . . | F ((β · γn) ⪯ ψ, [zn, tn], c(B))
where γi = RX ([x, y], [zi, ti]),[zi, ti] ∈ o(c(B)) ∪ n(c(B)),

γi ≻ 0, and β · γi ̸= 0

F (⟨X⟩ψ ⪯ β, [x, y], C)
(F♢)

F (ψ ⪯ (γ1 ↪→ β), [z1, t1], c(B)) | . . . | F (ψ ⪯ (γn ↪→ β), [zn, tn], c(B))
where γi = RX ([x, y], [zi, ti]),[zi, ti] ∈ o(c(B)) ∪ n(c(B)),

γi ≻ 0, and γi ↪→ β ̸= 1

Figure 4 Temporal rules.

T (β ⪯ γ, [x, y], C)
(✗1)

✗
where β ̸⪯ γ

F (β ⪯ γ, [x, y], C)
(✗2)

✗
where β ̸= 0, γ ̸= 1, and β ⪯ γ

F (0 ⪯ ψ, [x, y], C)
(✗3)

✗

F (ψ ⪯ 1, [x, y], C)
(✗4)

✗

T (γ ⪯ ψ, [x, y], C)
F (β ⪯ ψ)

(✗5)
✗

where β ⪯ γ

Q(·, ·, C)
(✗6)

✗
where C is inconsistent

Figure 5 Branch closing rules.
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▶ Definition 6 (open and closed tableau). Given a finite FLew-algebra A and an A-formula
φ, a tableau τ for φ and α ∈ A is is closed if the branch closing rules (see Fig. 5), can be
applied to all of its branches. Conversely, τ is open if there exists at least one branch to
which the branch closing rules cannot be applied.

An open (resp., closed) tableau for φ and α, initiated with the decoration T (α ⪯ φ)
(resp., F (α ⪯ φ)), effectively demonstrates that φ is α-satisfiable (resp., α-valid). Conversely,
the reversed decorations T (φ ⪯ α) and F (φ ⪯ α) are generally not employed as starting
decorations to prove substantial statements. For example, T (φ ⪯ α) might suggest the
possibility of constructing a structure where φ has a value less than α. In classical logic,
with a two-element Boolean algebra and α = 1, this condition would imply that ¬φ is valid,
as φ would consistently take the value 0. However, in the many-valued case, such duality is
absent, and there is no guarantee of a formula that consistently attains the value 1 when φ

is valued strictly less than 1.
Despite their limited use as initial decorations, these reversed decorations, in conjunction

with the reverse rule, facilitate reducing the number of necessary rules. For instance, a
decoration including the judgment T (p ⪯ β) appearing in a branch of a tableau starting with
the judgment T (α ⪯ φ) informs us that in any model validating α-satisfiability of φ, the
propositional variable p must take a value less than or equal to β. For any given formula φ
and value α, a tableau starting with T (α ⪯ φ) (resp., F (φ ⪯ α)) is termed a SAT-tableau
(resp., VAL-tableau).

Two distinct notions of soundness and completeness are applicable: one for the SAT-
tableau system and another for the VAL-tableau system. Although the foundational argu-
ments for both systems bear strong similarities, our statement is focused on the former.

▶ Theorem 7 (soundness and completeness for α-satisfiability). The tableau system for the
MVHS of finite FLew-algebras is sound and complete for proving α-satisfiability, that is, given
a finite FLew-algebra A, an A-formula φ, and a value α ∈ A, φ is α-satisfiable if and only
if some SAT-tableau for φ and α is open.

Technically speaking, the proof of this theorem is essentially identical to that of soundness
and completeness of the version of this tableau given in [13], and it is therefore omitted.

Implementation. The tableau system for MVHS with finite FLew-algebras has been im-
plemented using the Julia programming language as part of a broader open-source project
aimed at representing, reasoning, and learning from structured and unstructured data [27].

In our implementation, formulas are represented as syntax trees with leaves consisting
of either propositional letters or algebra values. Finite FLew-algebras are configured by
establishing a finite domain, defining operators through their tables, and ensuring, via a
one-time check, that all axioms proper to an FLew-algebra are satisfied. Formulas can be
generated randomly, while algebras are systematically created with progressively larger
domains to explore the impact of algebra size on system performance.

The tableau itself is structured as a rooted tree with variable arity. Each node in the
tableau has a decoration and maintains two pointers, one to its parent node and the other
to the head of a list of its children, which can be empty. Nodes also carry two flags to
track whether they have been expanded (or not) and whether they are open (or closed).
Specifically, a closed node indicates that all branches containing it are also closed. The
tableau is linked to an array of priority queues where each queue node references a tableau
node and carries a value determined by a priority function. This priority setting is crucial
during the expansion phase to determine the next branch for expansion.
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The construction of the tableau follows a standard search algorithm, beginning with an
empty node to which several immediate children are attached; each child corresponds to a
different algebra value for the relation <̃ between the two initial points. At each cycle, we
evaluate all nodes at the top of any priority queue. We select one node from this group based
on a predefined meta-policy (e.g., random or majority). The selected node, immediately
removed from other queues where it was at the top, identifies a set of branches chosen for
expansion. We first verify whether this node, denoted as ν, is already closed; if so, the cycle
proceeds without action. Next, if ν has already been expanded, the process skips to the
next cycle unless ν is a leaf, signaling an open branch in a fully expanded tableau. For a
SAT-tableau, such an open branch identifies a model that α-satisfies the starting formula;
for a VAL-tableau, it represents a counterexample to its α-validity.

If ν has not been expanded, we identify the nearest unexpanded ancestor ν′ of ν and
mark it as expanded. The subsequent steps are to apply the closing rule, thereby closing ν′

and its descendants (including ν). If this is not applicable, the propositional rule extends the
tree from all leaves containing ν′ and inserts the fresh nodes into all priority queues checking
that each fresh node was not already present in the branch; in such case, if no node is added
to that branch, a virtual node containing T (⊤ ⪯ ⊤) is inserted to keep track of the presence
of a branch. If no propositional rule is applicable, the temporal rule is applied with the only
difference that when applying the T□ and the T♢ rule, if at least one node has been added
to the branch before T (β ⪯ [X]ψ, [x, y], C(B)) (resp. T (β ⪯ ⟨X⟩ψ, [x, y], C(B))) we still
add the latter, as we may have new points in c(B) w.r.t. C; otherwise, we end the tableau
procedure, as we have found an open branch with no contradictions within that is no longer
expandable. Again, if this is not applicable, the reverse rule is applied with implications for
all branch leaves containing ν′, inserting all fresh nodes in all priority queues with the same
precautions taken for the expansion rules. Finally, if none of the above apply, ν is reinserted
into the priority queues from which was extracted. The process concludes when all priority
queues are empty, indicating no open branches remain, and the tableau is fully expanded
and declared closed. For a SAT-tableau, this outcome proves the α-unsatisfiability of the
starting formula; for a VAL-tableau, it demonstrates α-validity.

Optimizations. To improve both time and space efficiency of our implementation, we
periodically perform a cleaning operation on all priority queues. For a parameter K ∈ N,
every K cycles all nodes within a queue that have already been expanded (unless they are
leaves) or that are already closed are removed. This operation helps manage the computational
overhead and optimizes the performance of the tableau construction. Moreover, since the
creation of each new branch in these rules is independent from the others and has a non-
negligible cost, as for each new node we have to check that no inconsistencies are introduced,
this process has been parallelized, introducing also a locking system to manage the concurrent
writing to both the tableau structure and the heaps.

All standard search strategies can be used within our system; different search strategies can
be used at the same time, in a round-robin policy, or even with a further level of parallelization,
in order to implement a virtual best solver policy. Given the high computation complexity of
these problems, however, we designed (but not tested) a specific search strategy based on
a weighting function that quantifies how ‘representative, that is, how different a branch is
from others already tested. Such a strategy can be used in a complete form (branches are
explored in order of representativeness), or an incomplete form (only the most representative
branches are explored). Future work includes a systematic assessment of the usefulness of
such strategies.
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Figure 6 Results on Fig.1 algebras for formulas of height up to 5 with a timeout of 30 seconds.

5 Experiments

The objective of our experiments was to investigate the impact of different finite FLew-
algebras as well as growth in formula height on computational performance. This analysis
was conducted involving both SAT-tableaux and VAL-tableaux.

Initially, we generated six representative finite FLew-algebras: the Boolean algebra (B),
used as the baseline, the Gödel algebras and MV-algebras with n ∈ {3, 4} values (Gn
and MVn), and the diamond algebra with 4 values (H4). The lattice structures for these
algebras are depicted in Fig. 1 (right-hand side). It is important to note that while G3
and MV3 (as well as G4 and MV4) are based on identical lattices, they are distinguished
by their respective norms. We generated 100 random formulas for each algebra and for
each height up to 5 (i.e., up to 32 symbols). Formula generation was governed by a
weighted selection process: connectives {∧,∨,→} were assigned a weight of 8, modalities
{⟨A⟩, ⟨L⟩, ⟨B⟩, ⟨E⟩, ⟨D⟩, ⟨O⟩, [A], [L], [B], [E], [D], [O]} as well as their inverse were assigned
a weight a 1 (so that one has the same probability to get a connective or a modality),
algebra values received a weight of 1/|A| where A is the domain of the algebra, and each
propositional letter in the set P was weighted by 1/|P|. Selection probabilities for a symbol
s were calculated as

P (s) = W [s]
Σ{t|t∈{∧,∨,→}∪{⟨X⟩|X∈X }∪A∪P}W [t] ,

with formula expansion ceasing upon reaching the designated height or if further expansion
is impossible (in which case it is discarded). The performance of each formula in terms of
α-satisfiability and α-validity, with α chosen randomly, was analyzed; the results are depicted
in Fig. 6. Throughout these experiments, the branch priority policy was kept random (and
complete), and the choice of α was also randomized. All tests were conducted on a machine
equipped with 2 Intel Xeon Gold 28-Core CPUs and 224GB of RAM.

6 Conclusions

In this paper, we expanded previous work on a tableau-based reasoning system tailored
for many-valued interval temporal logic. In particular, we provided a reasoning system for
MVHS in a very general case, and we focused on its implementation, which we made available
as part of a comprehensive symbolic learning and reasoning framework [27]. We have also
designed and carried out a series of tests to study the scalability of the system. As we have
mentioned, future work includes exploring more elaborate search strategies and testing their
effectiveness.
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Moving forward, our aim is to build on the integration of symbolic learning models and
reasoning systems and to provide end-to-end solutions for full data-driven learning, reasoning,
and decision-making processes.
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Abstract
Simple Temporal Networks with Uncertainty (STNU) are a well-known constraint-based model
expressing sets of activities (e.g., a schedule or a plan) related by temporal constraints, each having
possible durations in the form of convex intervals. Uncertainty comes from some of these durations
being contingent, i.e., the agent executing the plan cannot decide the actual duration at execution
time. To check that execution will satisfy all the constraints, three levels of controllability exist:
the Strong and Dynamic Controllability (SC/DC) has proven both useful in practice and provable
in polynomial time, while Weak Controllability (WC) is co-NP-complete and has been left aside.
Moreover, controllability checking algorithms are propagation strategies, which have the usual
drawback, in case of failure, to prove unable to locate the contingents that explain the source of
non-controllability. This paper has three contributions: (1) it substantiates the usefulness of WC in
multi-agent systems (MAS) where another agent controls a contingent, and agents agree just before
execution on the durations; (2) it provides a new WC-checking algorithm whose performance in
practice depends on the network structure and is faster in loosely connected ones; (3) it provides
the failing cycles in the network that explain non-WC.
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Keywords and phrases Temporal constraints satisfaction, uncertainty, STNU, Controllability check-
ing, Explainable inconsistency, Multi-agent planning
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1 Introduction and Related Work

Temporal Constraint Satisfaction Problems (TCSP) are constraint-based problem formula-
tions that allow to represent and reason on temporal constraints. They are used in a lot of
domains, such as planning and scheduling (on which we will focus), supervision of dynamic
systems, or workflow design. They are based on a graphical model, the reason why they are
usually called Temporal Constraint Networks (TCN)[5]: variables/nodes are time-points for
which one shall assign a timestamp. Constraints/edges express sets of possible durations
relating them. A key issue is the ability to check the consistency of the whole network. The
simplest class, called the Simple Temporal Network (STN), arises when they have only binary
constraints with only convex intervals of values (no disjunctions). One of the main strengths
of this restricted, but often sufficient in practice, model is that consistency checking is made
through a polynomial propagation algorithm (the Floyd-Warhsall reduction) and provides a
complete minimal network in which all inconsistent values are removed.

An STN with Uncertainty (STNU ) is an extension in which one distinguishes a subset of
constraints whose effective duration is not assigned but observed (uncontrollable durations).
This is useful for addressing realistic dynamic and stochastic domains where such durations
are usually set by the environment.
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8:2 A More Efficient and Informed Algorithm to Check Weak Controllability

In STNUs, the notion of temporal consistency has been redefined in the form of con-
trollability: an STNU is controllable if there exists a strategy for executing the schedule,
whatever the values are taken by the contingent durations. In [14], the authors introduce
three levels of controllability that express how and when the uncertainties are resolved:
the Weak Controllability (WC) proves that a solution exists for any possible combination
of contingent values. Which requires that some “oracle” provides those values before the
timing of controllable time-points is decided; Dynamic Controllability (DC) assumes that at
execution time, a strategy can be built based on past observations only thus, whatever the
contingent durations still to be observed; Strong Controllability (SC) is more demanding
as it enforces that there is one unique assignment of controllable timepoints values, which
defines a static control strategy that works whatever the contingent durations will be at
execution time. WC has often appeared unrealistic in dynamic applications that assume full
progressive observability at execution time, where DC looks more relevant and have received
much attention in previous works. In contrast, SC fits perfectly application domains with
partial or non observability, or when some strict commitment must be made on the execution
schedule timing for some client.

Previous works prove that SC and DC can be resolved with specifically designed
propagation-based algorithms that run in polynomial time [11, 3, 14]. While WC is a
co-NP-complete problem [12], and only exponential algorithms exist to check WC [4, 14].
This is another reason why WC has been disregarded [2, 14].

This paper tackles Weak Controllability by first exhibiting its relevance in several contexts
(e.g., multi-agent task management) and providing a more efficient algorithm for realistic
networks, i.e., loosely connected networks. Contrary to the complete propagation algorithms
proposed for SC and DC, our algorithm maintains and reasons only on the input constraints,
which form network paths. As in any graph, such paths join and form cycles. We prove that
it is possible to check the global Weak controllability by locally checking the elementary
cycles of an STNU. This way, the algorithm can also diagnose the source of uncontrollability
of a non-WC STNU by detecting the set of constraints (here, cycles) that make the STNU
not Weakly controllable. This explainability issue was recently addressed and is important
to repair non-controllable STNUs [9, 2, 1, 13].

The paper is organized as follows: Section 2 first recalls the necessary background on
STNU. Section 3 then discusses the usefulness in practical applications of WC. Then, we
prove in Section 4 how local controllability on cycles is equivalent to global WC. Next,
Section 5 will present how to locally check WC, and Section 6 will present the new algorithm
for globally checking WC. Some experimental evaluation will be displayed in Section 7 before
concluding our contribution with some prospects.

2 Background

A Simple Temporal Network (STN ) is a pair, (V , E), where V is a set of time-points vi

representing event occurrence times, and E a set of temporal constraints between these time-
points, in the form of convex intervals of possible durations [5], in the form vj − vi ∈ [lij , uij ],
with lower bounds lij ∈ R∪ {−∞} and upper bounds uij ∈ R∪ {+∞}. Interestingly enough,
this model encompasses the qualitative precedence constraint, since vi precedes vj , noted
vi ⪯ vj , iff lij ≥ 0. A reference time-point v0 is usually added to V, which is the “origin of
time”, depending on the application (might be, e.g., the current day at 0:00). The goal is to
assign values to time-points such that all constraints are satisfied, i.e., to assign a value to
each constraint in its interval domain.
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An STN with Uncertainty (STNU ) is an extension in which one distinguishes a subset of
constraints whose values are parameters that cannot be assigned but will be observed [14].

▶ Definition 1 (STNU). An STNU is a tuple (V, E, C) with:
V a set of time-points {v0, v1, . . . , vn}, partitioned into controllable (Vc) and uncontrollable
(Vu) and where v0 is the reference time-point: ∀i, v0 ⪯ vi;
E a set of requirement constraints {e1, . . . , e|E|}, where each ek relates two time-points
ek = vj − vi ∈ [lij , uij ] with, vi, vj ∈ V .
C a set of contingent constraints {c1, . . . , c|C|}, where each ck relates two time-points
ck = vj − vi ∈ [lij , uij ] with, vi ∈ Vc, vj ∈ Vu, and necessarily vi ⪯ vj : 0 ≤ lij ≤ uij .

Intuitively, controllable time points (Vc) are moments in time to be decided by the scheduling
agent, which is trying to satisfy all the requirement constraints (E) under any possible
instantiation of the contingent constraints (C). Moreover, having a contingent duration
between two unordered time-points is semantically impossible. Figure 1a is the graphical
representation of an STNU.

In addition, an STN (and hence an STNU too) has an equivalent distance graph repres-
entation [5, 7]. Each constraint of the form [l, u] between vi and vj would be represented
as vi

[l,u]−−→ vj in the STN, or equivalently through two corresponding edges in its distance
graph: vi

u−→ vj and vj
−l−→ vi.

In STNUs, consistency has been redefined through three levels of controllability, which
we will recall hereafter before focusing on one of them, namely the Weak controllability.

▶ Definition 2 (Schedule). A schedule δ of an STNU X is the assignment of one value for
each controllable time-point δ = {δ(v) | v ∈ Vc}.

▶ Definition 3 (Situation and Projection). Given an STNU X , the situations of X is a set
of tuples Ω defined as the cartesian product of contingent domains:

Ω = ×
c ∈ C

[lc, uc]

A situation is an element ω of Ω and we write ω(c) with c ∈ C to indicate the element in
ω associated with c in the cross product. A projection Xω = (V, E ∪ Cω) of X is an STN
where Cω = {[ω(c), ω(c)] | c ∈ C}. Last, a schedule δω which satisfies all the constraints in
Xω is called a solution of Xω.

Intuitively, the set of situations defines the space of uncertainty, i.e., the possible values of
contingent constraints; a projection substitutes all contingent links with a singleton, forcing
its duration to the value appearing in ω. Now, a network shall be deemed controllable if it
is possible to schedule the controllable time points to satisfy all requirement constraints in
any possible projection. But that depends on how and when the contingent durations are
observed/known by the execution supervisor.

▶ Definition 4 (Weak Controllability (WC)). An STNU X is Weakly controllable iff
∀ω ∈ Ω, ∃δω such that δω is a solution of Xω.

This definition implies that an “oracle” communicates contingents’ durations to the
scheduler before execution time, which requires all projections to be independently consistent.

TIME 2024
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We provide the two other controllability levels only for the sake of completeness, though
they will not be addressed in this paper. Dynamic controllability (DC) demands that the
assignment of a controllable time-point only depends on past observations, and Strong
controllability (SC) demands a unique schedule that is totally independent from any observa-
tion [14].

▶ Definition 5 (Dynamic Controllability (DC)). An STNU X is Dynamically controllable
iff it is Weakly controllable and ∀vi ∈ Vc, ∀ω, ω′ ∈ Ω, ω⪯vi = ω′⪯vi =⇒ δω(vi) = δ′

ω(vi)
where ω⪯v = {ωk ∈ ω s.t. end(ck) ⪯ v} is the part of the situation ω which contingent
constraints ending time-points precede v.

▶ Definition 6 (Strong Controllability (SC)). An STNU X is Strongly controllable iff ∃ δ

such that ∀ω ∈ Ω, δ is a solution of Xω.

As said before, polynomial-time propagation-based checking algorithms exist for SC
and DC [14][11][3]. But not for WC checking, which is co-NP-complete [12]. The original
algorithm to check WC checks the consistency of all 2|C| STNs obtained by replacing the
contingents with one of their bounds (upper or lower), which is an exponential algorithm.
This is enough to check WC as it has been proven in [14] that considering only the bounds
of contingents is enough to verify any level of controllability in STNUs.

3 Relevance of Weak Controllability

In this section, we will argue that WC may be more relevant than DC and SC for some
applications and, thus, deserves to be investigated.

In classical planning and scheduling applications, uncertainties come from external causes;
they are somehow “controlled by Nature” and can only be observed at their time of occurrence.
For instance, the duration of a truck ride to deliver some goods depends on exogenous traffic
conditions that no one has control over. There, the real duration will be observed only
at execution time, which calls for DC enforcement. However, in many domains (logistics,
transport, services), one may have a first strategic phase that builds a plan without assigning
all real resources; a more precise tactical version will do that later. For instance, in a
health service or construction site, one needs a weekly plan for visiting patient rooms or
for construction tasks. Still, the assigned teams (number of people, skills) are unknown,
resulting in flexible and large enough intervals of possible durations. The precise assignment
is only known each day for the next day, which allows for a more precise plan just before
execution, which is exactly the definition of WC.

Moreover, uncontrollable durations also appear in multi-agent systems, when some acticity
duration might be controlled by another agent instead of Nature. Thus, some tasks might be
controllable (requirement) for one agent but uncontrollable for another (contingent). For
instance, in collaborating hospital services that share common resources: one service might
need to wait before another one sends a patient. For the other agent controlling the duration,
that represents a degree of freedom, i.e., the flexibility, that some agent wishes to keep as long
as possible to be more robust. Then, collaboration may rely on the timely communication of
effective durations at execution time. But it is also possible that they plan in advance their
weekly operations with maximum flexibility but must set their own schedules each day for
the next one. They will communicate their decisions to the agents that depend on them,
for better coordination. Therefore checking WC instead of DC/SC enables the agents to be
more robust through least-commitment strategies.
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4 From local controllability to global controlability

4.1 Updated STNU graphical model
A starting point for resolving the issue of WC is to add some features to STNU’s graphical
representation and adapt the model accordingly. Nodes in an STNU will not only be divided
between controllable and uncontrollable time-points but also by divergent time-points and
convergent ones. From Definition 7, a divergent node has at least two outgoing edges in the
input graph modeling the STNU, and a convergent one has at least two incoming edges.

▶ Definition 7 (Convergent and Divergent time-points). In a STNU X = (V, E, C) :
vi ∈ V is called a divergent time-point iff ∃j, k, i ̸= j ≠ k with vi → vj ∈ E ∪C and vi →
vk ∈ E ∪ C. We denote Vdv as the set of divergent time-points with Vdv ⊆ V ;
vi ∈ V is called a convergent time-point iff ∃j, k, i ̸= j ̸= k with vj → vi ∈ E ∪
C and vk → vi ∈ E ∪ C. We denote Vcv, the set of convergent time-points with Vcv ⊂ V ;
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Figure 1 An STNU is presented in (a) where time-point A can be seen as the reference point
v0, Vdv = {A, C} (doubly circled nodes) and Vcv = {D, B}. Dotted arrows express contingent
constraints. Hence, C and B are uncontrollable time points, while A and D are controllable ones.
The STNU is not Weakly controllable due to the projection highlighted in bold on the contingent
constraints A

[10, 15]
C and A

[20, 30]
B that violate the synchronization on B. We show in 1b the

controllable bounds graph of the STNU.

Please note that if a contingent link is necessarily a directed edge (implicit precedence), a
requirement link may be a non-directed edge: e.g., vi

[−5,10]−−−−→ vj , imposing some constraint
on the temporal distance between the time-points but allowing any order between them at
execution time. Hence, in this example, vi or vj may be considered a divergent time-point,
depending on the order between them in the input link defined at the design level (here, the
link will be an outgoing edge from vi). As shown in the next subsection, the beginning and
end points of the two paths that form a cycle will only change, but the cycle will still remain.

In addition, Vdv ∩ Vcv may not be void, i.e. any v ∈ V may be convergent, divergent,
convergent and divergent, or neither convergent nor divergent : these definitions are ortho-
gonal to the distinction between controllable and contingent time-points, i.e., a controllable
time-point might be convergent or divergent, etc., and an uncontrollable one alike.

Of course, by definition, v0 cannot be a convergent time-point, but usually, a divergent
one, even though the model does not enforce it, as v0 is used to define the absolute time of
any time-point vi as a constraint between v0 and vi.

TIME 2024
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One can see that such a characterization is very similar to what is done in flow networks [8].
Still, there the problem is to check that the sum of labels (capacities) that converge on a point
equals the sum of the labels that exit that node. Here, we will instead use this distinction to
look for cycles, i.e., identify that two paths which diverge from one node and reunite in a
convergent node have compatible overall durations whatever values the contingents in those
paths will take, which is a local WC condition.

In Figure 1(a), we present an STNU as defined in definition 1 augmented by definition 7.
Figure 1(b) exhibits an alternative way to represent the STNU that will be explained later.

4.2 Weak controllability on cycles
First, we assume there is at least one convergent point (and hence at least one divergent
point). Otherwise the STNU is necessarily WC since there is no cycle among the input
constraints and hence no negative one. That means there are paths that diverge at some
point and merge at another point.

▶ Definition 8 (Path). A path ρ in X is a sequence of time-points v1, . . . , vp such that
∀i = 1 . . . p − 1, vi → vi+1 ∈ E ∪ C or vi+1 → vi ∈ E ∪ C, v1 ∈ Vdv and vp ∈ Vcv.

In that definition, we allow a path to follow edges in the graph in any direction, thus
ensuring that all possible cycles in the STNU will not be forgotten. For example, in Figure
1(a), considering divergent node C and convergent node D, there is obviously a path C-B-D,
but C-A-B-D should also be considered, which is equivalent to stating that there is a path
in the corresponding distance graph. Somehow, Figure 1(b), if one disregards, for now, the
labels, can be viewed as such a distance graph, where the path C-A-B-D appears.

Then, any cycle of input constraints in the STNU can be defined as a pair of distinct
paths with the same starting v1 ∈ Vdv and ending vp ∈ Vcv time-points. It is a peculiar way
of defining those cycles that will be useful for our algorithm.

▶ Definition 9 (WC Divergent Cycle). A divergent cycle M is a pair (ρ1, ρ2) such that
ρ1 and ρ2 are two paths starting at the same divergent time point vd ∈ Vdv and ending at
the same converging time point vc ∈ Vcv, where vd, vc are the only common time points in
ρ1, ρ2, i.e. ρ1 ∩ ρ2 = {vd, vc}.
A cycle M is said to be Weakly controllable if the sub-STNU restricted to the set of
time-points and constraints involved in both paths is WC.

For example, in Figure 1a one has a cycle (ρ1, ρ2) with ρ1 = A-B and ρ2 = A-C-B.
Then, an STNU is WC only if all divergent cycles are WC. We will present this result in

two steps, first defining a local property that might be checked for a divergent node and then
generalizing to all divergent nodes, which will be useful for better explaining our algorithm.

▶ Definition 10 (Local divergent-WC). Let µ(vd) = {M1, . . . , Mn} the set of all cycles
starting from vd ∈ Vdv, converging on a set of convergent nodes of Vcv that are necessarily
ordered (topological ordering) after vd in the STNU X . We say that X is locally divergent-
WC on vd iff ∀ Mi ∈ µ(vd), Mi is Weakly controllable.

For example, Figure 3d shows the two cycles starting from the divergent time-point A.
Local divergent-WC does not imply WC, as the corresponding sub-STNU might contain

other divergent nodes.

▶ Theorem 11 (Global controllability). X is Weakly controllable (WC) iff ∀vd ∈ Vdv, X is
locally divergent-WC on vd.
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Theorem 11 implies that checking the local divergent-WC property of all the divergent
nodes of an STNU is enough to check the global WC.

Proof. The forward implication is straightforward to prove: if there is a divergent node for
which at least one divergent cycle (sub-STNU) is not WC, that means there is at least one
projection for which there is no consistent local schedule. Hence, the STNU will not be WC.

For the reverse implication, suppose the global STNU is not WC. Then there is at least
one projection for which the corresponding STN is inconsistent; that is equivalent to having
a negative cycle somewhere in that STN[14]; and that negative cycle necessarily relates
time-points that form a divergent cycle in the STNU, which in turn is not WC following
Definition 9. ◀

5 Local Weak Controllability

In this section, we show how to check the local WC of a cycle by exploiting the convexity of
the problem, only considering the contingents bounds [14].

▶ Definition 12 (Controllable Bounds). Given an STNU X = (V, E, C), and vj − vi ∈ E ∪ C.
The controllable bounds of vj − vi, denoted Πctl

ij , is the pair of discrete values

Πctl
ij = ⟨minctl

ij , maxctl
ij ⟩

where, minctl
ij and maxctl

ij respectively represent the minimal and maximal duration that can
be guaranteed for vj − vi.

Any requirement constraint ek = [lij , uij ] has a minimal and maximal duration that can
be guaranteed with minctl

ij = lij and maxctl
ij = uij . For a contingent constraint ck ∈ C,

we cannot guarantee that at execution time its duration will be lower (resp. greater) than
its maximum bound uij (resp. its minimal bound lij). Hence, we have minctl

ij = uij and
maxctl

ij = lij . Intuitively, e.g., minctl
ij is the worst-case scenario for a contingent duration

when trying to control the maximum possible total duration of a path it belongs to. We
generalize Πctl

ij as follows:

Πctl
ij =

{
⟨uij , lij⟩ iff vj − vi ∈ C

⟨lij , uij⟩ iff vj − vi ∈ E
(1)

Then, from Equation 1, it is actually possible to represent an STNU X in terms of its
controllable bounds graph denoted Πctl

X , similar to a distance graph but more suited to our
algorithm, which is shown in Figure 1 (b). This graph considers each original constraint and
its inverse. A requirement constraint ek = [lij , uij ], equivalently lij ≤ (vj − vi) ≤ uij , has an
inverse constraint e′

k: −uij ≤ (vi − vj) ≤ −lij equivalently represented as e′
i = [−uij , −lij ].

The same transformation is applied to contingent constraints.
From this transformation, it is possible to compute the controllable bounds of a path ρ

composed of constraints in E ∪ C by propagating such bounds from v1 to vp.

▶ Definition 13 (Controllable Path Bounds). Let ρ be a path in Πctl
X , with v1, . . . , vp the

sequence of time-points of ρ. The controllable path bounds denoted Πctl
ρ is defined as

follows:

Πctl
ρ = ⟨

∑
minctl

ij ,
∑

maxctl
ij ⟩

TIME 2024
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From this point, it’s possible to check the WC controllability of a cycle M = (ρ1, ρ2) through
the controllable paths bounds Πctl

ρ1
and Πctl

ρ2
. Indeed, we need to guarantee that the minimum

controllable duration of ρ1 is less than or equal to the maximum controllable duration of ρ2
and vice-versa. Intuitively, if the condition is not satisfied, then there exists a projection of
M such that ρ1 and ρ2 cannot synchronize on vp as Πct

ρ represent the worst-case scenarios
of ρ: the worst cases for synchronizing two paths are when, for one path, its contingents take
their minimal bounds lij and for the second one, their maximal bounds uij .

▶ Theorem 14 (Cycle WC property). Given a cycle M = (ρ1, ρ2) and the controllable paths
bounds Πctl

ρ1
= ⟨minctl

ρ1
, maxctl

ρ1
⟩ and Πctl

ρ2
= ⟨minctl

ρ2
, maxctl

ρ2
⟩, M is weakly controllable iff:

(minctl
ρ1

≤ maxctl
ρ2

) ∧ (minctl
ρ2

≤ maxctl
ρ1

) (2)

Proof. If M is WC, then whatever the bounds of the contingents in M, there always exists
a schedule that satisfies the constraints of M. Let’s suppose Equation 2 is false. It means
there exists a projection of ρ1 and ρ2 such that the synchronization on vp is impossible and
forms a negative cycle. Thus, such a projection is inconsistent, and M is not WC.

For the reverse implication, let us suppose M is not WC, but Equation 2 is satisfied.
Then, it means that the projections of the two worst-case scenarios of M are consistent
as there exists at least one schedule that guarantees the synchronization on vp. Thus, any
projection satisfies the synchronization on vp. This is not possible as M is not WC, which
implies the sub-STNU has a negative cycle [14]. ◀

Obviously, one can see that only one of the literal can be false, i.e., either (minctl
ρ1

≤ maxctl
ρ2

)
or (minctl

ρ2
≤ maxctl

ρ1
) is false. For the sake of simplicity, we denote M ctl a worst-case scenario

of M. The left network of Figure 3d forms a non-WC cycle. The controllable bounds
are {30, 20} on (A-B) that forms a path ρ1, {10, 20} on (C-B) and {15, 10} on (A-C) that
together form a path ρ2. We have Πctl

ρ1
= {30, 20} and Πctl

ρ2
= {25, 30}, which does not satisfy

minctl
ρ2

≤ maxctl
ρ1

.

6 The WC-Checking algorithm

6.1 Description of the algorithm
In this section, we present the new WC-checking algorithm for an STNU X , which comprises
two parts: the first finds the cycles from a divergent time-point, and the second checks those
cycles. It is based on the following basic structures:

A path ρ is divided into two projection paths ρmin and ρmax where only the minimal
(ρmin) or maximal (ρmax) controllable bounds are computed: Πctl

ρmax
= maxctl

ρ and
Πctl

ρmin
= minctl

ρ . Given η = {min, max}, a projection path is of the form ρη =
⟨ηctl

ρ , Cρη
, Vρη

⟩ such that

ηctl
ρ is the controllable bound of ρη (maxctl

ρ or minctl
ρ );

Cρη is the set of contingent constraints of ρη (Cρη ⊆ C);

Vρη
the set of time-points of ρη (Vp ⊆ V).

One can notice that ρmin and ρmax represent the two worst-case scenarios of ρ.

P(vd) is the set of projection paths P(vd) = {ρη1 , . . . , ρηm} from the divergent time-
point vd.
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the minimal divergent cycles Dmin(vd) is a mapping of convergent time points vc ∈ Vcv

to a set of projection paths (Pmin
vc

) that converge on vc from vd such that each of them η

= min (ρmin): ∀ρη ∈ Pmin
vc

, ηctl
ρ = minctl

ρ .
the maximal divergent cycles Dmax(vd) is similar as Dmin(vd) but each projection
path in Pmax

vc
, η = max (ρmax): ∀ρη ∈ Pmax

vc
, ηctl

ρ = maxctl
ρ .

We introduce in Algorithm 1 the findDivergentCycles algorithm in charge of finding the cycles
from a divergent time-point vd. To avoid going through all possible paths in the controllable
bounds graph Πctl

X , we prune the number of paths in two ways:
We first add the notion of rank, which is common in qualitative temporal networks [6]:
it is possible to define a partial order of all time-points with regard to the precedence
relation; rank(vz) = 0, then for all vi such that vz ⪯ vi ∈ E ∪ C and there is no vj such
that vz ⪯ vj ∈ E ∪ C and vj ⪯ vi ∈ E ∪ C, rank(vi) = 1, and so on and so forth.
Using that rank, a forward search is then applied by ordering the time-points through a
topological ordering algorithm from vz (rank 0). This enables us to avoid any time-point
vi with a lower rank than the current divergent time-point vd. Figures 3a to 3c highlight
only the edges considered by the forward search.
To distinguish between the minimal and maximal controllable bounds of a path, we apply
two forward searches: one that computes the paths with only the maximal controllable
bound and one with the minimal controllable bound. This allows us to prune the paths
that converge to any convergent time-point to keep only stricter ones. For example,
it is easy to see that for two projection paths ρη and ρ′

η such that Cpη = Cp′
η

= {∅}
(only requirement constraints) ρη is stricter than ρ′

η if η = min and minctl
ρ > minctl

ρ′

(respectively, η = max and maxctl
ρ < maxctl

ρ′ ). Hence, it’s useless to consider further ρ′
η as

ρη is a stricter projection path, and only ρη is kept in Dmin(vd) or Dmax(vd) depending on
the computed controllable bound (η). This also holds for a path ρ′

η such that Cρ′
η

̸= {∅}
(with contingent constraints). However, when Cρη and Cρ′

η
are not empty, applying these

rules is impossible as it might result in removing an inconsistent cycle in the graph.
Suppose we have the minimal controllable bounds of ρ and ρ′ (minctl

ρ and minctl
ρ′ ) and

the maximal controllable bounds of a path ρ′′ (maxctl
ρ′′ ) such that the pair ⟨ρ′, ρ′′⟩ forms

a cycle M ctl. Then, if ρmin is stricter than ρ′
min and ρ′

min is not kept, M ctl will never
be checked likewise for the WC of X . Therefore, both ρmin and ρ′

min must be kept in
Dmin(vd). 1 We illustrate such case in Figure 2.

Lines 1 to 3 initialize the maps Dmax(vd) and Dmin(vd), and the set of paths P(vd).
Then, lines 5-16 propagate the paths in P(vd) to find and keep all stricter paths of vd in
Dmax(vd) until P(vd) = {∅}. In fact, in line 14, we also update P(vd) and Pvj by removing
the paths that are not stricter anymore. A second forward search is done for Dmin(vd)
where P(vd) is reset. Once the forward searches are over, the maps Dmax(vd) and Dmin(vd)
contain all the restrictive paths from vd to a convergent time-point vc. Then, we execute
the checkCycles algorithm (see Algorithm 2) in charge of checking the WC of the cycles of
vd. This algorithm is trivial as it simply searches and checks for each vc in Dmax(vd) and
Dmin(vd) all the pairs of paths (ρmin, ρmax) that converge on vc and form a cycle M ctl

where Vρmin ∩ Vρmax = {vd, vc}.
Finally, Algorithm 3 presents the WC-checking algorithm that, for a given STNU X ,

computes its controllable bounds graph Πctl
X (line 1), determines the topological ordering of

the time-points (line 2), and find and check the cycles of each divergent time-point in Vdv.

1 This is actually the reason why full reduction of intervals through the intersection of different edges is
not possible, and hence, a polynomial time algorithm cannot be found, unlike DC and SC.
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Algorithm 1 findDivergentCycles algorithm.

Input: vd:(time-point), Πctl
X : (graph), rank: map

Output: Boolean
1 Dmin(vd) = Dmax(vd) = {}
2 P(vd) = [⟨0, [], [vd]⟩]
3 A first forward search for Dmax

4 while P(vd) not empty do
5 ρmax = P (vd)[0] ρmax is removed in P(vd)
6 for each child vj of vm ∈ Vρmax

with rank(vj) ≥ rank(vd) and vj ̸∈ Vρmax
do

7 ρmax = propagateMaxPath(Πctl
X , ρmax, maxctl

mj)
8 if vj is a convergent time point (vj ∈ Vcv) then
9 if vj not in Dmax(vd) then

10 add vj → [ρmax] in Dmax(vd)
11 else
12 if ρmax is a restrictive path in Pmax

vj
then

13 add ρmax to Pmax
vj

and to P(vd)

14 else
15 add ρmax to P(vd)

16 A second forward search for Dmin(vd) with ρmin

17 return checkCycles(Dmax(vd), Dmin(vd))

Algorithm 2 checkCycles algorithm.

Input: Dmax(vd), Dmin(vd)
Output: Boolean

1 for each vc → Pmin
vc

in Dmin(vd) do
2 for each ρmin in Pmin

vc
do

3 for each ρmax in Pmax
vc

in Dmax(vd) do
4 if (ρmin, ρmax) is of the form M ctl then
5 if minctl

ρ > maxctl
ρ then

6 return False Or the cycle

7 return True

Algorithm 3 WC-Checking algorithm.

Input: X : STNU(V,E,C)
Output: Boolean

1 Πctl
X = getDistanceGraph(X )

2 rank = orderFromRank(X )
3 for each vd in Vdv do
4 if findDivergentCycles(vd, Πctl

X , rank ) == False then
5 return False Or non-WC cycles of vd

6 return True Or all non-WC cycles
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Figure 2 This figure illustrates the special case of the pruning rules when Cρη and Cρ′
η

are not
empty. Figure a) shows a non-Weakly controllable STNU, whereas Figure b) shows its only non-WC
cycle. Figure c) highlights the computed projection paths pmin, p′

min, and p′′
max of the given example.

One can see that if p′
min is not kept in Dmin(vd), the inconsistent cycle will never be checked as the

pair ⟨pmin, p′′
max⟩ do not form a cycle Mctl. Hence, such pruning rules cannot be applied when Cρη

and Cρ′
η

are not empty.

We show the execution of our algorithm for Divergent time-point A in Figure 3 using
A → C → B → D as the order for the forward searches. We highlight the search and
the paths (min and max) forming the non-Weakly controllable cycle. Please note that we
simplified the example by not showing how Dmin and Dmax are incrementally changed.

6.2 Features and Complexity
The algorithm presented in the previous section returns the set of negative cycles of a
non-Weakly controllable STNU (see Algorithms 2, 3), which is important for explainability,
i.e., necessary for the repair problem. Moreover, divergent time-points are independent,
which makes parallelization possible. In addition, the usual pseudo-controllability step from
Morris [10] is not required for constraint bounds with finite values (lij ̸= −∞ and uij ̸= +∞).
Thus, an incremental execution is possible as divergent time-points are independent. Indeed,
when adding new constraints, it’s not necessary to recompute the minimal network; hence,
checking only the cycles of divergent time points of the same rank or lesser (topological
ordering) is enough to guarantee WC. Still, it is not optimal as unnecessary cycles might be
checked. The drawback of the algorithm is that the minimal network is not computed.

The temporal complexity of the algorithm depends on the number of cycles to check,
which is related to multiple parameters such as the number of contingents, the number
of divergent time-points, and the number of successors per divergent time-point. For a
complete graph, the algorithm is exponential and not better than the original algorithm

TIME 2024
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Figure 3 This Figure shows, in a simplified manner, a running example of Algorithm 1 with
divergent time-point A. We highlight the edges taken at each step according to line 7. Figures 3a to
3c show the search, while Figure 3d shows the cycles to check for A, with the left one being not
Weakly controllable. After step 3, Dmin and Dmax contain all the restrictive paths (only those that
need to be kept) with, in a simplified manner, Dmin = {C : ⟨15, AC⟩, B : [⟨20, AB⟩, ⟨25, ACB⟩], D :
[⟨15, ACD⟩, ⟨35, ABD⟩, ⟨30, ACBD⟩]} and Dmax = {C : ⟨10, AC⟩, B : [⟨20, AB⟩, ⟨30, ACB⟩], D :
[⟨25, ACD⟩, ⟨30, ABD⟩, ⟨40, ACBD⟩]}. We highlight the paths of the non-Weakly controllable cycle.

(2|C|). However, our interest lies in realistic graphs where the sparsity of the graph is low by
restricting these parameters. Thus, the next section compares our algorithm (new_WC) with
the original one (old_WC) using the Floyd-Warshall algorithm (APSP) as a time metric only
to see how close they are to a polynomial behavior when parameters are restricted enough.

7 Experiments

To empirically test the effectiveness of the proposed algorithm, we consider the execution
time as the execution of all computations and not after finding an inconsistency as existing
checking algorithms do. The benchmark comes from a random generator we implemented
that can generate sparse STNUs. It creates an STNU in the form of a complete directed
acyclic graph (DAG), then randomly removes several edges depending on parameters: the
number of time points n, the percentage of divergent time points rd, the maximum number
of their successors nc, and the percentage of contingent constraints rc.

All the experiments have been performed on a machine equipped with an Intel Core
processor: 11th Gen Intel(R) Core(TM) i7-11850H @ 2.50GHz 2.50 GHz. We used a
time/memory limit of 10 minutes/4GB and sequential, single-core computation.

We experiment under different settings: n = {20, 50, 100, 200, 500, 1000}, rd =
{0.1, 0.2, 0.3} meaning 10 to 30% of divergent time-points, rc = {0.2, 0.3}, and nc = 3.
For each combination of parameters, we generate 20 STNUs and compute the average exe-
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cution time. We show in Figure 4b that, in general, our algorithm clearly outperforms the
old-WC algorithm and has a behavior slightly worse than the APSP algorithm up to 20%
of contingent constraints. This shows that the parameters were bounded enough to have
a polynomial-like behavior. However, beyond this threshold, our algorithm starts to show
its limit. This shows the sensitivity of our algorithm to the parameters (see Figure 4c). In
addition, we observe from the experimentation that the position of contingents can impact
the number of cycles to check. The closer to v0 contingents are, the higher the number of
cycles to check. Such a case is shown in Figure 4a where the dotted line for the case of 10%
of divergent time-points (new_WC) overlaps the other two (20 and 30 %).

8 Conclusion

This paper introduced a novel approach for checking the WC of an STNU by checking the
consistency of its elementary cycles. Interesting features of our algorithm to consider further
are as follows: it can identify the constraints causing the uncontrollability, and it can be
executed in an incremental way (not optimal) and in a parallelized way. However, it is not
capable of computing the minimal network of an STNU. Moreover, we exhibited that the
algorithm’s complexity depends on the sparsity of the STNU, which makes it exponential in
the worst cases. However, experiments show that in loosely connected STNU, the algorithm
tends to behave in a polynomial-like way. Finally, the paper argues the relevance of the
problem of WC in a multi-agent setting, where uncontrollable events are not controlled by
Nature but by other agents in the system. Further work will tackle the problem of repairing
negative cycles by negotiating the duration of the uncontrollable events, whose duration
depends on the other agents’ decisions.

TIME 2024
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(a)

(b)

(c)

Figure 4 Experimentation with 10% (a), 20% (b), and 30% (c) of contingent constraints.
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Abstract
Temporal constraint networks are data structures for representing and reasoning about time (e.g.,
temporal constraints among actions in a plan). Finding and computing negative cycles in temporal
networks is important for planning and scheduling applications since it is the first step toward
resolving inconsistent networks. For Simple Temporal Networks (STNs), the problem reduces to
finding simple negative cycles (i.e., no repeat nodes), resulting in numerous efficient algorithms. For
Simple Temporal Networks with Uncertainty (STNUs), which accommodate actions with uncertain
durations, the situation is more complex because the characteristic of a non-dynamically controllable
(non-DC) network is a so-called semi-reducible negative (SRN) cycle, which can have repeat edges and,
in the worst case, an exponential number of occurrences of such edges. Algorithms for computing
SRN cycles in non-DC STNUs that have been presented so far are based on older, less efficient
DC-checking algorithms. In addition, the issue of repeated edges has either been ignored or given
scant attention. This paper presents a new, faster algorithm for identifying SRN cycles in non-DC
STNUs. Its worst-case time complexity is O(mn + k2n + kn log n), where n is the number of
timepoints, m is the number of constraints, and k is the number of actions with uncertain durations.
This complexity is the same as that of the fastest DC-checking algorithm for STNUs. It avoids
an exponential blow-up by efficiently dealing with repeated structures and outputting a compact
representation of the SRN cycle it finds. The space required to compactly store accumulated path
information while avoiding redundant storage of repeated edges is O(mk + k2n). An empirical
evaluation demonstrates the effectiveness of the new algorithm on an existing benchmark.
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1 Introduction

A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing
and reasoning about time [14]. STNUs are attractive for planning and scheduling applications
because they accommodate not only a wide variety of temporal constraints (e.g., duration
constraints, deadlines, and inter-action constraints), but also actions with uncertain durations
(e.g., taxi rides or battery-charging actions) [5, 15, 6, 11, 18]. In STNUs, actions with uncertain
durations are represented by contingent links. Each STNU has a graphical form where nodes
represent timepoints; labeled, directed edges represent temporal constraints; and additional
edges (called LC and UC edges) represent bounds on uncontrollable action durations.

The most important property of an STNU is called dynamic controllability (DC). An
STNU is DC if there exists a dynamic strategy for executing its controllable timepoints that
guarantees that all relevant constraints will be satisfied no matter how the uncertain durations
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turn out – within their specified bounds. There are many polynomial-time algorithms, called
DC-checking algorithms, for determining whether any given STNU is DC. The fastest is
the O(mn + k2n + kn log n)-time RUL− algorithm due to Cairo et al. [3], where n is the
number of timepoints; m, the number of constraints; and k, the number of contingent links.
Hunsberger and Posenato subsequently presented a modification of RUL−, called RUL2021,
that has the same worst-case complexity, but is an order of magnitude faster in practice [10].

The characteristic feature of a non-DC STNU is that it must contain a semi-reducible
negative (SRN) cycle [12]. In general, any path from X to Y in an STNU graph is semi-
reducible if it entails a path of the same length from X to Y that contains no LC edges.
Such entailments can be discovered by generating new edges using constraint-propagation
(equivalently, edge-generation) rules. Although finding negative cycles in Simple Temporal
Networks (STNs) reduces to finding simple negative cycles (i.e., no repeat nodes), finding
SRN cycles in STNUs is more complex, given that even indivisible SRN cycles in a non-DC
STNU can have repeat edges and, in the worst case, an exponential number of such edges [9].
(An SRN cycle is indivisible if each proper sub-cycle is non-negative or non-semi-reducible.)

When given a non-DC STNU, DC-checking algorithms simply report that the network is
not DC; they do not produce an SRN cycle [12, 13, 3, 10]. For applications, it is important
to identify SRN cycles so that they can be resolved (e.g., by accepting the cost of weakening
constraints or tightening uncertain durations). Existing algorithms for finding SRN cycles in
non-DC STNUs [22, 23, 21, 1, 2] are based on older, less efficient DC-checking algorithms;
and the issue of repeated edges has been ignored or given scant attention. This paper presents
a new, faster algorithm for computing SRN cycles in non-DC STNUs while also rigorously
addressing the compact representation of SRN cycles having a large number of repeated
edges. The new algorithm modifies the RUL2021 algorithm to accumulate path information
without impacting its time complexity. The additional space required to compactly store
path information, while avoiding redundant storage of repeated edges, is O(mk + k2n).

2 Background

This section summarizes the basic definitions and results for STNUs and then describes the
RUL2021 DC-checking algorithm that is the starting point for our new algorithm.

2.1 Simple Temporal Networks with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) is a triple (T , C, L) where T is a
set of n real-valued variables; C is a set of m binary difference constraints, each of the form
Y − X ≤ δ, where X, Y ∈ T and δ ∈ R; and L is a set of k contingent links, each of the form
(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞ [14]. The timepoints typically represent
starting or ending times of actions; the constraints can represent deadlines, release times, and
duration or inter-action constraints. The contingent links represent actions with uncertain
durations. For each contingent link (A, x, y, C), A is called the activation timepoint and
C the contingent timepoint. We let ∆C = y − x. The executor of the network typically
controls A, but not C. The executor only observes the execution of C in real-time, knowing
only that C will be executed such that C − A ∈ [x, y]. For example, your taxi ride might be
represented by the contingent link (A, 15, 25, C), where A is when you enter the taxi, C is
when you arrive at your destination, and C − A ∈ [15, 25] is the uncertain duration, learned
only when you arrive.
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Each STNU has a graph (T , E) where the timepoints serve as nodes and the constraints
in C and the contingent links in L correspond to different kinds of labeled, directed edges.
For convenience, edges such as X α Y will be notated as (X, α, Y ), where X, Y ∈ T and
α ∈ R, possibly annotated with an alphabetic letter. In particular, E = Eo ∪ Eℓ ∪ Eu,
where: Eo = {(X, δ, Y ) | (Y − X) ≤ δ ∈ C} is the set of ordinary edges; Eℓ = {(A, c:x, C) |
(A, x, y, C) ∈ L}, the set of lower-case (LC) edges; and Eu = {(C, C:−y, A) | (A, x, y, C) ∈ L},
the set of upper-case (UC) edges. Note that each contingent link has a corresponding pair of
edges: an LC edge representing that the contingent duration might take on its minimum
value x, and a UC edge representing that it might take on its maximum value y.

Tc denotes the set of contingent timepoints; and Tx = T \Tc the set of executable
(or controllable) timepoints. An STNU is dynamically controllable (DC) if there exists a
dynamic strategy for executing its controllable timepoints such that all constraints in C will
necessarily be satisfied no matter how the contingent durations turn out within their specified
bounds [14, 7]. An execution strategy is dynamic if it can react, in real-time, to observations
of contingent executions. The RUL− algorithm [3] is the DC-checking algorithm with the
best worst-case time complexity: O(mn + k2n + kn log n). However, RUL2021, which is a
modification of RUL−, has been shown to be an order-of-magnitude faster on a variety of
STNU benchmarks, although having the same theoretical complexity [10].

2.2 The RUL2021 DC-Checking algorithm

This section summarizes important features of the RUL2021 algorithm. Like all DC-checking
algorithms, it operates on the STNU graph, using edge-generation rules to generate new
edges representing constraints that must be satisfied by any dynamic execution strategy.
Table 1 shows the edge-generation rules used by RUL2021. The R and L rules (for Relax and
Lower Case, respectively) are used to back-propagate distance information in the LO-graph
(i.e., the subgraph comprising the LC and ordinary edges). The wavy arrows represent
paths in the LO-graph that have already been explored. In the R rule, back-propagation
continues along the ordinary edge (P, v, Q) to generate the distance information represented
by the dotted edge (P, v + w, Ci). In the L rule, back-propagation continues along the LC
edge (Aj , cj :xj , Cj) to generate the distance information represented by the dotted edge
(Aj , xj + w, Ci). RUL2021 uses the L and R rules only to accumulate distance information;
the dotted edges are not inserted into the STNU graph. But RUL2021 does insert the edges
generated by the Ulp rule: ordinary edges that effectively bypass UC edges. For example, in
the table, the wavy path (P, v, Ci) represents distance information previously generated by
the R and L rules. This “edge” combines with the UC edge (Ci, Ci:−yi, Ai) to generate the
(blue and dashed) bypass edge (P, v − yi, Ai).

Table 1 The edge-generation rules for the RUL2021 algorithm.

Rule Graphical representation Applicability Conditions

R P Q Ci
v w

v + w
Q ∈ TX , w < ∆Ci , Ci ∈ TC

L Aj Cj Ci
cj :xj w

xj + w
Cj ̸≡ Ci, w < ∆Ci , Ci ∈ TC

Ulp P Ci Ai
v Ci:−yi

v − yi

(Ai, xi, yi, Ci) ∈ L, v ≥ ∆Ci

TIME 2024
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Figure 1 RUL2021 generating a (blue and dashed) bypass edge for a (red) UC edge.
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Figure 2 A cycle of interruptions detected by RUL2021.

Figure 1 shows how RUL2021 processes a (red) UC edge, assuming that ∆C = 12. First,
it uses the R and L rules to back-propagate from C along LO-edges, collecting distance
information indicated by the dotted arrows. (The rules used to generate these edges are in
parentheses.) Back-propagation continues as long as the distance stays less than ∆C . Since
the path from T to C has length 14 ≥ ∆C , back-propagation stops. Then the Ulp rule is
applied to (T, 14, C) and (C, C:−20, A) to generate the (dashed) bypass edge (T, −6, A).

There can be many paths emanating backward from C in the LO-graph. To ensure that
only shortest distances are accumulated, back-propagation is guided by a priority queue and a
potential function to re-weight the edges to non-negative values, as in Johnson’s algorithm [4],
except that here the potential function is a solution to the LO-graph, viewed as an STN.
The potential function is initialized by a one-time call to the Bellman-Ford algorithm [4].

Once all of the bypass edges are computed for a given UC edge, they are inserted into
the LO-graph, which typically requires updating the potential function. Since all of the
new edges terminate at A, this updating can be carried out by a separate Dijkstra-like
back-propagation from A using a priority queue and the pre-existing potential function. If
all of the UC edges can be successfully processed in this way, then RUL2021 declares the
STNU to be DC.

However, three kinds of events can signal that the STNU is not DC:
1. Failure to update the potential function. Inserting new bypass edges might cause the

LO-graph to become inconsistent (as an STN), which would be detected by encountering
a negative cycle in the LO-graph while trying to update the potential function.

2. Cycle of interruptions. When processing a UC edge E1, back propagation from
its contingent timepoint C1 might bump into a different UC edge E2. If so, RUL2021
interrupts its processing of E1 to process E2. After finishing with E2, back propagation
from E1 continues. However, should a cycle of such interruptions occur, for example, as
illustrated in Figure 2, then the network cannot be DC. In the figure, the UC edges are
colored red; distances along LO-paths computed by back-propagation using the L and R
rules are indicated by dotted arrows; and the relevant contingent links are (A1, 1, 9, C1),
(A2, 2, 8, C2) and (A3, 3, 7, C3). Now back propagation from C1 should continue as long
as the dotted distances are less than ∆C1 = 9 − 1 = 8, but is interrupted by the UC
edge (C2, C2:−8, A2). Similarly, back-propagation from C2 should continue as long as
the dotted distances are less than ∆C2 = 8 − 2 = 6, but is interrupted by the UC
edge (C3, C3:−7, A3). Finally, back propagation from C3 should continue as long as the
dotted distances are less than ∆C3 = 7 − 3 = 4, but is interrupted by the first UC edge,
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Figure 3 Two different CC loops associated with a contingent link (A, 1, 9, C).

Algorithm 1 The FindSRNC algorithm.
Input: G = (T , E = Eo ∪ Eℓ ∪ Eu), an STNU graph
Output: (negCycle, edgeAnn), where negCycle is an SRN cycle and edgeAnn is a hash table of

path annotations for edges in the cycle; or (∅, ∅) if the STNU is DC
1 glo ··= new global data structure // Fields: pf, status, intBy, edgeAnnotation
2 glo.pf ··= BellmanFord(Gℓo) // Initialize potential function for LO-graph
3 if glo.pf == ⊥ then return BFCT(Gℓo)
4 glo.edgeAnnotation ··= new empty hash table
5 glo.status ··= [nYet, . . . , nYet] // Initial processing status of the k UC edges
6 glo.intBy ··= [⊥, . . . , ⊥] // k-vector: records interruptions
7 foreach (C, C:−y, A) ∈ Eu do
8 negCycle ··= RulBackProp(G, (C, C:−y, A), glo)
9 if negCycle ̸= ∅ then return (negCycle, glo.edgeAnnotation)

10 return (∅, ∅)

thereby completing the cycle. At this point, RUL2021 signals that the STNU is not DC.
This is justified since each dotted distance being less than the corresponding ∆Ci value
ensures that the length of the cycle is negative; and a negative cycle in the OU-graph
(i.e., the subgraph comprising ordinary and UC edges) represents an impossible-to-satisfy
constraint for a dynamic execution strategy.

3. CC loops. Back propagation from a UC edge (C, C:−y, A) can also be blocked if an
LO-path from C back to C of length less than ∆C is encountered. Such a path is called
a CC loop [10]. A CC loop does not necessarily imply that the STNU is not DC; but
it sometimes does. Figure 3 illustrates two scenarios in which back-propagation from C

reveals a CC loop of length 2 < 8 = ∆C . However, the lefthand STNU is not DC, while
the righthand one is. The key difference, according to Morris’ analysis of semi-reducible
paths [12], is that the lefthand graph contains a negative LO-path emanating from C (to
X) which can be used to generate the (dashed, green) bypass edge (A, −1, X), thereby
creating a negative cycle in the OU-graph from A to X to C to A, whereas the righthand
graph has no such path.

3 The FindSRNC (Find Semi-Reducible Negative Cycle) Algorithm

This section introduces our new FindSRNC algorithm, which modifies RUL2021 to efficiently
accumulate path information. To contrast FindSRNC and RUL2021, we have preserved the
general structure of RUL2021, although to improve readability we have expanded the rather
cryptic names of the original helper algorithms. Modifications are highlighted in green.

The pseudocode for FindSRNC is in Algorithm 1. When given a non-DC STNU as input,
it outputs a compact representation of an SRN cycle in the form (negCycle, edgeAnn), where
negCycle is a negative cycle of edges in the LO- or OU-graph, depending on how the cycle
arose; and edgeAnn is a hash table of (key, value) pairs, where each key identifies an (ordinary)
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9:6 Finding Negative Cycles in STNUs

bypass edge generated by the algorithm, and value is the path used to generate that edge. It
is efficient to present the SRN cycle in this way since, in the worst case, unpacking all of the
edges in the cycle could result in an exponential number of repeated edges.

Like RUL2021, FindSRNC starts by calling the Bellman-Ford algorithm to create an
initial potential function for the LO-graph which, if successful, is stored in the pf field of a
glo data structure. (The glo data structure contains global information accessible across
multiple recursive calls to process UC edges.) If Bellman-Ford fails, then FindSRNC calls the
O(mn)-time BFCT algorithm [19] to return a negative cycle for the LO-graph (an STN). A
negative cycle in the LO-graph is a trivial case of an SRN cycle for an STNU.

If Bellman-Ford succeeds, FindSRNC initializes glo.edgeAnnotation to a new hash table
that will record the paths from which any bypass edges are derived. The glo.status field
tracks the processing status of each UC edge, as in RUL2021. The glo.intBy field, initially
a vector of ⊥ entries, stores information about when the processing of one UC edge is
interrupted by another. Finally, FindSRNC iterates through the UC edges, processing each
with a call to RulBackProp (Algorithm 2). Because RulBackProp recursively processes any
interrupting UC edges, by the time FindSRNC calls RulBackProp on some UC edge, it may
have already been processed. The status field is used to avoid redundant processing.

RulBackProp

The pseudocode for the RulBackProp algorithm is in Algorithm 2. It processes a single UC
edge E = (C, C:−y, A) while integrating the recursive processing of any interrupting UC
edges. At Line 2, if E has already been processed, it immediately returns ⊤. At Line 3,
it checks whether the processing of E has already been started, but not yet completed,
which implies a negative cycle of interruptions. In this case, RulBackProp calls AccNegCycle
(Algorithm 3) to collect the relevant path information accumulated in the glo.intBy vector,
which is then returned as a compact representation of an SRN cycle. (More will be said
about how the information in glo.intBy is generated.)

In the pseudocode, we use +++ as a concatenation operator that can be applied to edges or
paths. For example, if e1 is an edge, and π1 and π2 are paths, then π1 +++ e1 +++ π2 represents
their concatenation into a single path. In addition, we use ⟨⟩ to denote the empty path.

At Lines 4–7, RulBackProp prepares to process a UC edge E = (C, C:−y, A). As in
RUL2021, ccLoop is a flag used to signal the discovery of a CC loop; and dist records, for
each encountered timepoint X, the distance from X to C in the LO-graph. A new field,
path, records the paths from each X to A (via C). Back-propagation from C is governed by
a priority queue Q, initialized at Lines 8–10 to include each X connected to C by an edge.

In each iteration of the while loop (Lines 12–23), RulBackProp either starts or resumes
the processing of E, first (at Line 13) by calling TryBackProp (Algorithm 4). TryBackProp
(described later) back-propagates along LO-edges, but does not generate or insert any bypass
edges. Instead, it simply collects the relevant distance and path information, while also
keeping track of whether it encountered any unstarted (i.e., interrupting) UC edges or CC
loops. At Line 14, RulBackProp checks whether TryBackProp found an SRN cycle, in which
case RulBackProp returns that cycle. Otherwise, at Line 15, RulBackProp checks whether
TryBackProp encountered any interrupting UC edges. If so, for each interrupting UC edge
EX (Lines 16–19), it uses glo.intBy [E] to record the interruption and then attempts to
recursively process EX . If all interrupting UC edges are successfully processed, it clears
the glo.intBy [E] entry (Line 20) and prepares for the next iteration of the while loop by
re-initializing the priority queue (Lines 21–22) so that processing E can be resumed, starting
from the activation timepoints of the no-longer-interrupting UC edges.
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Algorithm 2 The RulBackProp algorithm.

Input: G = (T , E), STNU graph; E = (C, C:−y, A) ∈ Eu, a UC edge; glo, a global structure
Output: negCycle, an SRN cycle; or ∅ if E successfully processed

1 h ··= glo.pf // Potential function for LO-graph
2 if glo.status[E] == done then return ⊤ // E already done
3 if glo.status[E] == started then return AccNegCycle(glo.intBy, E) // Cycle of interrupts
4 glo.status[E] ··= started // Prepare to start processing the UC edge E
5 loc ··= new local struct; loc.ccLoop ··= ⊥ // No CC loop found yet
6 loc.dist ··= [∞, . . . , ∞] // distance from each TP to C

7 loc.path ··= [⟨⟩, . . . , ⟨⟩] // path from each TP to A (via E)
8 Q ··= a new priority queue // Priority of each X is h(X) + δxc, adjusted dist. from X to C
9 foreach (X, δxc, C) ∈ Eo do

10 Q.ins(X, h(X) + δxc); loc.path[X] ··= (X, δxc, C)+++ (C, C:−y, A)
11 continue? ··= ⊤
12 while continue? do // Start or resume processing of UC edge E
13 negCycle ··= TryBackProp(G, E, Q, glo, loc)
14 if negCycle ̸= ∅ then return negCycle
15 if loc.UnstartedUCs ̸= ∅ then // Process unstarted UC-edges
16 foreach (EX , X) ∈ loc.UnstartedUCs do
17 glo.intBy[E] ··= (EX , loc.path[X])
18 negCycle ··= RulBackProp(G, EX , glo)
19 if negCycle ̸= ∅ then return negCycle
20 glo.intBy[E] ··= ⊥ // All interruptions of E completed
21 Q.clear() // Prepare Q for next iteration of WHILE
22 foreach (EX , X) ∈ loc.UnstartedUCs do Q.ins(X, loc.dist[X] + glo.pf[X])
23 else continue? ··= ⊥ // Back-prop. from E completed
24 if loc.ccLoop then // CC-loop found; must initiate forward propagation
25 (X, PX) ··= FwdPropNDC(G, C, ∆C , loc, glo.pf) // ∆C = y − x for cont. link (A, x, y, C)
26 // If (A, c:x, C) can be reduced away, then return SRN cycle
27 if (X, PX) ̸= ∅ then return (A, c:x, C)+++ PX +++ loc.path[X]
28 foreach X ∈ T \{C} do // Generate bypass edges using Ulp rule
29 δxc ··= loc.dist[X] // δxc = ∞ means node not reachable
30 if ∆C ≤ δxc < ∞ then
31 G.insertOrdEdge(X, δxc − y, A)
32 glo.edgeAnnotation.put((X, A), loc.path[X])
33 edges? ··= ⊤

34 if edges? then (glo.pf, negCycle) ··= UpdatePotFn(G, A, glo.pf)
35 if glo.pf == ⊥ then return negCycle
36 glo.status[E] ··= done
37 return ∅ // Processing of E successfully completed

Once all back-propagation from E is done, RulBackProp checks, at Line 24, whether
any CC loops were encountered. If so, it calls FwdPropNDC to carry out a separate forward
propagation from C along LO-edges, checking whether any LO-path, PCX , from C to some X,
can be used to bypass the LC edge e = (A, c:x, C). If so, there must be an SRN cycle,
e+++ PCX +++ loc.path[X], where loc.path[X] is the LO-path from X to A obtained by the earlier
back-propagation from C [10]. Hence, FwdPropNDC returns (X, PCX). For the STNU on the
left of Figure 3, PCX is (C, 1, W )+++ (W, −3, X) and loc.path[X] is (X, 4, C)+++ (C, C:−9, A).
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9:8 Finding Negative Cycles in STNUs

Algorithm 3 The AccNegCycle algorithm (new).
Input: glo.intBy, vector recording a cycle of interruptions; E ∈ Eu, a UC edge in the cycle
Output: negCycle, an SRN cycle containing E

1 negCycle ··= ⟨⟩
2 (E′, P ′) ··= glo.intBy[E] // P ′ is path used to generate E′

3 while E′ ̸= E do
4 negCycle ··= P ′ +++ negCycle // Accumulate P ′ into cycle
5 (E′, P ′) ··= glo.intBy[E′] // Fetch next interrupter
6 return P ′ +++ negCycle

If forward propagation fails to find an SRN cycle, then RulBackProp finally uses the
information in loc.dist to generate edges that bypass the UC edge E (Lines 28–33). These
are the only edges that FindSRNC actually inserts into the STNU. For each bypass edge
(X, δxc −y, A), the corresponding path that has been accumulated in loc.path[X] is recorded
in the glo.edgeAnnotation hash table (Line 32). (As discussed below, it is TryBackProp
that accumulates the path information in loc.path[X].) If any bypass edges are inserted,
then RulBackProp (at Line 34) calls UpdatePotFn (Algorithm 7, discussed later) to update
the potential function for the LO-graph, whence the processing of E is completed (Line 36).

TryBackProp

Pseudocode for TryBackProp (called phaseOne in RUL2021) is given as Algorithm 4. For a
UC edge E = (C, C:−y, A), it propagates backward from C along LO-edges as long as the
accumulated distance remains less than ∆C = y − x. (Recall the condition w < ∆Ci

for the
R and L rules in Table 1.) Its while loop (Lines 3–19) uses the priority queue initialized
by RulBackProp and the potential function updated by RulBackProp to explore shortest
paths in the LO-graph. At Lines 4–6, it pops a node X off the queue, converts its key into
the distance from X to C, and assigns it to loc.dist[X]. At Line 7, it checks whether
X is an activation timepoint and, if so, sets EX to the corresponding UC edge. Next, if
loc.dist[X] < ∆C (Line 8), TryBackProp considers four cases (Lines 9-19).
In Case 1, back propagation has circled back to C, prompting TryBackProp to set the
ccLoop flag. In Case 2, back propagation has encountered another UC edge EX whose
processing has not yet been started; so TryBackProp pushes the interrupting edge onto a
list of as-yet-unstarted UC edges (to be processed later by RulBackProp). In Case 3, back
propagation has hit a UC edge EX whose processing has already been started, but not yet
finished. This implies a cycle of interruptions and, hence, an SRN cycle. In preparation for
terminating, the algorithm records the interruption of E by EX , along with the path from X

to A accumulated in loc.path[X]. Then it calls AccNegCycle (Algorithm 3) to recursively
collect the information accumulated in the cycle of interruptions to return an SRN cycle.
In Case 4, back propagation continues past X, and path information is accumulated. At
Line 15, TryBackProp calls ApplyRL (Algorithm 5), which applies the R rule to all ordinary
edges coming into X and, if X happens to be a contingent timepoint, applies the L rule to
the corresponding LC edge coming into X. ApplyRL returns a list of pairs, each of the form
(e, δW C), where e is an LO-edge from W to X, and δW C is the length of the LO-path from
W to C via X. For each such pair, TryBackProp (at Lines 15–19) first checks whether the
path from W to C represents a new shorter LO-path and, if so, updates the key for W in the
priority queue and incrementally accumulates the relevant path information in loc.path[W ].
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Algorithm 4 The TryBackProp algorithm.

Input: G = (T , E), an STNU graph; E = (C, C:−y, A) ∈ Eu; Q, a priority queue; glo, global
struct; loc, local struct

Output: negCycle, an SRN cycle; or ∅ if no SRN cycle found.
1 h ··= glo.pf // Potential function, a solution to the LO-graph
2 loc.UnstartedUCs ··= {} // Will collect unstarted UC edges
3 while Q ̸= ∅ do

// keyX = distance from X to C, adjusted by h

4 (X, keyX) ··= Q.extractMinNode()
5 δxc ··= keyX − h(X) // δxc = distance from X to C in Gℓo

6 loc.dist[X] ··= δxc // Record shorter length
// If X is an ATP, then EX is corresponding UC-edge; else ⊥

7 EX ··= G.UCEdgeFromATP(X)
8 if δxc < ∆C then // Continue back-propagation

// Case 1: Found CC loop of length δxc < ∆C ; signal need for fwd prop
9 if X ≡ C then loc.ccLoop ··= ⊤

// Case 2: EX is an unstarted UC-edge; accumulate it
10 else if glo.status[EX ] == nYet then loc.UnstartedUCs.add((EX , X))

// Case 3: Cycle of interruptions: not DC
11 else if glo.status[EX ] == started then
12 glo.intBy[E] ··= (EX , loc.path[X])
13 return AccNegCycle (glo.intBy, EX)
14 else // Case 4: Continue back-propagation along LO-edges
15 foreach (e, δwc) ∈ ApplyRL(G, X, ∆C , δxc) do
16 newKey ··= δwc + h(W )
17 if δwc < loc.dist[W ] and (W ̸∈ Q or newKey < Q.key(W )) then

// Accumulate new path from W to C

18 Q.insOrDecrKey(W, newKey)
19 loc.path[W ] ··= e+++ loc.path[X]

20 return ∅

Algorithm 5 The ApplyRL algorithm.
Input: G, an STNU graph; X ∈ T ; ∆C ; and δxc < ∆C

Output: A list of pairs, (e, δwc), where e is an LO-edge from W to X, and δW C = |e| + δxc.
1 edgeDistPairs ··= {}

// If X is a contingent timepoint Ci, then apply the L rule to (Ai, ci:xi, Ci) and (Ci, δxc, C)
2 if X ≡ Ci ∈ TC then edgeDistPairs.add(((Ai, ci:xi, Ci), xi + δxc))
3 else // Otherwise, apply the R rule to (W, δwx, X) and (V, δvc, C)
4 foreach (W, δwx, X) ∈ Eo do edgeDistPairs.add(((W, δwx, X), δwx + δxc))
5 return edgeDistPairs

FwdPropNDC

The FwdPropNDC algorithm (Algorithm 6) propagates forward from C along LO-edges checking
whether there is a negative-length path from C to some X that can be used to bypass the LC
edge (A, c:x, C). It is the same as in RUL2021, except that it accumulates path information
in a vector called fwdPath. At Lines 2–3, a priority queue is initialized to contain just C, with
fwdPath[C] = ⟨⟩. The priority queue uses the same potential function as TryBackProp to
effectively re-weight the LO-edges. As each timepoint X is popped from the queue (Line 5),
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Algorithm 6 The FwdPropNDC algorithm.
Input: G, an STNU graph; C ∈ TC ; ∆C = y − x; loc, local struct; h, potential function.
Output: (X, PCX), if path PCX can be used to reduce away the LC edge (A, c:x, C); else ∅

1 fwdPath ··= {⟨⟩, . . . , ⟨⟩} // For each X, fwdPath[X] is an LO-path from C to X

2 Q ··= new priority queue // Key keyX = d(C, X) − h(C)
3 Q.insert(C, −h(C)) // Queue initially contains only C

4 while Q ̸= ∅ do
5 (X, keyX) ··= Q.extractMinNode()
6 d(C, X) ··= keyX + h(X) // Distance from C to X in Gℓo

7 if loc.dist[X] < ∆C then // If distance from X to C < ∆C

// Check if the path CX can reduce-away the LC-edge
8 if d(C, X) < 0 then return (X, fwdPath[X])
9 foreach (X, δxy, Y ) ∈ Eℓ ∪ Eo do // Iterate over LO-edges emanating from X

10 newKey ··= d(C, X) + δxy − h(Y )
11 if Y ̸∈ Q or newKey < Q.key(Y ) then
12 Q.insOrDecrKey(Y, newKey)
13 fwdPath[Y ] ··= fwdPath[X]+++ (X, δxy, Y )

14 return ∅ // Was unable to reduce-away the LC-edge

the distance from X to C that was determined during back-propagation and stored in
loc.dist[X] is compared to ∆C . (Generating an edge to bypass the LC edge using the path
from C to X will only create an SRN cycle if dist[X] < ∆C [10].) If dist[X] < ∆C and
d(C, X) < 0 (i.e., an appropriate negative-length path has been found), then FwdPropNDC
terminates, returning (X, fwdPath[X]) (Line 8). Otherwise, forward propagation continues
from X, accumulating relevant path information (Lines 9–13). If the queue is exhausted
without finding a way to bypass the LC edge, FwdPropNDC returns ∅ (Line 14).

UpdatePotFn

When RulBackProp inserts edges that bypass a UC edge E, it changes the LO-graph. Hence,
the potential function for the LO-graph typically needs to be updated. The pseudocode for
the UpdatePotFn function is given as Algorithm 7.

Since all bypass edges for E necessarily point at its activation timepoint A, UpdatePotFn
propagates backward from A along LO-edges as long as changes to the potential function,
h, are required. This function and its helper UpdateVal (Algorithm 8) are the same as
in RUL2021 except that path information is accumulated (Algorithm 8, Line 6) so that if
back-propagation ever cycles all the way back to A, the implied SRN cycle can be returned
(Algorithm 8, Line 4).

Computational Complexity

FindSRNC performs more operations than RUL2021, mostly by accumulating path information
during propagation. For lack of space, we simply note that the most time-consuming operation
is prepending an edge onto the front of an existing path, which happens at most once per edge
visited. Since the prepending operation (+++ ) can be realized in constant time, the worst-case
time complexity of FindSRNC is the same as that of RUL2021: O(mn + k2n + kn log n).

Regarding the extra space requirements of FindSRNC, the most costly is the space needed
by TryBackProp for accumulating path information in the loc.path structures. TryBackProp
is called at most 2k times [3, 10]. Each call explores at most (m + nk) edges. (FindSRNC
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Algorithm 7 The UpdatePotFn algorithm.
Input: G, an STNU graph; A, an activation timepoint; h, a potential function for Gℓo, excluding

edges ending at A

Output: (h′, negCycle), where h′ is either a potential function for Gℓo (including edges
terminating at A); or ⊥, the latter indicating that negCycle is a negative cycle

1 h′ ··= copy of h; path ··= [⟨⟩, . . . , ⟨⟩]
2 Q ··= new priority queue; Q.insert(A, 0) // Initialize queue for back-prop from A

3 while Q ̸= ∅ do
4 (V, keyV ) ··= Q.extractMinNode()
5 foreach ((U, δ, V ) ∈ Eo) do // Back-propagate along ordinary edges ending at V

6 negCycle ··= UpdateVal((U, δ, V ), h, h′, Q, path)
7 if negCycle ̸= ∅ then return (⊥, negCycle)
8 if V ∈ TC then // V is contingent; back-propagate along LC edge (AV , v:xV , V )
9 negCycle ··= UpdateVal((AV , xV , V ), h, h′, Q, path)

10 if negCycle ̸= ∅ then return (⊥, negCycle)

11 return (h′, ∅)

Algorithm 8 The UpdateVal algorithm.

Input: (U, δ, V ), an edge; h, h′, potential fns.; Q, priority queue; and path, a vector of path info
Output: negCycle, an SRN cycle; or ∅ if h′ was successfully updated to satisfy (U, δ, V )

1 Side Effect: Modifies Q, h′ and path
2 if h′(U) < h′(V ) − δ then
3 h′(U) ··= h′(V ) − δ

// If back propagation has cycled back to A, return the cycle
4 if Q.state(U) == alreadyPopped then return (U, δ, V )+++ path[V ]
5 Q.insOrDecrKey(U, h(U) − h′(U))
6 path[U ] ··= (U, δ, V )+++ path[V ]
7 return ∅

inserts at most nk edges overall.) Each edge exploration involves prepending an existing path
with an edge, which uses only constant space. So the overall space complexity across all calls
to TryBackProp is O(mk + k2n). Similar remarks apply to FwdPropNDC and UpdatePotFn.

The edgeAnnotation hash table has at most nk entries: one for each bypass edge. Each
entry is a pointer to a loc.path entry. So the total space required is O(nk). The compact
SRN cycle generated by AccNegCycle is the concatenation of at most k paths, each with at
most n edges, for a total of at most nk edges, which is dominated by the O(mk + k2n) space
discussed above. This compact cycle, together with the information in the edgeAnnotation
hash table, avoids redundantly storing repeated structures. In this way, it uses polynomial
space to implicitly represent a cycle that, if fully expanded, might have exponentially many
edges. Similar remarks apply to the cycles returned by FwdPropNDC and UpdatePotFn.

Magic Loop Example

Hunsberger [8] identified a family of STNUs in which the only SRN cycle, called a magic loop,
has an exponential number of edges. Since each STNU has at most n2 +2k edges, magic loops
necessarily contain a large number of repeated edges. In particular, a magic loop of order k

has k contingent links, but 3(2k)−2 edges. The top of Figure 4 shows an STNU whose (brown)
LC edges are e1 = (A1, c1:1, C1), e2 = (A2, c2:1, C2), and e3 = (A3, c3:1, C3); and whose (red)
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Figure 4 A sample STNU (top) and the magic loop of order 3 (bottom) hiding within it.

Figure 5 A screenshot of FindSRNC in action.

UC edges are E1 = (C1, C1:−3, A1), E2 = (C2, C2:−10, A2), and E3 = (C3, C3:−36, A3). The
bypass edges generated by FindSRNC are dashed: those bypassing E1 in green, E2 in purple,
and E3 in blue. Each bypass edge is also annotated by a path, where: π1 = (C2, 8, C1)+++ E1;
π2 = (C3, 34, C1)+++ E1; π3 = (X, 48, C1)+++ E1; π4 = π2 +++ e1 +++ (C1, −1, C2)+++ E2; π5 =
π3 +++ e1 +++ (C1, −1, C2)+++ E2; and π6 = π5 +++ e2 +++ π1 +++ e1 +++ (C1, −7, C3)+++ E3. The magic loop for
this STNU is at the bottom of the figure. It has 22 edges. E1 and e1 appear four times each;
several other edges, twice each. After all UC edges have been processed, UpdatePotFn finds
a negative cycle in the LO-graph: π6 +++ e3 +++ π4 +++ e2 +++ π1 +++ e1 +++ (C1, −29, X). This information
is compactly stored in the cycle returned by FindSRNC. For higher-order magic loops, the
number of edges grows exponentially, but the space used by FindSRNC is bounded by mk+nk2.

4 Empirical Evaluation

In this section, we present a possible implementation of the FindSRNC algorithm and one its
evaluation in a public benchmark.

The proposed algorithm was implemented as a proof-of-concept prototype in the (freely
available) CSTNU Tool, version 1.42 [17]. The tool enables users to create different kinds
of temporal constraint networks and to verify automatically some properties like dynamic
controllability or consistency (for some kinds of networks). In particular, as concerns STNUs,
it allows one to verify the dynamic controllability and, in case the network is not DC, to
obtain the semireducible negative cycle that determines the non-controllability.
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Figure 6 Experimental results.

The screenshot Figure 5 shows the CSTNU Tool after the execution of FindSRNC algorithm
on the STNU depicted in Figure 4. On the left side, there is the initial network that can be
edited. On the right side, there is the checked network with the semireducible negative cycle
emphasized in red. The status bar above the network on the right gives a summary of the
FindSRNC result. The extended result (like the expanded semireducible negative cycle) is
saved in a logging file associated with the execution.

We empirically evaluated FindSRNC on a published benchmark [16] to confirm that the
execution times of FindSRNC and RUL2021 are equivalent, and to highlight the characteristics
of the SRN cycles in non-DC instances. Our implementations are publicly available [17]. We
ran them on a JVM 21 with 8 GB of heap memory on a Apple PowerBook/M1 Pro.

For each n ∈ {500, 1000, 1500, 2000, 2500}, the benchmark contains 200 randomly gener-
ated non-DC STNUs, each having n nodes, n/10 contingent links, and m ≈ 3n edges. For
each sub-benchmark (i.e., for each n), we used the first 100 instances. For each instance,
RUL2021 checked only the non-DC status; FindSRNC also returned an SRN cycle.

The left-hand plot of Figure 6 shows the average execution times of the two algorithms
for each sub-benchmark. These results highlight that computing the SRN cycle does not
require significant computational overhead. More interesting is that by analyzing the cycles
computed by FindSRNC, we can evaluate the characteristics of the non-DC instances in the
benchmark. The table in Figure 6 shows that, for each n, the average number of edges in
the SRN cycle (i.e., the SRN cycle length) is quite small (less than 9); and most instances
present a simple SRN cycle (i.e., an SRN cycle having no (annotated) bypass edges and,
hence, comprising only edges that were already present in the input STNU).

FindSRNC outputs a non-simple SRN cycle very compactly. However, we also computed
the fully expanded version of each cycle, recursively replacing each bypass edge by the
annotated path from which it was derived. The average length of the expanded cycles
increased to a maximum of 16 in each sub-benchmark, revealing that an SRN cycle can
involve more edges from the original STNU than one might suspect from the compact version.

Finally, we checked that no instance leads to an expanded SRN cycle with any repeated
edges. Since the benchmark was built to simulate temporal business processes organized on
five lanes, the absence of complex SRN cycles in 500 random instances suggests that such
instances may only rarely appear in practice; but if they do, FindSRNC will find them.
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5 Conclusion

This paper presented the FindSRNC algorithm that modifies the fastest DC-checking algorithm
for STNUs to accumulate path information while also rigorously addressing the compact
representation of the SRN cycles it outputs. When given an overconstrained STNU, FindSRNC
can be used to identify constraints to relax or contingent durations to tighten. It can also
be used as a supporting process in an iterative algorithm for finding a DC STNU that well
approximates a Probabilistic Simple Temporal Network [20, 23, 21, 1].
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Abstract
We provide a unified framework in which the three emotions at the heart of narrative tension (curiosity,
suspense and surprise) are formalized. This framework is built on non-monotonic reasoning which
allows us to compactly represent the default behavior of the world and to simulate the affective
evolution of an agent receiving a story. After formalizing the notions of awareness, curiosity, surprise
and suspense, we explore the properties induced by our definitions and study the computational
complexity of detecting them. We finally propose means to evaluate these emotions’ intensity for a
given agent listening to a story.
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1 Introduction

Humans tell stories to make sense of the world and communicate their understanding of what
happens. Storytelling supposes to be able to sort out which events are worth telling, deciding
on a level of detail for describing events, selecting among possible causes the ones which are
deemed worth telling. It also supposes to make use of an affective machinery for capturing an
audience’s attention (emotional contagion, suspense elicitation...). In the act of storytelling,
structural and affective phenomena are thus combined with communicative goals in mind.
This combination has indeed shown its effectiveness in this respect: the phenomenon of
narrative transportation (the experience of being immersed in a story) has been linked to
persuasion [27]. The narrative paradigm therefore provides an appropriate framework, in
which causal reasoning about the situations narrated [53] is combined with narrative devices
to encourage the audience’s emotional involvement [51], to study and model how opinion is
formed and evolves. Building a framework for reasoning about and unveiling storytelling
mechanics could pave the way for intellectual self-defense supporting tools, enabling citizens
to arm themselves against hostile disinformation or influence campaigns.
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Previous works in structural narratology have studied the way stories are conveyed to their
audience and seminal work from (for instance) Genette [25] or Propp [45] have previously
served as the backbone inspiration for computational narrative models and storytelling
systems [43]. Whilst the operationalization of narrative theories is still subject to debate
and caution, such works have shed light on how the story material to tell and the manner
in which it is told interacts with a model of the listener1 (which, depending on the media
used for conveying the story can also be a reader, a spectator, or even a gamer): the act of
storytelling can thus be understood as knowledge transfer and manipulation of her beliefs.

According to Sternberg [51] or Baroni [5], emotions more specific to narratives which are
suspense, curiosity and surprise are critical to retain the interest of the listener. Drivers of
the narrative tension, they are paramount in maximizing her engagement. In this paper we
focus on these narrative tension’s building blocks.

In the field of computational narratives, numerous studies and frameworks exist to tell
interactive stories, a number of them as an application of planning technologies [13] allowing
to adapt the narrative to each user’s actions. However, adapting a narrative to a model of the
user’s emotions remains largely a challenge that needs to be addressed to favor engagement:
narrative engagement depends partly on the appropriate maintenance of narrative tension,
itself based on the uncertainty occurring in a narrative [9], and listener’s models based on
a formalization of related emotions have comparatively been less addressed so far in the
literature. While suspense and surprise have been the object of previous studies [15] [23],
there is – to our knowledge – still no curiosity model applicable to narratives.

In the following, we present a preliminary study for characterizing these emotions from
an epistemic standpoint, with a focus on modeling the listener’s curiosity depending on her
beliefs and knowledge using a propositional language. Our overarching aim is to provide
a unifying framework allowing to represent emotions relevant to the characterization of
narrative tension and its evolution, which would enable to discuss their relationships and
ultimately help establish dramatic metrics about a narrative.

In Section 2, we describe the main emotions supporting narrative tension. We also
describe the problems and solutions for formalizing reasoning about action and change, as
well as the ways in which the notions of surprise and awareness have been treated in the
literature. Section 3 details our proposal, which relies on a non-monotonic framework resulting
from extending propositional logic with default rules. The properties of the framework are
presented in Section 4, along with some preliminary ideas for developing metrics.

2 Background on reasoning about change and narrative tension

In order to reason about a story, it is useful to dispose of a way to handle the concepts involved
for understanding a sequence of facts and events. We first briefly outline the background to
this vast subject, before discussing the formalization of emotions in the literature.

2.1 Reasoning about action and change
The formalization of action and change is an old field of research in the domain of knowledge
representation and reasoning in AI. There are many different reasoning tasks in this field (see
e.g. [18]) like prediction of the new state of the world after an action (which is related to belief

1 For sake of homogeneity, we use the term listener in all the paper, while this kind of agent is called
interpret by Baroni.
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update [55, 30]), or integration of an observation (which is related to belief revision [2]), or
event abduction which consists in guessing which event took place, or scenario extrapolation
[19, 17] which consists in taking a partial description of facts and events that occurred and
complete it (by prediction or event abduction) or scenario recognition [16].

These reasoning tasks were studied in various frameworks, the representation of actions
in a compact way has given rise to some problems known as the frame, the ramification and
the qualification problems [38, 24, 37]. In propositional logic, these problems were solved by
a majority of approaches by introducing a special symbol for expressing a causal rule relating
preconditions of an action to its effect (indeed classical implication cannot separate a cause
from a consequence due to contraposition). Actions are first described by such rules, then
given the set of causal rules, a set of formulas (called frame axioms) are generated stating
that any fluent f is true at time t+ 1 if and only if it was (a) true at t and no causal rule
concluding ¬f can be fired at t or (b) false at t and a causal rule concluding f can be fired.

As a proof of concept, we choose to use propositional logic in this article where we face a
problem that can be viewed as an extension of belief extrapolation with narrative tension
analysis. However in order to perform non-monotonic reasoning (which allows agents to
change their minds and thus accept surprises), we use default rules of the form a ⇝ b to
encode causal relations. Note that another prominent formalization of default rules was given
by Reiter in [46], but we choose to rely on a simpler formalism at first.

Logical approaches to computational narratives have been proposed in the past. In [10],
(Intuitionistic) Linear logic has been argued to be a suitable representational model for
narratives for its capacity to finely represent narrative actions through the production
and consumption of resources. This language provides the symbol ◦ which can be used
in A ◦B to express the validity of transforming resource A into resource B, the flow of
resources consumption through the associated sequent calculus allowing to establish causal
relations. Dynamic logic [29] and its epistemic extensions [8] are formalisms with higher
expressiveness. In this work, we propose to characterize narrative tension phenomenon
in propositional logic (extended with default rules) to demonstrate the representational
uniformity of these concepts and their relationships with each other. We will explore how to
encode them in aforementioned logics in the future, keeping in mind the challenges raised by
their operationalization in their most expressive fragments [3].

2.2 Emotions supporting narrative tension
Psychological models of emotions are often used in the field of affective computing such
as models from Ekman [22] or Plutchik [44] (which include surprise). Other works [41]
consider that every emotion should have a valence and, as a consequence, surprise, which
is inherently neither good nor bad, is considered as a different affective phenomenon. As
we position ourselves in the context of studying the emotional states of a listener, we will
rely on the characterizations given by Baroni in [5]. Curiosity occurs when there is a partial
omission of crucial knowledge: at a given stage when experiencing the storytelling experience,
the listener knows they are missing important information. Suspense arises when an event
could potentially lead to an impacting result – be it good or bad – to the storyline, and is
correlated with anticipation. Surprise results from a rupture from previous expectations,
which retroactively invalidates some of the predictions made by the listener: the listener
has expectations about how the story will develop, based on story genre or common sense.
Going against these expectations while maintaining coherence is what causes surprise. Baroni
distinguishes curiosity and suspense from surprise, as the former two are tied to anticipation
and an urge to know, whilst the latter arises sporadically as the narrative progresses, which
will be reflected in our model.

TIME 2024
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Related to suspense, the concept of narrative closure also reflects the epistemic nature of
storytelling (as theorized by Carroll [14]): this encompasses the phenomenological feeling of
finality that is generated when all the questions saliently posed by the narrative to the listener
are answered. Previous work in the psychology of narrative understanding [53] has also tied
the perception of the importance of story events to causal relationships’ perception. In this
paper we borrowed from this work, especially tracing a graph representing the narrative
with nodes being actions, preconditions and effects and edges being causal relations. We will
consider the degree of a node as reflecting its importance in the narrative, reading it as, the
more an action is a consequence and has consequences the more important it is.

2.3 Logical models of emotions, surprises and awareness
The logical representation of emotions has already received some attention, see e.g. Lorini [34]
or Adam [1] who formalized emotions based on the OCC theory [41]. In these works (which
relies on a modal logic for BDI agents), an agent has beliefs, including beliefs about what is
good for herself, and expresses different emotions such as joy or sadness.

The particular case of surprise was studied by several authors in computer science, but
the first study is due to an economist named Shackle [48] who defined the degree of surprise
associated with an event as the degree of impossibility of this event given the uncertain
knowledge about the situation considered. In Lorini and Castelfranchi [33], the role of
surprise is investigated in the context of belief update. They associate a surprise with a
difficulty to integrate the new piece of information, this occurs when there is a form of
inconsistency between expectation and perception. Surprise was recently formalized in the
context of the analysis of jokes by [20], indeed surprise has been considered as an important
ingredient for laughter by many authors, the model of surprise of [20] is based on a revision
operator and non-monotonic reasoning: to be surprised the listener of a joke should be able
to jump to conclusions that can be questioned and even revised.

The characterization of curiosity provided by Baroni emphasizes that the listener is aware
of its incomplete knowledge and that surprise is linked to a notion of disturbance which makes
the agent to question his assumptions/beliefs and leads him to reconsider his understanding
of the story. This reconsideration reminds the operation of awareness raising introduced
by [54] to allow agents “to make their implicit knowledge explicit”. Logical models taking
into account agent’s awareness have previously been defined in the literature. As Halpern [28]
states, traditionally when reasoning about agents’ beliefs, it is assumed they are aware of
every proposition. Modica and Ristichini [39] first came up with a definition of awareness
based on knowledge, stating that an agent is aware of p if he knew p or if he knew he did
not know p. Halpern extends on this by introducing implicit knowledge, where agents are
aware of all propositions and can reason with them ; and explicit knowledge, which captures
the conclusions of which the agent is explicitly aware of. In this system, explicit knowledge
is also implicit, while the reverse is not necessarily true.

Previous works have proposed models for agents in computational narratives such as [40]
or [12] based on Belief, Desire and Intention (BDI). In [47], a BDI agent aiming to simulate
player behavior in interactive stories takes into account the player personality. Other work
has assigned personality stereotypes to users [52, 4] according to their interactions with the
system. Whilst such models allow personalizing an interactive narrative, they would not
enable a storytelling engine to finely drive the narrative tension. By contrast, the Suspenser
system by [15] offers an operationalization for suspense elicitation, one of the three drivers
of narrative tension. In Suspenser, suspense is maximized by ordering multiple story bits
at the discourse level. We lay in this paper the groundwork for ultimately representing in
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a unified logical framework suspense, curiosity and surprise, the three drivers of narrative
tension. This will build strong foundations for future generative and interactive systems able
to operate both at the story and discourse levels.

We approach the modelization of curiosity, suspense and surprise as constructs at given
moments of a narrative experience from the listener’s beliefs and by non-monotonic reasoning
about these beliefs. Doing so, we believe our model is compatible with previous formalization
while providing new insights.

3 Formalizing curiosity, surprise and suspense

We first present an example to illustrate the concepts introduced throughout this article.

▶ Example 1 (The box). To illustrate the framework, we present a short story involving
three agents, Albert, Erwin as well as a protagonist Cecilia2 (respectively agents A, E and
C). A short narrative : “Cecilia enters her office. She sees a box lying on her desk that was
not there when she last left the room.” Our hypothesis is that this event sparks curiosity in
Cecilia’s mind. We look at it from the point of view of Cecilia who reasons in a closed world
where nothing, except three particular events (Albert putting a box on Cecilia’s desk, Erwin
doing it, Cecilia opening the box) can interact with the state of the world.

We consider a set of variable symbols V denoted by Latin lower case letters, from this
set of symbols we build the vocabulary VT containing all variables of V indexed by all the
integers taken in the set T = {0, 1, .., N} representing time points. L is the propositional
language based on VT with the usual connectors and constants ∨, ∧, ¬, →, ≡, ⊥ and ⊤
denoting respectively the logical connectors “or”, “and”, “not”, material implication and
logical equivalence, contradiction, and tautology. The symbol |= represent satisfiability.
Let Ω denote the set of interpretations induced by VT , we will often use ω for naming a
particular interpretation in Ω, each interpretation will be described by the list of literals
satisfied by it, e.g., considering the vocabulary V = {a, b}, and a set of two time points
T = {0, 1} ω = (a0, ¬b0, ¬a1,¬b1) is an interpretation in Ω that associates the truth
value True to a and False to b at time step 0 and False to a and b at time step 1. The set
Mod(A) ⊆ Ω is the set of interpretations satisfying the set of propositional formulas A ⊆ L
(Mod(A) = {ω ∈ Ω|ω |=

∧
φ∈A φ}), the same notation is used to represent the set of models

of a formula Mod(φ) = {ω ∈ Ω|ω |= φ}.

▶ Example 1 (continued). To study this flow of events taking place in 4 time steps denoted
T = {0, 1, 2, 3} we need a vocabulary V = {box, A, E, C, empty, visible} meaning respectively
there is a box on Cecilia’s desk, agent A puts a closed box on the desk, agent E puts a closed
box on the desk, agent C opens the box, there is nothing in the box and something inside the
box is uncovered (and thus the box has been opened). In the language L built on V and T , the
following expression is an example of a well-formed formula: (A0 ∨E0)∧box1 ∧C2 ∧¬empty2.

Default rules are rules that tolerate exceptions and allow us to reason in presence of
incomplete information, by assuming that the situation is not exceptional when there is no
evidence for the contrary. The notation α⇝ β (with α, β ∈ L) is used to represent a default
rule interpreted as when α is true, it is more plausible that β is true than false.

2 We consider a story involving Albert Einstein, Erwin Schrödinger and Cecilia Payne-Gaposchkin, hence
the cat in the title.
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▶ Example 1 (continued). In order to be able to encode this example we propose to use
default rules to express that by default some fluents keep their value: the following rule is
expressing that when there is no box at time point 0 then by default there is no box at time
point 1: ¬box0 ⇝ ¬box1. This rule admits exceptions: namely, if A puts a box on the desk
at time point 0 then generally there is a box at time point 1: A0 ∧ ¬box0 ⇝ box1.

Given a set of default rules ∆ it is possible to define a ranking of these rules according
to their specificity, thanks to “System Z” algorithm [42], the default base is then called
stratified, its stratas are the formulas with the same rank3. Note that there are sets of default
rules that do not admit a Z ordering, such default sets are called “inconsistent” in [26]. In
this paper, we restrict ourselves to consistent default sets. From a stratified default base
lexicographic-entailment [6, 32] is a non-monotonic inference relation which imposes that the
more specific the rules, the more mandatory it is to comply with them:

▶ Definition 1 (Lex-inference [6]). Let ∆ = ∆1 ∪ · · · ∪ ∆n be a stratified default base with n
strata ordered from the most specific strata ∆1 to the least specific one ∆n, and let A and B
be two subsets of ∆, and α, β be two formulas of L,

Notations: str (for “strict”) is a function that translates a set of default rules into a set
of formulas of L, i.e., str(A) =

⋃
α⇝β∈A{¬α ∨ β}. For all i ∈ [1, n], and any E ⊆ ∆, Ei

denotes the ith strata of E: Ei = E ∩ ∆i.
A is Lex-preferred to B given ∆, denoted A ≻∆ B,

iff there exists k ∈ [1, n] s.t.
{

|Ak| > |Bk| and
∀i < k, |Ai| = |Bi|

A is a Lex-preferred α-consistent subbase of ∆ if A ⊆ ∆ and str(A) ∪ {α} ̸|= ⊥ and for
any B ⊆ ∆ s.t. str(B) ∪ {α} ̸|= ⊥, B ̸≻∆ A holds
α |∼∆ β iff for any Lex-preferred α-consistent subbase B of ∆, str(B) ∪ {α} |= β

▶ Example 1 (continued). Let us consider that the common knowledge about the world
consists only in the default persistence of the fluents box, empty and visible and on the
default effects of the occurrences of events A, E and C when their preconditions hold.

∆ =



¬box0 ⇝ ¬box1 (A0 ∨ E0) ∧ ¬box0 ⇝ box1
box0 ⇝ box1 C0 ∧ ¬visible0 ⇝ visible1
¬empty0 ⇝ ¬empty1 C0 ∧ ¬visible0 ∧ empty0 ⇝ ¬visible1
empty0 ⇝ empty1 ¬box1 ⇝ ¬box2
¬visible0 ⇝ ¬visible1 ...

visible0 ⇝ visible1 C2 ∧ ¬visible2 ∧ empty2 ⇝ ¬visible3


System Z will give a stratification in three strata where all persistence rules (of the form

vt ⇝ vt+1 or ¬vt ⇝ ¬vt+1) are in the least specific stratum ∆3 (since they are tolerated
by all the other rules). As seen before, (A0 ∨ E0) ∧ ¬box0 ⇝ box1 describes an exception
to the persistence of ¬box, just as C0 ∧ ¬visible0 ⇝ visible1 describes an exception to the
persistence of ¬visible which leads us to place them in ∆2, the latter itself admits an exception
described by rule C0 ∧ ¬visible0 ∧ empty0 ⇝ ¬visible1 making it the most specific rule thus
placed in ∆1 by System Z algorithm. At the end, we get:

3 System Z ordering method is based on the tolerance notion between rules. More precisely, a rule
r = α ⇝ β is tolerated by a set of n rules R ⊆ ∆ iff α ∧ β ∧

∧
αi⇝βi∈R

(¬αi ∨ βi) is consistent. The
process continues until ∆ contains only rules tolerated by all the other ones, they constitute the most
specific stratum called ∆1 (∆n being the least specific stratum, with n being the number of iterations).
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∆1 =
{
Ct ∧ ¬visiblet ∧ emptyt ⇝ ¬visiblet+1

}
t∈{0,1,2}

∆2 =
{
Ct ∧ ¬visiblet ⇝ visiblet+1
(At ∨ Et) ∧ ¬boxt ⇝ boxt+1

}
t∈{0,1,2}

∆3 =
{
vt ⇝ vt+1
¬vt ⇝ ¬vt+1

}
t ∈ {0, 1, 2}
v ∈ {box, empty, visible}

Using lexicographic inference we get: ¬box0 |∼∆ ¬box1 and ¬box0 ∧ (A0 ∨ E0) |∼∆ box1,
meaning that a priori if there was no box at time 0, there is no box at time 1, but knowing
that either A or E has placed a box makes it more plausible that there is a box at time 1.

Note that in this example, for the sake of simplicity, we want to make a closed world
assumption (CWA) in order to express that the only possible way to change the variable
box (respectively visible) from false to true is the occurrence of A or E (respectively the
performance of action C):

CWA = {(¬boxt ∧ boxt+1) → (At ∨ Et), (¬visiblet ∧ visiblet+1) → Ct}t∈{0,1,2}

From the set of default rules and the close world assumption, we can then obtain: {box1} ∪
CWA |∼∆ box0 meaning that the most plausible interpretation is that when there is a box at
time point 1 it means that there was already a box at time 0. However, if we know that there
were no box at time 0 then {box1,¬box0} ∪ CWA |∼∆(A0 ∨ E0)

We choose to use the lexicographic entailment in this paper, because [6] have shown that
it is a powerful non-monotonic inference relation that satisfies the set of rational properties
called System P. The System P, introduced by Kraus, Lehmann and Magidor [31], gathers
properties that should follow rationally when one wants to deduce new inferences from a set
of existing inference rules. The following definition describes an agent epistemic states via
the pieces of information that she believes.

▶ Definition 2 (Agent epistemic state and inference). A user is represented by a tuple
B = (F,BL, B∆) composed of a set F ⊆ L of formulas representing facts, and two sets
BL ⊆ L and B∆ respectively representing the strict and default rules known by the agent, the
default rules of B∆ are expressions of the form α⇝ β with α, β ∈ L.

When F ∪BL and B∆ are both consistent4, the user is equipped with an inference relation
between formulas of L denoted |∼B defined by:

α |∼B β iff
{α} ∪ F ∪BL is consistent and
for any Lex-preferred (α ∧

∧
φ∈F ∪BL

φ)-consistent subbase A ∈ B∆,

A ∪ {α} ∪ F ∪BL |= β

In the following, |∼B φ is a shortcut for ⊤ |∼B φ.

In order to formally introduce curiosity, we need to define awareness. This will be done
by simply stating that an agent is aware of a variable if this variable appears in the facts
contained in its epistemic state, and we assume that when an agent is aware of a variable
then it becomes also aware of every variable of the strict or default rules of its epistemic
state containing this variable (mimicking a kind of introspection). We use the notation v⊂φ
to express that the variable v appears in the formula φ, this notation can be applied to
variables of VT as well as of V.

4 Here consistent is not used with the same meaning: for the propositional formulas it means classical
logic consistency, while for the default rules base it means that the base can be stratified.
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▶ Definition 3 (awareness). An agent represented by B = (F,BL, B∆) is
aware of a variable v ∈ V if

there is a formula φ ∈ F s.t. v⊂φ or
there is a formula φ ∈ BL ∪ str(B∆) s.t. v⊂φ and there is a variable v′ ⊂φ of which
the agent is aware; and

aware of a formula φ ∈ L iff for any variable vt ⊂φ, the agent is aware of v.

▶ Example 1 (continued). Let us consider that the epistemic state of agent C is (∅,CWA,∆ =
∆1 ∪ ∆2 ∪ ∆3), in this case it does not know any fact, which means that it is not aware of
anything. Assume now that at time point 1, our agent Cecilia comes to her office and sees a
box on her desk, then the epistemic state of agent C is ({box1},CWA,∆). In this state, it is
aware that a box is on the desk, moreover by introspection its is aware of the possibility to
open it due to rule concerning C, the possibility that Albert or Erwin are able to put it on the
desk, the possibility that this box is empty or that something inside of it could be visible.

The following definition enables us to keep only formulas that do not concern a time
point later than a given time point t, i.e., keep the formulas such that all their variables are
indexed by time points no later than t.

▶ Definition 4 (epistemic state until t). Given an epistemic state (F,BL, B∆) and a time
point t ∈ [0, N ], the epistemic state until t, denoted B→t = (F→t, BL→t, B∆→t), is defined
by: F→t = {φ ∈ F | for all vt′ ⊂φ, t′ ≤ t}, BL→t = {φ ∈ BL| for all vt′ ⊂φ, t′ ≤ t}, B∆→t =
{δ ∈ B∆| for all vt′ ⊂str({δ}), t′ ≤ t}.

In the following, we use [φ]<t (and respectively [φ]≤t, [φ]>t, [φ]≥t and [φ]t) to denote
that φ is a formula containing only variables indexed by time points earlier than t (resp.
earlier than or equal to t, strictly later than t, later than or equal to t, equal to t).

▶ Remark 1. For any formula φ ∈ F→t ∪BL→t ∪ str(B∆→t), [φ]≤t holds.

An agent is curious about a formula at time point t if according to its epistemic state until t
it is aware of this formula but it is not able to deduce its truth value at time t.

▶ Definition 5 (curiosity). An agent with state B is curious about φ ∈ L at t ∈ T if, according
to B→t, it is aware of φ and |̸∼B→t

φ and |̸∼B→t
¬φ.

▶ Example 2. Coming back to Example 1, the epistemic state of C being B = ({box1},
CWA, ∆), its state at 0 is B→0 = (∅, ∅, ∅), meaning that at 0 it is aware of nothing, thus
according to Definition 5 it is not curious about anything at 0. In the epistemic state B, she
first thinks that {box1} ∪ CWA |∼∆ box0. However, she remembers that there was no box on
her desk at time 0 before she left her office. Meaning that her epistemic state is now B′ =
({¬box0, box1},CWA,∆) which enables her to draw the inference {¬box0, box1} |∼B′(A0∨E0),
however there is no way of knowing which of Albert or Bernard (or both) dropped off the box.
More formally, we can say that Cecilia is curious about the possibility that Albert dropped
off the box at time 0 because she is aware of this possibility and {¬box0, box1} |̸∼B′ A0 and
{¬box0, box1} |̸∼B′ ¬A0.

Now if we consider that Albert told Cecilia that he placed a box on her desk at 0 before
she entered her office. In that case, the epistemic state of Cecilia is B′′ = ({A0, ¬box0,
box1},CWA,∆), there is no more ambiguity as she knows who put it there, hence she is not
curious about A0.
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To define suspense, we propose for this formalization to use Baroni’s description of
primary suspense [5] which relies solely on temporal and belief factors. Baroni also describes
other types of suspense involving different emotional components (empathy and identification
with a protagonist for instance). These components affect suspense by strengthening the
intensity of curiosity, and we will leave them for further study at the time being. The
following definition expresses that an agent feels suspense about a formula φ when this agent
is curious about it at time t, and thinks that it is not impossible for facts or events (below
denoted ψ) to come to light and reveal the truth of φ (satisfying curiosity about it at last).

▶ Definition 6 (suspense). An agent represented by an epistemic state B = (F,BL, B∆) feels
suspense about φ ∈ L at time point t if
1. according to B, the agent is curious about φ at time t and
2. there is a formula ψ ∈ L such that [ψ]>t and F→t ∪BL ∪ {ψ} consistent and
3. there is t′ > t s.t. either |∼B′ φt′ or |∼B′ ¬φt′ holds, with B′ = (F ∪ {ψ}, BL, B∆).

▶ Example 3. In the context of Example 1, assume now that agent C has the following
epistemic state B = ({¬box0, box1,¬visible1},CWA,∆). Here, at time 1 agent C is aware
of the box, she is also aware that it is either empty or not, but has no way at this time to
know which is true. Formally, |̸∼B empty and |̸∼B ¬empty. Hence she is curious about the
variable empty at time point 1. Still according to Definition 3, the agent is also aware of the
formulas (C2 ∧ ¬visible2 ⇝ visible3) and (C2 ∧ ¬visible2 ∧ empty2 ⇝ ¬visible3). Meaning
she is aware she will know the content of the box once she opens it.

More precisely, the formula ψ = C2∧visible3 can be added to the facts of the epistemic state
because {¬box0, box1,¬visible1} ∪ CWA ∪{C2 ∧ visible3} is consistent. Now, B′ = ({¬box0,
box1, ¬visible1, C2, visible3},CWA,∆) yields |∼B′ ¬empty2. Hence Cecilia feels suspense
at time 1 about the truth value of empty.

In order to formalize surprise, following [20], we propose to exploit our non-monotonic
setting that enables agents to imagine several more or less plausible situations, i.e., enables
them to incorporate new contradicting information by revising previous conclusions. This is
required in order to avoid locking the agent in a state of total incomprehension. Surprise can
then be defined by the occurrence of a formula that was unexpected but which is completely
plausible.

▶ Definition 7 (surprise). An agent represented by B = (F,BL, B∆) is surprised at time
t about a formula φ ∈ L if φ ∈ F→t and B→t is consistent (φ occurred and it was not
impossible) and B′ = (F→t−1, BL→t, B∆→t) is such that: |∼B′ ¬φ (φ was unexpected)

▶ Example 2 (continued). Cecilia is surprised to find the box at time 1. Indeed, given the
epistemic state B = ({¬box0, box1},CWA,∆), before seeing the box at time 1, the persistence
of ¬box0 into ¬box1 was the most plausible evolution. More formally, we can check that
box1 ∈ F and B′ = ({¬box0},CWA→1,∆→1) is such that |∼B′ ¬box1, and B is consistent
(hence B→1 as well).

4 Properties and graduality

In this section we show several simple properties relating the three emotions, moreover we
establish the computational complexity of their detection.

TIME 2024
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4.1 Properties derived from the definitions
An agent who knows nothing is aware of nothing.

▶ Proposition 1. If the epistemic state of an agent has no fact, i.e, B = (∅, BL, B∆) then
the agent is not aware of any variable.

Proof. Even if BL or B∆ are non-empty, there is no awareness since no variable appears
in F . ◀

This kind of agent is not curious nor able to feel suspense since curiosity requires awareness,
and suspense requires curiosity.

▶ Corollary 2 (of Proposition 1). If the epistemic state of an agent has no fact, i.e., B =
(∅, BL, B∆), then the agent is not curious and does not feel suspense about any formula at
any time point.

The following proposition states that an omniscient agent (i.e., an agent with complete
information about the world) is never curious nor able to feel suspense.

▶ Proposition 2. If the epistemic state B = (F,BL, B∆) of an agent admits only one most
plausible interpretation in Ω, then for any finite formula, there is no time point where the
agent is curious or feels suspense about it.

Proof. In order to be curious, there should exist at least one variable whose truth value
is unknown. Hence there should be at least two interpretations that are equally most
plausible. ◀

Because surprise occurs when the agent expects something and then the opposite happens,
it means that it is not curious about it (because the surprise makes it know it).

▶ Proposition 3. Given an epistemic state B of an agent, if the agent is surprised about φ
at time t then the agent is not curious about φ neither at time t− 1 nor at time t.

Proof. Let us assume that B = (F,BL, B∆) is surprised at time t about a formula φ ∈ L,
it means that φ ∈ F→t and B→t is consistent and B′ = (F→t−1, BL→t, B∆→t) is such that:
|∼B′ ¬φ. It means that the agent could infer the truth value of φ at time t− 1, hence she
was not curious at t− 1. Now since φ ∈ F and B→t consistent then |∼B→t

φ hence she is not
curious about it at t. ◀

This proposition shows that surprise and curiosity are antagonists in a given epistemic
state, however we can imagine stories where the same event sequence may produce curiosity
(e.g. by keeping some information hidden, namely the name of the murderer) when told in a
given way and surprise when told differently (e.g. revealing this same information at start).
The following proposition shows the complexity class of the decision problems associated to
awareness, curiosity, suspense and surprise.

▶ Proposition 4. Given an epistemic state B, a formula φ ∈ L and a time point t ∈ T ,
Deciding whether B is aware of φ at time point t is linear
Deciding whether B is curious or feels suspense or surprise about φ at t is PNP-complete.

Proof. In order to check awareness about a variable, it is enough to check membership of
this variable to a set of formulas, which is linear in the size of the epistemic state, this process
should be repeated for all the variables of a formula to check formula awareness. Concerning
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A0 E0 C0box0empty0 visible0

A1 E1 C1box1empty1 visible1

Figure 1 Causal graph induced by the epistemic state B→1.

curiosity, in addition to a test of awareness, it uses two lexicographic inference tests which
have been shown to be in PNP by [21]. Suspense requires a curiosity check and a consistency
check of the strict part of the base B, which is a SAT problem hence NP-complete. It then
requires several lexicographic inferences in order to find the time point where |∼B′ φt′ or
|∼B′ ¬φt′ holds. Surprise requires a consistency check of the default base of B (which is a
PNP-complete problem according to [21]) and a lexicographic inference, hence the result. ◀

The complexity PNP of these decision problems is due to the use of the lexicographic
inference in their definition. Note that the upper bound (N) on time steps could relieve
the computational complexity as obtained in traditional STRIPS planning [11] where the
complexity of certain decision problems drops from PSPACE-complete to NP-complete.
Note also that formulation of AI planning in answer set programming gives rise to similar
complexity [50].

4.2 Towards defining measures
For further characterizing narrative tension, we need to quantify the intensity of the emotions
generated in an agent when listening to a story. This section is a first attempt towards
this goal. We propose three definitions of the emotional intensity of curiosity, suspense and
surprise. In the following definition we propose to rely on findings from Trabasso and Sperry
[53] as a heuristic in order to evaluate the intensity of the curiosity. We first define the causal
graph associated with an epistemic state as the one relating variables of VT with the links
induced by the default rules and strict rules of the epistemic state.

▶ Definition 8 (causal graph). The causal graph GB induced by an epistemic state B =
(F,BL, B∆) is a pair (VB , EB) with

VB = {vt ∈ VT |vt ⊂φ,φ ∈ F ∪BL ∪ str(B∆)} is the set of vertices of GB

EB = {(vt, v
′
t′) ∈ VT × VT |vt ⊂α, vt′ ⊂β, α⇝ β ∈ B∆} ∪

{(vt, v
′
t′) ∈ VB × VB | {lt} ∪ F ∪BL |= l′t′ with lt ∈ {vt,¬vt}, l′t ∈ {v′

t′ ,¬v′
t′}}

We illustrate this definition on the epistemic state of Cecilia until time point 1.

▶ Example 3 (continued). Considering B = ({¬box0, box1,¬visible1},CWA,∆), the causal
graph induced by B→1 is shown in Figure 1.

▶ Definition 9 (curiosity intensity). Given an agent with state B = (F,BL, B∆) and curious
about φ ∈ L at t ∈ T , her curiosity intensity level is cB(φ, t) =

∑
vt′ ⊂φ deg(vt′) where

deg(x) is the degree of the node x in the causal graph induced by B.

▶ Example 3 (continued). Given the epistemic state of Cecilia B = ({¬box0, box1, ¬visible1},
CWA, ∆), she is the most curious about ¬visible1 with intensity 5, denoted cB(¬visible, 1) =
5. Not that the degree of visible1 is only four on Figure 1 but there is a supplementary
outgoing arc from visible1 to visible2 when considering B instead of B→1.
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Suspense intensity

0
t

t0

SMax

c

α β γ

Figure 2 Suspense intensity along time (c being the level of curiosity felt at time t0).

Lets us now consider an example of suspense evolution. As previously explained, we base
our definition only on beliefs and time. According to Baroni [5], once curiosity is aroused
then the suspense begins and lasts until it reaches a plateau, at which point it diminishes
and gradually fades away, unless the suspense is resolved in the meantime. We propose to
consider that the suspense profile of an agent is available under the form of a quadruplet
(α, β, γ, SMax) where α is the duration before reaching the maximum of intensity SMax, β
the length of the plateau and γ the descent duration (see Figure 2). Thus, suspense intensity
is a function of the curiosity intensity at the time it is first felt and of the duration between
its triggering and its resolution.

▶ Definition 10 (suspense intensity). Given an epistemic state B = (F,BL, B∆) and a
suspense profile p = (α, β, γ, SMax) then the intensity of the suspense feeling at t is

sp
B(φ, t) =



0 if t < t0
SMax −c

α (t− t0) + c if t ∈ [t0, t0 + α]
SMax if t ∈ [t0 + α, t0 + α+ β]
− SMax

γ (t− t0 − α− β) + SMax if t ∈ [t0 + α+ β, t0 + α+ β + γ]
0 if t ≥ t0 + α+ β + γ

where t0 is the earliest time where the agent was curious about φ and c = cB(φ, t0) is the
curiosity intensity at t0.

Note that in this definition, the suspense intensity may only vary according to the profile
of the agent and the duration. A more refined way to handle this would be to define a
decreasing persistence of awareness, enabling the agent to forget a variable after some delay,
it would be in accordance with the common knowledge that the suspense should be revived
from time to time.

Concerning surprise intensity about a formula φ, we propose to adopt the point of view
of Shackle [48] as done in [20], by assimilating it to the degree of impossibility of φ (or
equivalently the possibility degree of ¬φ). It amounts to finding the most specific rule that
is violated by φ ∪ F ∪BL, the more specific this rule, the more surprising φ becomes5.

▶ Definition 11 (surprise intensity). Given an epistemic state B = (F,BL, B∆ = ∆1 . . .∆n)
where there is a surprise at time t, the surprise intensity is surpB(φ, t) = n− i, where i is
the most specific strata level, s.t. there is a rule α⇝ β ∈ ∆i with {φ ∧ α} ∪ F ∪BL |= ¬β.

The definitions of this section are a first step towards being able to compare stories with
respect to the intensity of emotions they generate in the agent listening to them.

5 Such a definition is classical in possibility theory, and more specifically in the context where a default
rule α⇝ β is interpreted as a constraint on a possibility measure Π see e.g., [7]. This constraint being
Π(α ∧ β) > Π(α ∧ ¬β) expressing that when α is true, having β true is more possible than β false.
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5 Conclusion

This paper aims at providing a unified framework in which the three emotions at the
heart of narrative tension, namely curiosity, surprise, and suspense are formalized and their
relationships clarified. This framework is built on non-monotonic reasoning for representing
compactly the default behavior of the world and also for simulating the reasoning of an
agent in front of a story. The use of non-monotonic reasoning induces a cost in complexity:
the detection problems associated with the three emotions are in PNP (due to the use of
lexicographic inference). For each of the three emotions, we describe methods to evaluate
their intensity.

While we illustrated our formalization by adopting the point of view of a single agent in a
chronological story for the sake of clarity, it does not preclude its adaptability for storytelling
using other points of views such as an extradiegetic narrator disclosing knowledge to the
listener through a discourse that does not reflect the timeline of the story.

To operationalize this model, we plan to investigate different frameworks that are equipped
with solvers namely PDDL planning, Linear logic with Ceptre [35] and propositional default
logic with TouIST [49]. Moreover, the inherent growing complexity of this problem for
scaling to complex narratives requires further study about the granularity of story events,
for instance inspired by discussions about the representation of causality [36].
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Abstract
A Simple Temporal Network with Uncertainty (STNU) is a data structure for representing and
reasoning about temporal constraints on activities, including those with uncertain durations. An
STNU is dispatchable if it can be flexibly and efficiently executed in real time while guaranteeing
that all relevant constraints are satisfied. The number of edges in a dispatchable network affects
the computational work that must be done during real-time execution. Recent work presented an
O(kn3)-time algorithm for converting a dispatchable STNU into an equivalent dispatchable network
having a minimal number of edges, where n is the number of timepoints and k is the number of
actions with uncertain durations. This paper presents a modification of that algorithm, making it
an order of magnitude faster, down to O(n3). Given that in typical applications k = O(n), this
represents an effective order-of-magnitude reduction from O(n4) to O(n3).
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1 Background

Temporal constraint networks facilitate representing and reasoning about temporal constraints
on activities. Simple Temporal Networks with Uncertainty (STNUs) are one of the most
important kinds of temporal networks because they allow the explicit representation of actions
with uncertain durations [13]. An STNU is dispatchable if it can be executed by a flexible
and efficient real-time execution algorithm while guaranteeing that all of its constraints will
be satisfied. This paper modifies an existing algorithm for converting a dispatchable network
into an equivalent dispatchable network having a minimal number of edges, making it an
order of magnitude faster.

1.1 Simple Temporal Networks
A Simple Temporal Network (STN) is a pair (T , C) where T is a set of real-valued variables
called timepoints; and C is a set of ordinary constraints, each of the form (Y − X ≤ δ) for
X, Y ∈ T and δ ∈ R [3]. An STN is consistent if it has a solution as a constraint satisfaction
problem (CSP). Each STN has a corresponding graph where the timepoints serve as nodes
and the constraints correspond to labeled, directed edges. In particular, each constraint
(Y − X ≤ δ) corresponds to an edge X δ Y in the graph. For convenience, such edges may
be notated as (X, δ, Y ) or, if the weight is not being considered, simply XY . Similarly, a path
from X to Y may be notated by listing the timepoints visited by the path (e.g., XUVWY )
or, if the context is clear, simply XY .

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs
that maintains time windows for each timepoint and, as each timepoint X is executed, only
propagates constraints locally, to neighbors of X in the STN graph [16, 14]. An STN is called
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dispatchable if that RTE algorithm is guaranteed to satisfy all of the STN’s constraints no
matter how the flexibility afforded by the algorithm is exploited during execution. Morris [12]
proved that a consistent STN is dispatchable if and only if every pair of timepoints that are
connected by a path in the STN graph are connected by a shortest vee-path (i.e., a shortest
path comprising zero or more negative edges followed by zero or more non-negative edges).
Algorithms for generating equivalent dispatchable STNs having a minimal number of edges
have been presented [16, 14]. Minimizing the number of edges is important since it directly
impacts the real-time computations required during execution.

1.2 Simple Temporal Networks with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) augments an STN to include contingent
links that represent actions with uncertain, but bounded durations [13]. An STNU is a
triple (T , C, L) where (T , C) is an STN, and L is a set of contingent links, each of the form
(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞. The semantics of STNU execution ensures
that regardless of when the activation timepoint A is executed, the contingent timepoint C

will occur such that C − A ∈ [x, y]. Thus, the duration C − A is uncontrollable, but bounded.
Each STNU S = (T , C, L) has a corresponding graph G = (T , Eo, Elc, Euc), where (T , Eo) is
the graph for the STN (T , C), and Elc and Euc are sets of labeled edges corresponding to the
contingent durations in L. In particular, each contingent link (A, x, y, C) in L has a lower-case
(LC) edge A c:x C in Elc that represents the uncontrollable possibility that the duration might
take on its minimum value x; and an upper-case (UC) edge C C:−y A in Euc that represents
the possibility that it might take on its maximum value y. For convenience, edges such as
A c:x C and C C:−y A may be notated as (A, c:x, C) and (C, C:−y, A), respectively.

An STNU is dynamically controllable (DC) if there exists a dynamic, real-time execution
strategy that guarantees that all constraints in C will be satisfied no matter how the contingent
durations turn out [13, 4]. A strategy is dynamic in that its execution decisions can react
to observations of contingent executions, but with no advance knowledge of future events.
Morris [10] proved that an STNU is DC if and only if it does not include any semi-reducible
negative cycles (SRN cycles). (A path P is semi-reducible if certain constraint-propagation
rules can be used to provide new edges that effectively bypass each occurrence of an LC edge
in P .) In 2014, Morris [11] presented the first O(n3)-time DC-checking algorithm.1 In 2018,
Cairo et al. [1] presented their O(mn + k2n + kn log n)-time RUL− DC-checking algorithm.
Hunsberger and Posenato [6] subsequently presented a faster version, called RUL2021, that
has the same worst-case complexity but achieves an order-of-magnitude speedup in practice
by restricting the edges it inserts into the network during constraint propagation.

1.3 Flexible and Efficient Real-time Execution
Most DC-checking algorithms generate conditional wait constraints that must be satisfied
by any valid execution strategy. Each wait is represented by a labeled edge of the form
W C:−w A, which may be notated as (W, C:−w, A). (Despite the similar notation, a wait is
distinguishable from the original UC edge since its source timepoint is not the contingent
timepoint C.) Such a wait can be glossed as: “While C remains unexecuted, W must wait at
least w after A.” Morris [11] defined an Extended STNU (ESTNU) to be an STNU augmented
with such waits. Thus, the graph for an ESTNU includes a set Eucg of generated wait edges.
For convenience, we intentionally blur the distinction between an ESTNU and its graph.

1 As is common in the literature, we use n for the number of timepoints, m for the number of ordinary
constraints; and k for the number of contingent links.
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Morris then extended the notion of dispatchability to ESTNUs, defining it in terms of the
ESTNU’s STN projections. A projection of an ESTNU is the STN derived from assigning
fixed values to the contingent durations. In any projection, each edge from the ESTNU
projects onto an ordinary edge [12, 9]. For example, consider the contingent link (A, 1, 10, C)
and the projection where its duration C − A equals 4. In that projection, the LC and UC
edges, (A, c:1, C) and (C, C:−10, A), project onto the respective ordinary edges, (A, 4, C)
and (C, −4, A), representing that C − A = 4. Meanwhile, the wait edges, (W, C:−7, A) and
(V, C:−3, A), project onto (W, −4, A) and (V, C:−3, A), respectively, since the wait on W

expires when C executes at A + 4, and the wait on V is satisfied at time A + 3.
Morris defined an ESTNU to be dispatchable if all of its STN projections are dispatchable

(as STNs). He then argued that a dispatchable ESTNU would necessarily provide a guarantee
of flexible and efficient real-time execution. Hunsberger and Posenato [9] later:
1. formally defined a flexible and efficient real-time execution algorithm for ESTNUs, called

RTE∗;
2. defined an ESTNU to be dispatchable if every run of RTE∗ necessarily satisfies all of the

ESTNU’s constraints; and
3. proved that an ESTNU satisfying their definition of dispatchability necessarily satisfies

Morris’ definition (i.e., all of its STN projections are STN-dispatchable).
The RTE∗ algorithm provides maximum flexibility during execution, unlike the earliest-first
strategy used for non-dispatchable networks [5].

Most DC-checking algorithms do not generate dispatchable ESTNUs. However, Morris [11]
argued that his O(n3)-time DC-checking algorithm could be modified, without impacting
its complexity, to generate a dispatchable output. In 2023, Hunsberger and Posenato [7]
presented a faster, O(mn + kn2 + n2 log n)-time ESTNU-dispatchability algorithm called
FDSTNU. However, neither of these algorithms provides any guarantees about the number of
edges in the dispatchable output. Since the number of edges in the network directly impacts
the real-time computations required to execute the network, it is important to minimize that
number. Hunsberger and Posenato [8] subsequently presented the first ESTNU-dispatchability
algorithm, called minDispESTNU, that, in O(kn3) time, generates an equivalent dispatchable
ESTNU having a minimal number of edges. To date, it is the only such algorithm. The
main contribution of this paper is to modify minDispESTNU so that it solves the same problem
in O(n3)-time, an order of magnitude faster, especially since it is common that k = O(n),
meaning the reduction in complexity is effectively from O(n4) to O(n3).

2 Overview of the Existing minDispESTNU Algorithm

The minDispESTNU algorithm [8] takes a dispatchable ESTNU E = (T , Eo, Elc, Euc, Eucg) as its
only input and generates as its output an equivalent dispatchable ESTNU having a minimal
number of edges. (Such an ESTNU is called a µESTNU for S.) It has four steps:
1. Compute the set Esi

o of so-called stand-in edges: ordinary edges that are entailed by
various combinations ordinary, LC, UC, and wait edges from the ESTNU.

2. Apply the STN-dispatchability algorithm from Tsamardinos et al. [16] to the resulting
set of ordinary edges, thereby generating a dispatchable STN subgraph, (T , E∗

o ).
3. Let Ê∗

o = E∗
o \Esi

o be the result of removing any remaining stand-in edges from E∗
o .

4. Compute the set of wait edges that are not needed for dispatchability and remove them
from Eucg; call the resulting set Êucg; then return the µESTNU (T , Ê∗

o , Elc, Euc, Êucg).

TIME 2024
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Figure 1 (Dashed) stand-in edges entailed by individual labeled edges.

The worst-case time complexity of the minDispESTNU algorithm is dominated by the first step:
finding the set Esi

o of so-called stand-in edges. Therefore, our new, faster algorithm modifies
only that step, achieving an order-of-magnitude reduction in the overall worst-case time
complexity. The rest of this section gives an overview of Step 1 of the existing minDispESTNU

algorithm, as implemented by its genStandIns helper algorithm.

2.1 Generating Stand-in Edges
Following Morris [11, 12], an ESTNU is dispatchable if all of its STN projections are
dispatchable (as STNs). That, in turn, requires that in each STN projection, each pair of
timepoints V and W that are connected by a path be connected by a shortest vee-path (i.e.,
a path comprising zero or more negative edges followed by zero or more non-negative edges).
A key insight behind the minDispESTNU algorithm is that in different projections, the shortest
vee-paths from V to W may take different routes and may have different lengths.

Before addressing more complex cases, genStandIns generates stand-in edges entailed
by individual labeled edges. For example, given a contingent link (A, x, y, C), the LC edge
(A, c:x, C) entails a stand-in edge (A, y, C) because in any projection where ω = C−A ∈ [x, y],
the LC edge projects onto the ordinary edge (A, ω, C), whose length is ω ≤ y. Similarly,
the UC edge (C, C:−y, A) entails a stand-in edge (C, −x, A) since in any projection the UC
edge projects onto the ordinary edge (C, −ω, A), whose length is −ω ≤ −x. Finally, a wait
edge (V, C:−v, A), where −v < −x, projects onto the ordinary edge (V, max{−ω, −v}, A)
and hence entails a stand-in edge (V, −x, A), since −ω ≤ −x and −v < −x.2 Figure 1 shows
an example of the stand-in edges entailed by individual labeled edges.

The most computationally costly part of the genStandIns algorithm is its computation
of stand-in edges entailed by different combinations of ESTNU edges. For example, consider
the ESTNU in Figure 2a, commonly referred to as a diamond structure. In the projection
where ω = C − A = 2, the projected path VACW , shown in blue in Figure 2b, is the
shortest vee-path from V to W : its length is 8. But in the projection where ω = C − A = 9,
the projected path VAW , shown in orange in Figure 2c, is the shortest vee-path from V

to W : its length is 7. The plots of the lengths, |VACW | and |VAW |, in Figure 2e, show
that across all projections the maximum length of the shortest vee-path from V to W ,
indicated by the dashed green line, is 8. In other words, the combination of edges in
the diamond structure entails the stand-in edge (V, 8, W ), shown as dashed and green in
Figure 2d. Since the constraint, W − V ≤ 8, must be satisfied in all projections, it must
also be satisfied by any dynamic execution strategy for the ESTNU. Similarly, the path
VAC satisfies |VAC | = max{−ω, −6} + ω = max{0, ω − 6} ≤ 4, for all ω ∈ [1, 10]. Thus,
that path entails the stand-in edge (V, 4, C), shown as dashed and purple in Figure 2d. Like
all stand-in edges, it must be satisfied by any dynamic execution strategy. The purpose of

2 As a first step, genStandIns replaces weak waits (i.e., those where −v ≥ −x) by ordinary edges and
adjusts misleading waits (i.e., those where −v < −y). But those details are not important for this paper.
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Figure 2 (a) Sample ESTNU, (b) and (c) two of its projections with (colored) shortest vee-paths,
(d) entailed (dashed) stand-in edges, (e) plots of vee-path lengths, and (f) the general case.

the genStandIns helper algorithm is to make all such constraints temporarily explicit so
that Step 2 of minDispESTNU can determine which ordinary edges can be removed without
threatening the dispatchability of the ESTNU.

Each iteration of the genStandIns algorithm’s main loop explores O(n2k) diamond
structures (n choices for V , n choices for W , and k choices for the contingent link), as
illustrated in Figure 2f, where the distances δ and γ are provided by the all-pairs shortest-
paths (APSP) matrix for the ordinary edges in the ESTNU. (The APSP matrix for the
ordinary edges is commonly called the distance matrix, denoted by D.) The lengths of the
alternative vee-paths, VACW and VAW , are given by |VACW | = max{−ω, −v} + ω + γ and
|VAW | = max{−ω, −v} + δ. Their intersection occurs where ω = δ − γ. If that value falls
within the interval (x, y), it is not hard to show that the maximum length of any shortest
vee-path from V to W across all projections is θ = max{γ, δ −v}, represented by the stand-in
edge (V, θ, W ), shown as dashed in Figure 2f. The other stand-in edge (V, y − v, C) derives
from the two-edge path, VAC , whose length in the projection where ω = C − A is given
by: |VAC | = max{−ω, −v} + ω = max{0, ω − v} ≤ y − v. After exploring all such diamond
structures, Johnson’s algorithm [2] is called to update the APSP matrix.

2.2 Stand-in edges arising from nested diamond structures
Because the distances involved in the analysis of diamond structures depend on shortest paths
in the subgraph of ordinary edges (e.g., γ = D(C, W ) and δ = D(A, W ) in Figure 2f), which
can be affected by inserting (ordinary) stand-in edges into the ESTNU, it follows that stand-in
edges can derive from nested diamond structures, for example, as illustrated in Figure 3. That
figure shows a more complicated ESTNU, where the diamond structure involving the solid
green edges is nested inside the diamond structure involving the solid purple edges. Ignoring
the green edges, for now, the solid purple edges can be shown to entail the (purple, dashed)
stand-in edge (V2, 3, W ). In particular, in projections where ω2 = C2 − A2 ≤ 7, the length of
the path V2A2C2W is: max{−ω2, −6} + ω2 + 2 = max{2, ω2 − 4} ≤ 3. In contrast, if ω2 ≥ 7,
the length of the alternative path V2A2W is: max{−ω2, −6} + 9 = max{9 − ω2, 3} ≤ 3.
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Figure 3 Deriving stand-in edges from nested diamond structures.

Next, since the green diamond is isomorphic to the diamond from Figure 2d, it entails
the (green, dashed) stand-in edge (A2, 8, W ). But now, using that stand-in edge instead of
the purple edge (A2, 9, W ), a new analysis of the purple structure shows that it entails a
stronger (blue, dashed) stand-in edge (V2, 2, W ). In other words, nested diamond structures
can sometimes combine to entail stronger stand-in edges.

Hunsberger and Posenato [8] proved that it suffices to explore nested diamond structures
up to a maximum depth of k. Thus, the genStandIns algorithm does up to k iterations of
its main loop. Since each iteration ends by calling Johnson’s algorithm on up to n2 edges,
the overall complexity of genStandIns is O(kn3).

3 Speeding up the minDispESTNU Algorithm

The complexity of the minDispESTNU algorithm is driven by the O(kn3)-time complex-
ity of genStandIns. Our modification of minDispESTNU replaces genStandIns with
newGenStandIns, which, taking a more focused and efficient approach to dealing with
nested diamond structures, works in O(n3) time. Since k = O(n) is common in applications
(e.g., k ≈ n/10 in some benchmarks [15]), the reduction in worst-case time-complexity is
effectively from O(n4) to O(n3).

3.1 Stand-in Edges Derived from Nested Diamond Structures
Figure 4 illustrates the nested relationship between an inner diamond Di (involving timepoints
Vi, Ai, Ci and Wi, shaded dark gray) and an outer diamond Dj (involving timepoints
Vj , Aj , Cj and Wj , shaded light gray), where the arrows labeled by a, b, δi, γi and γj represent
ordinary edges or paths, and the dashed arrows represent the stand-in edges (Vi, τi, Wi) and
(Vj , τj , Wj) entailed by the diamonds.3 Lemma 1, below, ensures that in any such nesting,
there must be a path from Aj to Ai that comprises zero or more negative ordinary edges
followed by one (negative) wait edge, which for convenience we call a negOrdWait path.
This implies that the activation timepoints involved in nested structures can be put into a
strict partial order which, in turn, implies that generating the stand-in zedges associated

3 Hunsberger and Posenato [8] proved that when considering vee-paths from Aj to Wj , the only relevant
nesting of diamonds occurs if the inner diamond Di resides along the path from Aj to Wj in the outer
diamond Dj , as shown in the figure. Since the inner diamond begins with a negative wait edge, any
path from Aj to Wj that included Di between Cj and Wj could not be a vee-path.
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Figure 4 Nested diamond structures (one shaded light, one shaded dark) considered in Lemma 1.

with nested diamonds can be done in just one pass, instead of the k passes through the
main loop of genStandIns. Furthermore, to determine the length of the stand-in edge from
Vj to any Wj , taking advantage of the nesting of Di within Dj , it suffices to know the
length of the shortest ordinary path from Aj to Wj . (Recall that the length of the entailed
stand-in edge depends only on the values of D(Cj , Wj), D(Aj , Wj) and −vj .) In other
words, when generating stand-in edges derived from diamonds involving the labeled edges
(Ai, ci:xi, Ci) and (Ci, Ci:−yi, Ai), it is not necessary to find all ordinary distances affected
by those stand-in edges (which is what the existing genStandIns algorithm uses Johnson’s
algorithm to do – on each of up to k passes); instead, it suffices to focus on the distances of
ordinary paths emanating from Aj that are affected by those stand-in edges. In the case of Aj

shown in the figure, it suffices to record distances of the form, D(Aj , Wi) = b + τi, resulting
from new stand-in edges. Crucially, all of these distances correspond to paths emanating
from a single source, Aj . After exploring all inner diamonds Di and recording the new
distances, D(Aj , Wi), then all values D(Aj , ·) can be updated using Dijkstra’s single-source
shortest-paths algorithm, guided by a potential function [2]. These observations enable
the newGenStandIns algorithm, presented later in this section, to call Dijkstra’s algorithm
k times, instead of calling Johnson’s algorithm k times, leading to an order-of-magnitude
reduction in worst-case time complexity, from O(kn3) down to O(n3).

▶ Lemma 1. Let S be any dispatchable ESTNU. Suppose that E is a stand-in edge derived
from nested diamond structures in which the diamond structure Di associated with the
contingent link (Ai, xi, yi, Ci) is nested directly inside the diamond structure Dj associated
with the contingent link (Aj , xj , yj , Cj). Furthermore, suppose that the labeled edges from
these contingent links are needed for E (i.e., without their labeled edges, E would not be
entailed by the remaining edges in S). Then there must be a path from Aj to Ai in S that
consists of zero or more negative ordinary edges, followed by a single wait edge of the form
(Vi, Ci:−vi, Ai) (i.e., a negOrdWait path).
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Proof. Suppose that E is the stand-in edge (Vj , τj , Wj). Since the labeled edges from these
contingent links are needed for E, it follows that in at least one STN projection, the shortest
vee-path from Vj to Wj must include the path from Aj to Vi to Ai. Since any subpath of a
vee-path is also a vee-path and the wait edge (Vi, Ci:−vi, Ai) has negative length, it follows
that all of the ordinary edges represented in the figure by (Aj , b, Vi) must be negative. ◀

Given Lemma 1, the activation timepoints participating in a nested diamond structure
must be linked by a chain of negOrdWait paths. In addition, for a DC STNU, there can
be no cycles of such paths because they would constitute a negative cycle in the OU-graph,
i.e., Gou = (T , Eo ∪ Euc ∪ Eucg), the graph containing all the original and derived edges but
the lower-case ones. However, a single activation timepoint may participate in multiple
nested structures. Hence, the set of all negOrdWait paths among the activation timepoints
necessarily forms a strict partial order (equivalently, a forest of one or more directed acyclic
graphs in the OU-graph).

For each pair of activation timepoints, Aj and Ai, for which there is a negOrdWait path
from Aj to Ai, we say that Aj is a parent of Ai and that Ai is a child of Aj . The relevant
information for determining the stand-in edges emanating from Aj and passing through
a diamond structure involving labeled edges from (Ai, xi, yi, Ci) is: (1) ℓ, the (negative)
length of the negOrdWait path from Aj to Ai; and (2) −vi, the (negative) length of the
wait edge, (Vi, Ci:−vi, Ai), terminating that negOrdWait path. These lengths are shown in
Figure 4, where b = ℓ + vi is the length of the prefix of the negOrdWait path that includes
only the ordinary edges (i.e., everything except the terminal wait edge). Then, as shown by
Hunsberger and Posenato [8], for any timepoint Wi ∈ T \{Ai, Ci, Aj , Cj}, the length of the
potential stand-in edge from Aj to Wi is given by b + max{γi, δi − vi} = max{b + γi, ℓ + δi},
where γi = D(Ci, Wi) and δi = D(Ai, Wi), also shown in the figure. Then, for any Wj , the
ordinary distance D(Aj , Wj) affected by such a stand-in edge can be determined by the
previously mentioned call to Dijkstra’s algorithm, guided by a potential function.

3.2 The getPCinfo (get parent/child info) Algorithm
The getPCinfo algorithm (Algorithm 1) efficiently computes the relevant parent/child
information, returning a pair of vectors of hash tables, called parent and child. For each
activation timepoint Ai, parent[Ai] is a hash table containing entries where some Aj is the
key and (ℓ, −vi) is the value (i.e., Aj is the parent, ℓ is the length of the negOrdWait path
from Aj to Ai, and −vi is the length of its terminating wait edge). Similarly, for each
activation timepoint Aj , child[Aj ] is a hash table containing entries linking some child Ai to
the corresponding pair (ℓ, −vi), where ℓ is the length of the negOrdWait path from Aj to Ai,
and −vi is the length of its terminal wait edge.

An important factor is that if two negOrdWait paths from Aj to Ai have the same length,
but one has a stronger (i.e., more negative) terminating wait edge, then the negOrdWait
path terminated by the weaker wait dominates the one with the stronger wait because in
any projection the projected length of the one with the weaker wait will be shorter than (or
the same as) that of the one with the stronger wait. For example, if ℓ is the length of two
negOrdWait paths from Aj to Ai, but −v1 > −v2, where the corresponding terminal wait
edges are (V1, Ci:−v1, Ai) and (V2, Ci:−v2, Ai), then |AjV1 Ai | = (ℓ + v1) + max{−ω, −v1} =
max{ℓ + v1 − ω, ℓ} ≤ max{ℓ + v2 − ω, ℓ} = (ℓ + v2) + max{−ω, −v2} = |AjV2 Ai |. Another
important factor involves negOrd paths (i.e., paths comprising solely negative ordinary edges).
If a negOrd path has the same length as a negOrdWait path, then the negOrd path dominates
the negOrdWait path since in every projection the length of the negOrd path will be the
same as or shorter than the length of the projected negOrdWait path.
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Algorithm 1 getPCinfo: find negOrdWait paths between pairs of activation timepoints.

Input: G = (T , Eo, Elc, Euc, Eucg), an ESTNU graph
Output: (parent, child), where parent and child are k-vectors of hash tables signaling the

presence of negOrdWait paths between pairs of activation timepoints
1 f ··= bellmanFord(Gou) // A potential function for Gou = (T , Eo ∪ Euc ∪ Eucg)
2 parent ··= (∅, . . . , ∅)
3 child ··= (∅, . . . , ∅) // k-vectors of hash tables
4 foreach (A, x, y, C) ∈ L do // Back-propagate from A along negOrdWait paths
5 negLen ··= (∞, . . . , ∞) // An n-vector of accum. lengths of negOrdWait paths ending in A

6 negWait ··= (⊥, . . . , ⊥) // An n-vector of corresp. neg. wait values (or ⊥ for ord paths)
// Initialize min priority queue Q with entries for negative ord and wait edges incoming to A

// Element = U , a timepoint
// Key = Non-negative accumulated length adjusted by potential function, f

7 Q ··= new priority queue
8 foreach (U, δ, A) with δ < 0 do // Negative ordinary edges incoming to A

9 Q.insert(U, δ − f(A) + f(U)) // f(A) − f(U) ≤ δ ⇐⇒ δ − f(A) + f(U) ≥ 0
10 negLen[U ] ··= δ

11 foreach (V, C:−v, A) ∈ Eucg do // (Negative) wait edges incoming to A

12 Q.insert(V, −v − f(A) + f(V )) // f(A) − f(V ) ≤ −v ⇐⇒ −v − f(A) + f(V ) ≥ 0
13 negLen[V ] ··= −v; negWait[V ] ··= −v

// Use back-propagation to find shortest negOrd or negOrdWait paths terminating at A

14 while ¬Q.empty() do
15 U ··= Q.extractMin()
16 if U = A′ is an activation timepoint and negWait[A′] ̸= ⊥ then

// Record negOrdWait path found from A′ to A

17 parent[A].insert(A′, (negLen[A′], negWait[A′]))
18 child[A′].insert(A, (negLen[A′], negWait[A′]))

// Continue back-propagating along negative ordinary edges
19 foreach (V, v, U) ∈ Eo | v < 0 do
20 newLen ··= v + negLen[U ]
21 if newLen < negLen[V ] or ((newLen == negLen[V ]) and

((negWait[U ] == ⊥) or (negWait[U ] > negWait[V ]))) then
// Record new shortest negOrd or negOrdWait path from V to A (via U)

22 if negLen[V ] == ∞ then Q.insert(V, newLen − f(A) + f(V ))
23 else Q.decreaseKey(V, newLen − f(A) + f(V ))
24 negLen[V ] ··= newLen
25 negWait[V ] ··= negWait[U ]

26 return (parent, child) // Return the vectors of parent/child hash tables

At Line 1, getPCinfo calls the Bellman-Ford algorithm [2] to generate a solution to the
OU-graph that will be used as a potential function to guide the traversal of negOrd and
negOrdWait paths. Line 2 initializes the parent and child vectors of hash tables.

Each iteration of the for loop at Lines 4–25 processes one activation timepoint A, looking
for shortest negOrd or negOrdWait paths from A backward to other activation timepoints.
Lines 5–6 initialize the negLen and negWait vectors. For each X, negLen[X] specifies the
length of the shortest negOrd or negOrdWait path from X to A that has been found so far
(or ∞). If a shortest negOrdWait path from X to A has been found that is not dominated
by a negOrd path, then negWait[X] specifies the length of its terminating wait edge.
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Lines 7–13 initialize a min priority queue [2] to include an entry for each negative ordinary
edge and each wait edge incoming to A. Like in Johnson’s algorithm, the potential function
f is used to adjust the distances in the OU-graph to be non-negative to enable the use of
Dijkstra’s algorithm to guide the exploration of negOrd and negOrdWait paths.

Each iteration of the while loop (Lines 14–25) pops a timepoint U off the queue. If
U happens to be an activation timepoint A′ for which an undominated negOrdWait path
has been found, then entries linking A (the child) to A′ (the parent) are inserted into the
relevant hash tables (Lines 16–18). Next, back-propagation along negative ordinary edges
continues at Lines 19–25. The complicated if condition at Line 21 covers cases where a
new shortest negOrd or negOrdWait path from V to A (via U) has been found. First, if
newLen < negLen[V ] (which includes negLen[V ] = ∞), then the path via U is a new shortest
path. Second, if newLen = negLen[V ], then the path via U dominates a pre-existing path
from V to A if: (1) the path via U is a negOrd path (whence negWait[U ] = ⊥); or (2) the
wait terminating the path via U is weaker than the terminal wait in the pre-existing path (i.e.,
negWait[U ] > negWait[V ]). In any of these cases, the values of negLen[V ] and negWait[V ]
are updated, and V is either newly inserted into the queue or its key is updated (Lines 22–25).
After the main for loop is completed, the parent and child vectors of hash tables are returned
at Line 26.

3.3 The newGenStandIns Algorithm
The section presents our newGenStandIns algorithm (Algorithm 2). It uses the parent and
child hash tables computed by getPCinfo to more efficiently generate all of the stand-in edges
arising from nested diamond structures. Its time-complexity is O(n3), an order-of-magnitude
improvement over the O(kn3)-time complexity of genStandIns.

For simplicity, we assume that all stand-in edges entailed by individual labeled edges
have already been computed and have been passed as an input Eisi into newGenStandIns.

At Line 1, newGenStandIns calls the Bellman-Ford algorithm on the subgraph of ordinary
edges which will be used as a potential function to enable the use of Dijkstra’s single-source
shortest-paths algorithm to update distance-matrix entries. At Line 2, Et

o is initialized; it will
accumulate changes to D(Aj , ·) values, stored as temporary edges, that are derived directly
from nested stand-in edges. Next, at Lines 3–7, the list, readyToGo, of activation timepoints
that are ready to process is initialized. Since the activation timepoints form a strict partial
order, this list is initially populated by those having no children. The vector, numUnprocd,
keeps track of how many unprocessed children each activation timepoint has. Later on, as
each activation timepoint is processed, its parent’s entry in numUnprocd will be decremented.

Each iteration of the while loop (Lines 8–28) pops one activation timepoint Aj off the
readyToGo list and, at Lines 12–19, for each child Ai and each timepoint Wi, explores
diamond structures involving the labeled edges from the contingent link (Ai, xi, yi, Ci), to
determine whether the distance D(Aj , Wi) can be affected by a nested diamond. (Recall
Figure 3.) Instead of explicitly dealing with the wait edge (Vi, Ci:−vi, Ai) shown in the
figure, newGenStandIns uses the ℓi and −vi values retrieved from the child[Aj ] hash table at
Line 12 (where b in the figure equals ℓi + vi), along with the distances, γi = D(Ci, W ) and
δi = D(Ai, Wi), obtained from the distance matrix at Line 14. This information is sufficient
to determine whether the paths ViAiCiWi and ViAiWi combine to entail a new stand-in
edge, (Vi, τi, Wi), where τi = max{γi, δi − vi}. In particular, as in genStandIns, ωi = δi − γi

(at Line 15) specifies the projection where |ViAiCiWi | = |ViAiWi |; and a new stand-in edge
from Vi to Wi is entailed if ωi ∈ (xi, yi) and if that new stand-in edge is at least as strong
as any existing ordinary path from Vi to Wi. However, here, the goal is not to generate
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Algorithm 2 newGenStandIns: Compute the stand-in edges arising from nested diamonds.
Input: (T , Eo, Elc, Euc, Eucg), dispatchable ESTNU; parent, child, vectors of hash tables

computed by getPCinfo; D, distance matrix for Go = (T , Eo); Eisi ⊆ Eo, stand-in edges
entailed by individual labeled edges

Output: Esi, the set of all stand-in edges (including Eisi); and D, the updated distance matrix.
1 f ··= bellmanFord(Go) // Initialize a potential function f on the ordinary subgraph Go

2 Et
o ··= ∅ // Used to collect all temporary (ordinary) edges

3 readyToGo ··= ∅ // A list of activation timepoints ready for processing
4 numUnprocd ··= (0, . . . , 0) // For each activ’n. timepoint, the num of its unprocessed children
5 foreach (A, x, y, C) ∈ L do
6 numUnprocd[A] ··= child[A].count() // Fetch the number of A’s children
7 if numUnprocd[A] == 0 then readyToGo.push(A) // If no children, then ready to process
8 while readyToGo ̸= ∅ do
9 Aj ··= readyToGo.pop() // Contingent link for Aj is (Aj , xj , yj , Cj)

10 anyChange ··= ⊥
11 newLengths ··= empty hash table // For collecting new D(Aj , ·) values
12 foreach (Ai, (ℓi, −vi)) ∈ child[Aj ] do // Contingent link for Ai is (Ai, xi, yi, Ci)
13 foreach Wi ∈ T \{Ai, Ci, Aj , Cj} do
14 γi = D(Ci, Wi); δi = D(Ai, Wi); ωi ··= δi − γi

15 if ωi ∈ (xi, yi) then // ωi specifies proj’n. where max shortest vee-path occurs
16 newVal ··= max{ℓi + vi + γi, ℓi + δi} // Length of potential new D(Aj , Wi) value
17 if newVal < D(Aj , Wi) then
18 newLengths.insert(Wi, newVal) // Record new D(Aj , Wi) value
19 anyChange ··= ⊤

20 if anyChange == ⊤ then // Need to update potential function and D(Aj , ·) values
21 E+

o ··= ∅ // Collect set of changed D(Aj , ·) values as temporary edges
22 foreach (Wi, newVal) ∈ newLengths do E+

o ··= E+
o ∪ {(Aj , newVal, Wi)}

23 f ··= updatePotFn((T , Eo ∪ E+
o ), f) // Update pot’l. fn. to accommodate temp edges

24 D(Aj , ·) ··= dijkstra(Aj , Eo ∪ E+
o , f) // Update D(Aj , ·) values for next iteration

25 Et
o ··= Et

o ∪ E+
o // Accumulate temp edges RE: Aj in global set Et

o

26 foreach A ∈ parent[Aj ] do // Update info for Aj ’s parents now that Aj is done
27 numUnprocd[A] ··= numUnprocd[A] − 1
28 if numUnprocd[A] == 0 then readyToGo.push(A)

// Fully updated D ensures that one iteration of genStandIns will generate all stand-in edges
29 D ··= johnson(T , Eo ∪ Et

o) // After this, temp edges are discarded
30 Esi ··= genStandInsOnce((T , Eo, Elc, Euc, Eucg), Eisi, D)
31 D ··= johnson(T , Eo ∪ Esi) // Final update of D to accommodate the generated stand-in edges
32 return (Esi, D)

that stand-in edge, but instead to provide the D(Aj , Wi) value affected by it. Therefore, the
only information accumulated in the newLengths hash table is the pair (Wi, newVal), where
newVal = b + τi = ℓi + vi + τi = max{ℓi + vi + γi, ℓi + δi} (at Lines 16–18).

Afterward, at Line 20, if processing Aj led to changes in any D(Aj , ·) values, then
newGenStandIns collects all of the changes as a set E+

o of temporary edges (Lines 21–22)
that it then uses to (1) incrementally update the potential function f (at Line 23), and
(2) propagate the new D(Aj , ·) values to update all affected D(Aj , ·) values (at Line 24). For
updating the potential function, it calls the updatePotFn, which is a simplified version of the
UpdPF algorithm from the RUL2021 algorithm [6]; here, it explores paths emanating from Aj

as long as changes to the potential function are needed. For updating D(Aj , ·) values, it calls
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Algorithm 3 The updatePotFn function.

Input: Go = (T , Eo), STN; A, timepoint; h, pot’l. fn. for Go, excluding edges emanating from A

Output: A pot’l. fn. h′ for Go (including edges emanating from A); or ⊥ if Go is inconsistent
1 h′ := copy-vector(h)
2 Q := new empty priority queue
3 Q.insert(A, 0) // Initialize queue for forward propagation from A

4 while (!Q.empty()) do
5 (V, key(V )) := Q.extractMinNode()
6 foreach ((V, δ, W ) ∈ Eo) do // Propagate along ordinary edges emanating from V

7 if (h′(W ) > h′(V ) + δ) then
8 h′(W ) := h′(V ) + δ // Update pot’l. fn. h′ and insert W into Q or decrease its key
9 if (Q.state(W ) == notYetInQ) then Q.insert(W, h(W ) − h′(W ))

10 else Q.decreaseKey(W, h(W ) − h′(W ))

11 return h′

Dijkstra’s single-source shortest-paths algorithm using Aj as the source and f as a potential
function to re-weight the edges to non-negative values. This use of Dijkstra is similar to its
use in Johnson’s algorithm [2]. Note that after these updates the temporary edges in E+

o are
not inserted into the ESTNU graph, but they are accumulated in Et

o for later use at Line 25.
The processing of Aj ends at Lines 26–28, where for each parent A of Aj , the number

of A’s unprocessed children is decremented by 1 and, if that number reaches 0, then A is
pushed onto the readyToGo list, indicating that it is ready for processing.

Once all activation timepoints have been processed, all distance values D(Aj , ·) needed
to account for arbitrary nestings of diamond structures have been accumulated. All that
remains is to use these values to generate all of the stand-in edges. For example, suppose that
the diamond formed by Vj , Aj , Cj and Wj from Figure 3 is the outermost diamond in a nested
sequence that entails a stand-in edge of the form, (Vj , τj , Wj). Then the resulting D(Aj , Wj)
value, determined by the inner levels of nesting, was computed when Aj was processed by
the while loop at Lines 8–19. But the stand-in edge (Vj , τj , Wj) has not yet been generated.
However, given all of the D(Aj , ·) values computed so far (for all Aj), generating all such
stand-in edges, including those that are not involved in any nesting, can be accomplished
by an O(kn2)-time exploration of diamond structures involving any timepoints, V, A, C, W ,
where A and C are timepoints associated with a contingent link (A, x, y, C), and V and W

are any timepoints other than A or C. This is precisely what a single iteration of the for
loop at Lines 13-27 of genStandIns does. Here, it is called genStandInsOnce, at Line 30.
Afterward, at Line 31, a final call to Johnson’s algorithm computes the full distance matrix
to accommodate all of the new stand-in edges, including those in Eisi passed in as an input.

3.4 Complexity of newGenStandIns

Our modification of the minDispESTNU algorithm replaces the genStandIns helper by the
newGenStandIns algorithm presented above. The complexity of newGenStandIns is de-
termined as follows. Its k calls of Dijkstra’s algorithm on at most m + nk edges cost
O(mk + nk2 + kn log n) time. Its k calls of the updatePotFn function similarly require
O(mk + nk2 + kn log n) time. The call to genStandInsOnce, as reported by Hunsberger
and Posenato [8], requires O(kn2) time (n choices for V , n choices for W , and k choices for
(A, x, y, C)). The most costly computation, however, is the last one: the call to Johnson’s
algorithm on at most m = n2 edges costs O(n3) time. Therefore, the overall complexity of
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newGenStandIns is O(n3). This is an order-of-magnitude reduction compared to the O(kn3)
complexity of genStandIns, especially since, for applications, k = O(n) (e.g., k ≈ n/10 in
some benchmarks [15]), implying an effective reduction from O(n4) to O(n3).

The complexity of steps 2, 3 and 4 of minDispESTNU, which we do not change, is dominated
by the call to the STN-dispatchability algorithm on at most n2 edges, which is also O(n3).
So the overall complexity of our modification of minDispESTNU is O(n3).

4 Conclusions

Generating an equivalent dispatchable ESTNU having a minimal number of edges is an
important problem for applications involving actions with uncertain but bounded durations.
The number of edges in the dispatchable network is important because it directly impacts
the real-time computations that are necessary when executing the network. Therefore, for
time-sensitive applications it is important to generate an equivalent dispatchable ESTNU
having a minimal number of edges, called a µESTNU. This paper modified the only existing
algorithm for generating a µESTNU, making it an order-of-magnitude faster. It reduced the
worst-case time-complexity from O(kn3) to O(n3) which, given that in typical applications
k = O(n), implies an effective reduction from O(n4) to O(n3).
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Abstract
A Probabilistic Simple Temporal Network (PSTN) is a formalism for representing and reasoning
about actions subject to temporal constraints, where some action durations may be uncontrollable,
modeled using continuous probability density functions. Recent work aims to manage this kind
of uncertainty during execution by approximating a PSTN by a Simple Temporal Network with
Uncertainty (STNU) (for which well-known execution strategies exist) and using an STNU execution
strategy to execute the PSTN, hoping that its probabilistic action durations will not cause any
constraint violations.

This paper presents significant improvements to the robust execution of PSTNs. Our approach is
based on a recent, faster algorithm for finding negative cycles in non-DC STNUs. We also formally
prove that many of the constraints included in others’ work are unnecessary and that our algorithm
can take advantage of a flexible real-time execution algorithm to react to observations of contingent
durations that may fall outside the fixed STNU bounds. The paper presents an empirical evaluation
of our approach that provides evidence of its effectiveness in robustly executing PSTNs derived from
a publicly available benchmark.
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1 Introduction

In many sectors of real-world industry, it is necessary to plan and schedule tasks allocated
to agents participating in complex processes [19, 1]. Temporal planning aims to schedule
tasks while respecting temporal constraints such as release times, maximum durations, and
deadlines, which requires quantitative temporal reasoning. Over the years, major application
developers have highlighted the need for explicit representation of actions with uncertain
durations; and efficient algorithms for checking whether plans involving such actions are
controllable, and for converting such plans into forms that enable them to be executed in
real time with minimal computation, while preserving maximum flexibility.

A Probabilistic Simple Temporal Network (PSTN) is a formalism for representing and
reasoning about actions subject to temporal constraints, where some action durations may
be uncontrollable, modeled using continuous probability density functions. Recent work aims
to manage this kind of uncertainty during execution by:
1. computing a dynamically controllable (DC) Simple Temporal Network with Uncertainty

(STNU) whose bounded action durations capture as much of the combined probability
mass of the corresponding probabilistic durations as possible;

2. deriving a dynamic execution strategy for the approximating STNU; and
3. using that strategy to execute the PSTN, hoping that its probabilistic action durations

will not cause any constraint violations.
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Since unlikely action durations may nonetheless occur, this approach incurs a non-zero risk
of failure. The typical goal is to minimize this risk, although some have sought to optimize a
different objective function while accepting a pre-determined bound on the risk of failure.

This paper presents significant improvements to this approach that derive from recent,
faster algorithms for solving several closely related problems, as well as some new theoretical
results:
1. Since the iterative process of computing a DC STNU to approximate a PSTN relies

on efficiently finding negative cycles in non-DC STNUs so that they can be resolved
(e.g., by tightening the bounds on participating contingent durations), this paper uses a
recent, faster algorithm for finding such cycles (Algorithm FindSRNC [16]). Its compact
representation of such cycles avoids exponential blow-up. Like some recent work, our
approximating algorithm (Algorithm genApproxSTNU) uses a general-purpose non-linear
optimization solver to aid in this process; however, genApproxSTNU explicitly aims to
maximize the combined probability mass of the probabilistic durations captured by the
STNU’s contingent durations. We also formally prove that many constraints included in
others’ work are unnecessary.

2. Given an approximating DC STNU, we then propose to use a recent, fast algorithm
(Algorithm minDispESTNU [17]) to compute an equivalent dispatchable STNU having a
minimal number of edges. Doing so allows the use of a flexible and efficient real-time
execution strategy, implemented by the algorithm RTE∗ [18], instead of, for example, the
inflexible earliest-first strategy used by many researchers.

3. Hence, we propose to execute the PSTN using RTE∗ to exploit the strategy’s flexibility
to react to observations of contingent durations that may fall outside the fixed STNU
bounds.

The paper presents an empirical evaluation of our approach that provides evidence of its
effectiveness in robustly executing PSTNs derived from a publicly available benchmark. In
particular, it shows that taking advantage of a flexible real-time execution algorithm can
increase the chances of successful executions.

2 Background

In this section, we recall the basic concepts and results about Simple Temporal Networks,
Simple Temporal Networks with Uncertainty (STNUs), Probabilistic Simple Temporal
Networks (PSTNs) and the known methods for approximating PSTNs by STNUs.

2.1 Simple Temporal Networks
A Simple Temporal Network (STN) is a pair (T , C) where T is a set of real-valued variables
called timepoints; and C is a set of ordinary constraints, each of the form (Y − X ≤ δ) for
X, Y ∈ T and δ ∈ R [5]. An STN is consistent if it has a solution as a constraint satisfaction
problem (CSP). Each STN has a corresponding graph where the timepoints serve as nodes,
and the constraints correspond to labeled, directed edges. In particular, each constraint
(Y − X ≤ δ) corresponds to an edge X δ Y in the graph. Such edges may be notated as
(X, δ, Y ) for convenience.

A flexible and efficient real-time execution (RTE) algorithm has been defined for STNs
that maintains time windows for each timepoint and, as each timepoint X is executed, only
propagates constraints locally, to neighbors of X in the STN graph [28, 24]. An STN is
called dispatchable if that RTE algorithm is guaranteed to satisfy all of the STN’s constraints
no matter which execution decisions are made subject to the time-window constraints.
Algorithms for generating equivalent dispatchable STNs have been presented [28, 24].
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Figure 1 A semi-reducible path (shaded gray on the left) and a Semi-Reducible Negative (SRN)
cycle (shaded gray on the right).

2.2 Simple Temporal Networks with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) augments an STN to include contingent
links that represent actions with uncertain, but bounded durations [23]. An STNU is a
triple (T , C, L) where (T , C) is an STN, and L is a set of contingent links, each of the form
(A, x, y, C), where A, C ∈ T and 0 < x < y < ∞. The semantics of STNU execution ensure
that regardless of when the activation timepoint A is executed, the contingent timepoint
C will occur such that C − A ∈ [x, y]. Thus, the duration C − A is uncontrollable but
bounded. The graph of an STNU S = (T , C, L) is the graph of the STN (T , C) augmented
to include labeled edges representing the contingent durations. In particular, each contingent
link (A, x, y, C) has two corresponding edges in the STNU graph: a lower-case (LC) edge
A c:x C, notated as (A, c:x, C), representing the uncontrollable possibility that the duration
might take on its minimum value x; and an upper-case (UC) edge C C:−y A, notated as
(C, C:−y, A), representing the possibility that it might take on its maximum value y.

The most important property of an STNU is whether it is dynamically controllable
(DC). An STNU is dynamically controllable (DC) if there exists a dynamic, real-time
execution strategy that guarantees that all constraints in C will be satisfied no matter how
the contingent durations turn out [23, 10]. A strategy is dynamic because its execution
decisions can react to observations of contingent executions without advance knowledge of
future events. Morris [21] proved that an STNU is DC if and only if it does not include
any semi-reducible negative cycles (SRN cycles). A path P is semi-reducible if certain
constraint-propagation rules can be used to provide new edges that effectively bypass each
occurrence of an LC edge in P. As an example of a semi-reducible path and an SRN cycle,
consider Figure 1. In the left network, the path Π = (A, c:1, C, −1, B) is semi-reducible
because it is possible to combine constraints (A, c:1, C) and (C, −1, B) to create an equivalent
constraint (A, 0, B) (dashed red) that bypasses (A, c:1, C) in Π. In the right network, the
path (cycle) Π = (A, c:1, C, −1, D, D:−10, B, 7, A) is an SRN cycle because as before, it
is possible to bypass (A, c:1, C) by constraint (A, 0, D) (dashed red), and the value of the
resulting cycle (A, 0, D, D:−10, B, 7, A) (sum of constraint values discarding possible labels)
is negative. Indeed, this network is not DC because A must be executed after or as soon as
D occurs to satisfy (A, 0, D), and in the case that the contingent link (B, 1, −10, D) duration
outcomes to be 10, the constraint (B, 7, A) will be violated.

In 2014, Morris [22] presented the first O(n3)-time DC-checking algorithm.1 In 2018,
Cairo et al. [2] presented their O(mn + k2n + kn log n)-time RUL− algorithm. In 2022,
Hunsberger and Posenato [14] subsequently presented a faster version, called RUL2021, that
has the same worst-case complexity but achieves an order-of-magnitude speedup in practice
by restricting the edges it inserts into the network during constraint propagation.

1 As is common in the literature, we use n for the number of timepoints, m for the number of ordinary
constraints; and k for the number of contingent links.
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Following the literature, we refer to ordinary or LC edges as LO-edges and ordinary or
UC edges as OU-edges. An ESTNU graph has the form (T , Eo ∪ Elc ∪ Euc ∪ Eucg), where Eo is
the set of ordinary edges, Elc and Euc are the sets of LC and UC edges, and Eucg is the set of
generated wait edges (described later). The graphs, Gℓo and Gou, of the LO- and OU-edges,
respectively, can be viewed as STNs by ignoring the alphabetic labels on LC or UC edges.

2.3 Probabilistic Simple Temporal Networks
A Probabilistic Simple Temporal Network (PSTN) is similar to an STNU, except that each
contingent duration, C − A, is modeled as a random variable with a specified probability
density function (pdf) p [27, 7]. This paper assumes that each probabilistic duration has a
log-normal distribution.2

Since pdfs can have infinite tails, successfully executing a PSTN cannot be guaranteed in
general. Instead, researchers have focused on approximating PSTNs by STNUs [7, 33, 30, 31].
The approximating STNU differs from the PSTN only in representing the contingent durations;
the ordinary constraints all stay the same. The aim is to choose bounds for the approximating
STNU’s contingent links that capture as much probability mass of the probabilistic durations
as possible while preserving the STNU’s controllability. For example, if (A, x, y, C) is a
contingent link approximating a probabilistic duration (A, C, p), then the probability mass
captured by the contingent link is

∫ y

x
p(t)dt = F (y) − F (x), where F is the associated

cumulative distribution function (cdf).

2.3.1 Approximating PSTNs by Strongly Controllable STNUs
Early work sought to approximate PSTNs by strongly controllable STNUs. (An STNU
S = (T , C, L) is strongly controllable (SC) if there exists a fixed schedule for its controllable
timepoints that guarantees that all constraints in C will be satisfied no matter how the
durations of the contingent links in L turn out.) Tsamardinos [27] aimed to find a fixed
schedule for a PSTN that maximized the probability that all of its constraints would be
satisfied. However, his approach was too restrictive: it did not allow ordinary constraints
between pairs of contingent timepoints.

Fang et al. [7] defined a similar problem, called the chance-constrained probabilistic Simple
Temporal Problem (cc-pSTP). Instead of aiming to minimize the risk of failure, the cc-pSTP
is the problem of finding a static schedule that optimizes a given objective function (e.g.,
complete all tasks as early as possible) while keeping the risk of failure below a given bound
(e.g., less than 5 percent). In other words, the cc-pSTP accepts a bounded risk of failure
(a.k.a. a chance constraint). To solve the cc-pSTP, they create an initial approximating STNU
in which the bounds on each contingent link are variables, not constants. Their algorithm
then applies constraint-propagation/edge-generation rules (a.k.a. reduction rules) to enforce
the SC property. These rules are generalized from prior work on strong controllability [29, 27]
to accommodate the bounds on the contingent links being variables instead of constants.
The result is at most n2 linear constraints, each involving the contingent link bounds-as-
variables. In contrast, the chance constraint is non-linear since it depends on the cdfs for the
probabilistic durations. They approximate the chance constraint using Boole’s inequality,
which does not require assuming independence of the probabilistic durations, as follows:

2 Chen et al. [3] observed that “Existing experiments data . . . showed that heavy-tailed distributions,
such as lognormal, best fit the task uncertainty introduced by humans in collaborative tasks [6]. This is
corroborated by work that showed the human reaction time is also best modeled as log-normal [32].”
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(actual probability of failure) ≤
∑k

i=1(Fi(xi) + (1 − Fi(yi)) ≤ ∆, where each Fi is the cdf
for the ith probabilistic link, and ∆ is the given bound on the risk of failure. The objective
function, which is provided as an input, can also be non-linear. After constructing their
non-linear optimization problem, they solve it using an off-the-shelf solver, called SNOPT [9].

Wang and Williams [30] presented the Rubato algorithm, which tackles the cc-pSTP by
decoupling the risk-allocation problem (i.e., assigning fixed bounds to the STNU’s contingent
links) from strong-controllability checking. In this way, the risk-allocation problem, solved
by a non-linear solver, need not include the O(n2) constraints generated by the previously
mentioned constraint-propagation rules, keeping the optimization problem small. Once risk
allocation is done, the SC checker is run which, in negative instances, outputs a simple
negative cycle. In such cases, they then accumulate a new constraint stipulating that that
cycle must be made non-negative. They iteratively run this risk-allocation/SC-checking
process until an SC STNU is found, which then yields a static schedule for the PSTN.

2.3.2 Approximating a PSTN by a Dynamically Controllable STNU

Wang [31] defined a dynamic version of the cc-pSTP that aims to approximate a PSTN
by a DC STNU. Analogous to Rubato, Wang used an iterative approach that decouples
risk-allocation from DC checking. For the first risk-allocation step, a non-linear optimization
solver generates initial bounds for the STNU’s contingent durations that capture as much of
the probability mass of the PSTN’s probabilistic durations as possible while also satisfying
the ordinary constraints from the STNU. For the DC-checking step, Morris’ O(n4)-time
DC-checking algorithm is modified so that it outputs an SRN cycle for non-DC networks.
Wang noted that such cycles may not be simple, but presented no details on how to compute
or represent them. (In the worst case, SRN cycles can involve exponentially many edges [12].)3

If the candidate STNU happens to be non-DC, it must contain an SRN cycle, which can be
resolved by making it non-negative or non-semi-reducible. Following Morris [21], Wang noted
that semi-reducibility requires that each LC edge can be reduced away by a (negative-length)
extension subpath.4 Thus, he argued that modifying any one of the participating extension
sub-paths by making it non-negative would cause the entire cycle to be non-semi-reducible.
(However, as shown below, this is often not the case.) Thus, Wang’s approach to resolving
an SRN cycle involved accumulating a disjunction of potentially very many new constraints,
one for each participating extension subpath. Hence, his approach requires the use of a
disjunctive linear program solver. Although he gives some empirical evaluations, only very
high-level implementation details are provided, making the results difficult to evaluate.

3 Preliminary Steps

In this section, we introduce some preliminary results that allow the determination of a new
algorithm for a robust execution of PSTNs.

3 Yu, Fang and Williams [33] addressed resolving a non-DC STNU by finding an SRN cycle within it and
then tightening the bounds on participating contingent durations. However, unlike Wang, they failed to
recognize that individual labeled edges can appear multiple times in an SRN cycle.

4 An extension subpath for an LC edge e in a path P is a negative-length subpath Pe that immediately
follows e in P and such that the constraint-propagation/edge-generation rules given by Morris [21] can
be used to generate a new edge E that effectively bypasses e in P.

TIME 2024



12:6 Robust Execution of Probabilistic STNs

3.1 Efficiently Finding and Representing SRN Cycles
Iteratively finding a DC STNU to approximate a PSTN typically requires numerous calls
to an algorithm for finding SRN cycles in non-DC STNUs. For this, Wang used a modified
version of Morris’ O(n4)-time DC-checking algorithm. Instead, this paper takes advantage of
a new, faster O(mn + kn2 + kn log n)-time algorithm, FindSRNC, for finding and compactly
representing SRN cycles [16]. Aside from its greater speed, there are two main features that
are important for this paper. First, because an indivisible SRN cycle in a non-DC STNU can
have, in the worst case, an exponential number of occurrences of LC and UC edges [12], the
output of FindSRNC includes a hash table that compactly represents the repeating structures
that necessarily occur in such cycles, while requiring only O(mk + k2n) space. Second,
FindSRNC, like the RUL2021 algorithm [14] on which it is based, detects three different kinds
of SRN cycles: (1) a negative cycle in the LO-graph; (2) a special kind of cycle, called a CC
loop; and (3) a cycle arising from a cycle of interruptions of its recursive processing of UC
edges. The following section recalls how Wang’s approach to resolving SRN cycles introduces
potentially very many disjunctive constraints and then rigorously addresses the different
ways that each kind of SRN cycle returned by FindSRNC can be resolved, in one case without
requiring any disjunctions, in another case requiring only a single disjunction, and in a third
case requiring a bounded number of disjunctions.

3.2 More Efficient Resolution of SRN Cycles
To resolve an SRN cycle L, Wang generates a disjunctive collection of linear constraints. The
main constraint is to make |L| non-negative. The other constraints, which can be numerous,
aim to make L non-semi-reducible by, for each occurrence of an LC edge e in L, constraining
its extension subpath Pe to be non-negative. (Each occurrence of an LC edge in L can have
a very different extension subpath.) The idea is that if any of these constraints are satisfied,
then L will either be non-negative or non-semi-reducible (or both). However, while it is
true that modifying an extension subpath Pe by making it non-negative renders it unable to
reduce away the LC edge, it does not necessarily make L non-semi-reducible. Why? Because
other edges following Pe in L might combine with Pe to create a new extension subpath for
e, as illustrated below.

A. . . C A′ C ′ F G H . . .c:5 1 c′:4 −6 −2 −3

In this example, the extension subpath for the LC edge e = (A, c:5, C) is the negative-length
subpath from C to F , shaded dark gray. This subpath can be made non-negative by increasing
the lower bound on the LC edge (A′, c′:4, C ′) from 4 to 5. However, doing so would not make
the overall path non-semi-reducible because the path from C to G, shaded light gray, would
still be negative and hence could be used to reduce away e. As a result, a subsequent iteration
of Wang’s algorithm might return the very same SRN cycle, albeit with a slightly different
length. Even worse, a chain of negative edges following an existing extension subpath for e

might lead to numerous nearly identical iterations. Furthermore, a single SRN cycle might
have many LC edges leading to numerous disjunctive constraints, thereby compounding the
problem for the disjunctive optimization solver, making it expensive for larger networks.

3.3 Three Kinds of SRN Cycles Computed by FindSRNC

Before addressing how to resolve the SRN cycles output by FindSRNC, we must discuss how
FindSRNC works. As shown in Figure 2, FindSRNC processes each UC edge E = (C, C:−y, A),
propagating backward from C along LO-edges aiming to generate edges that effectively
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Figure 2 Generating a (blue, dashed) bypass edge for a (red) UC-edge, assuming that ∆C = 12.
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Figure 3 A CC loop (left); a CC-based SRN cycle (center); and resolving the SRN cycle (right).

bypass E. Back-propagation continues while the subpath being explored has length less than
∆C = y − x. If that distance ever becomes greater than or equal to ∆C , as in the path
from T to C in Figure 2, then a bypass edge, shown as blue and dashed, is generated, and
back-propagation stops.

As in Johnson’s algorithm [4], the back-propagation is guided by a potential function
that is a solution to the graph of LO-edges viewed as an STN. The potential function is
initialized by a call to Bellman-Ford [4] and, after the processing of each UC edge, is updated
to accommodate any newly generated edges. If the updating reveals a negative cycle in the
LO-graph, then the STNU cannot be DC. Therefore, FindSRNC outputs that negative cycle.

There are two ways that FindSRNC’s back-propagation can be blocked: (1) by a CC loop,
or (2) by bumping into another UC edge. A CC loop is where back-propagation from C

cycles back to C with all encountered distances less than ∆C , as illustrated on the lefthand
side of Figure 3. A CC loop does not necessarily entail an SRN cycle, but it can: if there
exists a negative-length LO-path emanating from C that can be used to reduce away the
LC edge (A, c:x, C) [14]. An example of this is shown in the center of Figure 3. Based on
the edge-generation rules from Morris [21], the negative-length (dotted) path from C to A3
can be used to generate the (dashed, green) bypass edge (A, −1, A3). Meanwhile, the path
from A3 to A can be used to generate the (dashed, orange) wait edge (A3, C:−8, A), thereby
forming a negative cycle in the OU-graph, which implies that the network cannot be DC. In
such a case, FindSRNC outputs the SRN cycle formed by the matching LC and UC edges
together with the CC loop. We call such a cycle a CC-based SRN cycle for convenience.

Back-propagation from C can also be blocked by bumping into another UC edge, say
E2, while encountered distances remain less than ∆C . In such cases, E’s processing is
interrupted until E2 is fully processed. Once all edges bypassing E2 have been generated,
back-propagation from C continues. But if a cycle of such interruptions is found, all processing
is blocked, and the network cannot be DC [2]. In that case, FindSRNC returns the SRN cycle
formed by concatenating the interrupted subpaths, including the corresponding UC edges, as
shown on the left of Figure 4, where it is assumed that the length of each LC edge is 1.

3.4 Resolving SRN Cycles Output by FindSRNC

SRN cycles are, by definition, negative and semi-reducible, so such cycles can be resolved by
making them non-negative or non-semi-reducible. As in earlier work, we restrict attention to
resolving an SRN cycle by increasing the lengths of LC or UC edges contained within it (i.e.,
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Figure 4 A cycle of interruptions (left); a weakened version with a (shaded) CC loop (center);
making it non-semi-reducible by constraining subpaths emanating from C to be non-negative (right).

by tightening the bounds on the corresponding contingent links). Although the bypass edges
computed by FindSRNC are invariably ordinary, the paths they bypass may have multiple LC
and UC edges. Increasing the lengths of those LC or UC edges in turn increases the lengths
of the bypass edges.

Since resolving an SRN cycle by making it non-negative is always an option, this section
focuses on cases where an SRN cycle can be made non-semi-reducible without making it
non-negative. The lemmas below address the three kinds of SRN cycles output by FindSRNC.

▶ Lemma 1. If an SRN cycle comprises only LO-edges, then the only way to resolve the
cycle is by making it non-negative.

Proof. A negative cycle comprising only LO-edges is necessarily semi-reducible [13]. ◀

▶ Lemma 2. Let L be a CC-based SRN cycle where (C, C:−y, A) and (A, c:x, C) are the
relevant UC and LC edges. Then, the only way to make L non-semi-reducible is by making
the length of each subpath emanating from C in the CC loop non-negative.

The righthand side of Figure 3 shows an example of making a CC-based SRN cycle non-semi-
reducible, in this case, by increasing the lengths of the LC edges A2C2 and A3C3 to ensure
that every subpath emanating from C is non-negative. (The modified lengths are shown in
blue.) Notice that the length of the entire CC-based cycle is still negative: −2.

Proof. If any subpath emanating from C in the CC loop has negative length, then it can be
used to reduce away (bypass) the LC edge (A, c:x, C), preserving the SRN cycle [14]. ◀

Although each subpath emanating from C needs to be non-negative, that need not
require an explicit constraint for each timepoint following C. First, since the only allowed
modifications involve lengthening edges, any subpath emanating from C that is already
non-negative in L does not need to be explicitly constrained. In addition, if a subpath from
C to X is constrained to be non-negative and the path from X to Y is non-negative, then the
subpath from C to Y will automatically be non-negative. A one-time traversal of the edges in
L suffices to determine the conjunction of constraints needed to make L non-semi-reducible.

▶ Lemma 3. Let L be an SRN cycle obtained from a cycle of interruptions of processings
of UC edges (e.g., as shown on the lefthand side of Figure 4). If E = (C, C:−y, A) and
e = (A, c:x, C) are adjacent in L, then L can be made non-semi-reducible by making the
length of each subpath emanating from C that does not include E non-negative. Although
there can be multiple pairs of adjacent labeled edges providing such opportunities for making
L non-semi-reducible, there are no other ways of making L non-semi-reducible.
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Proof. A cycle of interruptions necessarily entails an SRN cycle [2], so resolving L requires
breaking that cycle of interruptions. One way is to lengthen edges in L enough to enable the
generation of bypass edges for all UC edges in L. But that would yield a cycle comprising
only LO-edges and, since negative LO-cycles are invariably semi-reducible, resolving the SRN
cycle in this way would still require making |L| non-negative. The only other outcome that
can arise from increasing the lengths of edges preceding a UC edge would be the creation
of a CC loop, as illustrated in Figure 4 (center), where the UC edges C2A2 and C3A3 have
been bypassed by dashed, blue edges, creating a CC loop from C back to C. Since a CC
loop contains only LO-edges, a CC loop can only be created if all other UC edges have been
bypassed.

▷ Claim. Constraining every subpath emanating from C that terminates at or before
the UC edge (C, C:−y, A), as illustrated on the righthand side of Figure 4, will ensure
that L is non-semi-reducible. (In the figure, constraining the subpath from C to A4 to be
non-negative automatically ensures that the subpaths terminating at A2, C4 and C3 will
also be non-negative, given the negative edge from A2 to A4, and the non-negative paths
from A4 to C4 and C3. Similarly, constraining the subpath from C to Q to be non-negative
ensures that the subpaths terminating at A3 and C will also be non-negative.)

Proof. If every subpath emanating from C is non-negative, then every UC edge other than
(C, C:−y, A) must be bypassable. For example, the first encountered UC edge (C ′, C ′:−y′, A′)
must be bypassable since the subpath from C to A′ being non-negative implies that the
subpath from C to C ′ must be at least y′ > ∆C′ . An inductive argument ensures that all
following UC edges are bypassable. But then Lemma 2 ensures that the CC-based cycle
formed using those bypass edges is non-semi-reducible. ◁

Finally, if any subpath emanating from C is negative, then the LC edge (A, c:x, C) can
be bypassed, yielding a cycle of interruptions that cannot be resolved via a CC loop involving
(C, C:−y, A) and (A, c:x, C); hence the only options for making L non-semi-reducible must
involve forming a CC loop using a different pair of adjacent, matching UC and LC edges. ◀

Summary. All three types of SRN cycles L returned by FindSRNC can be resolved by making
L non-negative. Alternatively, L can be made non-semi-reducible if: (1) it is a CC-based SRN
cycle for a contingent timepoint C, where each subpath emanating from C is non-negative; or
(2) L arises from a cycle of interruptions and L includes at least one adjacent pair of matching
UC and LC edges. This analysis of SRN cycles greatly reduces the need for disjunctive
constraints as compared to the approach of Wang. It also avoids the problem of repeatedly
revisiting the same SRN cycle, when making the length of an extension subpath non-negative,
fails to make it non-semi-reducible. Finally, we conjecture that occurrences of CC loops
and (especially) cycles of interruptions that can be weakened to reveal a CC loop will occur
only rarely in practice and, therefore, our new algorithm, presented in Section 4, focuses
exclusively on constraining the SRN cycle itself to be non-negative (i.e., a single constraint).

4 New Algorithm for Robustly Executing PSTNs

Given any PSTN, our new algorithm for robustly executing PSTNs: (1) computes an
approximating STNU that is DC, using the FindSRNC algorithm to efficiently compute
and compactly represent SRN cycles in non-DC STNUs; (2) converts that STNU into
an equivalent dispatchable ESTNU; and (3) executes the original PSTN using the RTE∗

algorithm, leveraging its flexibility to react to possibly extreme contingent durations.
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Algorithm 1 genApproxSTNU: generate a DC STNU that approximates a given PSTN.

Input: S = (T , C, M): a PSTN where M = {(Ai, Ci, Lognormal(µi, σi)) | i ∈ {1, . . . , k}}
Output: (Su, F ), where Su = (T , C, L) is an approximating DC STNU for S, and F is the joint

probability mass of the durations in M captured by the links in L). Or ⊥ if unable.
// Initialize the approximating STNU

1 Su ··= (T , C, L), where L = {(Ai, xi = eµi−3.3σi , yi = eµi+3.3σi , Ci) | i ∈ {1, . . . , k}}
2 (L, H) ··= FindSRNC(copy(Su)) // L = SRN cycle; H = edge-annotation hash table
3 while L do

// Below, len = |L|; ai, bi = num. occurrences of ith LC, UC edges in (fully expanded) L

4 (len, (a1, . . . , an), (b1, . . . , bn)) ··= fetchEdgeInfo(negCycle, edgeAnnHash)
5 if Σk

i=1(ai + bi) == 0 then return ⊥ // No labeled edges in expanded SRN cycle
6 A ··= {i | ai > 0 or bi > 0} // Collect indices of contingent links participating in SRN cycle
7 κ ··= |A| // κ ≤ k is num. contingent links participating in SRN cycle
8 Let π : {1, . . . , κ} 7→ A be a re-ordering of the indices of A from 1 to κ

9 bounds ··= (xπ(1), yπ(1), . . . , xπ(κ), yπ(κ))
10 muVec ··= (µπ(1), . . . , µπ(κ)); sigVec ··= (σπ(1), . . . , σπ(κ))
11 coeffs ··= (aπ(1), −bπ(1), . . . , aπ(κ), −bπ(κ))
12 const ··= −len +

∑
1≤i≤κ

(aπ(i)xπ(i) − bπ(i)yπ(i))
13 ((x̂π(1), ŷπ(1), . . . , x̂π(κ), ŷπ(κ)), F̂ ) ··= nlpOpt(κ, muVec, sigVec, coeffs, const, bounds)
14 if F̂ == ⊥ then return ⊥
15 foreach i ∈ {1, . . . , κ} do xπ(i) ··= x̂π(i) and yπ(i) ··= ŷπ(i) // Update bounds
16 (negCycle, edgeAnnHash) ··= FindSRNC(copy(Su)) // Prepare for next iteration

// Su is dynamically controllable. Re-compute objective function over all contingent links.
17 F ··= Π1≤i≤k (lnCDF(yi, µi, σi) − lnCDF(xi, µi, σi))
18 return (Su, F ), where Su has updated bounds (x1, y1, . . . , xk, yk)

4.1 Generating a DC STNU to Approximate a PSTN
The genApproxSTNU algorithm (Algorithm 1) takes as its input a PSTN S with k probabilistic
durations of the form (Ai, Ci, Lognormal(µi, σi)).5 It aims to generate an approximating
STNU for S that is DC by providing bounds for the contingent links that maximize the
joint probability mass of the probabilistic durations they capture while preserving the DC
property.

At Line 1, the approximating STNU is initialized by setting the bounds for each contingent
link (Ai, xi, yi, Ci) to xi = eµi−3.3σi and yi = eµi+3.3σi , which represent ±3.3 standard
deviations for the underlying normal distribution, which ensures capturing approximately
99.96% of the probability mass. As a result, we expect that the initial STNU will not be DC.

Next, at Line 2, it calls the FindSRNC algorithm on a copy of the STNU. (FindSRNC
destructively modifies its input.) For non-DC STNUs, FindSRNC outputs a compact repre-
sentation of an SRN cycle as a pair, (L, H), where L is a list of ordinary, LC and UC edges
with no repeats, and H is an edge-annotation hash table [16]. Although L has no repeat
edges, some of its ordinary edges may be bypass edges. Each bypass edge E in L has an entry
in the hash table H that identifies the path PE bypassed by E. In addition, the bypassed
paths may recursively include other bypass edges. In the worst case, fully expanding L by
recursively replacing each occurrence of a bypass edge by the path it bypassed can lead to an
exponential number of edges due to the presence of repeated structures [11]. In contrast, the
edge-annotation hash table uses only O(k2n) space to store the relevant information [16].

5 In other words, Lognormal(µi, σi) = eµi+σiZ , where Z is a standard normal random variable.
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As long as FindSRNC returns an SRN cycle, the while loop at Lines 3–16 aims to resolve
the cycle by tightening the bounds on the participating contingent links while retaining as
much of the probability mass from the corresponding probabilistic durations as possible. Each
iteration begins, at Line 4, by calling the fetchEdgeInfo algorithm (Algorithm 2) which
returns the following information: len, the length of (one traversal of) the SRN cycle; and
two vectors (a1, . . . , ak) and (b1, . . . , bk), where each ai specifies the number of occurrences
of the LC edge (Ai, ci:xi, Ci) in the (fully expanded) SRN cycle, and each bi the number of
occurrences of the UC edge (Ci, Ci:−yi, Ai). Crucially, as will be seen later, this can be done
in O(nk2) time, even if the (fully expanded) cycle contains an exponential number of edges.

At Line 5, if there are no labeled edges in the (fully expanded version of) the SRN cycle,
genApproxSTNU returns ⊥, since such a cycle cannot be resolved by adjusting the bounds on
contingent links. Otherwise, at Lines 6–12, it prepares data for the the constraint optimization
problem of finding new bounds for the contingent links that maximize the captured joint
probability mass subject to the constraint of making the SRN cycle non-negative.

At Line 6, the set A collects the indices i for the contingent links whose labeled edges
participate in the SRN cycle L. At Line 7, κ = |A| ≤ k denotes the number of contingent
links participating in L. Since resolving the SRN cycle only requires dealing with those
κ contingent links, Line 8 specifies a bijection π from {1, 2, . . . , κ} to A that facilitates
preparing data for the non-linear solver, focusing only on the participating contingent links.

Lines 9–10 collect, for each participating contingent link, the current values of the bounds,
xπ(i) and yπ(i), and the µi and σi values of the associated log-normal distributions. Lines 11–
12 collect information needed to specify the constraint, |L| ≥ 0. First, coeffs collects the
number of occurrences of the labeled edges from participating contingent links. These counts
are important because, for example, increasing the value of some xi to x̂i increases |L| by
ai(x̂i − xi), while decreasing yi to ŷi increases |L| by bi(yi − ŷi). Overall, changing the values
in (xπ(1), yπ(1), . . . , xπ(κ), yπ(κ)) to (x̂π(1), ŷπ(1), . . . , x̂π(κ), ŷπ(κ)) increases |L| by:∑κ

i=1(aπ(i)(x̂π(i) − xπ(i)) + bπ(i)(yπ(i) − ŷπ(i)))

Therefore, satisfying |L| ≥ 0 requires choosing values, x̂π(i) and ŷπ(i), such that:∑κ
i=1(aπ(i)x̂π(i) − bπ(i)ŷπ(i)) ≥ −|L| +

∑κ
i=1(aπ(i)xπ(i) − bπ(i)yπ(i))

The lefthand sum is a linear combination of the variables, x̂π(i) and ŷπ(i), while the quantity
on the righthand side is a constant. That constant is assigned to const at Line 12.

Line 13 calls a non-linear optimization solver, here called nlpOpt. Currently, our algorithm
uses the fmincon solver provided by Matlab; others have used the SNOPT solver. If the
solver is unable to find a new set of bounds for the contingent links to resolve the SRN
cycle, then the entire algorithm fails. However, if successful, it returns a vector of the new
bounds, x̂i and ŷi, and the value of the objective function F . Line 15 updates the bounds
in the STNU to reflect the new values. Line 16 calls FindSRNC in preparation for the next
iteration of the while loop. If Line 18 is reached, then the STNU Su has been made DC. It
is returned by the algorithm, along with the updated value of the objective function.

The fetchEdgeInfo Algorithm

The fetchEdgeInfo algorithm (Algorithm 2) accumulates the numbers of occurrences of LC
and UC edges in the SRN cycle L. Crucially, it does not need to expand L fully. Instead, it
uses a hash table, infoHash, to keep track of the numbers of occurrences of labeled edges
recursively hiding within each encountered bypass edge. When it first sees a bypass edge
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Algorithm 2 fetchEdgeInfo.
Input: k, the number of contingent links; P, a path in an STNU graph; edgeAnnHash, a

hash-table of (E, PE) pairs where PE is the path bypassed by the edge E

Output: (len, (a1, . . . , ak), (b1, . . . , bk)), where len = |P|, and ai and bi are the numbers of
times (Ai, ci:xi, Ci) and (Ci, Ci:−yi, Ai) appear in the fully unwound version of P

1 infoHash ··= new hash table; len ··= 0
2 lcCounts ··= (0, . . . , 0); ucCounts ··= (0, . . . , 0) // Counts of occurrences of LC/UC edges
3 foreach E ∈ P do
4 if E = (Ai, ci:xi, Ci) is an LC edge for some i then
5 len ··= len + xi; lcCounts[i] ··= lcCounts[i] + 1
6 else if E = (Ci, Ci:−yi, Ai) is a UC edge for some i then
7 len ··= len − yi; ucCounts[i] ··= ucCounts[i] + 1
8 else if ∃(E, PE) ∈ edgeAnnHash then // E is a bypass edge for path PE

9 if ∃(E, ·) ∈ infoHash then // E has already been processed by fetchEdgeInfo
10 (len′, lcCounts′, ucCounts′) ··= infoHash.getValue(E)
11 else
12 (len′, lcCounts′, ucCounts′) ··= fetchEdgeInfo(k, PE) // Recursively process PE

13 infoHash.setValue(E, (len′, lcCounts′, ucCounts′)) // Store results in infoHash

14 len ··= len + len′

15 foreach i ∈ {1, 2, . . . , k} do
16 lcCounts[i] ··= lcCounts[i] + lcCounts′[i]; ucCounts[i] ··= ucCounts[i] + ucCounts′[i]

17 else len = len + |E| // E is an ordinary edge from the original STNU
18 return (len, lcCounts, ucCounts)

E, it recursively processes it, then stores the vectors of counts in the infoHash hash table.
Subsequent encounters with E only need to do a constant-time look-up in the hash table
(cf. Lines 9–13 in Algorithm 2). fetchEdgeInfo requires O(nk2) space due to at most O(kn)
entries stored in the infoHash hash table, each of size O(k). This is less than the O(n2k)
size of the edge-annotation hash table, H, passed in as an input.

4.2 Flexible and Efficient Real-time Execution

Most DC-checking algorithms generate conditional wait constraints that must be satisfied
by any valid execution strategy. Each wait is represented by a labeled edge of the form
(W, C:−w, A), which can be glossed as: “While C remains unexecuted, W must wait at least
w after A.” (Despite the similar notation, a wait is distinguishable from the original UC
edge since its source timepoint is not the contingent timepoint C.) Morris [22] defined an
Extended STNU (ESTNU) to be an STNU augmented with such waits. He then extended
the notion of dispatchability to ESTNUs, defining an ESTNU to be dispatchable if all of its
STN projections are STN-dispatchable.6 He then argued that a dispatchable ESTNU would
necessarily provide a guarantee of flexible and efficient real-time execution.

6 A projection of an ESTNU is the STN derived from forcing its contingent durations to take on fixed
values. Each edge in an ESTNU projects onto an ordinary STN edge. For example, in the projection
where C − A = 4, the edges (A, c:2, C), (C, C:−9, A), (W, C:−7, A) and (V, C:−3, A) project onto the
ordinary edges (A, 4, C), (C, −4, A), (W, −4, A) and (V, C: − 3, A), respectively [18].
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Hunsberger and Posenato [18] later:
1. formally defined a flexible and efficient real-time execution algorithm for ESTNUs, called

RTE∗;
2. defined an ESTNU to be dispatchable if every run of RTE∗ necessarily satisfies all of the

ESTNU’s constraints; and
3. proved that an ESTNU satisfying their definition of dispatchability necessarily satisfies

Morris’ definition (i.e., all of its STN projections are STN-dispatchable).

The RTE∗ algorithm provides maximum flexibility during execution, unlike the earliest-
first strategy used for non-dispatchable networks.

Most DC-checking algorithms do not generate dispatchable ESTNUs. However, Morris [22]
argued that his O(n3)-time DC-checking algorithm could be modified, without impacting
its complexity, to generate a dispatchable output. In 2023, Hunsberger and Posenato [15]
presented a faster, O(mn + kn2 + n2 log n)-time ESTNU-dispatchability algorithm. However,
neither of these algorithms provides any guarantees about the number of edges in the
dispatchable output. More recently, Hunsberger and Posenato [17] presented minDispESTNU,
the first ESTNU-dispatchability algorithm that, in O(kn3) time, generates an equivalent
dispatchable ESTNU having a minimal number of edges, which is important since it directly
affects the real-time computations of the RTE∗ algorithm.

Our new approach to executing PSTNs in real time is the first to explore the use of the
flexible and efficient RTE∗ algorithm. To enable this, we first use the minDispESTNU algorithm
to convert the DC STNU output by genApproxSTNU into an equivalent, dispatchable ESTNU
having a minimal number of edges. Then, we execute the PSTN using the RTE∗ algorithm
as if it were being applied to the dispatchable ESTNU. In other words, the time-windows and
wait constraints maintained by RTE∗ are determined by the ESTNU’s edges. In addition, to
increase the chances of successful execution, RTE∗ is run not with the needlessly inflexible
earliest-first strategy that has been used by others [3, 31, 8], but with a more flexible midpoint
strategy made available by RTE∗. In particular, if a currently enabled timepoint X has a
time-window [a, b], then instead of executing X at a, we execute it at a+b

2 . This enables
RTE∗ to adapt to unexpected durations that fall outside the STNU’s fixed bounds.

5 Empirical Evaluation

We evaluated the robust execution of PSTNs by generating random PSTN instances, then
executing them using the RTE∗ algorithm based on the approximating STNU, converted to a
dispatchable ESTNU. We randomly generated durations for the probabilistic links according
to their distributions. Since the probabilistic durations could fall outside the contingent
bounds of the ESTNU, RTE∗ might not succeed in all instances, but the percentage of
successful executions across random trials provides a measure of the PSTN’s robustness.

We wanted to evaluate whether (1) creating a dynamically controllable STNU to approx-
imate a PSTN; and (2) taking advantage of the flexibility offered by the RTE∗ execution
algorithm might lead to a greater percentage of successful PSTN executions, even in cases
where the sampled durations fall outside the STNU’s fixed bounds. Toward that end, we
took non-DC STNUs from a published benchmark [25] and converted them into PSTNs as
described in the Appendix (cf. the GenPSTN algorithm, Algorithm 4). The results of this
phase are summarized in Table 1, where n, k, and m are the numbers of timepoints, contin-
gent durations, and constraints; “exTime” is the average time to execute genApproxSTNU;
“optTime” is the average time spent running the non-linear optimization solver; “#NLOprobs”
is the average number of calls to the non-linear optimization solver; “%probMass” is the
average probability mass of the probabilistic links captured by the approximating STNU; and
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Table 1 Results using genApproxSTNU to generate DC approximating STNUs for PSTNs.

#PSTNs n k m exTime [s] optTime [s] #NLOprobs %probMass #RCs
24 500 50 1558 0.191 0.141 0.96 77 11
24 1000 100 3136 0.223 0.042 1.00 67 17
14 1500 150 4713 0.573 0.100 1.21 43 10
17 2000 200 6289 0.914 0.046 1.11 53 16

Table 2 Results of RTE∗ execution algorithm on PSTNs: Earliest-First (EF) vs. Midpoint (MP).

#PSTNs n k m execTP
(µs)

%trials-
in succ

EF MP

%trials-
out succ
EF MP

%trials-
out fail

EF MP

num out
if succ

EF MP

num out
if fail

EF MP
24 500 50 2500 9.16 73 73 5 5 22 22 1.08 1.09 1.06 1.06
24 1000 100 5119 14.98 66 66 8 6 26 28 1.03 1.03 1.10 1.12
14 1500 150 7883 26.14 58 58 4 7 38 35 1.07 1.08 1.16 1.15
17 2000 200 106522 31.05 53 53 8 8 39 39 1.10 1.11 1.21 1.23

“#RCs” is the number of approximating STNUs having one or more activation timepoints
participating in rigid components. As expected, the percentage of the probability mass
captured by the approximating STNU fell as the number of contingent durations increased
since, for example, .99550 ≈ .778, whereas .995200 ≈ .367. In addition, since the initial STNU
was non-DC, making it DC could require reducing contingent ranges significantly.

After converting the STNU instances into their minimal dispatchable form [17], we ran the
RTE∗ algorithm 200 times on each dispatchable ESTNU, where the contingent durations were
obtained by randomly sampling the associated log-normal distributions (15800 executions in
total). To test the impact of the execution strategy on the rate of successful execution, the
execution of each network in the same situation (i.e., in the same projection) was run twice:
once with the earliest-first strategy, which executes timepoints as soon as possible, and once
with the midpoint strategy, which executes timepoints at the midpoints of their time-windows.
Table 2 summarizes our results, where: “execTP” reports the average time (in µsecs) to
schedule each timepoint; “%trials-in succ”, the percentage of executions/trials where all
sampled durations fell within the respective contingent bounds of the ESTNU. For such cases,
the execution strategy (earliest-first results in plain text, midpoint in italic) is irrelevant
because any RTE∗ execution is guaranteed to succeed for dispatchable ESTNUs. Column
“%trials-out succ” reports the percentage of trials where one or more contingent durations fell
outside the ESTNU’s contingent bounds (called outlier trials), but the execution succeeded
anyway due to the flexibility of RTE∗ (higher value represents the best performance); while
“%trials-out fail” reports the average number of outlier trials where the execution failed
(lower value represents the best performance). Column “num out if fail” reports the average
number of outlier durations in failed executions; while “num out if succ” reports the average
number of outlier durations in successful executions. The comparison of the “%probMass”
values from Table 1 and “%trials-in succ” from Table 2 confirms that the probability mass
captured by the ESTNU’s contingent links corresponds to situations that always generate
successful executions. It is not clear if the execution strategy for the controllable timepoints
(earliest-first or midpoint) can increase the rate of successful executions, given that the
number of different PSTNs is limited. Further investigation is necessary, including on PSTNs
from real-world applications. Nonetheless, our results provide evidence that the RTE∗

algorithm makes it possible to have successful executions even when one or more contingent
durations are outside the ESTNU’s bounds.

Our implementations are publicly available [26].
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6 Conclusions

The paper presented a new approach to the robust execution of PSTNs that takes advantage
of several recent efficient algorithms for:
1. finding and compactly representing SRN cycles in non-DC STNUs;
2. converting DC STNUs into equivalent, dispatchable ESTNUs having a minimal number

of edges; and
3. flexibly and efficiently executing ESTNUs in real time.
We presented a new algorithm to generate an approximating STNU that aims to maximize
the combined probability mass of the PSTN’s probabilistic durations while maintaining the
dynamic controllability of the STNU; and a formal analysis of SRN cycles that provided new
insights into how to efficiently resolve them while avoiding issues arising in past approaches.
Our empirical evaluation of our approach provides evidence of its effectiveness on robustly
executing PSTNs derived from a publicly available benchmark. In particular, it shows that
approximating a PSTN by a dispatchable ESTNU and taking advantage of a flexible real-time
execution algorithm can increase the chances for a successful execution of that PSTN.
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Appendix

A Procedure for Tighten Contingent Bounds to Resolve an SRN

In this section, we propose nlpOpt, a possible algorithm that tightens contingent bounds to
resolve an SRN cycle using “Sparse Nonlinear OPTimizer” (SNOPT) library [9]. SNOPT
is a software package for solving large-scale optimization problems (linear and nonlinear
programs). It employs a sparse Sequential quadratic programming (SQP) algorithm with
limited-memory quasi-Newton approximations to the Hessian of Lagrangian.

In nlpOpt we assume that the bounds on contingent links are monotonically tightened,
using only a single linear constraint per iteration. A different possibility is to collect the linear
constraints from each iteration and run the optimization solver on all of the accumulated
constraints.

In the experimental evaluation, it was not possible to use the SNOPT library due to a
compatibility problem. MatLab-Optimization Toolbox library offers the fmincon function
to solve minimization constrained nonlinear problems using a sparse Sequential quadratic
programming (SQP) algorithm, the same technique used by SNOPT. Therefore, we adapted
the nlpOpt algorithm, reformulating the optimization problem as a minimization one and
using a MatLab script to represent the non-linear objective function.

B PSTN Generation

To generate a set of PSTN instances for our benchmark, we considered the set of random
non-DC STNUs from a published benchmark [25]. Such instances aim to represent the
temporal representation of business processes organized in worker lanes. Contingent links
represent tasks and ordinary links represent temporal deadlines or release times of such tasks.
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Algorithm 3 The nlpOpt algorithm: tighten contingent bounds to resolve an SRN cycle.

Input: k: the number of contingent durations; (µ1, . . . , µk) and (σ1, . . . , σk): k-vectors of µ and
σ parameters for log-normal distributions; coeffs and const: a matrix of coefficients
and a corresponding vector of lower bounds for one or more linear constraints;
(x1, y1, . . . , xk, yk): a vector of initial bounds for the contingent durations

Output: (v, F), where v contains optimized bounds for the k contingent durations, and F is the
corresponding value of the objective function

1 snN ··= 2k

2 numCs ··= numRows(coeffs) // numCs is the number of linear constraints
3 snNF ··= 1 + numCs // snNF includes 1 for the objective function
4 F ··= a new vector with snNF slots // F will hold values of objective function and linear constraints

// Initialize v, the vector of variables
5 v ··= (x1, y1, . . . , xk, yk)

// Set lower and upper bounds for the variables in v
6 vlow ··= (x1, eµ1 , x2, eµ2 , . . . , xk, eµk )
7 vupp ··= (eµ1 , y1, eµ2 , y2, . . . , eµk , yk)

// Set lower and upper bounds for the objective function (in [−1, 0]) and the linear constraints
8 Flow ··= (−1, const[1], const[2], . . . , const[numCs])
9 Fupp ··= (0, ∞, ∞, . . . , ∞)

// Local function that SNOPT uses to compute the objective function and linear constraints
10 Function stnuUsrFun(v ): // v = (ℓ1, u1, . . . , ℓk, uk)

// Store the value of the objective function in F[1]
11 F[1] ··= Π1≤i≤k (lnCDF(ui, µi, σi) − lnCDF(ℓi, µi, σi)) // lnCDF = log-normal CDF

// Store the values of the lefthand sides of the linear constraints in F[2], . . . , F[snNF]
12 foreach j ∈ {1, . . . , numRows(coeffs)} do
13 F[j + 1] ··= coeffs[j][1] ∗ v[1] + . . . coeffs[j][2k] ∗ v[2k]

// Call the SNOPT solver, which destructively modifies v
14 (v, F, . . .) ··= snSolveA(v, vlow, vupp, Flow, Fupp, &stnuUsrFun)
15 return (v, F)

Algorithm 4 The GenPSTN algorithm: generation of a PSTN candidate from an STNU.
Input: N = (TN , CN , L): an STNU where L is a set of k contingent links, each of the form

(Ai, xi, yi, Ci), where A, C ∈ T and 0 < x < y < ∞.
Output: S = (TS , CS , M): a PSTN where M = {(Ai, Ci, Lognormal(µi, σi)) |∈ {1, . . . , k}}

1 TS := TN

2 CS := CN

3 M := ∅
4 σf := 0.3 // Factor to limit the final σ value
5 foreach (A, x, y, C) ∈ L do
6 M = (x + y)/2
7 S = σf (y − x)/2
8 µ = ln(M2/

√
M2 + S2)

9 σ =
√

ln(1 + S2/M2)
10 M := M ∪ {(A, C, Lognormal(µ, σ))}
11 return (TS , CS , M)

Each random STNU was converted into a PSTN using the GenPSTN algorithm described
in Algorithm 4. For each contingent link (A, x, y, C) in the STNU, GenPSTN creates a
probabilistic duration with a log-normal distribution with parameters µ and σ chosen to
ensure that the mean of the distribution is (x + y)/2, and three standard deviations captures
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the entire range [x, y] [20]. Starting with a non-DC STNU guarantees that the initial STNU
candidate generated by genApproxSTNU would not be DC and, hence, would require multiple
iterations to find an approximating STNU that was DC. However, because some non-DC
STNUs have negative cycles comprising only ordinary edges and, hence, cannot be made DC
by restricting their contingent ranges, only the PSTNs for which DC approximating STNUs
can be created were kept.
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Abstract
Simple Temporal Networks with Uncertainty are a powerful and widely used formalism for represent-
ing and reasoning over convex temporal constraints in the presence of uncertainty called contingent
constraints. Since their introduction, they have been used in planning and scheduling applications
to model situations where the scheduling agent does not control some activity durations or event
timings. What needs to be checked is then the controllability of the network, i.e., that there is a
valid execution strategy whatever the values of the contingents. This paper considers a new type of
multi-agent extension, where, as opposed to previous works, each agent manages its own separate
STNU, and the control over activity durations is shared among the agents: what is called here
a contract is a mutual constraint controllable for some agent and contingent for others. We will
propose a semantically enriched version of STNUs that will be composed into a global Multi-agent
Interdependent STNUs model. Then, controllability issues will be revisited, and we will focus on the
repair problem, i.e., how to regain failed controllability by shrinking some of the shared contract
durations, here in a centralized manner.
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1 Introduction

In many domains, such as planning and scheduling, systems diagnosis and control, etc,
one needs to explicitly represent activities that may or must not overlap in time, last over
some duration, and synchronize with timestamped expected events [4, 16, 15, 1]. The most
commonly used model is Temporal Constraint Networks (TCN) [5]: nodes are time-points,
and edges express sets of possible durations relating them. A key issue is the ability to check
the temporal satisfiability of the plan/system/process through the consistency of the TCN.
The simplest class of TCN, called the Simple Temporal Network (STN), arises when they
have only binary constraints with convex intervals of values. Consistency checking is made
through polynomial-time propagation algorithms.

A well-known extension of STNs that handles uncertainties, called STNU (Simple Tem-
poral Network with Uncertainty), has been proposed by [17]. An STNU contains uncertain
(contingent) durations between time-points, which means the effective duration is not under
the control of the agent executing the plan, which is useful for addressing realistic dynamic
and stochastic domains.
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In STNUs, temporal consistency has been redefined as controllability: an STNU is control-
lable if a strategy exists for executing the schedule, whatever values the contingent durations
take. In [17], the authors introduce three levels of controllability: Weak Controllability (WC),
Dynamic Controllability (DC), and Strong Controllability (SC). These levels depend on
how and when the uncertainties are resolved, i.e., the actual durations are observed/known.
Different checking approaches have been proposed, widely discussed, and improved [17, 11, 9].

Considering Multi-agent agents interacting in a common environment, each with its
own set of temporal activities, have been studied but only for multiple STNs [7] or for a
global multi-agent STNU, all agents considering the same kind of contingent durations set
by Nature [3] which hence cannot be modified in any way.

But there has been no work addressing the case where temporal coordination is needed
due to the uncertainty for one agent coming from decisions made by another one: the duration
of a shared activity is controllable (hence flexible) for say agent A1 and contingent (only
observed) for agent A2.

After exposing the most relevant related work in section 2, the paper focuses on our main
contributions: (1) it revisits in section 3 the STNU model by formally defining the execution
and observation semantics; (2) it proposes in section 4 a new global model called Multi-agent
Interdependent STNUs (MISTNU), in which one can represent activity durations whose
status differs among distinct agents, and it characterizes the three levels of controllability
at the MISTNU level. Last, section 5 focuses on the repair problem, i.e., how to tighten
the negotiable contingent constraints to recover controllability when checking has failed,
proposing a first approach and experiments through a SMT-based encoding to synthesize valid
repairs for Weak Controllability, before concluding our contributions with a few prospects.

2 Related work

In the literature, some works have tackled the problem of Multi-agent Simple Temporal
Networks (MaSTN) in a centralized manner by decoupling a global STN into sub-networks,
to distribute the control of a temporal plan among a group of agents in real-time execution
scenarios [7, 8]. A fully distributed approach with the notion of privacy between agents is
given in [2]. Still, this approach is incomplete in the sense that agents must agree in advance
on some fixed durations, which prevents more dynamic solutions from being found. STNUs
have received less attention in multi-agent settings, except for the MaSTNU model [3], which
proposes a centralized approach to manage a multi-agent plan. This work decouples an STNU
into sub-networks, ensuring all of them are dynamically controllable, using a Mixed Integer
Linear Programming approach. A more decentralized approach that assumes a central agent
that generates candidate decoupling solutions using the limited shared information of the
agents is proposed in [18]. The authors ensure each agent independently tests the candidate
on its local network and reports conflicts to guide the decoupling solution generation process
until all networks are DC. However, the proposed decoupling algorithm may still prune some
solutions. Nevertheless, both assume exogenous contingent constraints, i.e., uncertainties
coming from outside the system and contingent for everyone.

To the best of our knowledge, no work in the literature has tackled the problem of a
multi-agent system with non-exogenous durations (contingents because they are controlled
by another agent). Contrary to previous approaches, this problem requires redefining and
extending the expressiveness of STNUs. It also requires, as it will be explained, checking if
the networks provided at the planning step are temporally well-formed, another issue that
was not considered in previous works.
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3 Definitions with Execution and Observation semantics

3.1 A revisited model for the single agent case
A Simple Temporal Network (STN ) is a pair, (V , E), where V is a set of time-points vi

representing event occurrence times, and E a set of temporal constraints between these time-
points, in the form of convex intervals of possible durations [5], in the form vj ´ vi P rlij , uijs,
with lower bounds lij P RY t´8u and upper bounds uij P RY t`8u. Interestingly enough,
this model encompasses the qualitative precedence constraint, since vi precedes vj , noted
vi ĺ vj , iff lij ě 0. A reference time-point v0 is usually added to V, which is the “origin of
time”, depending on the application (might be, e.g., the current day at 0:00). The goal is to
assign values to time-points such that all constraints are satisfied, i.e., to assign a value to
each constraint in its interval domain.

An STN with Uncertainty (STNU ) is an extension in which one distinguishes a subset of
constraints whose values are parameters that cannot be assigned but will be observed [17].

As for the global planning/execution framework, we first recall that for a single agent,
one usually reasons upon two phases: plan generation and execution. Considering specific
constraints (resources, time, uncertainties) often requires an additional constraint satisfaction
phase to validate the generated plan. Here, we focus on the problem of checking the
satisfiability of a plan under temporal uncertainty. So we start the definition of our framework
with a planning, a validation, and an execution phase.

▶ Definition 1 (STNU). An STNU is a tuple pV, E, Cq such that:
V is a set of time-points tv0, v1, . . . , vnu, partitioned into controllable pVcq and uncontrol-
lable (Vu) with v0 the reference time-point such that @i, v0 ĺ vi, v0 P Vc;
E is a set of requirement constraints te1, . . . , e|E|u, where each ek relates two time-points
ek “ vj ´ vi P rlij , uijs with, vi, vj P V .
C is a set of contingent constraints tc1, . . . , c|C|u, where each ck relates two time-points
ck “ vj ´ vi P rlij , uijs with, vi P Vc, vj P Vu, and we have vi ĺ vj

1. We will denote
endpckq as vj.

▶ Definition 2 (Schedule). A schedule δ of an STNU X “ pV, E, Cq is a mapping δ from
all the controllable time-points to real values where: δ “ tδpv1q, . . . , δpv|Vc|qu with @i, vi P

Vc, δ : vi Ñ R

▶ Definition 3 (Situation and Projection). Given an STNU X “ pV, E, Cq, the situations
of X is a set of tuples Ω defined as the cartesian product of contingent domains:

Ω “
ą

c P C

rlc, ucs

A situation ω P Ω is composed of values noted ωk P rlij , uijs for each each ck “ rlij , uijs P C.
A projection Xω “ pV, E Y Cωq of X is an STN where Cω is obtained by replacing each
ck in C by c1

k “ vj ´ vi P rωk, ωks. A schedule δω is a solution of Xω if it satisfies all the
constraints in Xω.

1 Since here contingent durations are semantically linked to activities owned by some agent, with a start
and end time-points, it is not possible to have a contingent duration between two unordered time-points.
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13:4 Introducing MISTNU for Multi-Agent Temporal Planning

Intuitively, the set of situations defines the space of uncertainty, i.e., the possible values of
contingent constraints; a projection substitutes all contingent links with a singleton, forcing
its duration to the value appearing in ω. Now, a network shall be deemed controllable if it is
possible to schedule the controllable time points to satisfy all requirement constraints in any
possible projection. However, that depends on how and when the contingent durations are
observed/known by the execution supervisor. Then, to reach a semantically sound definition
of the controllability properties, we need to express not only at which time a controllable
time-point (resp. a contingent duration) is executed by the agent (resp. set by the owner) but
also at which time that value is decided (resp. observed/known) by the execution controller
in charge of the agent plan execution.

▶ Definition 4 (Decisions and Observations). @vi P Vc, decpviq is the time-point at which
δpviq is decided by the execution controller.
@ωk P C, obspωkq is the time-point at which ωk is observed by the execution controller.

▶ Definition 5 (Weak Controllability (WC)). An STNU X is weakly controllable iff
@ω P Ω, Dδω such that δω is a solution of Xω.
Execution semantics: @ωk P ω, obspωkq=v0, and the decision policy is free: @vi P Vc,
decpviq ĺ vi

▶ Definition 6 (Strong Controllability (SC)). An STNU X is strongly controllable iff D δ

such that @ω P Ω, δ is a solution of Xω.
Execution semantics: @vi P Vc, decpviq “ v0, and the observations are free: possibly no
observation (@ωk P ω, obspωkq “ H) or observations during execution that will just update
the bounds of the constraints in the network.

In other words, WC assumes that values of contingent durations will be known after
plan validation, but before the execution starts. Without any loss of generality, we will
consider that all values are set at once exactly at the beginning of the execution: we call this
process the initialization phase. Then, the schedule can be assigned at the beginning (fixed
schedule) or during execution (flexible schedule). For SC, values of contingent durations may
be known (or not) at any time since one demands a fixed schedule, which must be set before
execution starts, for instance, because users or other agents need to know the precise timing
in advance. So, that schedule must be conformant to any possible contingent values. Thus,
the initialization phase will be devoted to schedule assignment.

▶ Definition 7 (Dynamic Controllability (DC)). An STNU X is Dynamically controllable
iff it is Weakly controllable and @vi P Vc,@ω, ω1 P Ω, ωĺvi “ ω1ĺvi ùñ δωpviq “ δ1

ωpviq

where ωĺv “ tωk P ω s.t. obspωkq ĺ decpvqu is the part of the situation ω in which contingent
constraints values are observed before executing v.
Execution semantics: @ωk P ω, obspωkq=endpckq, and @vi P Vc, decpviq “ vi

In other words, DC assumes that values of contingent durations will be known during
execution, and exactly at the time of occurrence of the ending time-point of the contingent
constraint. The schedule is also assigned during execution (flexible schedule), deciding the
time of activation of some activity only when all preceding time-points have occurred. Hence,
there is no initialization phase.

▶ Example. A medical vehicle must visit several villages to offer free COVID testing to the
population. The number of people to show off and, hence, the duration of the stay in each
village is uncertain. A valid flexible strategy needs to be designed and checked in advance
anyway (planning and validation), knowing that the precise information will be known and
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sent to the agent by all the villages one hour before the route begins (initialization). Thus, the
agent will know exactly the durations its activities will take and can start executing the plan,
which implies WC. If the agent cannot know the number of people waiting in each village in
advance, the duration of their testing activities will be known only when the agent arrives,
which implies DC. Let’s suppose now a rigid valid strategy is required, with village visiting
times fixed in advance (hence at the initialization phase at the latest) and no prior knowledge
of the number of people in each village. Then SC must be satisfied.

As a matter of conclusion for the single agent context, we have designed a general
framework to deal with temporal uncertainty in planning, including 4 phases: planning,
validation, initialization, and execution. There is only one possible backtrack: if the validation
phase fails (controllability checking fails), the only thing to do is backtrack to the planning
engine to find an alternative plan. We show these steps in Figure 1a.

Planning

Validation

Initialization

Execution

OK

␣ OK

(a)

Task Allocation

Planning

Validation

Repair

Initialization

Execution

C

C Dor

C Dor

C Dor

D

D

␣ OK

OK

␣ OK

OK

␣ OK

(b)

Figure 1 shows the global framework for a single agent (1a) and multiple agents (1b). Node
C and double-circled node D refer to the possibility of that step being either centralized (C) or
distributed (D). Please note that the initialization phase only exists for WC and SC as DC implies
to decide/observe during execution.

3.2 A new temporal multi-agent framework
For a single agent, the contingent duration assignment is exogenous; hence, it is assumed
that there is no way to influence them. Saying that “Nature” will assign those values is a
usual way to capture that.

However, in a multi-agent environment, a contingent duration may be decided by another
agent. So even though the agent that depends on this contingent cannot decide its value,
it might be possible to communicate with the owner agent to change the possible values.
Intuitively, that owner agent will decide the duration but commits to assign it within the
lower and upper bounds. Some other compliant agents depend on that constraint, which
is contingent on their network. The former agent (owner) communicates its commitment
(lower and upper bound) to the compliant agents at some point before the agents check the
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13:6 Introducing MISTNU for Multi-Agent Temporal Planning

controllability of their networks. We call this kind of commitment a contract between the
owner and the compliant agents, where a compliant agent has the right to request new bounds
as long as it guarantees the satisfaction of both agents, i.e., to ensure each is controllable.

First of all, to get a complete picture, we must recall that in multi-agent planning, there
might be a first phase of task allocation to distribute the goals to achieve to the agents.
That phase is usually centralized or devoted to specialized agents. Then the planning may
be centralized, the global plan being decoupled into separate agent plans or distributed,
each agent building its own plan individually. In both cases anyway, dependencies and
synchronizations must be considered, calling for some way to share activities controlled by
one agent but which outcome is needed by another.

In the end, it is assumed that execution will be launched concurrently by all the agents.
But before that, after the planning is completed, there is still the need to validate the
individual plans through, in our case, temporal controllability checking algorithms. Once
again, it can be done by a central agent having a view of all the plans or in a distributed
way by each agent.

The way that can be done then depends on the observation and decision semantics that
have been introduced in the previous section. First, if the application requires that all
schedules must be fixed in advance, that means one needs to consider a common initialization
phase to fix those schedules, which means all agents must ensure SC. Second, if flexible
schedules are allowed, then WC or DC apply. The difference depends on how and when
the “owner” agents set and communicate the values of activity durations on which other
agents are dependent. If that is done before the execution, they must consider a common
initialization phase when all agents will decide and exchange the shared activities durations,
which is consistent with the definition of WC. If such decisions are to be taken during the
execution and communicated as soon as they occur and with no delay, then DC applies.

▶ Example. In a hospital environment, a patient has to follow a path through several services
that manage their timetabling separately. The path has to satisfy partially ordered constraints
between the different services. Now consider that the durations of activities in each service
depend, for instance, on the patient features that will only be assessed at the time each activity
begins. Then, if all services require a rigid timetable where each operation has a unique
starting time that is fixed in advance and appears in the calendar, then SC applies for all; if
flexibility is allowed in the sense that operations start times might be decided on the fly, then
all services must account for some global DC. Now, consider that each service does not know
in advance how many people will be working that day (due to last-minute staff allocation and
potential sick leaves), which affects the duration of the patient care. In that case, a plan must
be proven valid in advance without such information, but all services will know and exchange
them through a common initialization phase when the day starts, which implies WC.

Of course, this framework is only relevant in homogeneous multi-agent problems when all
agents have the same behavior, which we assume here. If not, the classical controllability
checking algorithms will not be applicable, which is not our focus. For instance, when agents
aim to satisfy different levels of controllability, it results in sharing the decisions of the
contracts at different times (before, online, or never). This semantic is different from the
one classical controllability checking algorithms assume, as the uncontrollable duration will
either be known before execution (WC), online (DC), or never known (SC). This framework
also assumes that the initialization phase is synchronous, i.e., all decisions must be taken by
all agents at the same time, without communication nor hierarchy between them; otherwise,
the semantics of WC (or SC) will not be met, and what needs to be checked will also be
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something different that is out of the scope of our current study. Hence, extending the
well-defined semantics of WC, SC, and somehow DC to a multi-agent setting aligns with
specific and somehow restricted semantics of the behavior of the team of agents.

Then, going back to the validation phase, if at least one agent is not controllable, then it
is still possible to backtrack to the planning phase to find an alternative. Still, it is possible
to negotiate with other agents to change the values of some contracts they control. If the
“owner” agent agrees to change the bounds of the contract controls so that both agents
are now controllable, the problem is solved without needing a more complex replanning
stage. This new phase, either centralized or distributed, is the repair phase and may require
controllability checking algorithms capable of diagnosing the source of uncontrollability [10].
This new phase may also succeed or fail (no solution exists) with no other choice but to
backtrack to the planning phase. Figure 1b synthesizes this new global framework.

4 The MISTNU model

4.1 Definitions
The concept of negotiable contingent constraints arises in a multi-agent context when such a
constraint is not controlled by Nature but by one agent of the system. Hence, we slightly
modify the definition of an STNU in the form of a Contracting STNU (cSTNU) by explicitly
considering some constraints as owned by the agent and relating the contingent constraints
to so-called contracts, the bounds and the owner of such contracts being now defined outside
the model, to be shared by several agents2.

▶ Definition 8 (cSTNU). A Contracting STNU (cSTNU) is an STNU where links representing
contracts are labeled. A cSTNU is a tuple S “ xV, R, W, E, C, Oy such that:

V is a set of time points, partitioned into Vc and Vu (Definition 1)
R and W are sets of contracts owned (W) and observed (R), such that RXW “ H

E is a set of requirement links of the form vi
rl,us
ÝÝÝÑ vj;

C is a set of labeled contingent links of the form vi
p

vj where p P R.
O is a set of owned contract links of the form either vi

p
ÝÑ vj or vi

p
vj , one for each

contract p P W .
In addition, we require that @vj P Vu, there exists a unique labeled contingent link of the form
vi

p
vj in C YO.

One can notice that a contract is a labeled link where an agent may consider its owned
contracts (in W) as contingent or requirement constraints, depending on its policy (represented
by O). Forcing that constraint to be contingent prevents the agent from shrinking it when
running some local propagation algorithm to respect its commitment to others or to retain
the contract’s maximal flexibility at execution time (i.e., it refuses any reduction to allow
other agents to regain control). That shall enable us to tune our global model accordingly
in settings where agents are more or less selfish or cooperative. An expressiveness is not
allowed by the STNU model. In addition, in a multi-agent scenario, it’s important to note
that requirement constraints in E are private.

Then, in Definition 9, we define the model of Multi-agent Interdependent Simple Temporal
Networks under Uncertainty (MISTNU).

2 As already mentioned, an exogenous contingent constraint can still be modeled here, being related to a
contract without any owner; which will be allowed in the global model.
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13:8 Introducing MISTNU for Multi-Agent Temporal Planning

▶ Definition 9 (MISTNU). A MISTNU is a tuple G “ xA, Σ, By such that:
A is a set of agents ta1, a2, . . . , anu;
Σ is a set of cSTNUs Sa “ xVa, Ra, Wa, Ea, Ca, Oay, one for each a P A, such that
@a P A, vz P Va, where vz is the mutual reference time point: @vi P Va, vz ĺ vi;
for every pair of agents a, b P A, Wa XWb “ H

B is a map from contracts to bounds B :
Ť

aPApRa YWaq Ñ R2.

A MISTNU is a model G composed of a set of agents, where each agent has its own
cSTNU and might own or read contracts; some of them are shared and might be negotiated.
Then, G is also composed of a map of contracts to bounds B that indicates for every contract
p its lower/upper bound denoted as a pair xlp, upy with lp and up respectively the lower and
upper bound of the interval of possible durations. This allows us to reduce a cSTNU into an
STNU by applying B:

▶ Definition 10 (cSTNU reduction). Given a cSTNU S “ xV, R, W, E, C, Oy and a map
B : W YR Ñ R2 giving bounds to contracts, S can be reduced to an STNU SG 9“xV, E1, C 1y

with:
E1 “ E Y tvi

rlp,ups
ÝÝÝÝÑ vj | vi

p
ÝÑ vj P O, Bppq “ xlp, upyu

C 1 “ tvi
rlp, ups

vj | vi
p

vj P C YO, Bppq “ xlp, upyu

As a cSTNU can be reduced to an STNU with Definition 10, the definitions of its
situations and projections directly come from Definition 3. However, for the global MISTNU
model, things are a little more complex. We hence first provide further definitions:

for any agent a, Pa “ Ra YWa is the set of all its contracts;
P “

Ť

a Pa gathers the contracts of all the agents; W “
Ť

a Wa the ones having owners.
for any cSTNU S, σpS, pq “ vi s.t. Dvj , vi

p
vj P C YO or vi

p
ÝÑ vj P O denotes the

starting time point of contract p in S.

▶ Definition 11 (MISTNU situation). Given a MISTNU G “ xA, Σ, By, the situations of G
is a set of tuples of reals ΩG defined as the cartesion product of:

ΩG “
ą

pPP

rlp, ups.

A situation is an element ω of ΩG and we write ωppq with p P P to indicate the element in
ω associated with p in the cross product.

▶ Definition 12 (MISTNU projection). Given a MISTNU G “ xA, Σ, By, and a situation ω,
the projection Gω is a model xA, Σω, Bωy where:

Bω is a map from contracts to fixed values Bω : P Ñ R2 such that Bω “ txωppq, ωppqy |

p P Bu

Σω is a set of STNs X ω
a “ xVa, E1

ay, one per a P A, s.t for Sa “ xVa, Ra, Wa, Ea, Ca, Oay

in Σ:

E1
a “ Ea Y tvi

Bω
ppq

ÝÝÝÝÑ vj | vi
p
ÝÑ vj P Oau Y tvi

Bω
ppq

ÝÝÝÝÑ vj | vi
p

vj P Ca YOau

It is important to point out that as the system considers temporal networks created
independently, the model must ensure that all the temporal networks in Σ are temporally
well-formed. This means that for any contract of the form vi

p
ÝÑ vj or vi

p
vj shared

among a set of agents, the date in time on which its execution starts (vi) and finishes (vj)
must be the same in each of the temporal networks where the contract is involved. As the
contract duration between vi and vj is guaranteed to be the same by B, we need to ensure
that it is also the case for the start time-point vi.
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▶ Definition 13 (Temporally well-formed). A MISTNU G “ xA, Σ, By is temporally well-
formed if for every projection ω P ΩG, for every pair of distinct agents a1 and a2 and for
every contract p P P1 X P2, all solutions δ1 of X ω

1 and δ2 of X ω
2 are such that δ1pσpS1, pqq “

δ2pσpS2, pqq.

▶ Theorem 14. Let T be a map from a contract p to its unique predecessor p’ or vz,
T : P Ñ P Y tvzu, such that @p, there is no sequence of the form T pT p. . . T ppqqq “ p.

A MISTNU is well-formed if for every agent a P A, @p P pWa YRaq we have:
T ppq “ vz ðñ vz

p
ÝÑ vj P Oa or vz

p
vj P Oa Y Ca

T ppq “ p1 ðñ pvi
p
ÝÑ vj P Oa or vi

p
vj P Oa Y Caq ^ pvk

p1

ÝÝÑ vi P

Oa or vk
p’

vi P Oa Y Caq

Proof. Let’s suppose, for the sake of contradiction, that map T exists and follows the
constraints of the theorem. Still, the MISTNU G is not well-formed, then there exists a
projection ω, a pair of agents a1 and a2 and a contract p such that δ1pσpS1, pqq ‰ δ2pσpS2, pqq

as per Definition 13. But we observed from T that T ppq “ vz or T ppq “ p1. Therefore, by
induction over T , we have:

the base case where T ppq “ vz: obviously we have δ1pσpS1, pqq “ δ2pσpS2, pqq “ 0 as vz

is the common reference time-point shared among all agents;
the inductive case where T ppq “ p1: we assume that δ1pσpS1, p1qq “ δ2pσpS2, p1qq “ k,
then δ1pσpS1, pqq “ δ2pσpS2, pqq “ k ` ωp1 because in both agents p is started by the end
of p1 and p1 has the same duration for all agents.

Consequently, it’s impossible, from the induction, to have δ1pσpS1, pqq ‰ δ2pσpS2, pqq if G
follows T , and hence G is guaranteed to be well-formed. ◀

However, Theorem 14 provides a sufficient but not necessary condition for a MISTNU to
be well-formed: one could simply require agents to agree on the starting date for a contract
or a fixed duration between two contracts. Figure 2 shows an example of a MISTNU with
three agents and their networks ensured through the map T to be temporally well-formed
with respect to the contracts.

In this example, the contract u comes from an external agent, i.e., an agent with which
negotiation is not possible, which can allow to express several semantic situations: a
lack of communication with this agent during the repair, the agent being selfish, etc. In the
model, we simply represent it by the contract having no owner, and we must ensure that
such contract bounds cannot be shrinked. Nonetheless, such agents shall conform to the
semantics and behave in the same way as others: e.g., if WC is considered, that means the
duration of the contract u will be shared with its readers during the initialization phase.
One can notice that a MISTNU with only one agent is equivalent to a single STNU, with all
contracts read by this agent coming from outside the system (not negotiable).

4.2 Controllability

In previous work, the controllability of MaSTNU was defined as having all STNUs con-
trollable [3, 18]. Thus, we define the controllability of MISTNU in the same manner, i.e.,
to be Dynamically controllable, the system would impose all the networks (cSTNU) to be
Dynamically controllable. Then, with Definition 10, we check the controllability of a cSTNU
through an STNU reduction, and checking the controllability of STNUs has already been
tackled in the literature [12, 9].
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Label Contract Repair
p [20, 25] [21, 25]
q [60, 75] [65, 73]
r [25, 35] [33, 35]
s [30, 35] [31, 35]
t [15, 25] [15, 25]
u [15, 20] [15, 20]

(b)

Figure 2 Example of a MISTNU with agents a, b, and c and their networks. Nodes are time-
points, uncontrollable ones being double circled, solid/dashed edges are requirement/contingent
constraints. The contracts are: p owned by a, r, and s by b, q, t by c, and u by an external agent;
communication is represented through larger edges, e.g., a sends p to b. In (b), we show the bounds
and repairs of the contracts.

▶ Definition 15 (Controllability). Given a MISTNU G “ xA, Σ, By, we define the τ -
controllability Lτ of G with τ “ tWeak, Dynamic, Strongu as:

Lτ ” @Sa P Σ, SG
a is τ ´ controllable.

where SG
a is the STNU obtained from Sa by the cSTNU reduction of Definition 10.

In Section 3.2, we argue that WC in a multi-agent system considers a common initialization
phase where all agents will decide and exchange the shared activities durations just before
execution. The fact that each agent independently decides the duration of the contracts it
owns means that it must ensure that this duration is consistent with the choice over the
contract’s duration owned by the other agents. In other words, whatever the contract duration
an agent decides, it must ensure that there always exists a consistent schedule with this
duration, whatever the duration of the contract decided by others it receives, which is related
to the definition of Weak controllability. Therefore, the semantics of Weak controllability is
imposed to guarantee all possible combinations between the contracts owned by an agent
and the ones it does not own to form a consistent STN. Hence, for the validation phase
(controllability checking), all the contracts must be considered as contingent constraints to
guarantee WC is well-checked. This is not the case for the other two types of controllability:
DC implies the agent will decide after observing the decisions of the other agents, and SC
supposes the agent will fix a schedule before receiving any information about the contracts
owned by the others. Thus, it does not require all the owned contracts to be considered
contingents for the validation phase.

5 Defining and solving the repair problem

5.1 The repair problem: definitions
The concept of repair for MISTNU arises when the system is not controllable. We focus on
local controllability by finding a tightening (if it exists) of the bounds of an agent’s contracts
so that local controllability is recovered. In the following, we formalize the repair problem.
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▶ Definition 16 (Repair). Given a global model G “ pA, Σ, Bq such that for some agent a P A,
Sa is not τ -controllable with τ “ tWeak, Dynamic, Strongu. The Lτ -repair problem
consists in finding new bounds B1 for a global model G1 “ pA, Σ, B1q such that:

@p P W 3 let xlp, upy “ Bppq and xl1
p, u1

py “ B1ppq where l1
p ě lp, u1

p ď up;
G1 is Lτ -controllable.

In addition, we are interested in repair solutions that minimize the reduction in the size
of the contract bounds, as done in [14] for DTNU and STNU. This intuitively corresponds
to minimizing the amount of flexibility removed for each agent concerned by the repair. A
unique solution might not exist for this optimal repair, and some general policies might also
require fairness in finding an optimal solution, i.e., an optimal repair that equally shrinks
the contracts among the agents. In the following, we define the optimal repair and the
fair-optimal repair, the latter equally reducing as many contracts as possible by considering
the reduction percentage. Somehow, this amounts to finding some optimal equity between
the agents. For that, we write C2

|P |
as the number of distinct pairs xp1, p2y in W .

▶ Definition 17 (Optimal Repair). Let G “ pA, Σ, Bq, be a non Lτ controllable MISTNU and
let RG be the set of all the solutions to the Lτ -repair problem for G. An optimal Lτ -repair
for G is defined as:

argmin
G1PRG

˜

ÿ

p Ñ xl1
p,u1

py PB1

ppl1
p ´ lpq ` pup ´ u1

pqq | xlp, upy “ Bppq

¸

▶ Definition 18 (Fair-Optimal Repair). Let G “ pA, Σ, Bq, be a non Lτ -controllable MISTNU
and let Ropt

G be the set of all the solutions to the optimal Lτ -repair problem for G. A
fair-optimal Lτ -repair for G is defined as:

argmax
G1PRopt

G

ˆ
∣∣∣∣txp1, p2y P C2

|P | |
ppl1

p1
´ lp1q ` pup1 ´ u1

p1
qq

up1 ´ lp1

“
ppl1

p2
´ lp2q ` pup2 ´ u1

p2
qq

up2 ´ lp2

u

∣∣∣∣˙
Intuitively, we aim at maximizing the number of pairs of contracts that are shrunk by the

same amount. This function selects among the optimal repairs, as per Definition 17, solutions
in which the reduction of flexibility is shared as much as possible among the contracts.
Table 2b shows the WC fair-optimal repair of the MISTNU of Figure 2 with the contracts s
and p both being reduced to 20%.

5.2 Encoding of the repair
In this section, we present a centralized encoding for the WC-repair problem of MISTNU
based on the encoding for the weak repair of classical STNUs presented in [14]. First, we
remind the readers that WC implies all contracts to be contingents. Then, we exploit the
convexity of the problem by considering that all combinations of the lower and upper bounds
of the contingents are enough to check the controllability of an STNU [17]. This allows us to
consider the situations where the duration of a contract is fixed to either its lower-bound
or upper-bound for all contract readers. In addition, we define two rational variables for
each contract, lp and up, respectively, representing the lower and upper bound of the revised
contract p. Please note that a variable is represented with the index as an exponent. Then,
we formalize the basic components for the encoding as follows:

3 This ensures a contract from an external agent, which has no owner, shall not be shrunk (see definition
of W in 4.1)
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for each Sa, we define X⃗a as the set of variables tv0, . . . , viu representing the time-points
in Va (agents have disjoint sets of variables).
B⃗l “ tl

1, . . . , liu and B⃗u “ tu
1, . . . , uiu the two sets of variables for the lower and upper

bound variables of all the contracts.

In addition, for each Sa “ xVa, Ra, Wa, Ea, Ca, Oay, we have the set of projections βa, one
for each possible combination of bounds xlp, upy for each contract p of the form vi

p
vj in

Ca YOa:

βa “ tω | ωp P tlp, upu, vi
p

vj P Ca YOau.

Then, as ω corresponds to a projection, equivalently an STN Xω “ pVa, Ea Y C 1
aq, we

encode a cSTNU as the conjunction of each projection ω. In addition, from Definition 5,
a cSTNU is Weakly controllable if each projection ω has at least one schedule δω. This
requires the variables in X⃗a to be unique per projection ω. In this particular case, we denote
X⃗ω

a “ tv
0
ω, . . . , vi

ωu the unique set of variables representing the time-points of the projection
ω. Then, the MISTNU model can also be encoded as the conjunction of the encoding of each
agent’s cSTNU (Sa) of the system and the encoding of the contracts’ constraints. In the
following, we present the encoding of a projection denoted as ΥXω

wc pX⃗
ω
a q, the encoding of a

cSTNU denoted as ΥSa
wc, the encoding of the contracts denoted ΨpB⃗l, B⃗uq, and the encoding

of a MISTNU denoted Υwc.

ΥXω
wc pX⃗

ω
a q “

ľ

tiPE1
a

$

&

%

vj
ω ´ vi

ω P rl
p, ups iff ti “ vi

rωp,ωps
ÝÝÝÝÝÑ vj

vj
ω ´ vi

ω P rl, us iff ti “ vi
rl,us
ÝÝÝÑ vj

(1)

ΥSa
wc “

ľ

ω P βa

ΥXω
wc pX⃗

ω
a q (2)

ΨpB⃗l, B⃗uq “
ľ

p Ñxlp,upy PB

#

tlp ď lp ď up ď upu iff Da | p P Wa

tlp “ lp; up “ upu iff Ea | p P Wa

(3)

ΥwcpB⃗l, B⃗uq “

˜

ľ

Sa P S

ΥSa
wc

¸

^ΨpB⃗l, B⃗uq (4)

Please note that Equation 3 also avoids shrinking contracts from external agents by
fixing the variables lp to l and up to u. Then, we solved the optimal WC-repair denoted
χopt

wc pB⃗l, B⃗uq and the fair-optimal WC-repair χfair
wc with a lexicographic optimization process

(multi-objective optimization supported by modern Optimization Modulo Theory Solvers [13])
with the optimal WC-repair optimization being the first one to be solved:

χopt
wc pB⃗l, B⃗uq “ Minimize

ÿ

p Ñxlp,upy P B

pplp ´ lpq ` pup ´ upqq s.t. ΥwcpB⃗l, B⃗uq (5)

χfair
wc pB⃗l, B⃗uq “ Maximize

´
∣∣∣txρ1, ρ2y P C2

|P | | ρ1 “ ρ2u
∣∣∣¯ s.t. χopt

wc pB⃗l, B⃗uq (6)

where for each distinct pairs xp1, p2y in P, we create the variables ρ1 and ρ2 such that
@pk P tp1, . . . , p|P |u we have:

ρk “
pplpk ´ lpk

q ` pupk
´ upkqq

upk
´ lpk
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5.3 Experiments
In this subsection, we simply show the effectiveness of the proposed approaches for WC
repair and evaluate the experimental complexity. We implemented the encoding in Python
using the pySMT framework [6]. For our experiments, we use the Z3 solver as the backend.
We experimented on a large set of 400 MISTNU limited to four agents based on the T map
of Theorem 14.

We randomly and safely generate MISTNUs following these parameters: the size of the
networks growing from 10 to 200 nodes; the number of contracts (owned) per agent growing
from 1 to 20 (according to the size of the network); the number of edges per network by
setting at 3 the number of successors per divergent node (only vz is allowed to have more
successors), where a divergent node is a node with more than one successor. We considered
the fair-optimal repair for the experiment and ran all the experiments on an Xeon E5-2620
2.10GHz with 3600s/10GB time/memory limits.

We solved more than 60 instances, which was expected as the number of projections
(bounds) of all the networks grow exponentially (2p) [17]. More precisely, the problem of
checking Weak Controllability (WC) is expected to be co-NP-complete for a single network.
Here, we are solving an optimization problem (repair with fairness), which is harder than
the checking problem for multiple networks. This is why we did not solve many instances
with a one-hour time limit. But that is only the first approach that calls for improvements.

6 Conclusion

This paper presents a new multi-agent model for temporal problems under uncertainty called
MISTNU that considers independent networks where, for an agent network, the execution of
some tasks might be controlled by other agents. Hence, an agent can negotiate the duration
of such tasks. This paper formally defines the cSTNU model, which is an extension of
the STNU model, the MISTNU model, and the problem of checking its controllability. In
addition, the paper presents the repair problem for the MISTNU model by shrinking the
contracts’ bounds and proposes a repair encoding for Weak Controllability. Future work will
focus on the repair problem for both SC and DC and on a more efficient one for WC. The
proposed MISTNU model works well for homogeneous agents with distributed controllability
checking, initialization, and execution. However, a heterogeneous system is more challenging
as it implies that agents behave in different ways, which might result in a system with mixed
controllability (since observation and execution semantics might be different among the
agents). A similar study must be done to get a model capable of managing uncertainties
from other agents and the classical uncertainty from the environment (Nature), which has
its own semantics.
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Abstract
In this work, we present a novel approach to learning Linear Temporal Logic (LTL) formulae from
event logs by leveraging statistical techniques from sequential analysis. In particular, we employ
the Sequential Probability Ratio Test (SPRT), using Trace Alignment to quantify the discrepancy
between a trace and a candidate LTL formula. We then test the proposed approach in a controlled
experimental setting and highlight its advantages, which include robustness to noise and data
efficiency.
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1 Introduction

Process Mining (PM) [36] is an interdisciplinary field at the intersection of Data Mining
and Business Process Management (BPM) [40]. Its goal is to gain insight into operational
processes by analyzing the associated event logs. An operational process, or process for
short, corresponds to the series of activities an organization performs to accomplish its
routine tasks, such as delivering a particular service or product. In enacting a process, an
organization generates sequential data that an information system stores in the form of
an event log. Therefore, an event log keeps track of all the activities performed during
several task executions, also called traces. A fundamental problem of PM is the one of
learning models of processes from event logs, also known as Process Discovery [35]. To
achieve this, one may consider different formalisms to model the processes, including UML
activity diagrams [16], Business Process Model and Notation [23], and Petri nets [34, 38].
Those formalisms are imperative in that they prescribe, at each step, the activities that can
be performed and provide therefore an easy-to-follow recipe for process execution. However,
they have known limitations due to the tendency of over-constraining the process [37] and
the lack of interpretability. Declarative models [15], by contrast, consist of constraints over
process executions. After that, every execution not violating such constraints is admitted.
The most widespread declarative process specification language is Declare [28], which consists
of a set of templates that allow to specify temporal constraints over the activities of the
process. Declare semantics can be grounded into Linear Temporal Logic on process traces
(LTLp) [19], which allow us to exploit efficient automata-theoretic techniques [7]. For this
reason, the use of LTLp for the specification of processes is gaining increasing traction.

An obstacle to learning models of processes from event logs is that they often contain
noise. Such noise may be caused by errors in the activities performed. Besides, it may
also arise from logging errors, which result in activities being recorded in the wrong order,
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duplicated, or omitted entirely (thus creating gaps). Finally, noise can also occur because
events are inferred from low-level data using activity recognition techniques, rather than
being directly recorded [2]. The presence of noise in the event logs makes it difficult to learn
temporal patterns and calls for the use of statistical techniques able to handle such noise.
Another challenge is that event logs are streams of data. This means that traces are not
all available from the beginning, rather they are continuously collected as the process is
executed. Ideally, the log should be processed sequentially, as new traces arrive, allowing
conclusions about the satisfaction of temporal properties to be drawn immediately, and only
waiting for new evidence if necessary.

In this paper, we address these issues by proposing a method based on sequential analysis
to learn temporal properties of a process from its corresponding event log. Sequential
analysis [21] consists of performing hypothesis tests where a stopping rule is used to halt
the sampling process as soon as the collected evidence is sufficient to accept or reject the
hypothesis under examination. In particular, we consider a test known as the Sequential
Probability Ratio Test (SPRT) [39], originally developed within the domain of quality control
in manufacturing. Given an input lot, the general idea of the test is to incrementally
sample items from the lot and count the number of defects they have. If, at any step, the
total number of defects falls below a specified acceptance threshold, the lot is accepted.
Conversely, if it exceeds a rejection threshold (which is set higher than the acceptance
threshold), the lot is rejected. Otherwise, sampling continues. Naturally, as the total number
of defects increases with the number of items examined, both the acceptance and the rejection
threshold progressively increase. In our approach, we put forward trace alignment as a way of
quantifying the number of defects of a trace with respect to a given formula, after that SPRT
can directly be applied to our learning setting. Trace alignment [12] refers to computing
a minimal number of alignments, i.e., of modifications of the trace to make it satisfy the
formula. In our approach, we compute alignments by framing the problem as cost-optimal
planning [10] and solving it using an off-the-shelf AI planner.

Our approach has two main advantages. First, being based on a statistical approach,
makes it robust to the noise naturally occurring in the event logs. Second, its ability to make
a decision as soon as enough evidence arises, makes it very data-efficient.

The remainder of the paper is organized as follows: in Section 2 we provide the background
and basic notation. Then, in Section 3 we describe the proposed method to discover temporal
properties from event logs. In Section 4 we perform and discuss controlled experiments to
demonstrate the methods’s application. In Section 5 we discuss related work. Finally, Section
6 concludes the paper and points out directions for future work.

2 Background

We start by recalling relevant notions of Linear Temporal Logic over Process Traces
(LTLp) [19]. Then, we describe Declare and show how its templates can be grounded
into LTLp. Finally, we describe Trace Alignment and Sequential Analysis.

2.1 Linear Temporal Logic on Process Traces
Let Σ be a set of propositional symbols, also called activities. A process trace is a non-empty
sequence π ∈ Σ+ of activities. An event is any occurrence of an activity in the trace. A
process trace can be thought of as representing an execution of a process. An event log is
then a sequence of process traces. Process traces are therefore ordered according to their
occurrence (i.e., to the occurrence of their last activity, since multiple process instances may
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run in parallel). The same trace may appear multiple times in a log. This is expected since
they represent different executions of the same routine task. It is important to note that
process traces differ from the traces encountered in Linear Temporal Logic (LTL) [29] in
two ways: (i) they are finite, and (ii) exactly one activity occurs per each instant. This last
characteristic makes process traces suitable models for logics that reason over actions, rather
than over states.

Syntax

The syntax of LTLp is the same as LTL. An LTLp formula φ over Σ is defined according to
the following grammar:

φ ::= a | ¬φ | φ ∧ φ | Xφ | φ1Uφ2,

with a ∈ Σ. The intuitive meaning of the temporal operators “next” X and “until” U is as
follows. The formula Xφ means that at the next time instant, φ holds. The formula φ1Uφ2
means that at a certain instant φ2 holds and up to that point φ1 holds. We assume common
propositional and temporal abbreviations. In particular, for temporal operators, we define
the “eventually” operator Fφ ≡ ⊤Uφ, the “always” operator Gφ ≡ ¬F¬ϕ, and the “weak
until” operator φWφ′ ≡ Gφ ∨ φUφ′.

Semantics

The semantics of LTLp is defined on process traces. Let φ be an LTLp formula, π =
π1π2 · · ·π|π| a process trace, and 1 ≤ i ≤ |π| a time instant. We say that π satisfies φ at
time i, and we write π, i |= φ, according to the following definition:

π, i |= a iff a = πi;
π, i |= ¬φ iff π, i ̸|= φ;
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2;
π, i |= Xφ iff i < |π| and π, i+ 1 |= φ;
π, i |= φ1Uφ2 iff ∃j, i ≤ j ≤ |π|, s.t. π, j |= φ2 and for k = i, i+ 1, . . . , j − 1, π, k |= φ1.

We say that π is a model for φ if π, 1 |= φ, denoted as π |= φ.
Note that, since LTLp works on traces that are finite, and in analogy with the definitions

in Linear Temporal Logic on Finite Trace (LTLf) [17, 11] the “next” operator needs to
explicitly require the existence of a next time instant.

Automata-Based Representation

Each LTLp formula φ over Σ can be associated a finite-state automaton A(φ) over the same
alphabet Σ such that for any trace π it holds that π |= φ iff π, is accepted by A(φ) [7].
Fig 1 shows the minimal automaton associated to the formula Response(a, b) = G(a→ Fb),
saying that whenever a is performed, then b is performed afterward. Note that transitions
are directly labeled with activities in Σ, resulting in an alphabet that is exponentially
smaller compared to what we would have if we were interpreting the formula in LTLf [11].
However, if we identify a process trace with a simple finite trace [18], i.e. a finite trace where
each propositional interpretation is a singleton, one can use LTLf to check properties of
process traces. Additionally, one can also check whether a trace is a simple trace by suitably
modifying the LTLf formula [8], or by directly modifying the resulting automaton with the
addition of a sink state [7].
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Figure 1 Automaton for the formula Response(a, b) = G(a → Fb). Here the asterisk stands for
any activity other than the ones appearing in the formula.

2.2 Declare
Declare [28, 15] is the most common declarative process specification language. It consists
of a set of templates that allow to easily specify the temporal constraints of the process. A
constraint is any instantiation of the variables in the template with process activities. A
process model is then a set of constraints. Table 1 shows how to write some Declare templates
(in particular, the ones that will be used later in the experiments) as LTLp formulae. Be
aware that many errors in such encodings are present in the literature. This is due to the
difficulty of working with temporal specifications [22]. These formulae have been carefully
double-checked by exploiting the automata representation, which sometimes results easier to
understand, as well as log generation techniques [5, 6].

Table 1 Some Declare templates and their corresponding LTLp formula.

Template LTLp

Init(a) a

Exactly2(a) ¬aU(a ∧ X(¬aU(a ∧ ¬X(Fa))))
Response(a, b) G(a → Fb)

RespondedExistence(a, b) Fa → Fb

AlternateResponse(a, b) G(a →X(¬aUb))
P recedence(a, b) (¬b)Wa

ChainP recedence(a, b) G(Xb → a) ∧ ¬b

Choice(a, b) F(a ∨ b)
ExclusiveChoice(a, b) F(a ∨ b) ∧ ¬(Fa ∧ Fb)

CoExistence(a, b) Fa ↔ Fb

Init(a) says that any trace of the process must start with the activity a (here a stands
for a generic activity and so we talk about templates). Exactly2(a) says that exactly two
occurrences of a must be present in the trace. This template can be generalized to consider
any number of occurrences. Init(a) and Exactly2(a) are unary templates since they express
constraints on one activity only. Response(a, b) says that whenever a is executed, b must be
executed afterwards. ResponsedExistence(a, b) says that whenever a is executed, then b must
be executed (regardless of whether it appears before or after a). AlternateResponse(a, b)
says that every execution of a must be followed by b, without any other a in between. For
those kinds of binary templates, a and b are sometimes referred to as the activation and target
activity, since the occurrence of a triggers checking the occurrences of b. If no activation is
present, then the constraints are automatically (vacuously) satisfied. Precedence(a, b) says
that b can be executed only if a has been executed before. ChainPrecedence(a, b) says that
a must be executed immediately before any execution of b. A common error in literature
while encoding this template in temporal logics with only future operators is to forget that b
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cannot be executed in the first instant. Choice(a, b) says that eventually one among a and b
must be executed. Choice(a, b) further requires that it is not possible to execute them both.
Finally, CoExistence(a, b) says that either a and b are both executed, or none of them is
executed.

2.3 Trace Alignment
The trace alignment problem is defined as follows. Given a trace π and an LTLp formula φ,
find a minimum number of alignments that makes π a model of φ [12]. An alignment refers to
the removal or addition of an event in the trace. Such a problem can be solved by compiling
it into cost-optimal planning [10] and then using any off-the-shelf planner supporting cost
optimization. One can visualize the application of the alignments as a text cursor moving
from the left to the right of π and that can add an event behind it (as is done by pressing a
character key on a keyboard, where the cursor automatically moves forward) or remove one
in front of it (as with the delete key). The goal of the planning problem is then to have the
cursor reach the right side of the trace (possibly adding some other event at this extreme)
and the resulting trace be accepted by A(φ). Note that we have here three kinds of actions
since moving forward corresponds to an action of zero cost. This is the reason why we need
to resort to cost-optimal planning.

2.4 Sequential Analysis
Sequential analysis [21] (not to be confused with sequence analysis [27]) involves conducting
hypothesis tests using a stopping rule to halt sampling once there is sufficient evidence
to either accept or reject the hypothesis being tested. One such test is the Sequential
Probability Ratio Test (SPRT) [39], originally developed within the domain of quality control
in manufacturing. Given a lot, we test the products one by one. For n = 0, 1, 2, . . . , let dn
be the total number of defects found after controlling the first n products (for n = 0 we have
clearly d0 = 0). Given a strictly increasing sequence {An} of acceptance numbers, and a
strictly increasing sequence {Rn} of rejection numbers, with An < Rn for all n ∈ N, the test
is as follows. If at any point n, we have dn < An then the number of errors is sufficiently
small and we accept the lot. If dn > Rn too many errors have already been found in the
lot and we reject it. If instead An < dn < Rn we don’t have yet enough evidence to accept
or reject the lot and we continue sampling. Let p denote the probability of a defect, p0 a
probability generating a tolerable level of noise, i.e., for which we accept the lot, and p1 > p0
a probability for which we reject the lot. H0 : p = p0 is then the null hypothesis, while
H1 : p = p1 the alternative hypothesis. The values of An and Rn can be defined by:

An =
ln

( β

1− α

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) + n

ln
(1− p0

1− p1

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) , (1)

Rn =
ln

(1− β
α

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) + n

ln
(1− p0

1− p1

)
ln

(p1

p0

)
− ln

(1− p1

1− p0

) (2)

where the alpha level α is a parameter controlling type I errors (rejecting a true null
hypothesis), and the beta level β is a parameter controlling type II errors (accepting a false
alternative hypothesis).
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3 SPRT-Based Learning of Temporal Formulae

In this section, we shall describe our approach to learning temporal formulae from event logs
by applying SPRT. We begin by noting that equations (1),(2) involve four parameters: p0,
p1, α, and β. However, they can be rewritten as

An = mn+ cA, (3)
Rn = mn+ cR, (4)

by posing

m =
ln

(1 − p0

1 − p1

)
ln

(
p1

p0

)
− ln

(1 − p1

1 − p0

) , cA =
ln

(
β

1 − α

)
ln

(
p1

p0

)
− ln

(1 − p1

1 − p0

) , cR =
ln

(1 − β

α

)
ln

(
p1

p0

)
− ln

(1 − p1

1 − p0

) . (5)

In other words, as a function of n, An and Rn are lines with the same slope m (i.e.
they are parallel) and intercepts cA and cR, respectively. Note that for reasonably small
significance levels α and β, i.e. such that α + β < 1, (besides having 0 < p0 < p1 < 1) it
follows:

m0 > 0 (so that An and Rn are strictly increasing sequences).
cA < 0 < cR (otherwise one would end up accepting or rejecting a lot even before
inspecting it).

Indeed, any value of m, cA, and cR satisfying the above inequalities is an admissible
choice. Therefore in the following, we will directly work with these parameters, without
explicitly modeling and reasoning about the noise. The method is provided in Algorithm 1.
It takes as input a log L, a temporal formula φ, and suitable values for the parameters cA,
cR, and cR. First, the initial values d0, A0, R0 are assigned (lines 1-3). Then, for each n,
we do the following. If dn ≤ An we return Accept (lines 5-6). If dn ≥ Rn we return Reject

(lines 7-8). Otherwise, we compute the next values dn+1, An+1, R0 (lines 9-12) and proceed.
Note that the value of dn+1 is computed by first selecting a trace π from the log (line 11),
which can be done according to the order of the traces in the log or by random sampling; then
computing the number of defects of pi, represented by the number of alignments required
to make pi a model of φ, and adding such quantity to the total number of defects (line 12).
While the checks A0 < d0 and d0 < R0 could be avoided, treating n = 0 as all the other
values turns out to be mathematically convenient for interpreting the parameters of the
algorithm.

It is worth noting that what we have just described is actually a semi-algorithm. In fact,
even assuming a new trace is always available, it could be the case that the total number
of defects never satisfies any of the inequalities. To obviate this, one can simply return a
default value of their choice (be it Accept, Reject, or, e.g., Inconclusive).

4 Experiments

In this section, we illustrate Algorithm 1 by performing some controlled experiments. We begin
by detailing the process of constructing an appropriate log in Subsection 4.1. Subsequently,
in Subsection 4.2, we employ this log to examine several Declare constraints.

4.1 Log Generation and Description
To perform controlled experiments, we resort to synthetic data. Fixed an alphabet Σ =
{a, b, c, d, e}, we define 5 Declare constraints over it:
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Algorithm 1 SPRT-based Learning of Temporal Formulae.

Input: L, φ, m > 0, cA < 0, and cR > 0
Output: Accept or Reject

1 defects← 0
2 A← cA
3 R← cR
4 while True do
5 if defects ≤ A then
6 return Accept

7 if defects ≥ R then
8 return Reject

9 A← A+m

10 R← R+m

11 π ← Next(L) // Extract next trace
12 defects← defects+Align(φ, π) // add the alignments’ cost

1. ExclusiveChoice(c, d),
2. Response(a, b),
3. RespondedExistence(a, e),
4. Precedence(e, a),
5. AlternateResponse(b, c).

The model M represented by the conjunction of those five constraints is represented in
the intuitive Declare graphical notation in Fig 2.

Figure 2 The Declare model used for the experiments.

We then generate a log of 100 traces of length varying from 6 to 15. In particular, for
each length, we generate 5 positive traces, i.e. satisfying (all the constraints of) the model,
and 5 negative traces, i.e. violating at least one constraint. The generation is performed
using ASP Log Generator [5, 6], which converts the constraints into their corresponding
automata [7] and use Answer Set Programming [3] to find traces accepted or not by the
automata (depending on whether we are looking for a positive or negative one). We generate
negative traces by explicitly imposing the violation of the model since injecting some noise
on a positive trace, e.g. by randomly adding and removing events, could result in the trace
still satisfying the constraints. To improve the quality of the log, avoiding traces that are too
repetitive and too similar among each other, we constrain each of the 5 activities to occur

TIME 2024



14:8 Learning Temporal Properties from Event Logs via Sequential Analysis

Table 2 Number of traces violating the constraints arranged according to the cost of repairs.

1 2 3+ #traces total cost
C1 19 13 6 38 68
C2 14 0 0 14 14
C3 9 0 0 9 9
C4 31 0 0 31 31
C5 16 15 2 33 52

Table 3 Number of alignments per constraint as a function of the trace length.

6 7 8 9 10 11 12 13 14 15 tot
C1 5 2 3 5 6 8 11 5 12 11 68
C2 2 2 1 1 0 1 2 2 0 3 14
C3 3 0 0 1 1 1 2 0 1 0 9
C4 4 2 4 4 4 2 3 2 2 4 31
C5 2 8 6 9 4 6 6 6 0 5 52

tot 16 14 14 20 15 18 24 15 15 23 174

no more than in 1/2 of the instants. In addition, we modify the search strategy to perform
random (rather than heuristic) decisions with probability 0.2 and run the log generator
multiple times with different seeds asking each time for 1 solution. Note that how negative
traces are generated greatly impacts the cost of the alignments. Table 2 reports, for each
constraint, the number of traces violating it, arranged according to the cost of the alignments,
together with the total cost of the alignments (traces with a repair cost of 3 or more are
merged in one column, however, their different impact is reflected by the total cost). For
example, constraint 1 ExclusiveChoice(c, d) (C1 for short in the tables) has 38 traces (out
of the 50 negative ones) violating it of which 19 require 1 alignment, 13 require 2 alignments,
and 6 require 3 or more alignments, for a total of 68 alignments. The costs are computed
by compiling the problem into the Planning Domain Definition Language [9] and solving it
with Fast Downward [24]. To better understand the noise of the log, in Table 3 we report,
for each trace length, the number of alignments required to make the traces of that length
conformant with the constraint. Recall that there are 5 negative traces per length.

It is important to note that templates behave very differently. We can see for example
that ExclusiveChoice(c, d) requires a total of 68 alignments over the whole log and that the
cost is strongly influenced by the trace length. In fact, in case both c and d are present in
the trace, to align it one has to determine which activity has fewer occurrences and remove
them. Other templates such as Response always require at most 1 alignment, regardless of
the trace length, since it is simply sufficient to add the target activity at the end of the trace.

This makes the choice of the values of the parameters m, cA, and cR in Algorithm 1 very
important, particularly for the slope m. Such a choice, which must be made constraint by
constraint, should therefore be undertaken after careful consideration of both the particular
formula (where formulae intuitively easier to satisfy correspond to smaller values for m) and
the expected noise.

4.2 Execution
In this subsection, we show and discuss the execution of the Algorithm 1 over the generated
log. We start by considering the Declare model M. We choose a value of m = 1, of cR = 8,
and of cA = −8. In Figure 3, we plot the lines An and Rn in green and red, respectively.
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We then apply the algorithm to each of the five constraints of M. Note that we use here
the same parameters across the various constraints just for the sake of simplicity. We want
to stress that the choice of such parameters must be done individually for each constraint
after carefully pondering the expected noise of the log, the structure of the formula, as well
as additional considerations about the risk of a wrong decision. We then plot, for each
constraint, the curve representing the total number of defects as a function of the number
of traces observed, selecting traces according to their order in the log. We observe that all
the constraints are classified as satisfied by the model. The first constraint to be decided
is Response(a, c) at step 8. Note that, from m = 1 follows that −cA represents exactly
the minimum number of steps before deciding on acceptance. The last constraint to be
decided is instead ExclusiveChoice(c, d) at step 44. One could stop plotting a curve after
it intersects An, indeed the algorithm terminates and the new costs are not computed. In
Figure 3 however we continue to show them (this time as dashed lines) to better visualize
the behavior of the log with respect to the constraints.

Figure 3 Results of the application of the algorithm to the constraints of the model.

In Figure 4 we consider instead a set of new constraints that were not used during the
generation of the log. We again use the same parameters as before. We see in step 8 that
the constraint Choice(c, d) is accepted. This constraint is actually implied by one of the
constraints used to generate the log, ExclusiveChoice(c, d), that was accepted at a later
step. This is a consequence of the fact that any alignment w.r.t. the latter formula is also
an alignment w.r.t. to the former one, and holds indeed as a general result, that we state
formally as follows:

▶ Observation 1. If a formula φ is accepted in nφ steps, and ψ is implied by φ then ψ is
accepted as well and in a number of steps nψ ≤ nφ. Dual results hold for the rejection.
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Figure 4 Results of the application of the algorithm to new constraints.

We note from the figure that Choice(c, d) has indeed an alignments’ cost of 0 throughout
the steps and is therefore decided at step −cA = 8. The fact that the costs are equal to 0 is
a consequence of how we generated the log (i.e. by forcing the same activities not to appear
too many times in trace). The constraints CoExistence(a, b) and Init(e) are accepted after
9 and 35 steps, respectively. By taking into consideration the meaning of the constraints
is clear why the former were accepted: repairing a trace requires at most 1 alignment and
therefore m = 1 is a high value compared with the expected defects of the traces. We have
then the first two cases of rejected constraints: Exactly2(D) rejected after 9 steps, and
ChainPrecedence(e, a) rejected after 14 steps. Both of those constraints require acting on
the different occurrences of an activity and therefore for them, m = 1 may be a too-small
value (again, depending on how much noise we expect in the log as well).

Finally, it is worthwhile to point out that, although Algorithm 1 stops after deciding
to accept or reject, one could indeed continue to monitor a constraint to be able to change
the decision when new evidence emerges. This is important, for example, in cases in which
the distribution of the process executions substantially changes over time. In this respect,
it is useful to note that, both in Figure 3 and 4 no decision has ever been overturned, not
reconsidered. Once a curve enters one of the two half-plane defined by Am and Rm it tends
to stay there. This could however be due to the particular choice of the parameters. Value
for m closer to the actual alignment cost, together with a smaller distance cR − cA between
Am and Rm, could result in more oscillating situations.
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5 Related Works

The problem of learning linear temporal formulae, sometimes known as LTL (specification)
mining [25], has been approached by the Temporal Logic community mainly with exact
methods, rather than relying on statistical ones. Camacho and McIlraith [4] reduce the
problem of learning LTLf formulae to proposition satisfiability. The approach is based
on guessing the (alternating) automaton associated with a formula and then checking for
conformance with the (positive and negative) example traces. Such automaton can then be
converted in linear time into the corresponding formula. Note that no templates are used here;
instead, they employ SAT solver to perform a search over the space of all possible formulae.
Gaglione et al. [20] later modified the approach to handle noise using MaxSAT solvers. These
approaches assume the availability of both positive and negative example traces. Roy et
al. [32] consider the problem of learning from positive example only. This setting, which is
the standard in Process Mining, is known in the Machine Learning literature as one-class (or
unary) classification and is way more challenging than binary classification when considering
minimality requirements about the discovered solutions [33, 1]. The approach by Roy et
al. [32] is however limited in that it cannot handle noise.

Declarative Process Discovery algorithms [14, 26, 27] have been proposed that exploit
statistical analysis, handle noise, and work with positive examples only. However, those
algorithms usually consider only Declare constraints. Besides, they assume for simplicity the
event log to be a fixed multiset of traces, rather than an ordered collection in continuous
evolution, and do not reason about whether the evidence gathered up to some moment is
enough to make a decision, as is done with the stopping rules in sequential analysis.

Sequential analysis has also inspired a constraint acquisition algorithm in the context
of Constraint Programming [30, 31]. This algorithm is however a coarse simplification of
SPRT, using no parameters other than constant acceptance and rejection thresholds, and
does not quantify the discrepancy between a constraint and an example. Furthermore, our
work differs in that it considers temporal properties of traces rather than constraints over
the values of decision variables.

6 Conclusion

In this paper, we have shown how to use statistical techniques from sequential analysis for
learning linear temporal formulae from events log. Our approach is based on analyzing the
log incrementally and measuring how much a trace deviates from satisfying a given formula.
As a measure of such deviation, we use the number of alignments, i.e., of modifications of
the trace (in terms of additions and removals of activities) to make the trace a model of the
formula. We have then implemented our approach and tested it with controlled experiments.
The advantage of a statistical approach is its ability to handle the noise naturally occurring
in the event logs. Sequential analysis, in particular, by exploiting only the strictly necessary
number of samples, additionally provides early decision-making capabilities. This turns
out to be useful both in the case one has to analyze a huge volume of data, alleviating the
computational burden, as well as in the case where such data are scarce.

In future work, we intend to study how one can use Algorithm 1 to learn interpretable
models, by combining it with a suitable procedure for selecting temporal formulae to be
tested, taking into account subsumption-driven hierarchies [13] and their interaction with
the learning phase. Furthermore, we intend to study how to suitably select the parameters
m, cA, and cR of Algorithm 1 by considering both the structure of the formula and the noise
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of the log generation process, which need to be explicitly modeled. Finally, we intend to
consider other possible measures of the discrepancy between a formula and a trace, study
their properties, and the impact they have on applying sequential analysis techniques.
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Abstract
Inconsistency measures serve to quantify the level of contradiction present within a knowledge
base. They can be used for both consistency restoration and information extraction. In this
article, we specifically explore inconsistency measures applicable to Disjunctive Temporal Problems
(DTPs). We present a framework that extends traditional propositional logic approaches to DTPs,
incorporating both new postulates and adaptations of existing ones. We identify and elaborate on
various properties that establish relationships among these postulates. Furthermore, we introduce
multiple inconsistency measures, adopting both a conventional approach that particularly leverages
Minimal Inconsistent Subsets and a DTP-specific strategy based on constraint relaxation. Finally,
we show the applicability of the inconsistency measures in DTPs through two real-world applications.
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1 Introduction

Numerous formalisms have been proposed in the literature for representing and reasoning
about temporal information under constraints. The temporal constraints considered by these
formalisms differ in two primary aspects. First, the types of temporal entities represented by
their variables, which can include temporal points, intervals, or even durations. Second, their
nature can be qualitative [1], quantitative, or a combination of both [11, 5]. Simple Temporal
Problems (STPs) [7] belong to the temporal formalisms allowing to handle quantitative
constraints. They represent temporal entities as points on a timeline and allow constraining
distance between each pair of temporal entities using numeric values specified by an interval.
To increase the expressiveness of the considered temporal constraints, STPs have been
extended numerous times [12, 20]. In particular, Disjunctive Temporal Problems (DTPs)
[18] extend STPs by employing disjunctions of STP constraints, thus providing a temporal
framework highly useful in a wide range of applications.

In the literature, an inconsistency measure is defined as a function that assigns a non-
negative value to each knowledge base. It quantifies the degree of conflict or contradiction
present within the database, offering an interesting tool for evaluating and managing incon-
sistencies (e.g. see [10, 19, 13, 9]). In the realm of application, these measures are used in
various analytical reasoning approaches. For instance, in the data mining task of clustering,
inconsistency measures are utilized to enhance the quality of clusters by actively reducing
contradictions [14]. Furthermore, these measures are used as a stepping stone for defining
paraconsistent consequence relations, which allow for logical deduction in the presence of
inconsistent information [15].

The literature presents a wide range of proposals for defining inconsistency measures, aimed
at identifying and addressing various forms of conflict, highlighting the richness of this research
field (e.g., see [10, 8, 3, 2, 4]). Numerous studies on inconsistency measures have adopted a
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postulate-based approach by reasoning about various dimensions related to the measurement
and management of inconsistency. This approach standardizes assessment criteria and
facilitates a comprehensive understanding of the underlying causes of inconsistency.

Despite extensive research, there remains a significant gap in the exploration of inconsist-
ency measurement within the realm of temporal reasoning. To the best of our knowledge,
only a few studies have specifically focused on adapting inconsistency measures to this
context, concentrating primarily on qualitative spatio-temporal reasoning and temporal logic
(see [6, 17, 16]). In this paper, we introduce the first framework designed specifically for
measuring inconsistency in DTPs.

Our first contribution consists in introducing a range of rationality postulates for defining
inconsistency measures in DTPs. Some of these postulates are adaptations from those
established in the propositional context, while others are uniquely tailored to DTPs. For
example, one DTP-specific postulate asserts that applying an identical shift to all intervals
within a DTP does not alter the amount of inconsistency. We also examine the relationships
among these postulates. Our analysis particularly highlights that certain postulates are
incompatible, and combining specific ones can yield an inconsistency measure that can only
distinguish between consistent and inconsistent DTPs.

Our second contribution is the development of various inconsistency measures using
different approaches. Specifically, we employ a traditional approach that involves Minimal
Inconsistent Subsets, and we introduce a strategy specifically tailored for DTPs based on
constraint relaxation. This relaxation is achieved by widening the temporal intervals.

Our third contribution details two applications of inconsistency measures within DTPs.
The core principle of our approach involves using these measures to facilitate the selection
of the most suitable solutions. Within a DTP framework, constraints may correspond to
either the specific needs of an individual agent or the integrity constraints of a computational
service. By applying inconsistency measures, we are able to identify the optimal service or
achieve consensus among agents.

2 Preliminaries

2.1 Temporal problems
In the sequel we will denote by IZ the set of closed (possibly half-unbounded or unbounded)
intervals over Z with endpoints in Z∪{−∞, +∞}. Given I ∈ IZ, I−1 will denote the interval
of IZ containing the opposite values of I. We consider Disjunctive Temporal Problems
(DTP) [18] on IZ.

▶ Definition 1 (Disjunctive Temporal Problem (DTP)).
A temporal constraint c is a disjunction x1 − y1 ∈ I1 ∨ . . . ∨ xk − yk ∈ Ik where k ≥ 1,
x1, . . . , xk, y1, . . . , yk are temporal variables with domain Z and I1, . . . , Ik are intervals
belonging to IZ.
A DTP D is a pair (V, C) where V = {x1, . . . , xn} is a finite set of temporal variables
ranging over Z and C = {c1, . . . , cm} is a set of temporal constraints involving V where
n ≥ 1 and m ≥ 1.
A solution σ of a DTP D = (V, C) is an assignment of integer numbers to the variables
in V such that all constraints in C are satisfied. More formally, a solution σ of D is a
function σ : V → Z such that for each c ∈ C there exists at least one disjunct x− y ∈ I

belonging to c such that the value σ(x)− σ(y) belongs to the interval I.
A DTP admitting at least one solution will be said consistent. In the contrary case it will
said inconsistent.
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Let DT P represent the set of all DTPs. In the sequel, a temporal constraint (resp. a
disjunct of a temporal constraint) will also be called a temporal clause (resp. a temporal
literal).

Given a DTP D = (V, C) and a constraint c ∈ C, we sometimes use D \ {c} to denote
the DTP (V, C \ {c}).

A Simple Temporal Problem (STP) [7] is a specific type of DTP characterized by each
constraint containing exactly one disjunct. Furthermore, a Temporal Constraint Satisfaction
Problem (TCSP) [7] represents a DTP in which all disjuncts within a constraint apply to the
same pair of variables.

Given a set of temporal variables V , the set of all possible assignments of integer numbers
to the variables in V will be denoted by JV K. Moreover, the subset of JV K corresponding to
the set of solutions of a DTP D = (V, C) will be denoted by sols(D).

Note that here we consider DTPs with constraints on closed integer intervals and interpret
their variables with integer values. Even if it may seem restrictive, most of the concepts and
results introduced later can be extended to more general DTPs.

Consider a temporal constraint c = x1 − y1 ∈ I1 ∨ . . . ∨ xk − yk ∈ Ik. The nota-
tion vars(c) refers to the set of temporal variables involved in c, i.e., the set of variables
{x1, . . . , xk, y1, . . . , yk}. Furthermore, Lit(c) denotes the disjuncts (temporal literals) of the
constraint of c. Moreover, given another temporal constraint c′, c subsumes c′ if and only if
(i) vars(c) ⊆ vars(c′), and (ii) for all (x− y ∈ I) ∈ Lit(c), there exists (x− y ∈ I ′) such that
I ⊆ I ′. A sub-DTP of a DTP D = (V, C) is a DTP (V, C ′) such that C ′ ⊆ C. Given two
DTPs D = (V, C) and D′ = (V ′, C ′), the union of D and D′, denoted by D ∪D′, is the DTP
defined by (V ∪ V ′, C ∪ C ′).

▶ Example 2. As illustration, consider the set of temporal variables V = {x1, x2, x3, x4, x5}
and the following set of temporal constraints C:
c1 = x1−x2 ∈ [4, 7] ∨ x2−x3 ∈ [−2, 2] ∨ x2−x4 ∈ [0, 8],
c2 = x3−x4 ∈ [−20, 20],
c3 = x1−x2 ∈ [−15, −10] ∨ x2−x3 ∈ [8, 12],
c4 = x1−x3 ∈ [−11, −8] ∨ x2−x4 ∈ [−6, −3],

c5 = x1−x3 ∈ [10, 12] ∨ x1−x4 ∈ [6, 7],
c6 = x1−x2 ∈ [−11, −6] ∨ x1−x3 ∈ [6, 9],
c7 = x2−x5 ∈ [5, 10] ∨ x3−x5 ∈ [0, 5],
c8 = x1−x3 ∈ [0, 3] ∨ x1−x4 ∈ [12, 14].

Let the DTPs D = (V, C) and D′ = (V, C \ {c8}). The DTP D′ is consistent, whereas the
DTP D is inconsistent. A solution σ of D′ is given by the following assignment: σ(x1) = 10,
σ(x2) = σ(x3) = 21, σ(x4) = 4 and σ(x5) = 16. This assignment satisfies, for example, the
temporal literal x1−x3 ∈ [−11,−8] of the constraint c4 since σ(x1)−σ(x3) = 10− 21 = −11.

2.2 Relaxations
An c-rewriting rule for a temporal clause c is a function µ mapping from Lit(c) (the set of
temporal literals in c) to IZ. This function µ is applied to a temporal constraint c such that
µ(c) denotes the temporal clause resulting from replacing each literal l = x− y ∈ I within c

with x− y ∈ µ(l).
A local c-transformation for a DTP instance D = (V, C), where C = {c1, . . . , cn}, is a

function λ that assigns an c-rewriting rule µi to each constraint ci in C. This transformation is
applied to D such that λ(D) results in a new DTP instance (V, C ′), where C ′ =

⋃n
i=1{µi(ci)}.

In the sequel, by abuse of notation, we will sometimes denote (λ(ci))(ci) by λ(ci) for notational
convenience.

A local c-relaxation for a DTP instance D = (V, C) is defined as a local c-transformation λ,
where for each temporal constraint c = x1−y1 ∈ I1∨. . .∨xk−yk ∈ Ik in C, the transformation
ensures that Ii ⊆ (λ(c))(xi− yi ∈ Ii) for every i ∈ {1, . . . , k}. This transformation effectively
relaxes the constraints, making them less restrictive.

TIME 2024
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Given two intervals I = [l, u] and I ′ = [l′, u′] with I ⊆ I ′, we use δ(I, I ′) to denote the
value (u′ − l′) − (u − l). We extend δ to the cases where I or I ′ are half-unbounded or
unbounded intervals in the following way: δ(I, I ′) = +∞ for the cases where I is left-bounded
(resp. right-bounded) and I ′ is left-unbounded (resp. left-unbounded). Intuitively, this
means that the value of infinity dominates in this scenario. In the case where I =]−∞, u]
and I ′ =]−∞, u′] (resp. I = [l, +∞[ and I ′ = [l′, +∞[), δ(I, I ′) is defined by u′ − u (resp.
l − l′). For the last case which corresponds to I = I ′ =]−∞, +∞[, δ(I, I ′) is defined by 0.

Let λ be a local c-relaxation of D = (V, C), we use ω(λ) to denote the following value:∑
c∈C

∑
l=(x−y∈I)∈Lit(c)

δ(I, (λ(c))(l))

Furthermore, we use θ(λ) to denote the following value:

max
c∈C,l=(x−y∈I)∈Lit(c)

δ(I, (λ(c))(l))

▶ Example 3. Consider again the DTP D = (V, C) defined in Example 2. Let λ be a local
c-transformation for D that assigns the c-rewriting rule µi to the constraint ci in C, with
the rules µi defined as follows:
µ1(x1−x2 ∈ [4, 7]) = [4, 10], µ1(x2−x3 ∈ [−2, 2]) = [−4, 3], µ1(x2−x4 ∈ [0, 8]) = [0, 8];
µ2(x3−x4 ∈ [−20, 20]) = [−30, 40];
µ5(x1−x3 ∈ [10, 12]) = [0, 20], µ5(x1−x4 ∈ [6, 7]) = [2, 15];
and µi(x−y ∈ I) = I for each ci ∈ {c3, c4, c6, c7, c8} and each temporal x−y ∈ I belonging
to Lit(ci).
We have λ(c1) = x1−x2 ∈ [4, 10]∨x2−x3 ∈ [−4, 3]∨x2−x4 ∈ [0, 8], λ(c2) = x3−x4 ∈ [−30, 40],
λ(c5) = x1−x3 ∈ [0, 20] ∨ x1−x4 ∈ [2, 15] and λ(ci) = ci for all ci{c3, c4, c6, c7, c8}.

Clearly, the local c-transformation λ is a local c-relaxation of D. It results in the less
constraining DTP λ(D) = (V, {λ(c1), λ(c2), λ(c5)} ∪ {c3, c4, c6, c7, c8}). We can notice that
λ(D) is consistent, whereas D is an inconsistent DTP. A solution σ of λ(D) is given by the
following assignment: σ(x1) = 20, σ(x2) = σ(x3) = 31, σ(x4) = 8 and σ(x5) = 26. Moreover,
we have ω(λ) = 3 + 3 + 30 + 18 + 12 = 66 and θ(λ) = max{3, 3, 30, 18, 12} = 30.

In the following, we show that to achieve a consistent DTP from an inconsistent DTP, we
can restrict ourselves to local c-relaxations that extend the interval of at most one temporal
literal per temporal clause by modifying only one of its bounds. We also show that such a
restriction preserves optimal relaxations with respect to minimizing the values generated by
the functions ω(.) et θ(.).

▶ Proposition 4. Let D = (V, C) be a DTP and a local c-relaxation λ of D. If λ(D) is a
consistent DTP then there exists a local c-relaxation λ′ of D such that:
(1) λ′(D) is a consistent DTP,
(2) for each c ∈ C, we have |{l = (x− y ∈ I) ∈ Lit(c) : I ̸= (λ′(c))(l)}| ≤ 1,
(3) for each c ∈ C and l = (x− y ∈ I) ∈ Lit(c), we have I = (λ′(c))(l) or (λ′(c))(l) \ I is a

bounded interval of IZ,
(4) we have θ(λ) ≥ θ(λ′) and ω(λ) ≥ ω(λ′).

Proof. Suppose that λ(D) is a consistent DTP. Let σ a solution of λ(D). From σ we will
define a local c-relaxation λ′ with the desired properties. As σ is a solution of λ(D), we
know that for each c ∈ C there exists at least one temporal literal lc = (x− y ∈ I) ∈ Lit(c)
such that σ(x) − σ(y) ∈ (λ(c))(lc). Select such a temporal literal lc = (x − y ∈ I) and
define λ′(c) by (λ′(c))(lc) = I if (λ(c))(lc) = I or σ(x)− σ(y) ∈ I, by the smallest interval
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of IZ containing the values of I and σ(x)− σ(y) in the contrary case. Moreover, we define
(λ′(c))(u− v ∈ I ′) by I ′ for all (u− v ∈ I ′) ∈ Lit(c) \ {lc}. Remark that for each c ∈ C, we
have σ(x)− σ(y) ∈ (λ′(c))(lc), by consequence σ is a solution of λ′(D). Hence Property (1)
is satisfied. Moreover, by construction of λ′, we can assert that the properties (2) and (3)
are also satisfied. Always by construction, we can observe that I ⊆ (λ′(c))(l) ⊆ (λ(c))(l) for
all c ∈ C and l = (x− y ∈ I) ∈ Lit(c). It follows that δ(I, (λ′(c))(l)) ≤ δ(I, (λ(c))(l)) for all
c ∈ C and l = (x− y ∈ I) ∈ Lit(c). As a result, we have θ(λ′) ≤ θ(λ) and ω(λ′) ≤ ω(λ). ◀

In the sequel, given a DTP D, the set of the local c-relaxations λ of D such that λ(D) is
consistent will be denoted by LCR(D).

▶ Example 5. Consider the DTP D = (V, C) defined in Example 2 and its local c-relaxation
λ given in Example 3 with the solution σ of λ(D). By following the approach described in
the proof of Proposition 4, we can construct a new local c-relaxation λ′ from λ and σ that
satisfies the properties specified in Proposition 4. The resulting local c-relaxation λ′ assigns
the c-rewriting rule µ′

i to the constraint ci in C in the following way:
µ′

2(x3−x4 ∈ [−20, 20]) = [−20, 23];
µ′

5(x1−x3 ∈ [10, 12]) = [10, 12], µ′
5(x1−x4 ∈ [6, 7]) = [6, 12];

and µ′
i(x−y ∈ I) = I for each ci ∈ {c1, c3, c4, c6, c7, c8} and each temporal x−y ∈ I belonging

to Lit(ci).
We have λ′(c2) = x3−x4 ∈ [−20, 23], λ′(c5) = x1−x3 ∈ [10, 12] ∨ x1−x4 ∈ [6, 12] and

λ′(ci) = ci for all ci ∈ {c1, c3, c4, c6, c7, c8}. It is clear that λ′ is a local c-relaxation of D

ensuring that λ′(D) is a consistent DTP with σ serving as a solution. Hence, we have
λ′ ∈ LCR(D). Moreover, we have ω(λ′) = 3 + 5 = 8 and θ(λ′) = max{3, 5} = 5, whereas
ω(λ) = 66 and θ(λ) = 30.

3 Rationality Postulates for Inconsistency Measurement

In this section, we describe various rationality postulates that can be used for defining
inconsistency measures in the context of DTPs. Many of these rationality postulates are
adaptations of those introduced in the propositional case. Additionally, we highlight several
interesting relationships between the considered postulates.

Before presenting our rationality postulates, we first outline the concepts used to express
them.

▶ Definition 6 (Minimal Inconsistent Sub-DTP (MIS)). Let D = (V, C) be a DTP. A Minimal
Inconsistent Sub-DTP (MIS) of D is an inconsistent sub-DTP D′ of D such that each
sub-DTP D′′ of D′, with D′ ̸= D′′, is consistent.

A constraint c is said to be free in a DTP D if there exists no MIS D′ = (V, C) of D such
that c ∈ C.

Consider now the dual concept of MIS.

▶ Definition 7 (Maximal Consistent Sub-DTP (MCS)). Let D = (V, C) be a DTP. A Maximal
Consistent Sub-DTP (MCS) of D is an consistent sub-DTP D′ of D such that each sub-DTP
D′′ of D, with D′ ⊊ D′′, is inconsistent.

Clearly, a constraint is free if it belongs to all MCSes.
A constraint c is said to be safe in a DTP D if there is a variable x ∈ vars(c) such that

v /∈ vars(c′) for every c′ ∈ C \ {c}.

TIME 2024
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Let us note that our definition of safe constraints diverges from the concept of a safe
formula as defined in [10]. Indeed, a safe formula is defined as one that shares no propositional
variables with the remaining elements of the knowledge base.

We adopt the following notational conventions:
MIS(D): the set of MISes of D,
MCS(D): the set of MCSes of D,
Free(D): the set of free constraints of D,
Safe(D): the set of safe constraints of D.

▶ Example 8. Revisiting the DTP D = (V, C) defined in Example 2, we observe the following:
MCS(D) = {(V, C \ {c5}), (V, C \ {c8})},
MIS(D) = {(V, {c1, c4, c5, c8}), (V, {c1, c5, c6, c8}), (V, {c3, c4, c5, c8}), (V, {c4, c5, c6, c8})},
Free(D) = {c2, c7},
Safe(D) = {c7}.

▶ Proposition 9. Let D be a DTP. If c is a safe constraint in D, then c is free in D.

Proof. Let D = (V, C) and consider a constraint c ∈ C which is identified as a safe but not
free constraint in C. Given that c is not free, there exists a MIS D′ = (V, C ′) of D such
that c ∈ C ′. Since D′ is an MIS, we can define D′′ = (V, C ′ \ {c}), which admits a solution
σ. Given the safety of c in D, it follows that there exists a variable x ∈ vars(c) that does
not appear in any constraints of D′′. Assuming without loss of generality that x− y ∈ I is
a temporal literal in c, we can identify a specific value v such that v − σ(y) ∈ I. We then
define a new assignment σ′ for D′ as follows: σ′(x) = v, and for all y ∈ V \ {x}, σ′(y) = σ(y).
Since σ′ satisfies c and σ satisfies D′′, we conclude that σ′ is a solution for D′. This leads to
a contradiction, as D′ being a MIS. ◀

Given a DTP D and an integer k ∈ Z, we use D ⊕ k to denote the DTP obtained from
D by replacing each interval [l, u] with [l + k, u + k].

▶ Proposition 10. Let D be a DTP and k ∈ Z. Then D is consistent iff D⊕ k is consistent.

Proof. This is mainly a consequence of the fact that for every solution σ, the assignment σ′

is a solution of D ⊕ k, where σ′(x) = σ(x) + k for every variable x. ◀

An inconsistency measure I is a function that maps a DTP to a non-negative real value.
By denoting R∞

≥0 the set of non-negative real value, an inconsistency measure is a function
I : DT P → R∞

≥0 that satisfies the following property:
I(D) = 0 iff D is a consistent DTP (Consistency - Cons).

The property Cons stipulates that an inconsistency measure must distinguish between
consistent and inconsistent DTPs.

In this work, many rationality postulates for defining inconsistency measures are analogous
to those introduced in the propositional case (e.g., see [10, 19]). The considered postulates
are as follows: for all DTPs D = (V, C) and D = (V ′, C ′),
I(D ∪D′) ≥ I(D) (Monotonicity - Mono).
If c ∈ C is a safe temporal constraint of D then I(D) = I((V, C \ {c})) (Safe Constraint
Independence - SCI).
If c ∈ C is a free temporal constraint of D then I(D) = I((V, C \ {c})) (Free Constraint
Independence - FCI).
If c ∈ C is not free in D then I(D) > I((V, C \{c})) (Problematic Constraint Dependence
- PCD).
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If D′ is consistent and V ∩ V ′ = ∅, then I(D ∪D′) = I(D) (Sub-DTP Independence -
SDI).
If c subsumes c′ then I((V ∪ vars(c), C ∪{c})) ≥ I((V ∪ vars(c′), C ∪{c′})) (Subsumption
- Sub).
If c subsumes c′ and c /∈ C, then I((V ∪ vars(c), C ∪ {c})) ≥ I((V ∪ vars(c′), C ∪ {c′}))
(Weak Subsumption - WSub).
If V ∩ V ′ = ∅, then I(D ∪D′) = I(D) + I(D′) (Variable Independence-Additivity - VIA).
If C ∩ C ′ = ∅, then I(D ∪D′) ≥ I(D) + I(D′) (Super-Additivity - SA).
For any k ∈ Z, I(D) = I(D ⊕ k) (Shift Independence - SI).

The postulate Mon asserts that adding a new constraint cannot decrease the existing
level of contradiction within the DTP. SCI and FCI maintain that safe constraints and free
constraints, respectively, do not influence the level of conflict. PCD says that introducing
non-free constraints must increase the level of contradiction. SDI states that an independent,
consistent sub-DTP does not affect the overall amount of contradiction. Sub postulates
that stricter constraints results in more conflicts. WSub is a weaker variant of Sub; the
condition c /∈ C allows us to indicate that c is replaced with c′. VIA asserts that the total
contradiction in the union of two DTPs, which do not share any variables, equals the sum
of their individual contradictions. SA says that the total amount of contradiction in two
disjoint DTPs cannot be less than the sum of their individual contradictions. Finally, SI
posits that applying a shift to a DTP does not alter the level of contradiction.

It is important to note that in a consistent DTP, introducing a constraint that is less
restrictive than an existing one does not modify the solution set. This observation also
explains why, in Sub as opposed to WSub, we do not require the condition c /∈ C: adding a
weaker constraint does not affect the amount of contradiction.

The properties previously described are not entirely independent and display various
interrelationships. For example, it is evident that Sub implies WSub. The proposition below
outlines additional relationships among these properties.

▶ Proposition 11. The following properties hold:
1. FCI implies SCI.
2. SA implies Mono.
3. Cons and VIA implies SDI.

Proof.
Property 1. It is a direct consequent of Proposition 9: every safe constraint is a free

constraint.
Property 2. Let I be an inconsistency measure that satisfies SA. Let D = (V, C) and

D′ = (V ′, C ′) be two DTPs. We define a new DTP D′′ as D′′ = (V ′, C ′ \ C). It
follows that D ∪ D′ = D ∪ D′′. Furthermore, using property SA and noting that
D ∩ D′′ = ∅, we deduce I(D ∪ D′) = I(D ∪ D′′) ≥ I(D) + I(D′′). Consequently, we
obtain I(D ∪D′) ≥ I(D).

Property 3. Let I be an inconsistency measure that satisfies both Cons and VIA. Let D and D′

be two DTPs such that D′ is consistent and vars(D)∩vars(D′) = ∅. Applying VIA under the
condition that vars(D)∩vars(D′) = ∅, we deduce that I(D∪D′) = I(D)+I(D′). Moreover,
by invoking Cons, I(D′) = 0 holds. Therefore, this leads to I(D ∪D′) = I(D). ◀

As demonstrated by the following proposition, some of our properties are incompatible.

▶ Proposition 12. There is no inconsistency measure that satisfies both PCD and Sub.
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Proof. Assume, for the sake of contradiction, that there exists an measure I that satisfies both
PCD and Sub. Consider the DTP D = ({x, y}, C) where C = {x− y ∈ [0, 1], x− y ∈ [2, 3]}.
Clearly, the constraint x− y ∈ [2, 3] subsumes x− y ∈ [2, 4]. Employing Sub, it follows that
I(D′) ≥ I(D′′), with D′ = ({x, y}, C∪{x−y ∈ [2, 3]}) and D′′ = ({x, y}, C∪{x−y ∈ [2, 4]}).
Since C ∪ {x− y ∈ [2, 3]} = C, we have I(D′) = I(D). Furthermore, x− y ∈ [2, 4] is clearly
problematic in D′′; hence, by applying PCD,we deduce that I(D) < I(D′′). This leads to a
contradiction. ◀

Over-constraining inconsistency measures can lead to uninteresting results, as demon-
strated by the following proposition.

▶ Proposition 13. An inconsistency measure I satisfies Cons, Sub and SA iff I is defined as
follows:

I(D) =
{
∞ if D is inconsistent
0 otherwise

Proof.

The If Part. First, we establish that I(D) = ∞ if and only if D is inconsistent, which
implies that I satisfies Cons.

The satisfaction of Sub follows from the observation: if c subsumes c′ and D = (V, C∪{c})
is a consistent DTP, then I(D) = I((V ∪ vars(c′), C ∪ {c′})) = 0; if D is inconsistent, then
I(D) =∞ ≥ I((V ∪ vars(c′), C ∪ {c′})).

For SA, we consider: (i) if D ∪ D′ is consistent, then both D and D′ are consistent,
leading to I(D ∪ D′) = 0 and I(D) + I(D′) = 0; (ii) if D ∪ D′ is inconsistent, then
I(D ∪D′) =∞ ≥ I(D) + I(D′).

The Only-If Part. Let D = (V, C) be a DTP. If D is consistent, then by Cons, I(D) = 0.
Now consider that D is inconsistent. Define a mapping f that associates each constraint
c in C with any two distinct constraints not in C by adding two incompatible literals:
c′ = c ∨ (x − y ∈ [l, l]) and c′′ = c ∨ (x − y ∈ [l + 1, l + 1]), where x and y are arbitrary
variables, and l is an integer chosen such that c′ and c′′ are not in C. Using Sub, it follows that
I(D) = I((V, C ∪

⋃
c∈C f(c))). Additionally, by SA, I((V, C ∪

⋃
c∈C f(c))) ≥ I(D) + I(D′)

where D′ = (V,
⋃

c∈C f(c)). Given Cons and the inconsistency of D, I(D′) > 0. Therefore,
if I(D) ̸= ∞, this leads to I(D) > I(D), a contradiction. Consequently, we deduce
I(D) =∞. ◀

The following proposition demonstrates the need for caution when allowing infinity as an
inconsistency value.

▶ Proposition 14. If I is an inconsistency measure that satisfies Cons, and there exists a
DTP D such that I(D) =∞, then I does not satisfy PCD.

Proof. Let D = (V, C) be a DTP such that I(D) = ∞. Consider c to be a non-free
constraint within D. We define c′ as a constraint not present in C but logically equivalent
to c. This equivalence can be achieved by utilizing redundancy in temporal literals; for
example, c ∨ l ≡ c ∨ l ∨ l. Given that c is non-free in D, we obtain that c′ is non-free in
D = (V, C ∪ {c′}). Applying PCD, we deduce that I(D) < I(D′). However, this leads to a
contradiction since I(D) =∞. ◀
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4 Inconsistency Measures

In this section, we present several inconsistency measures, each based on a different approach.
Some measures are adaptations of those previously established in the propositional case,
while others are developed by leveraging the concept of local c-relaxation.

The considered inconsistency measures are defined as follows:
Imcs(D) = min{|C ′| : C ′ ⊆ C, (V, C \ C ′) ∈ MCS(D)}
Imis(D) = |MIS(D)|
Ip(D) = |C \ Free(D)|
Iω(D) = min{ω(λ) : λ ∈ LCR(D)}
Iθ(D) = min{θ(λ) : λ ∈ LCR(D)}

The measure Imcs(D) quantifies the minimum number of constraints that must be removed
to restore consistency. Imis(D) counts the total number of minimal inconsistent subsets
within the DTP. Ip(D) calculates the number of constraints in C that do not participate in
any minimal inconsistent subset. Iω(D) measures the minimum weight of a local c-relaxation
required to achieve consistency. Iθ(D) determines the minimum width of a local c-relaxation
necessary for restoring consistency.

Table 1 Properties of inconsistency measures. ✓means “satisfies” and ✗ means “does not satisfy”.

Measure Cons Mono SCI FCI PCD SDI Sub WSub VIA SA SI
Imcs ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Imis ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Ip ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓

Iω ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓

Iθ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓

In Table 1, we present the properties satisfied by each considered measure.
The initial observation is that all our measures uphold the properties Cons, Mono, SCI,

SDI, and SI. Cons is fulfilled for Imcs because D is the unique MCS of D if and only if D is
consistent; For Imis and Ip, it is satisfied as a consistent DTP has no Minimal MIS; in the
cases of Iω and Iθ, no local c-relaxation is required to achieve consistency in consistent DTPs.
Mono is observed in Imcs since adding a constraint cannot reduce the number of constraints
needed to be ignored for consistency; it holds for Imis and Ip as adding a constraint does
not eliminate any existing MIS; for Iω and Iθ, any sub-DTP of a consistent DTP remains
consistent, which means a local c-relaxation that leads to consistency after adding a constraint
will also lead to consistency when applied to the DTP prior to the addition. SCI is met as
the safe constraints are not involved in any conflicts, notably, they do not require relaxation
to achieve consistency. SI is applicable for Imcs, Imis, and Ip since applying a shift does not
alter the MCSes and MISes of a DTP; for Iω and Iθ, it is mainly because the value δ(l, l′)
remains unchanged when the same shift is applied to the literals l and l′.

The second observation is that the property Sub is satisfied exclusively by the measure
Iθ. A main reason why this property is not met by the other measures stems from its
implication that adding an subsumed constraint should not alter the inconsistency value.
However, in the case of the first four measures, adding such a constraint can impact the
situation by introducing new MISes and necessitating the relaxation of the newly added
subsumed constraint. In contrast, Iθ handles the addition of a subsumed constraint without
issue, as a local c-relaxation leading to consistency does not require widening intervals after
incorporating a subsumed constraint.
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It should be noted that the inconsistency measure Iθ satisfies the weaker variant WSub.
This is because any local c-relaxation in a DTP that achieves consistency will also maintain
consistency when any constraint is replaced by one of its subsumed constraints.

A key distinction between the measures Imcs, Imis, and Ip on one hand, and Iω and Iθ

on the other, is that the latter two incorporate internal information from the constraints.
This specifically accounts for why both Iω and Iθ do not satisfy FCI.

▶ Proposition 15. Iω and Iθ do not satisfy FCI.

Proof. Let be the DTP D = (V = {x1, x2, x3}, C = {c1, c2, c3, c4}) defined by:
c1 = x1−x2 ∈ [5, 5] ∨ x1−x2 ∈ [20, 20],
c2 = x1−x2 ∈ [10, 10] ∨ x1−x2 ∈ [21, 21],
c3 = x2−x3 ∈ [0, 0],
c4 = x1−x3 ∈ [5, 10].

D is inconsistent and admits as unique MIS (V, {c1, c2}). Hence, Free(D) = {c3, c4}. We
have Iω(D) = 5 and Iθ(D) = 3. Moreover, we can easily see that have Iω((V, C \ {c4}) =
Iθ((V, C \ {c4}) = 1. Consequently, Iω and Iθ do not satisfy the postulate FCI. ◀

▶ Theorem 16. The functions listed in Table 1 are inconsistency measures that satisfy the
properties outlined in the same table.

5 Applications

In this section, we explore two applications of inconsistency measures. The core concept
involves using these measures to select optimal solutions. Constraints in a DTP may represent
the requirements of an individual agent or the integrity constraints of a computational service
(e.g., op1− op2 ∈]−∞, 10] can be used to represent the constraint that operation op2 must
start no less than 10 time units after operation op1). When conflicts arise either between
the constraints of different agents or between the constraints of an agent and a service,
inconsistency measures are employed to identify the most suitable resolution.

Service 1

Service 2

Service 3

op1 − op2 ∈ ] − ∞, − 10]
op2 − op3 ∈ ] − ∞, − 5]

op1 − op2 ∈ [−2, + ∞[

op1 − op2 ∈ [−9, + ∞[

op1 − op2 ∈ [−2, + ∞[
op2 − op3 ∈ [−2, + ∞[

8

1

11

Figure 1 Scenario depicting a service selection problem.

5.1 Service Selection
In the first application, we address the scenario where an agent with specific temporal
constraints needs to select computational services to perform a set of operations. These
services come with their own integrity constraints, which are also temporal in nature. We
formally represent this situation with the tuple Ω = ⟨V, C, S, f⟩,where V is a set of temporal
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variables, C is a finite set of temporal constraints over V (the constraints of the considered
agent), S is a set of computation services, and f is a function that assigns each service a
finite set of temporal constraints (reflecting its integrity constraints).

Algorithm 1 Consensus Achievement via Constraint Modification.

1: procedure AchieveConsensus(V, A, f, I ) ▷ with A = {a1, . . . , ak}
2: Dξ ← (V,

⋃
a∈A f(a)) ▷ Define the initial DTP

3: i← 1
4: d← I(Dξ)
5: d0 ← d

6: while Dξ does not admit a solution do
7: Dt ← Dξ

8: for each constraint c in f(ai) do
9: D′ ← Dξ \ {c}

10: if I(D′) < d then
11: Dt ← D′

12: d← I(D′)
13: end if
14: end for
15: Dξ ← Dt ▷ Update the DTP
16: if i = k then
17: if d = d0 then ▷ no constraint reduces the amount of contradiction
18: Dξ ← Dξ \ {c} ▷ c is an arbitrary constraint in Dξ

19: d← I(Dξ)
20: end if
21: d0 ← d

22: i← 1
23: else
24: i← i + 1
25: end if
26: end while
27: return Dξ

28: end procedure

In scenarios where the constraints of the considered agent clash with the integrity
constraints of the computational services, inconsistency measures can be used to identify the
most suitable service. This is achieved by computing I((V, C ∪ f(s))) for each service s ∈ S.
The inconsistency measures offer a quantitative assessment of the conflict severity between
an agent’s requirements and a service’s constraints, facilitating an informed decision-making
process.

For example, take the service selection problem illustrated in Figure 1. By employing the
inconsistency measure Iω, the second service is identified as the most appropriate choice.
This service exhibits fewer contradictions (1) with the constraints of the agent compared to
others (8 and 11).
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5.2 Multi-Agent Consensus
In this section, we explore an application of inconsistency measures to DTPs, aimed at
facilitating consensus within a multi-agent system. This involves using these measures to
strategically guide the modification of constraints, thus driving the system towards consensus.

We define a consensus problem as a tuple ξ = ⟨V, A, f⟩, where V is a set of temporal
variables, A is a set of agents, and f is a function that assigns each agent in A a set of
temporal constraints. We consider that there is a consensus if the DTP Dξ = (V,

⋃
a∈A f(a))

admits a solution.
Our approach to achieving consensus involves proposing that each agent, sequentially,

weaken or remove one of its constraints. The critical aspect of this strategy is to provide
agents with guidance on which modifications will bring them closest to consensus. This is
where the role of inconsistency measures becomes crucial. More precisely, consider I as the
inconsistency measure in use, with ξ = ⟨V, A, f⟩ representing a consensus problem, and a an
agent in A. An ordering ≺ on the constraints in f(a) can be defined as follows: c ≺ c′ if and
only if I((V, (f(a) \ {c}) ∪

⋃
a′∈A\{a} f(a′))) < I((V, (f(a) \ {c′}) ∪

⋃
a′∈A\{a} f(a′))).

In Algorithm 1, we outline a variant of our approach designed to systematically achieve
consensus. This algorithm iteratively removes the most problematic constraint, as determined
by the inconsistency measure. This systematic elimination is designed to gradually resolve
conflicts and align the system towards a solution.

6 Conclusion and perspectives

In this paper, we introduced a framework for defining inconsistency measures in Disjunctive
Temporal Problems (DTPs), marking three main contributions. First, we established
rationality postulates that lay foundational criteria for these measures. Second, we developed
various inconsistency measures using diverse approaches. Finally, we demonstrated the
applicability of these measures through two real-world applications, which underscores their
potential to improve reasoning in temporal tasks.

For future work, we plan to explore additional rationality postulates to further enhance
our framework. Additionally, we aim to define and investigate more inconsistency measures,
expanding our current set. We also intend to assess the computational complexity of these
measures and implement them.
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7 Appendix

The complete proofs of the satisfaction or the non satisfaction of each postulate for the
inconsistency measures Iω and Iθ are given in this appendix.

Iω Iθ

Consistency (Cons) ✓(Proposition 17) ✓(Proposition 17)
Monotonicity (Mono) ✓(Proposition 18) ✓(Proposition 18)
Safe Constraint Independence (SCI) ✓(Proposition 20) ✓(Proposition 20)
Free Constraint Independence (FCI) ✗ (Proposition 15) ✗ (Proposition 15)
Problematic Constraint Dependence (PCD) ✗ (Proposition 21) ✗ (Proposition 21)
Sub-DTP Independence (SDI) ✓ (Proposition 22) ✓ (Proposition 22)
Subsumption (Sub) ✗ (Proposition 24) ✓ (Proposition 26)
Weak Subsumption (WSub) ✓ (Proposition 23) ✓ (Proposition 23)
VI-Additivity (VIA) ✓ (Proposition 29) ✗ (Proposition 27)
Super-Additivity (SA) ✓ (Proposition 28) ✗ (Proposition 27)
Shift Independence (SI) ✓ (Proposition 30) ✓ (Proposition 30)

▶ Proposition 17. Iω and Iθ satisfy Cons.

Proof. Let D = (V, C) be a DTP. Consider the particular local c-relaxation λD
id of D defined

by (λD
id(c))(x − y ∈ I) = I for all c ∈ C and for all (x − y ∈ I) ∈ Lit(c). Clearly, we have

λD
id(D) = D. Hence, λD

id ∈ LCR(D). Moreover, as ω(λD
id) = θ(λD

id) = 0 we can assert that
Iω(D) = Iθ(D) = 0.
Now, suppose that Iω(D) = 0 or Iθ(D) = 0. We can assert that there exists a local
c-relaxation λ ∈ LCR(D) such that ω(λ) = 0 or θ(λ) = 0. By definition of ω and θ it
follows that for all c ∈ C and for all l = (x− y ∈ I) ∈ Lit(c) we have δ(I, (λ(c))(l)) = 0 and
consequently, I = (λ(c))(l). It results that λ = λD

id and λ(D) = D. Furthermore, we know
that λ(D) is consistent since λ belongs to LCR(D). It results that D is also consistent. ◀

▶ Proposition 18. Iω and Iθ satisfy Mono.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs and λ ∈ LCR(D ∪D′). Let λ′ be the
local c-transformation of D defined by λ′(c) = λ(c) for all c ∈ C. Clearly, λ′(c) is a local c-
relaxation of D. Moreover, we have λ′(D) which is consistent since λ(D∪D′) is consistent and
λ′(D) ⊆ λ(D∪D′). Hence, λ′ belongs to LCR(D). Consequently, we have ω(λ′) ≥ Iω(D) and
θ(λ′) ≥ Iθ(D). On the other hand, by construction of λ′ we can notice that ω(λ) ≥ ω(λ′) and
θ(λ) ≥ θ(λ′). Now, suppose that λ is such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D ∪D′)} =
Iω(D ∪ D′) (resp. such that θ(λ) = min{θ(λ′′) : λ′′ ∈ LCR(D ∪ D′)} = Iθ(D ∪ D′)). As
ω(λ) ≥ ω(λ′) (resp. θ(λ) ≥ θ(λ′)) and ω(λ′) ≥ Iω(D) (resp. θ(λ′) ≥ Iθ(D)), we can conclude
that Iω(D ∪D′) ≥ Iω(D) (resp. Iθ(D ∪D′) ≥ Iθ(D)). ◀

▶ Proposition 19. Let D = (V, C) be a DTP and c ∈ Safe(D). D is a consistent DTP iff
(V, C \ {c}) is a consistent DTP.

Proof. Obviously, (V, C \ {c}) is a consistent DTP in the case where D is consistent. Now,
suppose that (V, C \ {c}) is a consistent DTP and let us show that D is also consistent. Let
σ a solution of (V, C \ {c}) and a variable x ∈ vars(c) which does not belong to vars(c′) for all
c′ ∈ C \ {c}. We know that there exists in c a temporal literal of the form x− y ∈ I (Case
1) or the form y − x ∈ I (Case 2) with y ∈ V and I ∈ IZ. Let a value a ∈ I and consider
the assignment σ′ of V defined by σ′(u) = σ(u) for each u ∈ V \ {x} and σ′(x) = a + σ(y)
if Case 1 occurs, σ′(x) = σ(y) − a in the contrary case. Clearly, σ′ satisfies the temporal
constraints of C and is a solution of D. It results that D is consistent. ◀



J.-F. Condotta and Y. Salhi 15:15

▶ Proposition 20. Iω and Iθ satisfy SCI.

Proof. Let D = (V, C) be a DTP and c ∈ C a safe temporal constraint of D. Let us prove
that Iω(D) = Iω((V, C \ {c})) and Iθ(D) = Iθ((V, C \ {c})). As D = (V, C \ {c}) ∪ (V, {c}),
from Mono we have Iω(D) ≥ Iω((V, C \ {c})) and Iθ(D) ≥ Iθ((V, C \ {c})). Now, let us
show that Iω(D) ≤ Iω((V, C \ {c})) and Iθ(D) ≤ Iθ((V, C \ {c})). Let λ ∈ LCR((V, C \ {c}))
such that ω(λ) = min{ω(λ′) : λ′ ∈ LCR((V, C \ {c}))} (resp. such that θ(λ) = min{θ(λ′) :
λ′ ∈ LCR((V, C \ {c}))}). Consider the local c-relaxation λ′ of D defined by (λ′(c))(l) = I for
all l = (x− y ∈ I) ∈ Lit(c) and λ′(c′) = λ(c′) for all c′ ∈ C \ {c}. Clearly, ω(λ′) = ω(λ) and
θ(λ′) = θ(λ). Moreover, we can notice that c is a safe temporal constraint of λ′(D) = (V, C ′)
and λ((V, C \ {c}) = (V, C ′ \ {c}). From Proposition 19, it follows that λ′(D) is consistent.
Hence, λ′ ∈ LCR(D). Consequently, we have Iω(D) ≤ ω(λ′) and Iθ(D) ≤ θ(λ′). From this
and the fact that ω(λ′) = ω(λ) = Iω((V, C \ {c})) and θ(λ′) = θ(λ) = Iθ((V, C \ {c})), we
can can assert that Iω(D) ≤ Iω((V, C \ {c})) and Iθ(D) ≤ Iθ((V, C \ {c})). We can conclude
that Iω(D) = Iω((V, C \ {c})) and Iθ(D) = Iθ((V, C \ {c})). ◀

▶ Proposition 21. Iω and Iθ do not satisfy PCD.

Proof. Let D = (V = {x1, x2, x3}, C = {c1, c2, c3}) be the DTP defined by:
c1 = x1−x2 ∈ [5, 5],
c2 = x1−x2 ∈ [15, 15],
c3 = x1−x2 ∈ [10, 10].

D is an inconsistent DTP. Moreover, we have MIS(D) = {{c1, c2}, {c1, c3}, {c2, c3}} and
Free(D) = ∅. On the other hand, we have Iω(D) = 10 and Iθ(D) = 5. Now, by considering the
DTP (V, C \{c3}) we have Iω((V, C \{c3})) = 10 = Iω(D) and Iθ((V, C \{c3})) = 5 = Iθ(D).
From this example we can assert that Iω and Iθ do not satisfy the postulate PCD. ◀

▶ Proposition 22. Iω and Iθ satisfy SDI.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs such that V ∩ V ′ = ∅ and D′

is consistent. Since Iω and Iθ satisfy Mono we know that Iω(D ∪ D′) ≥ Iω(D) and
Iθ(D ∪D′) ≥ Iθ(D). Now, let us prove that Iω(D ∪D′) ≤ Iω(D) and Iθ(D ∪D′) ≤ Iθ(D).
Let λ be a local c-relaxation of D belonging to LCR(D) and let λ′ be the local c-transformation
of D ∪D′ defined by λ′(c) = λ(c) for all c ∈ C and λ′(c) = c for all c ∈ C ′. Clearly, λ′(c)
is a local c-relaxation of D ∪D′. Also, we have ω(λ) = ω(λ′) and θ(λ) = θ(λ′). Moreover,
we can show that λ′(D ∪ D′) = λ(D) ∪ D′. Since vars(λ(D)) = vars(D) = V , we have
vars(λ(D)) ∩ vars(D′) = ∅. From all this and the fact that λ(D) and D′ are two consistent
DTPs we can assert that λ′(D ∪D′) = λ(D) ∪D′ is a consistent DTP. It follows that λ′

belongs to LCR(D ∪D′). Hence, Iω(D ∪D′) ≤ ω(λ′) = ω(λ) and Iθ(D ∪D′) ≤ θ(λ′) = θ(λ).
Now, suppose that λ is such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D)} = Iω(D) (resp. such
that θ(λ) = min{θ(λ′′) : λ′′ ∈ LCR(D)} = Iθ(D)). With this additional property about λ

we can deduce that Iω(D ∪D′) ≤ Iω(D) (resp. Iθ(D ∪D′) ≤ Iθ(D)). From all this, we can
conclude that Iω(D ∪D′) = Iω(D) and Iθ(D ∪D′) = Iθ(D). ◀

▶ Proposition 23. Iω and Iθ satisfy WSub.

Proof. Let D = (V, C) be a DTP and two temporal constraints c, c′ such that c ̸∈ C and c

subsumes c′. Let us denote by D′ (resp. by D′′) the DTP (V ∪ vars(c), C ∪ {c}) (resp. the
DTP (V ∪ vars(c′), C ∪ {c′})). Firstly, note that in the case where c′ ∈ C, we have by mono
that Iω(D′) ≥ Iω(D′′) and Iθ(D′) ≥ Iθ(D′′) since D′ = D′′ ∪ (vars(c), {c}). In the sequel,
we will suppose that c′ ̸∈ C. Let λ′ be a local c-relaxation belonging to LCR(D′) such that for
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each c′′ ∈ C ∪{c}, we have |{l = (x− y ∈ I) ∈ Lit(c′′) : I ̸= (λ′(c′′))(l)}| ≤ 1. Note that from
Proposition 4, this last assumption is not restrictive. In the case where λ′(c) = c we define
the local c-transformation λ′′ of D′′ by λ′′(c′′) = λ′(c′′) for all c′′ ∈ C and for all l ∈ Lit(c′),
(λ′′(c′))(l) = l. In the case where λ′(c) ̸= c, let l′ = (x− y ∈ I ′) be the temporal literal of c

such that (λ′(c))(l′) ̸= l′ and let l′′ = (x−y ∈ I ′′) one temporal literal of c′ such that I ′ ⊆ I ′′.
For this case, we define the local c-transformation λ′′ of D′′ by λ′′(c′′) = λ′(c′′) for all c′′ ∈ C,
(λ′′(c′))(l′) is defined by the smallest interval of IZ including (λ′(c))(l′)∪ I ′′ and for all l ∈ c′

such that l ̸= l′, (λ′′(c′))(l) = l. Whatever the considered case and the definition of λ′′ we can
show that λ′′ is a local c-relaxation of D′′ such that ω(λ′) ≥ ω(λ′′), θ(λ′) ≥ θ(λ′′) such that
λ′′(D′′) is consistent (since any solution of λ′(D′) can be extended to a solution λ′′(D′′)).
It follows that λ′′ ∈ LCR(D′′), ω(λ′) ≥ ω(λ′′) ≥ Iω(D′′) and ω(λ′) ≥ ω(λ′′) ≥ Iθ(D′′). Now
suppose that λ′ is such that ω(λ′) = Iω(D′) (resp. θ(λ′) = Iθ(D′)). With this additional
assumption we can deduce that Iω(D′) ≥ Iω(D′′) and Iθ(D′) ≥ Iθ(D′′). ◀

▶ Proposition 24. Iω does not satisfy Sub.

Proof. Let D = (V = {x1, x2, x3}, C = {c1, c2}) be the DTP defined by:
c1 = x1−x2 ∈ [0, 0],
c2 = x1−x2 ∈ [1, 1],
c3 = x1−x2 ∈ [4, 4].

D is an inconsistent DTP. Moreover, we have Iω(V, C) = 4. Now consider the constraint
c4 = x1−x2 ∈ [4, 5]. Clearly, c3 subsumes c4. On the other hand, we have Iω(V, C ∪ {c4}) =
Iω(V, C) = 4 and Iω(V, C ∪ {c4}) = Iω(V, {c1, c2, c3, c4}) = 7. From this example we can
assert that Iω does not satisfy the postulate Sub. ◀

▶ Proposition 25. Let D = (V, C) be a DTP and two temporal constraints c, c′ such that
c ∈ C and c subsumes c′. We have Iθ(D) = Iθ((V ∪ vars(c′), C ∪ {c′})).

Proof. In the case where c′ ∈ C, the property is obvious, in the sequel we will suppose
that c′ ̸∈ C. By Mono (Proposition 18) we know that Iθ(D) ≤ Iθ((V ∪ vars(c′), C ∪ {c′})).
We will show that Iθ(D) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})). Let λ be a local c-relaxation of
LCR(D) such that θ(λ) = min{θ(λ′′) : λ′′ ∈ LCR(D)} = Iθ(D). Moreover we suppose
that for each c′′ ∈ C ∪ {c}, we have |{l = (x − y ∈ I) ∈ Lit(c′′) : I ̸= (λ(c′′))(l)}| ≤ 1.
Note that, from Proposition 4, this last assumption is not restrictive. We define the
local c-relaxation λ′ of (V ∪ vars(c′), C ∪ {c′}) in the following way. In the case where
|{l = (x−y ∈ I) ∈ Lit(c) : I ̸= (λ(c))(l)}| = 0 (Case 1), (λ′(c′′))(l) = (λ(c′′))(l) for all c′′ ∈ C

and l ∈ Lit(c′′). Moreover, (λ′(c′))(l) = I for all l = (x− y ∈ I) ∈ Lit(c′). In the case where
|{l = (x− y ∈ I) ∈ Lit(c) : I ̸= (λ(c))(l)}| = 1 (Case 2), let l′ = (x′− y′ ∈ I ′) be the literal of
c such that (λ(c))(l′ = (x′ − y′ ∈ I ′)) ̸= I ′ and l′′ = (x′ − y′ ∈ I ′′) be a literal of c′ such that
I ′ ⊆ I ′′. For this case, λ′ is defined by (λ′(c′′))(l) = (λ(c′′))(l) for all c′′ ∈ C and l ∈ Lit(c′′),
(λ′(c′))(l) = I for all l = (x− y ∈ I) ∈ Lit(c′) \ {l′′} and (λ′(c′))(l′′) is defined by the smallest
interval of IZ including λ(c))(l′) ∪ I ′′. Whatever the definition of λ′ we have θ(λ′) = θ(λ)
and λ′ ∈ LCR((V ∪ vars(c′), C ∪ {c′})). It follows that θ(λ) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})).
Consequently, Iθ(D) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})). ◀

▶ Proposition 26. Iθ satisfies Sub.

Proof. Let D = (V, C) be a DTP and two temporal constraints c, c′ such that c subsumes c′.
We have two cases that arise: c ̸∈ C or c ∈ C. By considering the case c ̸∈ C, from WSub
(Proposition 23), we know that Iθ((V ∪ vars(c), C ∪{c})) ≥ Iθ((V ∪ vars(c′), C ∪{c′})). Now,
consider the case c ∈ C. For this case Iθ((V ∪ vars(c), C ∪ {c})) = Iθ((V, C)). Moreover,
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from Proposition 25, we can assert that Iθ((V, C)) = Iθ((V ∪ vars(c′), C ∪ {c′})). From all
this, we can conclude that Iθ((V ∪ vars(c), C ∪ {c})) ≥ Iθ((V ∪ vars(c′), C ∪ {c′})) and that
Iθ satisfies Sub. ◀

▶ Proposition 27. Iθ does not satisfy VIA and SA.

Proof. Let D = (V = {x1, x2, x3, x4}, C = {c1, c2, c3, c4}) be the DTP defined by:
c1 = x1−x2 ∈ [0, 0],
c2 = x1−x2 ∈ [1, 1],
c3 = x3−x4 ∈ [0, 0],
c4 = x3−x4 ∈ [1, 1].

Consider the two DTPs D = (V = {x1, x2}, C = {c1, c2}) and D′ = (V ′ = {x1, x2}, C ′ =
{c3, c4}). We have V ∩ V ′ = ∅ and C ∩ C ′ = ∅. Moreover, Iθ(D ∪D′) = 1, Iθ(D) = 1 and
Iθ(D′) = 1. From this example we can assert that Iθ do not satisfy the postulates VIA and
SA. ◀

▶ Proposition 28. Iω satisfies SA.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs such that C∩C ′ = ∅. Let λ′′ be a local
c-relaxation of LCR(D∪D′) such that ω(λ′′) = min{ω(λ′′′) : λ′′′ ∈ LCR(D∪D′)} = Iω(D∪D′).
We define the local c-relaxation λ (resp. λ′) of D (resp. of D′) by λ(c) = λ′′(c) (resp.
λ′(c) = λ′′(c)) for all c ∈ C (resp. for all c′ ∈ C ′). Clearly, since C ∩ C ′ = ∅ we have
ω(λ′′) = ω(λ)+ω(λ′). Moreover we have can show that λ ∈ LCR(D) and λ′ ∈ LCR(D′). Hence,
ω(λ) ≥ Iω(D) and ω(λ′) ≥ Iω(D′). It results that Iω(D ∪D′) = ω(λ′′) = ω(λ) + ω(λ′) ≥
Iω(D) + Iω(D′). ◀

▶ Proposition 29. Iω satisfies VIA.

Proof. Let D = (V, C) and D′ = (V ′, C ′) be two DTPs such that V ∩V ′ = ∅. As V ∩V ′ = ∅ we
have C∩C ′ = ∅. From SA (Proposition 28) we know that that Iω(D∪D′) ≥ Iω(D)+Iω(D′).
Let us prove that Iω(D ∪D′) ≤ Iω(D) + Iω(D′). Let λ be a local c-relaxation of LCR(D)
such that ω(λ) = min{ω(λ′′′) : λ′′′ ∈ LCR(D)} = Iω(D) and let λ′ be a local c-relaxation
of LCR(D′) such that ω(λ′) = min{ω(λ′′′) : λ′′′ ∈ LCR(D′)} = Iω(D′). Let the local c-
transformation λ′′ defined by λ′′(c) λ(c) for all c ∈ C and λ′′(c) λ′(c) for all c ∈ C ′. We can
show that ω(λ′′) = ω(λ)+ω(λ′) (since C∩C ′ = ∅) and λ′′ ∈ LCR(D∪D′). This last belonging
comes from the fact that λ′′(D ∪ D′) = λ(D) ∪ λ′(D′), V ∩ V ′ = ∅, λ(D) is a consistent
DTP and λ′(D′) is a consistent DTP. It results that Iω(D ∪D′) ≤ ω(λ′′) = ω(λ) + ω(λ′) =
Iω(D) + Iω(D′). From all this, we can conclude that Iω(D ∪D′) = Iω(D) + Iω(D′). ◀

▶ Proposition 30. Iω and Iθ satisfies SI.

Proof. Let D = (V, C) be a DTP and k ∈ Z. Let λ be a local c-relaxation of LCR(D)
such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D)} = Iω(D) and let λ′ be a local c-relaxation of
LCR(D) such that θ(λ′) = min{θ(λ′′) : λ′′ ∈ LCR(D)} = Iθ(D). From λ and λ′ we define the
two local c-relaxations of D ⊕ k λ′′ and λ′′′ in the following way: (λ′′(c))(l) = (λ(c))(l)⊕ k

and (λ′′′(c))(l) = (λ′(c))(l)⊕ k for all c ∈ C and l ∈ Lit(c). We can show that ω(λ) = ω(λ′′)
and θ(λ′) = θ(λ′′′). We can also show that λ′′(D⊕k) and λ′′′(D⊕k) are consistent. It follows
that λ′′ and λ′′′ belong to LCR(D ⊕ k). It results that Iω(D) = ω(λ) = ω(λ′′) ≥ Iω(D ⊕ k)
and Iθ(D) = θ(λ′) = θ(λ′′′) ≥ Iθ(D ⊕ k).
Now, let us prove that Iω(D) ≤ Iω(D ⊕ k) and Iθ(D) ≤ Iθ(D ⊕ k). Let λ be a local
c-relaxation of LCR(D ⊕ k) such that ω(λ) = min{ω(λ′′) : λ′′ ∈ LCR(D ⊕ k)} = Iω(D ⊕ k)
and let λ′ be a local c-relaxation of D⊕k such that θ(λ′) = min{θ(λ′′) : λ′′ ∈ LCR(D⊕k)} =
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Iθ(D ⊕ k). From λ and λ′ we define the two c-relaxation of D λ′′ and λ′′′ in the following
way: (λ′′(c))(l) = (λ(c))(l) ⊕ (−k) and (λ′′′(c))(l) = (λ′(c))(l) ⊕ (−k) for all c ∈ C and
l ∈ Lit(c). We can show that ω(λ) = ω(λ′′) and θ(λ′) = θ(λ′′′). We can also show that λ′′(D)
and λ′′′(D) are consistent. It follows that λ′′ and λ′′′ belong to LCR(D). It results that
Iω(D ⊕ k) = ω(λ) = ω(λ′′) ≥ Iω(D) and Iθ(D ⊕ k) = θ(λ′) = θ(λ′′′) ≥ Iθ(D).
From all this, we can conclude that Iω(D ⊕ k) = Iω(D) and Iθ(D ⊕ k) = Iθ(D). ◀
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Abstract
Higher-Order Recursion Schemes (HORS) have long been studied as a tool to model functional
programs. Model-checking the tree generated by a HORS of order k against a parity automaton
is known to be k-EXPTIME-complete. This paper introduces timed HORS, a real-time version of
HORS in the sense of Alur/Dill’90, to be model-checked against a pair of a parity automaton and a
timed automaton. We show that adding dense linear time to the notion of recursion schemes adds
one exponential to the cost of model-checking, i.e., model-checking a timed HORS of order k can be
done in (k + 1)-EXPTIME. This is shown by an adaption of the region-graph construction known
from the model-checking of timed CTL. We also obtain a hardness result for k = 1, but we strongly
conjecture that it holds for all k. This result is obtained by encoding runs of 2-EXPTIME Turing
machines into the trees generated by timed HORS.
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1 Introduction

Higher-Order Recursion Schemes (HORS) are a well-studied framework in the context of
infinite-state verification [13, 16]. A HORS is a higher-order grammar that generates a tree,
e.g., the syntax tree of a functional program. The question of HORS model-checking is to
decide whether a given alternating parity tree-automaton (APT) accepts the tree generated
by a given HORS. This is known to be decidable in k-EXPTIME for recursion schemes of
order k [20, 19]. In fact, the problem is k-EXPTIME-complete. Competitive model-checkers
for this problem exist [17, 6, 5], which makes this problem practically feasible even though
the theoretical complexity is high.

Another, seemingly unrelated, branch of verification of complex systems concerns real-
time systems. These are systems that model time not in the discrete, transition-based
fashion known from e.g., the modal µ-calculus, but rather via dense linear time. Typical
verification questions then concern not the possibility of a given action, but, for example,
whether the action can happen in a given timeframe as in “any request is granted in at most
5 milliseconds.” A standard model for real-time verification are timed automata (TA) [2],
which serve as a finite representation of an infinite system that employs dense real time.
Model-checking the systems generated by timed automata is well-understood for specification
logics such as timed CTL, a real-time version of the well-known temporal logic CTL [3, 4].

A recent introduction to the world of real-time verification is Timed Recursive CTL [10],
which extends the specification power of timed CTL to higher-order properties, including
non-regular ones. The consequence of adding such an amount of expressive power is the
increase of the complexity of the model-checking problem to 2-EXPTIME.

In this paper, we follow a different approach at real-time higher-order verification, namely
by making the system to be verified both real-time and higher-order. This is done by
extending the notion of HORS to that of timed HORS, i.e., HORS annotated by real-time
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information. The trees generated by timed HORS are to be model-checked simultaneously
against an APT and a TA, both of which are loosely synchronized to the other. To our
knowledge, this is the first introduction of real-time verification to the world of HORS.

The paper both introduces the concept of timed HORS, the respective model-checking
problem, and studies the complexity of said problem. We show that adding real-time expres-
sions to HORS increases the complexity of the model-checking problem by one exponential.
The upper bound is shown for HORS of all orders, while the lower bound is shown only for
order-1 HORS, due to space considerations. We are confident that the hardness result can
be established for all orders due to parallels between the model-checking problems for HORS
and HFL, the underlying theory of timed recursive CTL [18].

The structure of the paper is as follows: In Sect. 2, we recall the notions of HORS, their
model-checking problem, as well as timed automata. In Sect. 3, we introduce timed HORS
and the associated model-checking problem, supported by an example. In Sect. 4, we show
that the model-checking problem for order-k timed HORS can be solved in (k + 1)-fold
exponential time, using an exponential reduction to the model-checking problem for untimed
HORS. In Sect. 5, we establish a matching lower bound for k = 1, and we conclude with
some remarks on further research in Sect. 6.

2 Preliminaries

We write [n] for the set {1, . . . , n}. Let 2n
0 denote n if k = 0 and let 2n

k+1 denote 22n
k . We use

notation of the form (t1, , t3) with indicating that the value in question is not important,
but exists.

2.1 Trees, Games, and Automata
A tree is a finite, left-closed set T ⊆ N∗, i.e., for all vi ∈ T , we have v ∈ T and, moreover,
vi − 1 ∈ T if i > 0. A tree alphabet is a finite, nonempty set Σ and a function ar : Σ → N
indicating the arity of each symbol. We write Σi for the set of symbols of arity i in Σ. A
Σ-tree is a pair (T, l) with T a tree and l : T 7→ Σ the labeling function such that each v ∈ T

has exactly ar(l(v)) successors. We often identify a tree with its labeling function.
A parity game G = (V, V∃, E, v0, Ω) is a game between ∃ and ∀. Here, (V, E) is a directed

graph, V∃ ⊆ V is the set of nodes owned by ∃, v0 ∈ V is the starting position, and Ω: V → N
is the priority function with finite codomain. We write V∀ for V \ V∃.

A play of G is a sequence of nodes in V , connected by E and starting in v0. A finite play
is extended by the player who owns the last node in the play by picking a successor of this
node. If this is not possible, the player loses the game. A maximal play is either infinite or
cannot be extended further. ∃ wins an infinite play v0, . . . if the maximal number that occurs
infinitely often in the sequence Ω(v0), . . . is even, ∀ wins if it is odd. Positional strategies
are defined as usual. A player wins a parity game iff they have a positional strategy for it.
Computing who wins a parity game can be done in time O(p · |E| · |V |⌊

p
2 ⌋) for a game with

at most p priorities [15].
Let S be a set. By B+(S) we denote the set of positive Boolean expressions over S,

derived from the grammar φ := s | ⊥ | ⊤ | φ ∨ φ | φ ∧ φ with s ∈ S.
An alternating parity tree-automaton (APT) is a P = (Q, Σ, δ, qI , Λ) where Q is a finite,

nonempty set of states, Σ is a tree alphabet containing a special nullary symbol ω, δ =
⋃

i≤n δi

is the transition function with δi : Q × Σi → B+(Qi) and n being the maximal arity that
occurs in Σ We write δ(q, l(v)) for δi(q, l(v)) if ar(l(v)) = i. Finally, qI ∈ Q is the starting
state and Λ: Q → N \ {0} is the priority function, which does not assign value 0 to any state
unless explicitly stated otherwise. The size of an APT is the number of its states.
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A run of an APT P on some Σ-tree T (for matching Σ) is a parity game G(P, T )
called the acceptance game. It has positions from T × (Q ∪

⋃
i≤n B+(Qi)) where n is the

maximal arity in Σ. Its starting position is (ϵ, qI). In a position of the form (v, q), the
unique successor is (v, δ(q, l(v))). Positions of the forms (v, φ1 ∨ φ2) and (v, φ1 ∧ φ2) have
two successors, namely (q, φ1) and (q, φ2). A position of the form (v, (q0, . . . , qi−1)) has i

successors (v0, q0), . . . , (vi − 1, qi−1), a position of the form (v, ⊤) or (v, ⊥) has no successors.
Positions of the forms (v, ⊤) and (v, φ1 ∧ φ2) and (v, (q0, . . . , qi−1)) belong to ∀, all other
positions belong to ∃. Finally, Ω(v, q) = Λ(q); for all other positions we have Ω(v, φ) = 1. P
accepts a tree T if ∃ wins G(P, T ).

2.2 Higher-Order Recursion Schemes
The following is quite terse, see e.g., [20] for more details.

The set of types is defined inductively via τ := • | τ → τ where • is the type of trees,
• → • is the type of functions that map trees to trees, etc. The order of a type is defined as
ord(•) = 0 and ord(τ1 → τ2) = max{1 + ord(τ1), ord(τ2)}. We write τ i → τ ′ to denote the
type τ → τ → · · · → τ → τ ′ with i repetitions of τ .

Fix a tree alphabet Σ. Let V = {x, y . . . } be a set of typed variables. We write x : τ to
denote that x has type τ . The set of V-terms over Σ is defined inductively: for each i-ary
symbol a ∈ Σ, the tree constructor a is a term of type •i → •, and a variable x ∈ V of type
τ is a term of type τ . Given terms t1, t2 of types τ1 → τ2 and τ1, (t1 t2) is a term of type τ2.
We write t : τ to denote the type of a term. All terms are subterms of themselves; moreover
t1 and t2 are subterms of (t1 t2). We use standard conventions to reduce the number of
parentheses, i.e., application associates to the left. The order of a subterm is the order of its
type; the order of a term is the maximal order of any of its subterms. By t[t1/x1, . . . , tn/xn]
we denote the simultaneous capture-avoiding substitution of the ti for all occurrences of the
xi in t. Here, we assume that the types of the term and the variable it is substituted for do
match.

A higher-order recursion scheme (HORS) is a G = (Σ, N , R, S) such that
Σ is a tree alphabet,
N is a set of typed nonterminals; we write N : τ to denote that N has type τ ,
R is a map from N to the set of terms such that if N has type τ1 → · · · τn → •, then
R(N) is an {x1, . . . , xn} ∪ N -term of type • where the variables x1, . . . , xn are unique to
N , and
S : • ∈ N is the starting symbol.

The order of a recursion scheme is the maximal order of the type of any of its nonterminals.
The size |G| of a HORS G = (Σ, N , R, S) is defined as the number of distinct subterms on
the right-hand-sides in R.

Define a rewriting relation →G via
N t1 · · · tn →G R(N)[t1/x1, . . . , tn/xn] if ti : τi for all i and N : τ1 → · · · → τn → •,
a t1 · · · tn →G a t′

1 · · · t′
n if a : •n → • and ti →G t′

i for all i.
Note that this defines N -terms. For a given N -term t, we define the tree tω generated by
it as follows: (a t1 · · · tn)ω is a tω

1 · · · tω
n, and (N t1 · · · tn)ω is ω where ω /∈ Σ is a nullary

constructor. Let (Ti, li) = tω
i for i ∈ {1, 2}. We write tω

1 ⊑ tω
2 if T1 ⊆ T2 and, for all v ∈ T1,

either l1(v) = ω or l1(v) = l2(v). Write T (G) for the tree generated by a recursion scheme G,
defined via

⊔
{tω | S →G t}. This tree is well-defined due to confluence of the lambda-calculus

[14]. By abuse of notation, we also write T (t) for the tree generated by a closed term t : •.
We assume for the rest of the paper that all HORS in question generate trees that do not
contain ω in order to ease notation.
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The problem of model-checking higher-order recursion schemes is now the following: given
a HORS G over Σ and an APT P over Σ ∪ {ω}, does P accept TG? This problem is known
to be complete for k-fold exponential time for schemes of order k [20].

2.3 Timed Automata
Let X = {x, y, . . . } be a set of R≥0-valued variables, called clocks. CC (X ) is the set of clock
constraints over X , defined as conjunctive formulas over ⊤ and x ⊕ c for x ∈ X and c ∈ N,
where ⊕ ∈ {≤, <, >, ≥}. We write x ∈ [c, c′] for the constraint x ≥ c ∧ x ≤ c′, and similarly
for open interval bounds. Clock constraints are denoted by χ, χ′ etc.

A clock evaluation is a mapping η : X → R≥0; it satisfies a clock constraint if
η |= ⊤ always,
η |= x ⊕ c iff η(x) ⊕ c,
η |= φ1 ∧ φ2 iff η |= φ1 and η |= φ2.

For a clock evaluation η and d ∈ R≥0, we write η+d for the clock evaluation defined via
(η+d)(x) = η(x) + d for all x ∈ X . For R ⊆ X , η|R is the clock evaluation defined via
η|R(x) = η(x) if x /∈ R and η|R(x) = 0 if x ∈ R. For singleton sets {x}, we write η|x for
η|{x}.

Let Prop be a finite set of propositions. A timed automaton over clocks in X and with
propositions in Prop is an A = (L, X , ℓ0, ι, ∆, λ) where

L is the set of so-called locations of the timed automaton, including the initial location ℓ0,
X is a finite set of clocks,
ι : L → CC (X ) assigns a clock constraint called an invariant to each location,
∆ ⊆ L×CC (X )×2X ×L is a finite set of transitions; we write ℓ

g,R−−−→ ℓ′ for (ℓ, g, R, ℓ′) ∈ δ.
In such a transition, g is the guard and R are the resets of the transition,
λ : L → 2Prop labels each location with the propositions valid there.

The index of a timed automaton A is the largest constant that occurs in its guards or
invariants. Its size is defined as

|A| = |∆| · (2 · log(|L|) + |X |2 · log m(A)) + |L| · (log |X |2 · log m(A)) + |L| · |Prop|.

due to the coding of the constants in clock constraints in binary.
A TA A defines a so-called timed transition system (tTS) (S, −→, s0, λ) over pairs of

locations and clock evaluations as follows:
The state set of the system is S = {(ℓ, η) ∈ L × (X → R≥0) | η |= ι(ℓ)}.
The initial state s0 is (ℓ0, η0) where η0(x) = 0 for all x ∈ X .
Delay transitions keep the location but let time flow: for any (ℓ, η) ∈ S and d ∈ R≥0 we
have a transition (ℓ, η) d−→(ℓ, η + d) if η + d′ |= ι(ℓ) for all 0 ≤ d′ ≤ d.
Discrete transitions are derived from ∆: For all (ℓ, η) ∈ S, ℓ′ ∈ L and R ⊆ X , we have
(ℓ, η) −→(ℓ′, η|R) if there is g ∈ CC (X ) with (ℓ, g, R, ℓ′) ∈ ∆, η |= g and, finally, η|R |= ι(ℓ′).
The propositional labeling λ feeds through the labeling of a location, i.e., λ(ℓ, η) = λ(ℓ).
Moreover, we consider all states labeled by the clock constraints that hold there, i.e.,
(ℓ, η) |= χ iff η |= χ.

Note that the system defined by a TA is generally neither finite nor countable, both due to the
uncountable state set and the infinitary labeling of states by arbitrary clock constraints. Also
note that it contains an uncountable number of transition relations, namely the anonymous
transition relation that stems from discrete transitions, as well as a transition relation d for
each d ∈ R≥0, stemming from delay transitions.
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We say that time can pass from some state (ℓ0, η0) by an amount of d ∈ R≥0 if there is a
Trace in the system of the form (ℓ0, η0), (ℓ1, η1), . . . , (ℓn, ηn) such that, (i) for each 0 ≤ i < n,
either (ℓi, ηi) −→(ℓi+1, ηi+1) or (ℓi, ηi) d′

−−→(ℓi+1, ηi+1) for some d′ ∈ R≥0, and (ii) the sum of
the delay transitions on this path is d. A state is a timelock if time cannot pass from this
state, neither directly nor after some discrete transitions.

3 Real-Time Recursion Schemes

Let Σ be a tree alphabet. Its timed version is Σt = Σ × J for J a finite set of intervals with
natural bounds plus infinity, where an element (a, J) is written aJ . Hence, symbols in Σt are
of the form a[2,∞) or b(3,5] or c[2,2].

A timed HORS is a recursion scheme over a timed alphabet Σt. Hence, a timed HORS
is a recursion scheme over a tree alphabet where the terminals, or tree constructors, are
each labeled with an interval. The size of a timed HORS G is the size of its untimed version
(obtained via the mapping aJ 7→ a) times the logarithm of the largest finite interval bound
mentioned by G.

Since a timed HORS generates a tree just as an untimed HORS, this tree can be model-
checked against an APT, either by simply ignoring the interval annotations (again, via the
mapping aJ 7→ a), or by treating Σt as an ordinary tree alphabet. However, the purpose of a
timed HORS is to be validated against a pair of a (timed) APT and a TA, which are loosely
synchronized. Before we give an intuition, we define timed APT.

Let X be a set of clocks and let A be a TA over X with propositions in Q. Let Ξ be a
finite set of clock constraints over X . A timed Ξ-APT over Σω is a (Q, Σ, δ, qI , Λ) where
Q, qI , Λ are as for ordinary APT and δ is the union of the δi : Q × 2Ξ × Σi → B+(Qi), i.e.,
the transition function consumes a state, an untimed symbol from Σ, and a subset of Ξ.
Note that the state set of the timed APT is exactly the set of propositions used in the TA.
The size of a timed APT is |Q| · 2|Ξ| · log k, where k is the biggest clock constraint in Ξ.

Let G be a timed HORS over Σt, let A be a timed TA over clocks in X , and let P be
a timed Ξ-APT with states in Q with Ξ a set of clock constraints over X . The semantics
of an APT-TA pair over the tree generated by a timed HORS is explained in terms of an
acceptance game. This works similarly to the acceptance game for ordinary, untimed APT,
but with an extra component for the TA. Hence, a position of the game is defined by a node
in the tree generated by the timed HORS, a state of the APT and a state of the tTS defined
by the TA, i.e., a location of the TA and a suitable clock evaluation.

A play of the game proceeds like this: In a position as per above, first ∃ must let time
flow in the tTS by an amount dictated by the labeling aJ of the current tree node. Moreover,
while letting time flow, she may visit only locations of the TA whose propositional labeling
includes the current state of the APT. If she cannot let time flow like this, she looses the
acceptance game. Once ∃ has let time flow, the transition function of the timed APT is
consulted. This function consumes the current state of the APT, the labeling of the current
tree node, and, additionally, the clock constraints from Ξ valid in the state of the tTS defined
by the TA. The transition function is then played out out as for ordinary APT. Hence, the
APT and the TA are synchronized in the sense that time flow in the tTS defined by the
TA is restricted by the current state of the APT, while the behavior of the APT, in turn,
depends on the clock constraints valid in the current state of the tTS.

Formally, the semantics of a Ξ-APT P and its companion TA A (over a suitable set of
clocks) over a timed HORS G is defined as a parity game G(A, P, G):
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The positions of the game are of the form (v, φ, (ℓ, η), b) where v is a node in TG ,
φ ∈ Q ∪

⋃
i B(Qi) is a subformula of the transition function of the timed APT, (ℓ, η) is a

state in the timed transition system defined by A, and b is a bit, indicating whether time
has flown already in this position.
The initial position is (ϵ, qI , (ℓ0, η0), 0) where η0(x) = 0 for all x ∈ X .
A position of the form (v, q, (ℓ, η), 0) is owned by ∃. If l(v) = aJ , any position of the form
(v, q, (ℓ′, η′), 1) is a successor position, provided (ℓ′, η′) can be reached in the tTS from
(ℓ, η) by letting time flow for an amount within J , but by visiting only locations where
the propositional labeling includes q.
A position of the form (v, q, (ℓ, η), 1) is owned by ∃. The unique successor is the position
(v, φ, (ℓ, η), 1) where φ = δ(q, S, a) with aJ = l(v) and S = {χ ∈ Ξ | η |= χ}.
A position of the form (v, φ1 ∨ φ2, (ℓ, η), 1) is owned by ∃, and one of the form (v, φ1 ∨
φ2, (ℓ, η), 1) is owned by ∀; its successors are (v, φi, (ℓ, η), 1) for i ∈ {1, 2}.
A position of the form (v, (q0, . . . , qk−1), (ℓ, η), 1) is owned by ∀. Its successors are
(vi, qi, (ℓ, η), 0) for 0 ≤ i < k.
The priority of a position of the form (v, q, (ℓ, η), 0) is Λ(q), and 1 for the other positions.

We say that (A, P) accepts T (G) if ∃ wins the above parity game.
The model-checking problem for timed HORS is: Given a timed HORS G and an APT-TA

pair P, A as per above, decide whether ∃ wins G(A, P, G).

▶ Example 1. Consider the problem of a scheduler that schedules two processes, each of
them for a variable amount of time, depending on the internal state of the scheduler. We
want to verify that the scheduler is fair, i.e., that no process gets scheduled for more than k

seconds in a row, for some given constant k.
Let {J1, . . . , Jn} be a set of intervals denoting time slices scheduled to a process. W.l.o.g.

assume that these are all unit intervals, i.e., of the form [m, m] for some natural number
m. Let Σ be a tree alphabet with a binary symbol a, unary symbols b, b′ representing the
two processes, and a nullary symbol c. We model the problem by a timed HORS with rules
S 7→ S1 c and

S1 (x : •) 7→ a[0,0] x (S2 (b1
J1

x)
)

. . . Sn (x : •) 7→ a[0,0] x (S1 (bn
Jn

x)
)

where the bi are each either b or b′. Let A be the TA defined by the following picture:

ℓ0start
s

ℓ1
x = 0

s

ℓ2

s, p

ℓ3
x = 0

p, q

ℓ4

s, q

ℓ5
y = 0

p, q
{x} {y}

{x, y}

The sets on the edges denote resets, while the equalities in locations are invariants.
Finally, let P be the {x ≤ k, y ≤ k}-APT defined by ({s, p, q}, Σ, δ, s, λ) with λ being

constant 2 and δ being defined by

δ(s, , a) = (s, s) δ( , S, b) = (q)
δ( , S, ) = ⊥ δ( , S, b′) = (p) δ( , S, c) = ⊤

where S = {x ≤ k, y ≤ k} and S stands for any set of constraints that is not S.
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The timed HORS in the above example generates a tree with the root and the rightmost
branch labeled by a[0,0], while the left branches of these nodes are increasingly longer
sequences of b and b′, ending in c. These encode increasingly longer scheduling decisions,
encoded in reverse order. The APT traverses the rightmost branch in state s, while ∃
necessarily keeps the TA in location ℓ0. Upon reading the first b or b′, the APT moves to
state q or p, respectively, and, hence, the TA follows by switching to locations ℓ4, resp. ℓ2.
Switching between the two resets exactly one of the clocks. If the APT encounters the TA in
a clock evaluation where one of the clocks exceeds k, the automaton rejects, and it accepts
any finite branch if it reaches the final c with none of the clocks having excessive value. The
infinite branch of the tree containing the as accepts since λ(s) = 2.

4 Upper Bounds for Model-Checking

We show the model-checking problem for timed HORS to be in (k + 1)-EXPTIME for order-k
timed HORS. This is done by an exponential reduction to the model-checking problem for
untimed HORS. Hence, we reduce the input of a timed HORS, an APT, and a TA to a
polynomially-sized untimed HORS and an exponential-sized APT such that the APT accepts
the tree generated by the untimed HORS iff the APT-TA pair accepts the tree generated by
the timed HORS.

As a preparation, we slightly alter the timed-HORS acceptance game. Let A be a TA, let
P be an APT and let G be a timed HORS, all over matching alphabets and propositions. Let
z be a clock not in the clock set X of A. The acceptance game G(A, P, G) is in extra-clock
semantics, if transitions from positions of the form (v, q, (ℓ, η), 0) are as follows:

First, the game transitions to the position (v, q, (ℓ, η|z), 0). Let l(v) = aJ . Any position
of the form (v, q, (ℓ′, η′), 1) with η′(z) ∈ J is a successor position, provided it can be
obtained by letting time flow by visiting only locations where the propositional labeling
includes q.

▶ Lemma 2. In G(A, P, G), ∃ wins from a position (v, q, (ℓ, η), 0) under extra-clock semantics
iff she wins from that position under standard semantics. In particular, she wins the game
from the initial position under extra-clock semantics iff she wins under standard semantics.

We omit a formal proof since this is straightforward. The main point is that z is not reset in
A, and, hence, can serve as a yardstick for elapsed time.

4.1 The Region Abstraction
The region abstraction is a classical result (see e.g., [1] or [4], Def. 9.42), that maps the infinite
transition system defined by a TA onto a finite transition system. It uses an equivalence
relation ≃m, for m ∈ N, on clock evaluations, defined as follows: η ≃m η′ iff

for all x ∈ X : η(x) > m and η′(x) > m

or ⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 ⇔ frac(η′(x)) = 0
and for all y ∈ X with η(y) ≤ m and η′(y) ≤ m :

frac(η(x)) ≤ frac(η(y)) ⇔ frac(η′(x)) ≤ frac(η′(y)).

Here, frac(r) denotes the fractional part of a real number. Clock evaluations are considered
equivalent if, for each clock, (i) either both clocks have a value greater than m, or (ii) they
compare in the same way with respect to all integers less than m. Moreover, the passage of
time will make equivalent evaluations reach the next integral value first for the same clock.
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It is straightforward to verify that ≃m is an equivalence relation for any m. An equivalence
class in this relation is called a region. We denote the equivalence class of η under ≃m as
[η]m, When m is clear from the context, we may omit it and simply write [η]

An important observation is that the region abstraction is also a congruence w.r.t. the
winner of the timed-HORS acceptance game:

▶ Lemma 3. Let A be a TA, P a Ξ-APT, G a timed HORS, all over matching alphabets and
clocks. Let m be greater than or equal to the index of A, any interval on a tree constructor
in G, and any clock constraint in Ξ. Let v be a node in T (G), q a state of P, ℓ a location
in A and η ≃m η′ two clock evaluations. Then ∃ wins the acceptance game from position
(v, q, (ℓ, η), 0) iff she wins the game from position (v, q, (ℓ, η′), 0).

The proof is in App. A.1. By the lemma, the outcome of the acceptance game does not
depend on the exact clock evaluation, but only on the region in question. This motivates
notation of the form “∃ wins from a position (v, q, (ℓ, [η]), 0)”, which means that ∃ wins for
all positions (v, q, (ℓ, η′), 0) with η′ ∈ [η].

As mentioned above, given a TA A and m greater than or equal to the index of A, the
region abstraction induces a finite transition system that faithfully represents the transition
system defined by the TA. To make this precise, we define the notion of a successor region:

▶ Definition 4. Let A be a TA, and let m be greater or equal than the index of A. Let ≃m

denote the region equivalence w.r.t. m. For each region [η]m, the unique successor region is
suc([η]m) = [η]m if η(x) > m for all x ∈ X ,
suc([η]m) = [η′]m iff there is d ∈ R≥0 such that η+d = η′, and η+d′ ∈ [η]m ∪ [η′]m for
all 0 < d′ < d, and [η]m ̸= [η′]m.

The second term defines the successor region of [η] to be the first region that is entered if
time passes from any η′ ∈ [η], and the first term makes the successor region well-defined in
regions where all clocks have values greater than m.

Let A be a TA and let m be greater than or equal to the index of A. Let Ξ be a set of
clock constraints over the clocks of A. The region graph Rm

Ξ (A) of A (w.r.t. m and Ξ) is the
transition system defined as follows:

The state space is {(ℓ, [η]m) ∈ L× (X → R≥0)/≃m
| η |= ι(ℓ)} with initial state (ℓ0, [η0]m).

Discrete transitions from one state to another state are carried through, while delay
transitions always lead to the successor region. Hence, we have (ℓ, [η]m) −→(ℓ′, [η′]m)
iff either (ℓ, η) −→(ℓ′, η′) (discrete transition) or ℓ = ℓ′ and [η′]m = suc([η]m) (delay
transition).
The propositional labeling not only assigns atomic propositions to states via p ∈ λ(ℓ, [η])
iff p ∈ λA(ℓ) for any p ∈ Prop, but also interprets any clock constraint χ ∈ Ξ as an
atomic proposition in the region graph via χ ∈ λ(ℓ, [η]) iff (ℓ, η) |= χ.

The following is a classical result.

▶ Proposition 5 ([1]). Let A be a TA over n clocks with l locations and let Ξ be a set of
clock constraints over the clocks in A. Let m be greater than or equal to the index of A. Then
Rm

Ξ (A) is an (untimed) transition system of size l · 2On(log n+log m) · |Ξ|, i.e., exponential in
|A|, and there is a trace (ℓ0, η0), . . . , (ℓn, ηn) in the system defined by A iff there is a path
(ℓ0, [η0] −→[s1] −→ . . . [sn′−1] −→(ℓn, [ηn]) in Rm

Ξ (A).

The last statement means that letting time flow in the tTS defined by A corresponds to
following a path in Rm

Ξ (A), and vice versa.
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4.2 The Reduction

We now begin the reduction. The overall idea is to replace the companion TA, and the
infinite transition system defined by it, by its corresponding region graph. This untimed
transition system is then incorporated into the APT via a product construction. Hence, the
new APT will have states of the form (q, ℓ, [η]), where q is a state of the original APT, ℓ is a
location in the companion TA, and [η] is a region in its region graph. The transition function
is then modified to simulate the passage of time from positions of the form (v, q, (ℓ, η), 0)
using extra-clock semantics. However, direct simulation of the passage of time is tricky. In
particular, it cannot be directly incorporated into the transition function without incurring
blowup by another exponential in addition to the exponential blowup caused by passage to
the region graph.

The above construction is supported by changing the timed HORS into an untimed
HORS. This untimed HORS defines a tree that is similar in structure to that defined by the
timed one, and it also makes the interval annotations of the tree defined by the timed HORS
explicit via special gadgets. These gadgets help the new APT to properly advance time in
its region graph components.

Let G = (Σt, N , R, S) be a timed HORS over a timed alphabet Σt, together with its
untimed version Σ. Let J be the intervals occurring on the right-hand sides of R. Define the
untimed alphabet Σu = Σ ∪ {reset, flow} ∪

⋃
J∈J checkJ where reset : • → •, flow : •2 → •

and checkJ : • → • for all J ∈ J . Then let Gu = (Σu, N ∪
⋃

J∈J {startJ , chooseJ}, R′, S)
be an untimed HORS where R′ is defined as via:

startJ(x : •) 7→ reset (chooseJ x) chooseJ(x : •) 7→ flow (chooseJ x) (checkJ x)

and the right-hand side for a symbol in N is defined as R′(N) = R̂(N) where ̂(aJ t1 · · · tn) =
startJ (a t̂1 · · · t̂n), t̂1 t2 = t̂1 t̂2 if t1 ≠ aJ , x̂ = x for a variable x, and N̂ ′ = N ′ for N ′ ∈ N .

Hence, a tree of the form aJ t1 · · · tn is replaced by a tree whose root is labeled by reset.
The unique subtree below this root is an infinite tree where all nodes on the leftmost branch
are labeled by flow, and the right son of each of the nodes labeled by flow is a tree of the
form checkJ (a t̂1 · · · t̂n). Hence, there are infinitely many copies of the latter subtree, each
reached by following the left son of the nodes labeled by flow for a finite number of times,
and then branching to the right once.

The intuition is that the sequence of nodes labeled by flow will help the yet-to-be-defined
untimed APT to simulate the flow of time in the tTS defined by the TA by following a
suitable path in its region graph component, i.e., one that advances the region component
from one region to its successor region. The infinite sequence of nodes labeled by flow allows
the APT to follow paths of arbitrary length in this fashion. Conversely, the passage of time
is an an atomic action in the semantics of the (timed) APT-TA pair, which must be broken
up into its individual steps to avoid exponential blowup.

Let G be as before and let P = (Q, Σ, δ, qI , Λ) be a timed Ξ-APT over Σt, let A =
(L, X , ℓ0, ι, ∆, λ) be a companion TA for it. Let Q′ = Q ∪ {q′ | q ∈ Q}, let m be the smallest
integer at least as big as the index of A, each finite interval bound in J and each clock
constraint in Ξ. Let Ξ′ be the union of Ξ and {z ∈ J | J ∈ J }, where z /∈ X .

Define an untimed APT PA = (Q′′, Σu, δ′, q′
I , Λ′) via

Q′′ = {(q′′, ℓ, [η]) | q′′ ∈ Q′, (ℓ, [η]) is a state in Rm
Ξ (A)}

the initial state is q′′
I = (qI , ℓ0, [η0]),

Λ′(q′′, , ) = Λ(q′′) if q′′ ∈ Q, otherwise Λ′(q′′, , ) = 1
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and δ′ is defined as

δ′((q, ℓ, [η]), reset) = (q′, ℓ, [η|z]) if q ∈ Q

δ′((q′, ℓ, [η]), flow) = ((q′, ℓ′, [η′]), (q′, ℓ, [η])) if (ℓ, [η]) −→(ℓ′, [η′]) in Rm
Ξ (A) and q ∈ Q

δ′((q′, ℓ, [η]), checkJ) = ⊥ if η(z) /∈ J

δ′((q′, ℓ, [η]), checkJ) = (q, ℓ, [η]) if η(z) ∈ J

δ′((q, ℓ, [η]), a) = φ′ if δ(q, S, a) = φ and S = {χ ∈ Ξ | η |= χ}

where φ′ is obtained from φ by replacing all occurrences of q ∈ Q by (q, ℓ, [η]). All unlisted
transitions can be assumed to be ⊥. The intuition is that the copies q′ of states in Q serve for
the sequence of flow nodes and have priority 1 to avoid staying on the sequence indefinitely.
Branching leftward at a flow node advances time. The following is immediate from Prop. 5.

▶ Observation 6. The size of PA is exponential in that of P and A.

We now show that PA simulates the APT-TA pair of P and A faithfully.

▶ Lemma 7. Let G, A and P be a timed HORS, a TA and an APT over matching alphabets.
PA accepts the tree generated by Gu iff the APT-TA pair accepts TG.

The proof is in App. A.1.

▶ Theorem 8. The model-checking problem for order-k timed HORS is in (k +1)-EXPTIME.

Proof. By Lemma 7, the model-checking problem for a timed APT P and a TA A over a
timed HORS G can be reduced to the untimed model-checking problem of PA over Gu. By
Obs. 6, the size of PA is exponential in that of P and A. Since the model-checking problem
for order-k HORS can be solved in k-fold exponential time [20], the result follows. ◀

5 Matching Lower Bounds

We now show that the model-checking problem for order−1 timed HORS is 2-EXPTIME
hard. The proof reuses a construction from [10], adapted to the situation with timed HORS.
We restrict ourselves to the order-1 case due to space considerations, but we conjecture that
the proof can be extended to arbitrary order in the same fashion as in [10].

5.1 Encoding 2-EXPTIME Turing Machines
We use an idea from [12] to encode the word problem for deterministic 2-EXPTIME Turing
machines, namely by encoding an accepting run of the machine into a square table of 2-fold
exponential size. The rows of the table are the configurations of the run, in order. A row
lists the tape contents of the machine and the position and state of the head.

The following is obtained by standard reductions: the machine never moves its head
to the left of the starting position and it accepts by moving to a unique accepting state
at the starting position and on empty tape. Moreover, instead of halting, it repeats this
configuration ad infinitum, and it enters this configuration in time at most 22n − 2 on input
of size n instead of merely time less than 22p(n) for some polynomial p. Moreover, it suffices
to consider the empty-word problem, i.e., the question whether the machine halts on empty
input. The last assumption is easily shown to be valid, as for every machine M and input w

satisfying all the other assumptions, there is Mw that first writes w on empty input and
then behaves like M.
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Let M = (Q, Σ, Γ, qI , qacc) be a DTM with state set Q, unique initial and accepting
states qI and qacc, input and tape alphabets Σ ⊊ Γ, with □ ∈ Γ \ Σ the blank symbol and,
δ : Q × Γ → Q × Γ × {L, R, N} the transition function. Let Γ̂ = Γ ∪ (Q × Γ) ∪ {#} where #
is a new boundary symbol that does not occur in Γ. Define the extended transition function
δ̂ : Γ̂3 → Γ̂ \ {#} with δ̂(b1, b2, b3) being

(b2, q), if b1 ∈ Γ ∪ {#}, b2 ∈ Γ and b3 = (q′, a) with δ(q′, a) = (q, , L)
(b2, q), if b3 ∈ Γ ∪ {#}, b2 ∈ Γ and b1 = (q′, a) with δ(q′, a) = (q, , R)
(a, q), if b1, b3 ∈ Γ ∪ {#}, b2 = (q′, a) with δ(q′, a) = (q, b, N)

a, if b1, b3 ∈ Γ ∪ {#}, b2 = (q′, b) with δ(q′, a) = (q, a, R) or (q, a, L)
a, if b2 = a, b1 ̸= (q′, a′) with δ(q′, a′) = (q, , R), b3 ̸= (q′, a′) with δ(q′, a′) = (q, , L)

This encodes the contents of a cell in the table of rows in dependence on the three cells of
the previous row that are directly below it, resp. directly adjacent to the cell directly below
it. It is easy to see that the preimage of any b ∈ Γ̂ \ {#} under δ̂ is easy to compute, since
there are only |Γ̂3| many possible candidates.

▶ Definition 9. A 2n
2 -certificate for the acceptance of M is a C : [2n

2 ] × [2n
2 ] → Γ̂ where

1. C(r, c) = # iff c = 0 or c = 22n − 1,
2. C(0, 1) = (qI ,□) and C(0, c) = □ if 2 ≤ c < 22n − 1,
3. if r > 0, 0 ̸= c ̸= 22n − 1 and C(r, c) = b ∈ Γ̂, then there are b1, b2, b3 with δ̂(b1, b2, b3) = b

and C(r − 1, c − 1) = b1, C(r − 1, c) = b2 and C(r − 1, c + 1) = b3.
Such a certificate is successful if also C(22n − 1, 0) = (qacc,□) holds.

Clearly, for every M and n, there is a unique such certificate.

▶ Proposition 10. It is a 2-EXPTIME-hard problem to decide whether, given some n encoded
in unary, and a DTM M, there is a successful 2n

2 -certificate for M and n in the sense above.

For a more detailed exposition of this, see [10].

5.2 Modeling of Large Numbers

In order to encode a certificate as in the previous section into the model-checking problem for
timed HORS, we need to encode and manipulate numbers up to 22n into a polynomially-sized
presentation of a timed HORS, a TA and an APT. The heavy lifting for the encoding is done
by the TA, via the use of clock values, while the manipulating is done using the HORS.

The encoding is done using a single clock. Let A be the TA with one location ℓ, one clock
x, no invariants and no transitions and, hence, no guards. Hence, a state in the transition
system is defined completely by its value of x. Let Σred = {and, and3, or, or3, neg, ff, mx} be
a tree alphabet where ff and mx are of type •, neg is of type • → •, and and or are of type
•2 → • and and3 and or3 are of type •3 → •. Let Ξ = {x ≤ 2n − 1}. We abbreviate this
single constraint by max. Let Pcnt = ({qyes

1 , qyes
0 , qno

1 , qno
0 , q⊤}, Σred, δ, qyes

1 , Λ) be a timed APT
with Λ(qyes

1 ) = Λ(qno
1 ) = Λ(q⊤) = 1 and Λ(qyes

0 ) = Λ(qno
0 ) = 0, with δ to be defined soon.

The intuition is that qyes
1 , qyes

0 verify that a given bit is set in the representation of a large
number, and that qno

1 , qno
0 falsify this, with the difference between the two copies of each

state to become important later. The state q⊤ accepts any tree. We set the location ℓ in A
to satisfy all propositions associated to states in Q.
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The transition function of the APT is defined via (where i ∈ {1, 2})

δ(qyes
i , , ff) = ⊥ δ(qyes

i , , and) = (qyes
0 , qyes

1 )
δ(qno

i , , ff) = ⊤ δ(qyes
i , , or) = (qyes

1 , q⊤) ∨ (q⊤, qyes
1 )

δ(qyes
i , {max}, mx) = ⊤ δ(qno

i , , and) = = (qno
1 , q⊤) ∨ (q⊤, qno

1 )
δ(qno

i , {max}, mx) = ⊥ δ(qno
i , , or) = = (qno

0 , qno
1 )

δ(qyes
i , ∅, mx) = ⊥ δ(qyes

i , , and3) = (qyes
1 , qyes

1 , qyes
1 )

δ(qno
i , ∅, mx) = ⊤ δ(qyes

i , , or3) = (qyes
1 , q⊤, q⊤) ∨ (q⊤, qyes

1 , q⊤) ∨ (q⊤, q⊤, qyes
1 )

δ(q⊤, , ) = ⊤ δ(qno
i , , and3) = (qno

1 , q⊤, q⊤) ∨ (q⊤, qno
1 , q⊤) ∨ (q⊤, q⊤, qno

1 )
δ(qno

i , , or3) = (qno
1 , qno

1 , qno
1 ).

The intuition for the automaton is that the states qyes
i reject at ff (for “false”) and that

they accept at mx iff, in the companion TA, max is satisfied. The states qno
i work in the

opposite fashion. At tree constructors and, or, both state pairs behave as expected: for and,
both subtrees have to be verified, while for or, only one of them needs to be verified, and
opposite for qno

i . Again, the pair qno
i behaves in the opposite fashion, and and3 and or3 are

the ternary variants of and and or. For reasons that we will explain later, at the binary tree
constructors, the priority of the state going in leftward direction sometimes deviates from
the default 1.

▶ Definition 11. A tree over Σred encodes a number k ∈ [22n ] if its representation in binary
is

∑2n−1
i=0 bi ·2i where bi = 0 iff Pcnt accepts the root of the tree with the clock of its companion

TA set to 2n − 1 − i.

Note that this definition talks about runs of the APT-TA pair with the clock of the TA
initialized to a specific value, not necessarily 0. The intuition is that acceptance of Pcnt for
different initial values of the clock of the companion TA forms a set of bits: for each clock
value in [2n], Pcnt either accepts or it does not. These bits can be thought of as the binary
representation of a number in [2n

2 − 1]. Note that the order of the bits is reversed from what
one would intuitively expect: the least significant bit is the one where x has value 2n

2 − 1,
while the most significant bit is the one where x has value 0.

It is also fairly easy to see that there are trees that encode numbers. For example, the
number 0 is encoded by the tree with just one node, labeled by ff. It now is time to add
incrementation and decrementation of numbers.

In the binary representation of the increment of a number, a bit is set if either it is

set in the representation of the number, and there is an unset bit of lesser significance, or

not set in the representation of the number, but all bits of lesser significance are set.
Since bits are set in the encoding of our numbers if the APT Pcnt accepts if the single clock
of its companion TA is set to the right value, checking whether a bit of lesser significance is
set in the encoding of a number, i.e., a tree, can be done by letting time flow for the right
amount, and then simply checking if the APT accepts the tree. This works because bits of
lesser significance are represented by clock values closer to 2n

2 − 1.
In the following, for a[1,1] we write a1, and an undecorated constructor a means a[0,0].

Consider the following definitions, where T (zero ) clearly encodes 0:
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zero 7→ ff
exists (x : •) 7→ or1 (exists x) (and max x)

all (x : •) 7→ and1 (all x) (or (neg max) x)
inc (x : •) 7→ or

(
and x (exists (neg x))

) (
and (neg x) (all x)

)
dec (x : •) 7→ or

(
and x (exists x)

) (
and (neg x) (all (neg x))

)
isZero? (x : •) 7→ and(neg x) (all neg x)

We have already seen that the tree generated by zero encodes the number 0. The
following lemma proves that the above macros behave as their names suggest.

▶ Lemma 12. Let e be a closed term of type • such that T (e) encodes some number k ∈ [22n ].
Then
1. Pcnt accepts T (exists e) from states qyes

i with its clock set to some value k ∈ [2n] iff it
accepts T (e) from qyes

i with the clock set to some integral k′ with k < k′ ≤ 2n − 1, and it
accepts from states qno

i iff it accepts T (e) from qno
i for no such integral clock value.

2. Pcnt accepts T (all e) from states qyes
i with its clock set to some value k ∈ [2n] iff it

accepts T (e) from qno
i and for all integral clock values k′ with k < k′ ≤ 2n − 1, and it

accepts from states qno
i iff it rejects T (e) from qno

i for some such integral clock value.
3. T (inc e) encodes the number k + 1 mod 22n and T (dec e) encodes the number k − 1

mod 22n .
4. Pcnt accepts T (isZero? e) with the clock set to 0 from states qyes

i iff T (e) encodes 0, and
from states qno

i iff the tree generated by T (e) encodes a number different from 0.
The proof is in App. A.2.

5.3 The Hardness Proof
We now show that it is 2-EXPTIME-hard to decide the model-checking problem of timed
HORS , i.e., to decide whether a given pair of a TA and a timed APT accepts the tree
generated by an order-1 timed HORS. We reduce the following problem to the model-checking
problem: given n encoded in unary and M a DTM, is there a successful 2n

2 -certificate for
M? By Prop. 10, this problem is 2-EXPTIME-hard.

For the remainder of this section, fix some n encoded in unary and a 2n
2 -bounded DTM.

Let Γ̂ be as in Def. 9. Note that the question for a successful 2n
2 -certificate asks for a table

of width 2n
2 and height 2n

2 , filled with entries from Γ̂. It is sufficient to check that the top
left entry of the certificate is correct, and then to recursively check that the three entries
directly below a given entry are as per δ̂.1

We implement this recursive verification procedure by defining an APT-TA pair and an
order-1 timed HORS such that the pair accepts the HORS iff the certificate is successful.
The state of the APT represents an element of Γ̂. The timed HORS generates a tree in which
certain nodes represent an entry of the table, and these nodes have two (indirect) subtrees
that encode the row and column number of the entry, to be recognized by the TA part of
the APT-TA pair as in Def. 11. In addition, such a node representing a column entry has
another three direct subtrees, which encode the three table entries in the previous row with
the three adjacent column numbers as per δ̂. The tree contains further gadgets to verify
that a given symbol can occur in the entry if this is easily verified, e.g., for the leftmost and
rightmost columns and the boundary symbol #. The scheme is defined as follows:

1 This recursive procedure does not check the top right half of the table, but it is easy to see that it must
be filled by blanks due to the assumptions about the DTM in question. See also [10] for more details.
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S 7→ F (dec zero ) zero

F (r : •)(c : •) 7→ or (check r c) (next r c)
gtOne? (x : •) 7→ and

(
neg (isZero? x)

) (
neg (isZero? (dec x))

)
ltMax? (x : •) 7→ and

(
neg (isZero? (inc x))

) (
isZero? (inc (inc x))

)
check (r : •)(c : •) 7→ or3

(
or (isZero? (inc r)) (isZero? r)

)(
and (isZero? r) (isZero? (dec c))

)(
and3 (isZero? r) (gtOne? x) (ltMax? x)

)
next (r : •)(c : •) 7→ and

(
and3 (neg (isZero? r)) (neg (isZero? c)) (ltMax? c)

)
(

and3
(
F (dec r) (dec c)

) (
F (dec r) c

) (
F (dec r) (inc c)

))
Intuitively, the only properly recursive nonterminal here is F . Any subtree generated by F

with arguments r and c encodes a cell of the certificate, namely that whose row number is
encoded by T (r) and its column number is encoded by T (c). Such a tree node poses a choice
to the yet-to-be-defined APT whether it accepts this tree via (the tree generated by) next
or via check . The latter variant allows the APT to verify that T (r) and T (c) satisfy the
boundary conditions of the certificate, while the former variant verifies that T (r) and T (c)
encode the indices of an interior cell of the certificate and make the APT verify recursively
the properties of the three cells below that encoded by T (r) and T (c).

Define Pred = (Q, Σred, δ′, {q(qacc,□)}, Λ) as an extension of the APT Pcnt from the
previous section, with δ′ to be defined soon, with

Q = {qyes
1 , qyes

0 , qno
1 , qno

0 , q⊤} ∪ {qb
l | b ∈ {#,□, (qI ,□)}} ∪ {q(b1,b2,b3) | b1, b2, b3 ∈ Γ̂},

and Λ(q) = 1 for all qb
l , q(b1,b2,b3) and Λ as per Pcnt for q ∈ {qyes

1 , qyes
0 , qno

1 , qno
0 , q⊤}. The

companion TA remains the one-state, one-clock featureless TA from Pcnt.
Consider the timed HORS Gred = (Σred, N , R, S) with N and R as given by the definitions

above. The idea is that Pred accepts from state qb and with the clock of its companion TA
set to 0 the tree T (F r c) iff the numbers encoded by the trees T (r) and T (c) are m and m′

such that C(m, m′) = b in the unique certificate for M and n. In particular, Pred accepts
T (S) from its starting state q(qacc,□) iff C(2n

2 − 1, 0) = (qacc,□).
Towards this, consider the following definition of the transition function of Pred:

δ′(qb, , or) = (qb
l , q⊤) if b ∈ {#, (qI ,□)}

δ′(q□, , or) = (q□l , q⊤) ∨
∨

δ̂(b1,b2,b3)=□

(q⊤, q(b1,b2,b3))

δ′(qb, , or) =
∨

δ̂(b1,b2,b3)=b

(q⊤, q(b1,b2,b3)) if b /∈ {#,□, (qI ,□)}

δ′(q#
l , , or3) = (qyes

1 , q⊤, q⊤) δ′(q(qi,□)
l , , or3) = (q⊤, qyes

1 , q⊤)

δ′(q□l , , or3) = (q⊤, q⊤, qyes
1 ) δ′(q(b1,b2,b3), , and) = (qyes

1 , q(b1,b2,b3))

δ′(q(b1,b2,b3), , and3) = (qb1 , qb2 , qb3)

The remaining transitions can all be assumed to lead to ⊥, as they will not occur anyway.
We now formalize the above intuition about the semantics of the APT.
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▶ Lemma 13. Let C : 2n
2 × 2n

2 → Γ̂ be the unique certificate for n and M. Let r, c : • be
expressions such that T (r), T (c) encode m, m′ ∈ [2n

2 ]. Let b, b1, b2, b3 ∈ Γ̂.
1. Pred accepts T (check r c) from state q#

l iff either m′ = 0 or m′ = 2n
2 − 1.

2. Pred accepts T (check r c) from state q□l iff both 2 ≤ m′ < 2n
2 − 1 and m = 0.

3. Pred accepts T (check r c) from state q
(qI ,□)
l iff both m = 0 and m′ = 1.

4. Pred accepts T (next r c) from state q(b1,b2,b3) iff (i) both m > 0 and 0 < m′ < 2n
2 − 1 and

(ii) Pred accepts T
(
F (dec r) (dec c)

)
from state qb1 and T

(
F (dec r) c

)
from state

qb2
)

and T
(
F (dec r) (inc c)

)
from state qb3 .

5. Pred accepts T (F r c) from state qb iff C(m, m′) = b.
Finally, Pred accepts T (Gred) iff C(2n

2 − 1, 0) = (qacc,□).

The proof is in App. A.2.
This lemma then immediately yields the hardness result:

▶ Theorem 14. It is 2-EXPTIME-hard to decide whether a given APT-TA pair accepts a
given timed HORS.

Proof. Take any DTM M. By Prop. 10, it is 2-EXPTIME-hard to decide, given n, whether
there is a successful 2n

2 -certificate for M. By Lemma 13, this is equivalent to deciding
whether Pred, together with its trivial companion TA, accepts T (Gred). The size of Pred is
polynomial in |M|, the size of the TA is polynomial in n, and the size of Gred is linear in n,
since the bound max can be encoded in binary. Hence, this is a polynomial-time reduction to
the timed-HORS model-checking problem which, in turn, must be 2-EXPTIME-hard. ◀

6 Conclusion

We have introduced the concept of timed APT and timed HORS, to be model-checked in
conjunction with a TA. To our knowledge, this constitutes the first formalization of dense
real time for the verification of trees generated by HORS. We have shown that real time
adds at most one exponent to the model-checking problem, and that this is strict at order 1.
This is in line with findings for settings where not the structure to be verified is higher-order,
but the property a structure is verified against. For example, the model-checking problem for
Recursive CTL is complete for exponential time [8], and adding real time to obtain Timed
Recursive CTL makes the problem complete for two-fold exponential time [10].

While this paper introduces the concept of adding real time to recursion schemes, the
expressiveness of the framework needs to be explored. For example, we could allow the
APT to reset some clocks of its companion TA, which would make it easier to model certain
problems. We would also like to invert the semantics of the TA in the sense that ∀ controls
the flow of time. This would allow us to model safety properties of the form “no matter
how long it takes to perform an action, correctness is guaranteed”. However, the concept of
timed automata is somewhat alien to adverse time flow, hence we expect such a change to
be non-trivial.

We conjecture that the hardness result can be obtained for all k, not just for k = 1. This
would be done by replacing the trees that encode large numbers by functions that consume
such a tree and return such a tree, and functions that consume such functions and return
trees encoding a number, etc. Such an approach has been used in similar settings [18, 11].
We also conjecture the existence of a restricted version of timed HORS and the APT-TA
pairs used in the model-checking problem, such that the problem becomes characteristic not
of time, but of space. This is suggested by similar fragments both for the timed setting [9]
and for the model-checking problem for untimed HORS [7].
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A Omitted Proofs

A.1 Proofs for Section 4
▶ Lemma 3. Let A be a TA, P a Ξ-APT, G a timed HORS, all over matching alphabets and
clocks. Let m be greater than or equal to the index of A, any interval on a tree constructor
in G, and any clock constraint in Ξ. Let v be a node in T (G), q a state of P, ℓ a location
in A and η ≃m η′ two clock evaluations. Then ∃ wins the acceptance game from position
(v, q, (ℓ, η), 0) iff she wins the game from position (v, q, (ℓ, η′), 0).
Proof. We show the result using extra-clock semantics. Let A, P, G and m, η, η′ be as in
the lemma. We show the following, stronger result: ∃ wins the acceptance game from any
position of the forms (v, q, (ℓ, η), 0) or (v, φ, (ℓ, η), 1) iff she wins from positions (v, q, (ℓ, η′), 0),
resp. (v, φ, (ℓ, η′), 1). The proof is by induction over plays of the acceptance game. Since
the claim of the lemma is fully symmetric, it suffices to show that a winning strategy for η

yields one for η′. The invariant will be that ∃ keeps the game for η′ in positions of the form
(v, q, (ℓ, η′), 0) or (v, q, (ℓ, η′), 1) such that she wins the respective game from the position
with η′ replaced by some η with η ≃m η′. Clearly, the initial position for the claim of the
lemma has this form.

The interesting case is that of a position of the form (v, q, (ℓ, η′), 0) with l(v) = aJ . By
assumption, ∃ has a winning strategy from ((v, q, (ℓ, η), 0). This means there is a trace
(ℓ, η|z) = (ℓ1, η1), . . . , (ℓn, ηn) where all the ℓi satisfy q and (ℓi, ηi) reaches (ℓi+1, ηi+1) either
via a delay transition or a discrete transition, and ηn(z) ∈ J . We produce a sequence
(ℓ, η′|z) = (ℓ1, η′

1), . . . , (ℓn, η′
n) that satisfies the same conditions and, moreover, satisfies

η′
i ≃m ηi for all i.

It is easy to see that η|z ≃m η′|z. The rest of the sequence is generated by induction. If
the next pair in the sequence is reached by a discrete transition for the ηi, then the same
transition is available for η′

i since clock evaluations in the same region satisfy the same clock
constraints (which appear as guards and location invariants here). If the next pair is reached
via a delay transition using delay d, there is some d′ such that delaying form η′

i reaches
an equivalent region. This is due to the definition of ≃m: letting time flow in equivalent
regions will pass through the same sequences or regions, since clocks reach integral values
in the same order. Hence, such a sequence (ℓ1, η′

1), . . . , (ℓn, η′
n) exists. Since η′

n ≃ ηn, also
η′

n(z) ∈ J . This finishes the case of positions of the form (v, q, (ℓ, η′), 0).
For the other cases, the invariant is easy to maintain since the TA part of the position

does not change. This finishes the proof. ◀
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▶ Lemma 7. Let G, A and P be a timed HORS, a TA and an APT over matching alphabets.
PA accepts the tree generated by Gu iff the APT-TA pair accepts TG.

Proof. The invariant for ∃ to maintain for either direction of the proof is to stay in a position
(v, (q, ℓ, [η])) such that she wins from position (v, φ, (ℓ, η), 0) or (v, q, (ℓ, η), 1) in G(A, P, G),
or to stay in a position of the latter form such that she wins from position (v, (q′, ℓ, [η])) or
(v, (q, ℓ, [η])) in the acceptance game G(PA, Gu), where q ∈ Q, the state set of P.

The interesting part is that of a position of the form (v, (q, ℓ, [η]) in G(PA). Assume that
there is a corresponding position (v, q, (ℓ, η), 0) such that ∃ wins from there in G(A, P, G).
Using extra-clock semantics, the game first transitions to (v, q, (ℓ, η|z), 0). Then, ∃ lets time
flow, visiting only locations where q holds, up to some (v, q, (ℓ′, η′), 0) with η′(z) ∈ J where
aJ = l(v). By Prop. 5, there is a path corresponding to the trace taken by ∃ in G(PA, G)
passing through the respective regions, ending up in (ℓ′, [η′]). It is not hard to see that all
regions on this path also must satisfy the proposition q. Hence, ∃ can move through the
gadget defined by startJ by letting the initial transition for reset reset the clock z, passing
from [η] to [η|z], then choosing the leftmost branch at flow choosing successor pairs or regions
and locations following the trace from G(PA, Gu), and exiting via the right branch once she
has replicated the trace. This yields a position (v, (q, ℓ′, [η′])) and by the definition of ≃m,
also η′(z) ∈ J , whence the check at checkJ is passed.

The other transitions concern only the transition function of the original APT and do
not manipulate time, whence it is not hard to verify the invariant. The converse direction
follows a similar pattern, also invoking Prop. 5. This finishes the proof. ◀

A.2 Proofs for Section 5
▶ Lemma 12. Let e be a closed term of type • such that T (e) encodes some number k ∈ [22n ].
Then
1. Pcnt accepts T (exists e) from states qyes

i with its clock set to some value k ∈ [2n] iff it
accepts T (e) from qyes

i with the clock set to some integral k′ with k < k′ ≤ 2n − 1, and it
accepts from states qno

i iff it accepts T (e) from qno
i for no such integral clock value.

2. Pcnt accepts T (all e) from states qyes
i with its clock set to some value k ∈ [2n] iff it

accepts T (e) from qno
i and for all integral clock values k′ with k < k′ ≤ 2n − 1, and it

accepts from states qno
i iff it rejects T (e) from qno

i for some such integral clock value.
3. T (inc e) encodes the number k + 1 mod 22n and T (dec e) encodes the number k − 1

mod 22n .
4. Pcnt accepts T (isZero? e) with the clock set to 0 from states qyes

i iff T (e) encodes 0, and
from states qno

i iff the tree generated by T (e) encodes a number different from 0.

Proof. The proof is by verification. We begin with the first item. The second item is shown
similarly to the first item.

Let k be as in the lemma and assume that there is k′ with k < k′ ≤ 2n − 1 such that the
automaton accepts T (e) from qyes

i . Let n = k′ − k. We can construct a winning play for ∃ by
choosing the pair (qyes

1 , q⊤) for n − 1 times when reading the and1. For each such transition,
time passes for one unit, so x has value k′ − 1 after doing this. Then let ∃ choose (q⊤, qyes

1 )
at the next occurrence of a∨

1 . Since k′ ≤ 2n − 1, a winning play for the tree and max x is
easily constructed from the winning play for T (e) from clock value k′. Conversely, assume
that Pcnt accepts T (exists e) from qyes

i from some clock value k ∈ [2n]. There are two
cases: either ∃ chooses (q⊤, qyes

1 ) eventually, or she always chooses (qyes
1 , q⊤). Note that,

since the priority of qyes
1 is 1, this is a losing play. Hence, ∃ chooses the first option after n

many choices of the second option, whence time has passed by n + 1 when reaching the tree
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T (and max x). Clearly, k + n + 1 ≤ 2n − 1 for otherwise the play is obviously not winning.
Hence k′ = k + n + 1 is as desired. The statement for the state qno

i is proved in a similar
fashion.

The third item follows from the first and second items and the pattern of binary incre-
mentation outlined above, the last item follows from the second item and Def. 11. ◀

▶ Lemma 13. Let C : 2n
2 × 2n

2 → Γ̂ be the unique certificate for n and M. Let r, c : • be
expressions such that T (r), T (c) encode m, m′ ∈ [2n

2 ]. Let b, b1, b2, b3 ∈ Γ̂.
1. Pred accepts T (check r c) from state q#

l iff either m′ = 0 or m′ = 2n
2 − 1.

2. Pred accepts T (check r c) from state q□l iff both 2 ≤ m′ < 2n
2 − 1 and m = 0.

3. Pred accepts T (check r c) from state q
(qI ,□)
l iff both m = 0 and m′ = 1.

4. Pred accepts T (next r c) from state q(b1,b2,b3) iff (i) both m > 0 and 0 < m′ < 2n
2 − 1 and

(ii) Pred accepts T
(
F (dec r) (dec c)

)
from state qb1 and T

(
F (dec r) c

)
from state

qb2
)

and T
(
F (dec r) (inc c)

)
from state qb3 .

5. Pred accepts T (F r c) from state qb iff C(m, m′) = b.
Finally, Pred accepts T (Gred) iff C(2n

2 − 1, 0) = (qacc,□).

Proof. The first three items are shown directly. We show the first item, the other two are
shown similarly. Note that the root T (check r c) is labeled by or3, and that δ(q#

l , or3) =
(qyes

1 , q⊤, q⊤). Since every tree is accepted by q⊤, it remains to argue that the automaton
accepts T

(
and(zero (inc r) zero r)

)
from qyes

1 iff m′ = 0 or m′ = 2n
2 − 1. The former

is equivalent to the automaton accepting T (zero (inc r)) and T (zero r) from qyes
1 . By

Lemma 12, this is the case iff m′, i.e., the number encoded by r, is either 2n
2 − 1 or 0, which

is what we wanted to show.
The proof for the last two items is by simultaneous induction over m′. Before we begin

the induction consider the structures of the respective trees.
The tree root of T (next r c) is labeled by and, and both its left and right subtrees are

labeled by and3. We have δ(q(b1,b2,b3), , and) = (qyes
1 , q(b1,b2,b3)) and δ(q(b1,b2,b3), , and3) =

(b1, b2, b3), we obtain that Pred accepts T (next r c) iff it accepts the following:
T (neg (isZero? r)) from qyes

1 ,
T (neg (isZero? c)) from qyes

1 ,
T (ltMax? c) from qyes

1 ,
T (F (dec r) (dec c)) from qb1 ,
T (F (dec r) c) from qb2 , and
T (F (dec r) (inc c)) from qb3 .

By Lemma 12, the first three are equivalent to m > 0 and 0 < m′ < 2n
2 − 1, as in the claim.

Similar considerations yield that Pred accepts the tree generated by T (F r c) iff it accepts
one of T (next r c) and T (check r c). Closer inspection of the requirements w.r.t. m and m

yield that at most one of the latter can be the case (since acceptance of T (next r c) requires
m > 0 and 0 < m′ < 2n

2 − 1, while acceptance of T (check r c) requires m = 0 or m′ = 0 or
m′ = 2n

2 − 1).
Now let m = 0. The fourth item follows readily from the previous considerations, since

both acceptance of T (next r c) and the premise of the item require m > 0. For the fifth
item, the claim follows since only acceptance of T (check r c) is in question (since m > 0),
and the first three items cover exactly the possibilities for C(0, m′), namely # (for m′ = 0
and m′ = 2n

2 − 1), (qI ,□) (for m′ = 1) and □ (for 1 < m′ < 2n
2 − 1).

TIME 2024
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Now let m > 0 and assume that the fourth and fifth item have been shown for m − 1. For
the fourth item, the claim now follows easily from the itemized list above and the induction
hypothesis applied to the last three items of the list. For the fifth item of the lemma, if
m′ = 0 or m′ = 2n

2 − 1, apply the first item of the lemma, and if 0 < m′ < 2n
2 − 1, apply the

fourth item of the lemma.
The last, unitemized claim then follows straightforwardly. ◀
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Abstract
Anomaly detection in time series data is a critical task in various domains, including finance, health-
care, cybersecurity and industry. Traditional methods, such as time series decomposition, clustering,
and density estimation, have provided robust solutions for identifying anomalies that exhibit distinct
patterns or significant deviations from normal data distributions. Recent advancements in machine
learning and deep learning have further enhanced these capabilities. This paper introduces a novel
method for anomaly detection that combines the strengths of autoencoders and recurrent neural
networks (RNNs) with an reconstruction error feedback mechanism based on Mean Squared Error.
We compare our method against classical techniques and recent approaches like OmniAnomaly,
which leverages stochastic recurrent neural networks, and the Anomaly Transformer, which intro-
duces association discrepancy to capture long-range dependencies and DCDetector using contrastive
representation learning with multi-scale dual attention. Experimental results demonstrate that our
method achieves superior overall performance in terms of precision, recall, and F1 score. The source
code is available at http://github.com/mribrahim/AE-FAR
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1 Introduction

Time series data, characterized by its sequential and temporal nature, is extensively utilized
across numerous applications, including finance, healthcare, manufacturing, and environ-
mental monitoring. Detecting anomalies within time series data is a critical task to implement
an early warning mechanism for unusual patterns that may indicate events such as system
failures and frauds [8, 1]. Anomalies, often referred to as outliers or deviants, are data
points that deviate markedly from the expected values. In industry, anomalies are often so
rare and it is too hard to label them for supervised learning. Hence, most studies in the
literature focus on unsupervised methods such as clustering [15] and density estimation [2],
or learning representations for only the normal data (supervising only for normal data).
Because deep neural networks have the capacity to learn the representation of the normal
data, reconstruction from the embedded of that data can be used to determine the anomalies.
It means that reconstruction-based models [20] learn how to reconstruct the normal data,
and high error in the reconstructed data indicates the anomalies. Similarly, forecasting-based
methods [6] are also used to detect anomalies.

Contrastive representation got attention in computer vision tasks [3, 5], and applied
for time series problem in a recent study [21]. Contrastive representation learning aims an
embedding space emphasizing the distinction between similar and dissimilar data points.
Combination of forecasting and reconstruction-based networks are also implemented in the
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literature [22, 19]. Although prior studies have achieved significant success, they may still
suffer from performance degradation, particularly when anomalous points are not uniformly
distributed, and anomaly scores or reconstruction errors may vary in the different regions of
the data.

In this paper, we propose reconstruction networks based on Mean Squared Error (MSE)
Feedback, augmented with Attention and Recurrent Neural Network (RNN) modules. We
implement two variations of this architecture: AE-FAR, which employs an Autoencoder with
Feedback Attention Reconstruction, and VAE-FAR, which utilizes a Variational Autoencoder
(VAE) with Feedback Attention Reconstruction. In VAE-FAR, we integrate an Long Short-
Term Memory (LSTM)-VAE with dual attention modules. Specifically, we implement two
parallel graph attention mechanisms proposed in MTAD-GAT [22]. These modules are
designed to capture temporal dependencies within time series data and relationships between
features, enhancing the model’s ability to detect anomalies effectively. Previous approaches
mostly labels the anomalies if the reconstruction/forecasting error is larger than a prior
threshold or dynamically determined threshold. According to the results we observed during
our experiments, the reconstruction error does not progress similarly on the entire data set,
there are fluctuations. Therefore, it is important to apply different thresholds at different
time intervals, i.e. to identify the peaks in the errors. Since the previous and next values must
be considered in the peak detection problem, a similar structure is placed in the proposed
architecture by the reconstruction error feedback. We integrate a lightweight autoencoder
model, a RNN module, and an attention mechanism in our model. Proposed architecture
aims to improve reconstruction accuracy by dynamically adjusting the reconstruction of
input sequences based on the MSE feedback with an RNN module. Our main motivation is
that MSE feedback mechanism further enhances the model’s ability to identify anomalies
supported by the anomaly criterion. Our anomaly detection method is based on moving
average and standard deviation within a sliding window for the reconstruction error.

Our network is lightweight compared to the state-of-the-art methods and performs well
with the proposed MSE feedback module and thresholding for anomaly detection.
We train a simple autoencoder model and LSTM-VAE improved with graph attention
mechanisms. Then we incorporate attention mechanism for the reconstructed values
and obtained mean squared error. These pre-trained models are integrated with RNN
to further enhance the reconstruction process by remembering the reconstruction MSE
errors.
We use a sliding window-based anomaly detection mechanism that focuses on sudden
error changes rather than relying on a predefined general threshold. We show that our
model’s architecture inherently supports the sliding window-based thresholding approach.
Through extensive experiments, we show that AE-FAR achieves an overall F1 score of
93.38 on the MSL, SWAT and SMD datasets and 58.48 on the pulp-and-paper industry
dataset. VAE-FAR has an overall F1 score of 93.65 on the MSL, SWAT and SMD datasets,
and 50.78 on the pulp-and-paper industry dataset.

2 Related works

Classical methods for time series anomaly detection have evolved significantly, adapting to
various data characteristics. Techniques such as time series decomposition, clustering, and
density estimation have offered robust solutions for identifying anomalies in time series data
characterized by distinct patterns or substantial deviations from normal data distributions.
Examples of classical anomaly detection methods include the Local Outlier Factor (LOF) [2]
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and Deep Autoencoding Gaussian Mixture Model (DAGMM) [24], both of which are grounded
in density estimation principles. Distance to the cluster center is used as an anomaly score in
clustering based methods. ITAD [16] applies a tensor-based decomposition to model normal
behavior patterns and uses clustering techniques to group similar patterns. Deep-SVDD [15]
trains a neural network to learn a representation of normal data and the objective is to map
normal instances close to a central point in the latent space. IForest [11] detects anomalies by
isolating observations through a recursive partitioning process. It randomly selects a feature
and then chooses a split value between the minimum and maximum values of that feature.
Autoregressive models predicting the future values based on past observations are another
type of anomaly detection method. Recently, with the rise of deep learning, RNNs and
their variants such as LSTM networks have been extensively applied, capable of capturing
long-term dependencies and temporal patterns for detecting anomalies in diverse domains.
CL-MPPCA [18] an extension of ARIMA, is one such method that compares predicted values
with actual values and detects deviations that exceed a certain threshold. It combines the
capabilities of LSTM-based neural networks and mixture of several probabilistic PCA models.

Autoencoders are a type of neural networks designed to learn embedded representations of
data, typically for the purposes of dimensionality reduction or feature learning. They consist
of two main components: an encoder that maps the input data to a lower-dimensional latent
space, and a decoder that reconstructs the input data from this latent representation. VAEs
extend the autoencoder by encoding inputs into distributions, typically Gaussian. The decoder
reconstructs the data from these distributions instead of fixed points in the latent space.
Employing VAE, LSTM-VAE [13] and some improved versions [17, 9] of LSTM-VAE are
applied for the anomaly problem. OmniAnomaly [17] employs a stochastic RNN framework
with GRU, integrating VAEs to model the temporal dependencies. InterFusion [10] proposes
a hierarchical VAE to model inter-metric and temporal relationships. MAD-GAN [9] is
Generative Adversarial Network(GAN) based method in which LSTM is used in generator and
discriminator networks. DGHL [4] proposes a hierarchical latent space representation with
convolution networks. BEATGAN [23] is also a reconstruction-based method using generative
adversarial networks. MTAD-GAT [22] combines forecasting-based and reconstruction-based
networks and anomalies are detected by using both the these outputs. AnomalyTransformer
[20] introduces a new Anomaly-Attention mechanism to compute the association discrepancy
focusing on the difference between normal and anomalous patterns. DCDetector [21] is a
contrastive learning based multi-scale dual attention model.

3 Method

Let X be a multivariate time-series sequence of length N :

X = (x1, x2, . . . , xn)

The unsupervised time series anomaly detection problem aims to ascertain the anomalous
nature of X without the availability of labeled data. This work proposes a composite model
that combines an AE or VAE, an attention mechanism, and RNN to address this problem.
The general overall of proposed architecture is shown in Figure 1. AE-FAR integrates
multiple neural network components to enhance time series prediction accuracy through error
correction. It consists of three main parts: an autoencoder, an attention layer, and RNN.

TIME 2024
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Figure 1 General overview of the proposed AE-FAR architecture.

3.1 Overall architecture
We train a simple AE to reconstruct the input X. X̂ represents the reconstructed input values
with AE network. In the proposed composite model we use the MSE error of that AE.

X̂ = Autoencoder(X)

MSE = 1
n

n∑
i=1

(xi − x̂i)2 (1)

The combination of X̂ and MSE is passed to the attention mechanism. The attention
layer is responsible for assigning different importance levels to various parts of the input
sequence. That helps the model focus on the most relevant features during the prediction
process. The attention layer uses a sequential model consisting of linear transformations,
a Tanh activation function, and a Softmax function to compute attention weights. In the
following equation, α represents the attention weights. These weights are then applied to the
input features to produce a weighted input.

z = [X̂, MSE]
α = Softmax(Linear(tanh(Linear(z))))
z′ = α ⊙ z.

(2)

The MSE Feedback RNN module is a recurrent neural network that processes sequences
of inputs and provides feedback based on the mean squared error between the predicted and
actual values. This module includes an RNN layer followed by a fully connected layer. The
RNN processes the input sequence and outputs hidden states, which are then transformed by
the fully connected layer to produce the final output. Finally, the adjusted reconstruction,
incorporating RNN predictions, forms the model’s output, aiming to refine and improve the
accuracy of predictions over time.

h = RNN(z′)

ŷ = X̂ + h
(3)

AE-FAR integrates the autoencoder, attention mechanism, and MSE Feedback RNN to
enhance the forecasting capabilities. Combining all parts, the model output is:

ŷ = X̂ + RNN(α ⊙ [X̂, MSE]) (4)

This approach aims to enhance the reconstructed output ŷ by incorporating error-driven
adjustments from the RNN, thereby improving predictive accuracy in time-series analysis.
Sample reconstruction errors and anomaly points are shown in Figure 2 comparing the
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results of the AE with the proposed AE-FAR model, highlighting the influence of the MSE
feedback module. The figure illustrates a region containing 14 actual anomalies, represented
by vertical red dotted lines. The AE method detects 39 anomaly points, whereas the AE-FAR
method identifies 30 anomaly points. It is observed that the AE-FAR method has a lower
mean error value compared to the AE method, and its anomaly detections are closer to the
actual anomaly points. The mean distances between the predicted anomaly indexes and
the ground truth anomaly indexes are 87.5 and 72.8 for the AE method and the AE-FAR
method, respectively.

Figure 2 Reconstruction error and detected anomaly points. Vertical red dotted lines indicate
the real anomalies.

3.2 LSTM-VAE with attention layers
We employ a different variant of that proposed architecture by using VAE instead of AE.
In the VAE network, we use graph-based feature and attention layers proposed in MTAD-
GAT [22]. The general overview of the VAE improved with the attention layers is shown in
the Figure 3. Feature attention layer aims to emphasize the most relevant features for each
time step while temporal attention layer applies attention across the temporal dimension,
focusing on the most significant time steps for each feature. The encoded representation is
formed by concatenating the original input X with the outputs of the feature and temporal
attention layers. Reparameterize function implements the reparameterization trick to sample
latent variables from a Gaussian distribution inferred by the encoder’s output. Decoder
module reconstructs the input sequence from the sampled latent variables.

3.3 Anomaly criterion
We use a sliding window-based approach to dynamically compute thresholds based on
statistical properties of the reconstruction error. The proposed anomaly detection strategy is
based on the MSE values using a moving average and standard deviation within a sliding
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Figure 3 General overview of the VAE with graph attention.

window. This approach is particularly useful in anomaly detection where the MSE distribution
may change over time. Our model’s architecture inherently supports the sliding window-
based thresholding mechanism, making it more effective in dynamically adjusting to varying
anomaly patterns within the time series data. Window size is a significant hyper-parameter
in time series analysis to split time series into instances instead of using only a single point
as input. We use the same window size for the the sliding window used to compute the
moving average and moving standard deviation. The adaptive nature of the sliding window
approach ensures that the detection mechanism remains sensitive to new patterns, providing
a robust tool for maintaining robust performance in anomaly detection.

Given a sequence of MSE values mse_list = [mse1, mse2, . . . , mset], dynamic threshold
is calculated based on average and standard deviation for a window size w as follows:

avg[t] = 1
w

w∑
i=0

mset−i

std[t] =

√√√√ 1
w

w∑
i=0

(mset−i − avg[t])2

(5)

The dynamic threshold T [t] for each input X in a time step is then calculated using a
user-defined threshold factor β, and anomalies(A) are identified at each time step t if the
MSE mset exceeds the computed dynamic threshold T [t]:

T [t] = avg[t] + β × std[t] (6)

At =
{

1 if mset > T [t]
0 otherwise

4 Experiments

4.1 Benchmark datasets
We perform experiments using four datasets: the Mars Science Laboratory (MSL) [7] rover
dataset, the Server Machine Dataset (SMD) [17], Secure Water Treatment (SWAT) [12],
and pulp-and-paper manufacturing industry dataset [14]. MSL is collected by NASA and it
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reflects the rover’s operational status and environment. SMD contains data collected from
various server machines in a data center. It includes metrics such as CPU usage, memory
usage, and network traffic, aimed at detecting anomalies that may indicate hardware failures
or network issues. SWAT includes sensor data from critical infrastructure systems. The
pulp-and-paper industry dataset used in our experiments has a total of 59 input features,
after removing the categorical features x28 and x61. This dataset consists of 18,398 rows, of
which only 124 rows are labeled as anomalies. A significant characteristic that distinguishes
this dataset from others is the presence of non-consecutive anomalies, which poses a unique
challenge for anomaly detection methods. We create two subset datasets (called Paper-1 and
Paper-2) for testing purposes, containing 29 and 58 anomalies respectively.

We adopt a widely recognized adjustment technique to ensure a fair comparison with
existing methods in the literature. That adjustment approach refines predicted anomaly labels
in time series data by ensuring that if any single point in an anomalous segment is detected,
the entire segment is marked as anomalous. This strategy is justified by the observation
that detecting a single anomalous point triggers an alert for the entire segment in real-world
applications. While this adjustment technique significantly impacts datasets like MSL, SMD,
and SWAT, it has no effect on Paper-1 and Paper-2 datasets. We employ a neighborhood-
based matching strategy to assess the performance on the paper industry dataset. This
approach was chosen due to the difficulty of precisely determining the exact timing of
anomalies in this particular industry dataset. We apply a slight temporal misalignments
between true and predicted anomalies by defining a window size k. True positives are
correctly predicted anomalies within k indices of actual anomalies, while false positives are
predictions without a corresponding true anomaly in the window. This approach enhances
robustness in detecting anomalies in time series data by accounting for small deviations, thus
providing a more accurate assessment of model performance in practical scenarios. It offers
a comprehensive evaluation of precision, recall, and F1 score, rounded for clarity. Table 4
represents the performance comparison with this approach.

4.2 Implementation details

We use a fixed window size 50 for all datasets to split time series into instances. The same
value of 50 is also used for k to apply a slight temporal misalignments for pulp-and-paper
industry dataset. The AE model consists of four linear layers: the first layer compresses
the input from a flattened dimension of window ∗ inputsize to 32 neurons, the second layer
further reduces the size to 16 neurons, and then gradually expanded to the original input size.
For the VAE network, the dimension of hidden size and latent size are 64 and 32, respectively.
RNN component is an 8-layer RNN that processes the combined input with dimensions
inputsize + 1. It uses a hidden size of inputdim/2 for the hidden state and maps the output
to the original input dimension using a fully connected layer. The attention mechanism
takes an input dimension of inputsize + 1 and maps it to an attention dimension 64. The
experiments with these hyperparameter selection are implemented in PyTorch with NVIDIA
GeForce RTX 3060 graphic card. We use Adam optimizer with an initial learning rate of
10−4 and set the batch size to 128. We used early stopping during training by monitoring
the validation error, with an early stop value set to 10, to prevent overfitting and ensure
optimal model performance. We choose a fixed threshold value as the default comparison,
and for the proposed anomaly criterion, we define different threshold factors β 4, 5 and 6.5
for SMD, SWAT and MSL, respectively.

TIME 2024
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Table 1 Ablation study on MSL, SMD and SWAT. ∗ indicates the proposed anomaly criterion
instead of fixed threshold.

MSL SMD SWAT
Methods P R F1 P R F1 P R F1

AE 95.70 20.91 34.32 38,10 68,09 48,86 91.62 76.41 83.33
AE-FAR 83.57 90.45 86.87 62.72 52.01 56.86 92.12 76.41 83.53

VAE-FAR 52.87 96.87 68.41 81.28 76.81 78.98 97.43 77.09 86.07
AE∗ 85.23 99.54 91.83 91.89 87.78 89.79 94.87 96.97 95.91

AE − F AR∗ 92.59 95.13 93.85 92.01 88.20 90.06 97.40 96.36 96.87
V AE − F AR∗ 90.23 94.89 92.50 89.95 94.59 92.21 94.49 98.07 96.24

4.3 Results and analysis
We use commonly-used evaluation measures: precision, recall, F1 score for performance
comparison. The ablation study represented in Table 1 evaluates the performance on MSL,
SMD and SWAT benchmark datasets. The first three rows represent the performance with
fixed general threshold, while the other rows represent the performance with the proposed
anomaly criterion. The best results obtained with both approaches are shown separately
in bold. The results clearly demonstrate the effectiveness of the anomaly criterion method
improving the AE, AE-FAR and VAE-FAR models. The AE with anomaly criterion shows
substantial gains in recall and F1 scores, especially for the MSL and SWAT datasets. VAE-
FAR has better recall compared to the AE-FAR with the general fixed threshold. Both of
the AE-FAR and VAE-FAR models, when combined with the proposed anomaly criterion,
consistently outperforms other configurations, achieving the highest F1 scores across all
datasets. This highlights the robustness and accuracy of the proposed methods in multivariate
time-series anomaly detection.

Table 2 represents the ablation study for subsets of pulp-and-paper industry datasets.
The AE-FAR model alone shows high precision for the Paper-1 dataset at 66.67%, but recall
is very low at 14.81%, resulting in an F1 score of 24.24%. This suggests that the model is
very conservative in identifying anomalies, leading to fewer false positives but many missed
anomalies with the fixed threshold. On the other hand, VAE-FAR has more stabil and better
results compared to the AE-FAR with the fixed threshold. Using the proposed anomaly
criterion significantly improves performance as shown in last three rows. For the Paper-1
dataset, it achieves a balanced precision of 56.41% and a high recall of 81.48%, resulting in
the highest F1 score of 66.67% among all methods. VAE-FAR∗ has the second best value
with an F1 score of 58.46 with the anomaly criterion. For the Paper-2 dataset, AE-FAR∗

achieves a precision of 37.29% and a recall of 77.19%, resulting in the highest F1 score of
50.29% . This demonstrates the effectiveness of the anomaly criterion in improving the
model’s ability to detect anomalies accurately. The AE model benefits significantly from the
anomaly criterion, especially in terms of recall, but at the cost of precision. The AE-FAR
model alone shows high precision but struggles with recall, indicating a conservative anomaly
detection approach. The combination of AE-FAR with the anomaly criterion achieves the
best overall performance, striking a balance between precision and recall and resulting in the
highest F1 scores for both datasets.

Table 3 shows the performance comparison of different anomaly detection methods in the
literature. For three real world datasets MSL, SMD and SWAT: AE-FAR avd VAE-FAR
achieve an overall F1-Score of 93.59 and 93.65, while DCdetector and AnomalyTransformer
have 93.37 and 93.32, respectively. Table 4 presents the performance comparison with the
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Table 2 Ablation study on pulp-and-paper industry dataset. ∗ indicates the proposed anomaly
criterion instead of fixed threshold.

Paper-1 Paper-2
Methods P R F1 P R F1

AE 44.74 62.96 52.31 23.58 43.86 30.67
AE-FAR 66.67 14.81 24.24 40.0 14.04 20.78

VAE-FAR 45.83 40.74 43.14 31.34 36.84 33.87
AE∗ 38.46 92.59 54.35 29.49 80.70 43.19

AE − F AR∗ 56.41 81.48 66.67 37.29 77.19 50.29
V AE − F AR∗ 50.0 70.37 58.46 32.73 63.16 43.11

Table 3 Results on multivariate benchmark datasets. All results are presented as percentages;
the best values are in bold, and the second-best are underlined.

Dataset MSL SWAT SMD
Metric P R F1 P R F1 P R F1
LOF 47.72 85.25 61.18 72.15 65.43 68.62 56.34 39.86 46.68
IForest 53.94 86.54 66.45 49.29 44.95 47.02 42.31 73.29 53.64
DAGMM 89.60 63.93 74.62 89.92 57.84 70.40 67.30 49.89 57.30
ITAD 69.44 84.09 76.07 63.13 52.08 57.08 86.22 73.71 79.48
CL-MPPCA 73.71 88.54 80.44 76.78 81.50 79.07 82.36 76.07 79.09
Deep-SVDD 91.92 76.63 83.58 80.42 84.45 82.39 78.54 79.67 79.10
BeatGAN 89.75 85.42 87.53 64.01 87.46 73.92 72.90 84.09 78.10
OmniAnomaly 89.02 86.37 87.67 81.42 84.30 82.83 83.68 86.82 85.22
InterFusion 81.28 92.70 86.62 80.59 85.58 83.01 87.02 85.43 86.22
AnomalyTransformer 92.09 95.15 93.59 91.55 96.73 94.07 89.40 95.45 92.33
DCdetector 93.69 99.69 96.60 93.11 99.77 96.33 83.59 91.10 87.18
AE-FAR 92.59 95.13 93.85 97.40 96.36 96.87 92.01 88.20 90.06
VAE-FAR 90.23 94.89 92.50 94.49 98.07 96.24 89.95 94.59 92.21

DCDetector on two subsets of a pulp-and-paper manufacturing industry anomaly detection
dataset: Paper-1 and Paper-2. For Paper-1, Introducing the proposed anomaly criterion to
DCdetector slightly changes the results, with a precision of 31.43%, recall of 40.74%, and F1
score of 35.48%. There is a small reduction in precision and recall, which suggests that the
proposed thresholding might be filtering out some true positives, leading to a lower overall
performance. For Paper-2, proposed anomaly criteria improves the performance slightly,
achieving a precision of 28.21%, recall of 38.60%, and F1 score of 32.59%. On the other
hand, AE-FAR outperforms the other methods significantly for both Paper-1 and Paper-2
datasets. Although VAE-FAR shows lower performance compared to AE-VAR, it is seen
that it gives much better performance than DCDetector. The proposed anomaly criterion for
DCdetector shows minor improvements but does not suffice to compete with the performance
of AE-FAR. These findings highlight the effectiveness of the proposed approach in handling
the rare anomalies in the pulp-and-paper manufacturing industry datasets.

5 Conclusion

The proposed AE-FAR/VAE-FAR models effectively combine AE/VAE, an attention mechan-
ism, and RNN to improve anomaly detection in time series data. The AE/VAE is employed
to reconstruct the input data, aiming to capture the underlying normal patterns. They
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Table 4 Results on pulp-and-paper manufacturing industry dataset. All results are presented as
percentages; the best values are in bold, and the second-best are underlined.

Dataset Paper-1 Paper-2
Metric P R F1 P R F1
DCdetector 35.29 44.44 39.34 23.17 33.33 27.34
DCdetector∗ 31.43 40.74 35.48 28.21 38.60 32.59
AE-FAR 56.41 81.48 66.67 37.29 77.19 50.29
VAE-FAR 50.0 70.37 58.46 32.73 63.16 43.11

consist of an encoder that maps the input data to a lower-dimensional latent space and a
decoder that reconstructs the input from this latent representation. The attention mechanism
is integrated to enhance the model’s focus on significant parts of the input data. The RNN
component processes the reconstructed data produced by the autoencoder and reconstruction
errors. The RNN output is used to adjust the reconstructed input, providing the final output
of the model. This integrated approach leads to more accurate anomaly detection results.
The proposed models outperform state-of-the-art approaches overall on four datasets.

Future work. We need to focus on anomaly criterion selecting threshold factor β automatic-
ally, and better detection and localization for discontinuous anomalies such as pulp-and-paper
dataset.
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Abstract
The precise identification of the expressive power of logic languages used in formal methods for
specifying and verifying run-time properties of critical systems is a fundamental task and character-
isation theorems play a crucial role as model-theoretic tools in this regard. While a clear picture of
the expressive power of linear-time temporal logics in terms of word automata and predicate logics
has long been established, a complete mapping of the corresponding relationships for branching-time
temporal logics has proven to be a more elusive task over the past four decades with few scattered
results. Only recently, an automata-theoretic characterisation of both CTL* and its full-ω-regular
extension ECTL* has been provided in terms of Symmetric Hesitant Tree Automata (HTA), with
and without a suitable counter-freeness restriction on their linear behaviours. These two temporal lo-
gics also correspond to the bisimulation-invariant semantic fragments of Monadic Path Logic (MPL)
and Monadic Chain Logic (MCL), respectively. Additionally, it has been proven that the counting
extensions of CTL* and ECTL*, namely CCTL* and CECTL*, enjoy equivalent graded versions
of the HTAs for the corresponding non-counting logics. However, while Moller and Rabinovich have
proved CCTL* to be equivalent to full MPL, thus filling the gap for the standard branching-time
logic, no similar result has been given for CECTL*. This work completes the picture, by proving
the expressive equivalence of CECTL* and full MCL, by means of a composition theorem for the
latter logic. This also indirectly establishes the equivalence between HTAs and their first-order
extensions HFTAs, as originally introduced by Walukiewicz.
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1 Introduction

In the domain of formal verification of complex systems, temporal logics [33] play the crucial
role of specification languages [34] for the correct behaviour of system components over
time. These languages are generally divided into two main categories: linear-time logics
and branching-time logics. Logics in the first category focus on properties that span the
entirety of each possible behaviour in isolation, while those in the second one are designed to
address the interactions among those behaviours. Prominent examples of linear-time logics
are Linear-Time Temporal Logic (LTL) [40, 41] and its full ω-regular extension ELTL [52].
On the other hand, typical representatives of branching-time logics fall within the families
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of Dynamic Logics [17] and Computation Tree Logics [12, 11, 13, 14, 50]. Notable examples
of such logics include CTL, CTL*, and ECTL*, together with the corresponding counting
versions CCTL, CCTL*, and CECTL*.

The semantics of these temporal logics is often defined using suitable variants of predicate
logic, usually First-Order Logic (FO) or Second-Order Logic (SO), interpreted either over
linearly-ordered structures, such as infinite words, or over partially-ordered structures, such as
infinite trees. At the same time, the extensive literature on automata-theoretic techniques [48]
has been instrumental in providing effective technical tools for solving related decision
problems. Predicate logics and automata theory also offer a comprehensive and coherent
framework to evaluate and compare the expressive power and the computational properties
of temporal languages, as evidenced by numerous characterisation theorems.

The foundational result in this context is Kamp’s theorem [28], which establishes the
equivalence between LTL and FO over infinite words. This result links FO-definability with
recognisability by counter-free finite-state automata [30, 44, 45, 39], via the notions of star-free
language, aperiodic language, and aperiodic syntactic monoid. Altogether these results fully
characterise the expressive power of LTL in terms of predicate logics and automata. A
similar correspondence also exists between ELTL, Monadic Second-Order Logic (MSO), and
regular automata on infinite words [8, 9, 35, 10].

The landscape for branching-time temporal logics is much more complex due to the
non-linear structure of the models and additional factors like bisimulation invariance [49] and
counting quantifiers [16], and until recently it was far from being as complete as the linear-time
counterpart. The more complete results were, indeed, the full correspondences among (1)
the µ-Calculus [29], the bisimulation-invariant fragment of MSO interpreted over trees,
and Symmetric Alternating Parity Tree Automata [27] and (2) the alternation-free fragment
of µ-Calculus (AFµ-Calculus), the bisimulation-invariant fragments of WMSO over
bounded-branching trees, and Symmetric Alternating Weak Tree Automata [1, 26]. These
equivalences extend to the general case when counting quantifiers are incorporated into
the modal logics [26, 25]. For four decades, the scenarios for CTL* and ECTL* remained
significantly more fragmented. In the eighties, it was proved that, on binary trees, CTL*
is equivalent to Monadic Path Logic (MPL) [24] and ECTL* to Monadic Chain Logic
(MCL) [47]. The single result concerning CTL* was later extended to arbitrary-branching
trees, at the turn of the century, addressing both bisimulation-invariance [37] and counting
quantifiers [38]. Only very recently have corresponding classes of automata been proposed
for these logics. Specifically, in [3], it was shown that, on arbitrary-branching trees, CTL*
and ECTL* are equivalent to two versions of Symmetric Hesitant Tree Automata, namely
HTAcf and HTA, with and without a suitable counter-freeness restriction on their linear
behaviours. Additionally, it was proved that HTA are equivalent to the bisimulation-invariant
fragment of MCL. Thus, we finally have complete correspondences among (a) CTL*, the
bisimulation-invariant fragment of MPL, and HTAcf, and (b) ECTL*, the bisimulation-
invariant fragment of MCL, and HTA. The first result was further extended to show, on
arbitrary-branching trees, the equivalence of (c) CCTL*, MPL, and a graded version of
HTAcf, called HGTAcf. However, the same result has not been obtained for CECTL*. This
logic has been proven equivalent to a graded version of HTA, called HGTA, while MCL
has only been shown equivalent to a potentially more-general first-order extension of HTA,
called HFTA, inspired to a class of automata proposed by Walukiewicz [51].

The objective of this work is to complete the picture regarding the standard branching-
time temporal logics by showing the equivalence of CECTL* with MCL. The key idea
behind this result is to establish a composition theorem for MCL. Composition Theorems
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serve as model-theoretic tools that simplify reasoning about complex structures by breaking
down a statement about the whole into several statements about its individual components.
A first example of this approach is the renowned Feferman-Vaught Theorem [15], which
reduces the first-order theory of any product of structures to the first-order theory of its
factors. An initial application to linear orders was proposed by Läuchli [31], as an alternative
to the automata-theoretic technique on words by Büchi [7, 8, 9], and subsequently advanced
in a series of works by Shelah and Gurevich [43, 19, 21, 22, 20]. Thomas then applied
the approach to binary-branching tree structures [46, 47], culminating in the composition
theorem for MPL in collaboration with Hafer [24]. This result was later extended to
arbitrary-branching trees by Moller and Rabinovich [37, 38]. In the present work, we merge
and generalise the techniques considered in [47, 38] to obtain the corresponding result for
MCL, by relying on Ehrenfeucht-Fraïssé games tailored to this logic. Specifically, we show
that verifying an MCL formula with quantifier rank m and a unique free chain variable
over a tree boils down to verifying an MSO sentence over a word that is the encoding of a
suitable vector of m chains induced by the interpretation of that variable. This allows us to
translate, via structural induction, every MCL formula with a single first-order variable into
an equivalent CECTL* state formula. Given that the translation from CECTL* to MCL
is relatively straightforward, we obtain the stated result, settling one of the problems left
open in [3]. It is important to note that the automata-theoretic technique developed in [3]
cannot be directly applied here. In principle, given the equivalences of MCL with HFTA
and CECTL* with HGTA, one might be tempted to show the equivalence of the two logics
by proving the equivalence of the two automaton classes. However, the natural compositional
transformation of the first-order formulae encoded in the transition function of an HFTA to
the corresponding graded modal formulae does not satisfy the hesitant constraint required
by a HGTA. The approach proposed in this work circumvents that difficulty and allows us
to prove, though indirectly, that HFTA and HGTA are two equivalent types of automata.

2 Preliminaries

Let N be the set of natural numbers. For i, j ∈ N with i ≤ j, [i, j] denotes the set of natural
numbers k such that i ≤ k ≤ j. For a finite or infinite word ρ over some alphabet, |ρ| is the
length of ρ (|ρ| = ω if ρ is infinite) and for all 0 ≤ i < |ρ|, ρ(i) is the (i+ 1)-th letter of ρ.

Kripke Trees. A tree T is a non-empty subset of N∗ which is prefix closed (i.e., for each
w · n ∈ T with n ∈ N, w ∈ T). Elements of T are called nodes and the empty word ε is the
root of T. For w ∈ T, a child of w in T is a node in T of the form w · n for some n ∈ N,
and a descendant of w in T is a node of T of the form w · w′ for some w′ ∈ N∗. For w ∈ T,
the subtree of T rooted at node w is the tree consisting of the nodes of the form w′ such
that w · w′ ∈ T. A subtree of T is a tree T′ such that for some w ∈ T, T′ is a subset of the
subtree of T rooted at w. A path of T is a subtree π of T which is totally ordered by the
child-relation (i.e., each node of π has at most one child in π). In the following, a path π of
T is also seen as a word over T in accordance to the total ordering in π induced by the child
relation. A chain of T is a subset of a path of T, while a branch of T is a path of T starting
at the root. A tree is non-blocking if each node has some child. A non-blocking tree T is
infinite, and maximal paths in T are infinite as well.

For an alphabet Σ, a Σ-labelled tree is a pair S = (T,Lab) consisting of a tree and a
labelling Lab : T 7→ Σ assigning to each node in T a symbol in Σ. For a subtree T′ of T, we
denote by ST′ the Σ-labelled subtree (T′,Lab↾T′) of S. In this paper, we consider formalisms
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whose specifications are interpreted over labeled trees. For the easy of presentation, we focus
on labeled trees which are non-blocking. All the results of this paper can be easily adapted
to the general case, where the non-blocking assumption is relaxed. For a finite set AP of
atomic propositions, a Kripke tree over AP is a non-blocking 2AP-labelled tree.

Automata over Infinite and Finite Words. We first recall the class of parity nondeterministic
automata on infinite words (parity NWA for short) which are tuples A = ⟨Σ,Q, δ, qI ,Ω⟩,
where Σ is a finite input alphabet, Q is a finite set of states, δ : Q × Σ 7→ 2Q is the transition
function, qI ∈ Q is an initial state, and Ω : Q 7→ N is a parity acceptance condition over
Q assigning to each state a natural number (color). The NWA A is deterministic if for all
states q and input symbols a, δ(q, a) is a singleton {q′} (in this case, we write δ(q, a) = q′).
We use the acronym DWA for the subclass of deterministic NWA.

Given a word ρ over Σ, a path of A over ρ is a word π over Q of length |ρ| + 1 (|ρ| + 1 is
ω if ρ is infinite) such that π(i+ 1) ∈ δ(π(i), ρ(i)) for all 0 ≤ i < |ρ|. A run over ρ is a path
over ρ starting at the initial state. The NWA A is counter-free if for all n > 0, states q ∈ Q
and finite words ρ over Σ, the following holds: if there is a path from q to q over ρn, then
there is also a path from q to q over ρ.

A run π of A over an infinite word ρ is accepting if the highest color of the states appearing
infinitely often along π is even. The ω-language L(A) accepted by A is the set of infinite
words ρ over Σ such that there is an accepting run π of A over ρ.

A parity acceptance condition Ω : Q 7→ N is a Büchi condition if Ω(Q) ⊆ {1, 2}. A Büchi
NWA is a parity NWA whose acceptance condition is Büchi.

We also consider NWA over finite words (NWAf for short) which are defined as parity
NWA but the parity condition Ω is replaced with a set F ⊆ Q of accepting states. A run π

over a finite word is accepting if its last state is accepting.

Monadic Chain Logic. We recall now Monadic Chain Logic (MCL for short) [47] interpreted
over arbitrary Kripke trees. MCL is the well-known fragment of MSO where second-order
quantification is restricted to chains of the given Kripke tree. For technical convenience, we
consider a one-sorted variant of MCL where first-order variables are encoded as second-order
variables which are singletons. It is straightforward to show that this variant is equivalent to
standard MCL.

Formally, given a finite set AP of atomic propositions and a finite set Vr2 of second-order
variables (or chain variables), the syntax of the considered variant of MCL is the set of
formulae built according to the following grammar:

φ := sing(X) | X ⊆ p | X ⊆ Y | X ≤ Y | ¬φ | φ ∧ φ | ∃CX.φ

where p ∈ AP and X,Y ∈ Vr2. Intuitively, sing(X) asserts that X is a singleton, X ⊆ p

means that p holds at each node of X, and X ≤ Y means that each node of Y is a descendant
of each node of X. As usual, a free variable of a formula φ is a variable occurring in φ that
is not bound by a quantifier. A sentence is a formula with no free variables. The language of
MCL consists of its sentences.

Semantics of MCL. Formulae of MCL are interpreted over Kripke trees on AP. Given a
Kripke tree S = (T,Lab) over AP , a second-order valuation for S is a mapping V2 : Vr2 7→ 2T

assigning to each second-order variable a chain of T. For an MCL formula φ, the satisfaction
relation (S,V2) |= φ, meaning that S satisfies the formula φ under the valuation V2, is
defined as follows (the treatment of Boolean connectives is standard):
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(S,V2) |= sing(X) ⇔ V2(X) is a singleton;
(S,V2) |= X ⊆ p ⇔ p ∈ Lab(w) for each w ∈ V2(X);
(S,V2) |= X ⊆ Y ⇔ V2(X) ⊆ V2(Y );
(S,V2) |= X ≤ Y ⇔ for all w ∈ V2(X) and w′ ∈ V2(Y ), w′ is a descendant of w in T;
(S,V2) |= ∃CX.φ ⇔ (S,V2[X 7→ C]) |= φ for some chain C of T.

where V2[X 7→ C] denotes the second-order valuation for S defined as: V2[X 7→ C](X) = C
and V2[X 7→ C](Y ) = V2(Y ) if Y ≠ X. Note that the satisfaction relation (S,V2) |= φ, for
fixed S and φ, depends only on the values assigned by V2 to the variables occurring free in
φ. In particular, if φ is a sentence, we say that S satisfies φ, written S |= φ, if (S,V2) |= φ

for some valuation V2. In this case, we also say that S is a model of φ.

3 Branching-Time Temporal Logics

In this section, we recall syntax and semantics of Counting-CTL* (CCTL* for short) [38],
which extends standard CTL* [14] with counting operators, as well as the counting extension
CECTL* [3] of ECTL* [50], a branching-time temporal logic more expressive than CCTL*.
For technical convenience, we shall consider an equivalent syntactic variant of ECTL*,
which employs NWAf over finite words, instead of right-linear grammars, as the building
blocks of formulae.1 We also consider a fragment of CECTL*, that we call counter-free
CECTL*, where all the NWAf over finite words are required to be counter-free. We prove
that counter-free CECTL* and CCTL* have the same expressive power.

3.1 The Logic CCTL*
The syntax of CCTL* is given by specifying inductively the set of state formulae φ and the
set of path formulae ψ over a given finite set AP of atomic propositions:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Eψ | Dnφ
ψ ::= φ | ¬ψ | ψ ∧ ψ | Xψ | ψ Uψ

where p ∈ AP, X and U are the standard “next” and “until” temporal modalities, E is the
existential path quantifier, and Dn, with n ∈ N \ {0}, is the counting operator. The language
of CCTL* consists of the state formulae of CCTL*. Standard CTL* is the fragment of
CCTL* where counting operators Dn with n > 1 are not allowed.

Given a Kripke tree S = (T,Lab) (over AP), a node w of T, an infinite path π of T, and
0 ≤ i < |π|, the satisfaction relations (S, w) |= φ for a state formula φ (meaning that φ holds
at node w of S), and (S, π, i) |= ψ for a path formula ψ (meaning that ψ holds at position i

of the path π in S) are defined as follows (Boolean connectives are treated as usual):

(S, w) |= p ⇔ p ∈ Lab(w);
(S, w) |= Eψ ⇔ (S, π, 0) |= ψ for some infinite path π of T starting at node w;
(S, w) |= Dnφ ⇔ there are at least n distinct children w′ of w in T s.t. (S, w′) |= φ;
(S, π, i) |= φ ⇔ (S, π(i)) |= φ;
(S, π, i) |= Xψ ⇔ (S, π, i+ 1) |= ψ;
(S, π, i) |= ψ1 Uψ2 ⇔ for some j ≥ i: (S, π, j) |= ψ2 and (S, π, k) |= ψ1 for all i ≤ k < j.

Note that D1φ corresponds to EXφ. A Kripke tree S satisfies (or is a model of) a state
formula φ, written S |= φ, if S, ε |= φ.

1 In [3], the considered syntactic variant of CECTL* is called Counting Computation Dynamic logic
(CCDL) since it essentially corresponds to a branching-time extension of Linear Dynamic Logic [18].
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3.2 The Logic CECTL*
Like CCTL*, the syntax of CECTL* is composed of state formulae φ and path formulae ψ
over a given finite set AP of atomic propositions, defined as follows:

φ ::= ⊤ | p | ¬φ | φ ∧ φ | Eψ | Dnφ
ψ ::= φ | ¬ψ | ψ ∧ ψ | ⟨A⟩ψ

where p ∈ AP and ⟨A⟩ is the existential sequencing modality applied to a testing NWAf A. We
define a testing NWAf A =

〈
2AP,Q, δ, qI ,F, τ

〉
as consisting of an NWAf

〈
2AP,Q, δ, qI ,F

〉
over finite words over 2AP and a test function τ mapping states in Q to CECTL* path
formulae. Intuitively, along an infinite path π of a Kripke tree, the testing automaton accepts
the labeling of a (possibly empty) infix π(i) . . . π(j − 1) of π if the embedded NWAf has an
accepting run qi . . . qj over the labeling of such an infix so that, for each position k ∈ [i, j],
the formula holds at position k along π. A test function τ is trivial if it maps each state to ⊤.
We also use the shorthand [A]ψ≜¬⟨A⟩¬ψ (universal sequencing modality). The language of
CECTL* consists of the state formulae of CECTL*. A CECTL* formula φ is counter-free
if (i) the testing automata A occurring in φ are counter-free and (ii) either A is deterministic
or the test function of A is trivial.

Given a Kripke tree S = (T,Lab), an infinite path π of T, and 0 ≤ i < |π|, the semantics
of modality ⟨A⟩ is defined as follows, where A =

〈
2AP,Q, δ, qI ,F, τ

〉
:

(S, π, i) |= ⟨A⟩ψ ⇔ for some j ≥ i, (i, j) ∈ RA(S, π) and (S, π, j) |= ψ

where RA(S, π) is the set of pairs (i, j) with j ≥ i s.t. there is an accepting run qi . . . qj of
the NWAf embedded in A over Lab(π(i)) . . .Lab(π(j− 1)) and, for all k ∈ [i, j], it holds that
(S, π, k) |= τ(qk). The notion of a model of a CECTL* formula is defined as for CCTL*.

3.3 Expressiveness equivalence of CCTL* and counter-free CECTL*
We first show that CCTL* can be embedded into counter-free CECTL*. Let A be the
testing counter-free NWAf having trivial tests and accepting all and only the words of
length 1. Moreover, for a counter-free CECTL* path formula ψ1, let Aψ1 be the testing
counter-free DWAf A =

〈
2AP, {q1}, δ, q1, {q1}, τ

〉
defined as follows: δ(q1, a) = q1 for each

input symbol a, and τ(q1) = ψ1. Then, the next and until formulae Xψ1 and ψ1 Uψ2 can be
expressed as: Xψ1 ≡ ⟨A⟩ψ1 and ψ1 Uψ2 ≡ ψ2 ∨ ⟨Aψ1⟩⟨A⟩ψ2. Hence, we obtain the following
result.

▶ Proposition 3.1. Given a CCTL* formula, one can build an equivalent counter-free
CECTL* formula.

For the converse translation from counter-free CECTL* to CCTL*, by the known
equivalence between Monadic Path Logic (MPL) and CCTL* [38], it suffices to show that
each counter-free CECTL* formula can be translated into an equivalent MPL sentence.
We first recall the logic MPL [23], the well-known fragment of MSO where second-order
quantification is restricted to paths of the given Kripke tree.

Monadic Path Logic (MPL) [23]. Given a finite set AP of atomic propositions, a finite
set Vr1 of first-order variables, and a finite set Vr2 of second-order variables, the syntax of
standard MPL is the set of formulae built according to the following grammar:

φ := p(x) | x ≤ y | x ∈ X | ¬φ | φ ∧ φ | ∃x. φ | ∃PX.φ
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where p ∈ AP, x, y ∈ Vr1, X ∈ Vr2, and ∃PX is the path quantifier which ranges over
paths of the given Kripke tree. We also exploit the standard logical connectives ∨ and
→ as abbreviations, the universal first-order quantifier ∀x, defined as ∀x.φ≜ ¬∃x.¬φ, and
the universal path quantifier ∀PX, defined as ∀PX.φ≜ ¬∃PX.¬φ. We also make use of the
shorthands (i) x = y for x ≤ y ∧ y ≤ x, (ii) x < y for x ≤ y ∧ ¬(y ≤ x); (iii) ∃x ∈ X.φ for
∃x. (x ∈ X ∧ φ), and (iv) ∀x ∈ X.φ for ∀x. (x ∈ X → φ). Moreover, the child relation is
definable in MPL by the binary predicate child(x, y) ≜ x < y ∧ ¬∃z. (x < z ∧ z < y) which
exploits only first-order quantification.

Given a Kripke tree S = (T,Lab), a first-order valuation for S is a mapping V1 : Vr1 7→ T
assigning to each first-order variable a node of T. A path valuation for S is a second-order
valuation V2 : Vr2 7→ 2T assigning to each second-order variable a path of T. Given an MPL
formula φ, a first-order valuation V1 for S, and a path valuation V2 for S, the satisfaction
relation (S,V1,V2) |= φ is defined as follows (the treatment of Boolean connectives is
standard):

(S,V1,V2) |= p(x) ⇔ p ∈ Lab(V1(x));
(S,V1,V2) |= x ≤ y ⇔ V1(y) is a descendant of V1(x) in T;
(S,V1,V2) |= x ∈ X ⇔ V1(x) ∈ V2(X);
(S,V1,V2) |= ∃x. φ ⇔ (S,V1[x 7→ w],V2) |= φ for some w ∈ T;
(S,V1,V2) |= ∃PX.φ⇔ (S,V1,V2[X 7→ π]) |= φ for some path π of T.

where V1[x 7→ w] denotes the first-order valuation for T defined as: V1[x 7→ w](x) = w and
V1[x 7→ w](y) = V1(y) if y ̸= x.

From counter-free CECTL* to MPL. The translation presented in the following is based
on known results about counter-free DWA [32, 6].

▶ Proposition 3.2. Given a counter-free CECTL* formula, one can build an equivalent
MPL sentence.

Proof. Let ψ be a counter-free CECTL* path formula. We construct an MPL formula
ψ̂(x,X) with exactly one free first-order variable x and at most one free second-order variable
X such that for each Kripke tree S, infinite path π of S, and position i ≥ 0, it holds that

(S, π, i) |= ψ if and only if (S, x → π(i), X → π) |= ψ̂(x,X)

Moreover, ψ̂(x,X) does not depend on X if ψ is a state formula. Thus, given a state
CECTL* formula φ, the MPL sentence equivalent to φ is given by ∃x. (root(x) ∧ φ̂(x))
with root(x) ≜ ¬∃y. y < x.

The MPL formula ψ̂(x,X) is defined by structural induction on ψ as follows, where we
exploit the predicate Inf(Y ) expressing that the path Y is infinite (Inf(Y ) can be easily
specified in MPL by using only first-order quantification).

ψ = p with p ∈ AP: ψ̂(x,X) ≜ p(x).
ψ = ¬ψ1: ψ̂(x,X) ≜ ¬ψ̂1(x,X).
ψ = ψ1 ∧ ψ2: ψ̂(x,X) ≜ ψ̂1(x,X) ∧ ψ̂2(x,X).
ψ = Eψ1: ψ̂(x,X) ≜ ∃PY. (Inf(Y ) ∧ x ∈ Y ∧ ψ̂1(x, Y ) ∧ ∀y ∈ Y. x ≤ y).

ψ = Dnψ1: ψ̂(x,X) ≜ ∃x1 . . . ∃xn. (
∧
i̸=j

xi ̸= xj ∧
n∧
i=1

(child(x, xi) ∧ ψ̂1(xi, X))).

ψ = ⟨A⟩ψ1, where A is a counter-free testing NWAf such that either A is deterministic
or the test function of A is trivial. Since a counter-free NWAf on finite words can be
converted into an equivalent counter-free DWAf [36], we can assume that the NWAf with
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tests A is deterministic. Let A =
〈
2AP,Q, δ, qI ,F, τ

〉
. By [32, 6], for each state q ∈ Q, we

can construct an FO formula ξq(x, y) with two free variables x and y such that for each
infinite word ρ over 2AP and positions i, j ≥ 0, it holds that (ρ, x → i, y → j) |= ξq(x, y)
iff i ≤ j and the unique run of A over ρ[i, j − 1] leads to state q. Let ξ̂q(x, y,X) be the
MPL formula obtained by “relativizing” the FO formula ξq(x, y) with respect to path X,
i.e., by replacing each subformula ∃x. θ of ξq(x, y) with ∃x. (x ∈ X ∧ θ). Then, ψ̂(x,X) is
defined as follows:∨

q∈F
∃y ∈ X.

(
x ≤ y ∧ ξ̂q(x, y,X) ∧ τ̂(q)(y,X) ∧

∀z ∈ X.
[
x ≤ z < y →

∨
q∈Q

(ξ̂q(x, z,X) ∧ τ̂(q)(z,X))
]

∧ ψ̂1(y,X)
)

◀

It remains an open question whether counter-free NWAf with non-trivial tests can be
captured in MPL. Thus, by Propositions 3.1–3.2 and the known equivalence of MPL and
CCTL* [38], we obtain the following result.

▶ Theorem 3.3. CCTL* and counter-free CECTL* are equivalent formalisms, i.e., they
specify the same class of tree languages.

4 Expressiveness equivalence of MCL and CECTL*

It is known [3] that each CECTL* state formula has an equivalent MCL sentence. In this
section, we show that the two logics CCDL and MCL are in fact expressively equivalent.
We provide a proof of this result which relies on an adaptation of the compositional argument
given in [38] for showing that each MPL sentence has an equivalent CCTL* state formula.

4.1 Model-theoretic fundamentals
We first introduce some notations and definitions. The quantifier rank qr(φ) of an MCL
formula φ is the maximum number of nested quantifiers occurring in it. In the following, a
Kripke tree (over AP) is called structure (over AP).

Fix a finite set AP of atomic propositions. Given h ∈ N, an h-structure Sh is a tuple of
the form Sh = (S,C1, . . . ,Ch) such that S is a structure and C1, . . . ,Ch are chains of S. An
h-word structure is defined similarly but we require that the structure S is an infinite word
over 2AP (recall that an infinite word over 2AP corresponds to a structure where each node
has exactly one child). Note that a structure can be seen as a 0-structure.

An h-MCL formula is an MCL formula having at most h free variables (recall that in the
one-sorted formalization of MCL, all the variables range over chains). Note that a 0-MCL
formula is a sentence. An h-structure Sh = (S,C1, . . . ,Ch) satisfies an h-MCL formula
φ(X1, . . . , Xh) if S |= φ(C1, . . . ,Ch) (which means that (S,V2) |= φ(X1, . . . , Xh) for any
valuation V2 such that V2(Xi) = Ci for each i ∈ [1, h]). Two h-MCL formulas are equivalent
if they are satisfied by the same h-structures. Two h-MCL formulas are word-equivalent if
they are satisfied by the same h-word structures.

Equivalence relations between h-structures. Let m ∈ N. Given two h-structures, Sh =
(S,C1, . . . ,Ch) and S ′

h = (S ′,C′
1, . . . ,C′

h), we say that Sh and S ′
h are m-rank equivalent,

written Sh ≡m S ′
h, if no h-MCL formula φ(X1, . . . , Xk) of quantifier rank at most m can

distinguish them, i.e., S |= φ(C1, . . . ,Ck) iff S ′ |= φ(C′
1, . . . ,C′

k). If Sh ≡m S ′
h and Sh and

S ′
h are h-word structures, we write Sh ≡ω

m S ′
h. The equivalence relation ≡m over the class of
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h-structures has finite index and each equivalence class can be characterized by an h-MCL
formula of quantifier rank at most m, called m-type for h-MCL formulas. In particular, the
following result follows from standard arguments.

▶ Proposition 4.1. Let h ∈ N. Then, the following properties hold for each m ≥ 0:
1. the equivalence ≡m over the set of h-structures defines finitely-many equivalence classes;
2. for each equivalence class Λm of ≡m over h-structures, there is an h-MCL formula β

(called m-type for h-MCL formulas) with qr(β) ≤ m which characterizes it: that is,
Sh |= β iff Sh ∈ Λm, for all h-structures Sh;

3. each h-MCL formula φ with qr(φ) ≤ m is equivalent to a disjunction of m-types;
4. the variants of Properties 1–3 for the class of h-word structures.

Proof. We focus on Properties 1–3. We observe that by variable renaming, we can assume
that h-MCL formulas φ with qr(φ) ≤ m only use variables from a finite set. Hence, by a
straightforward induction on qr(φ), the following holds.

▷ Claim. There is a finite set Υ of h-MCL formulas with quantifier rank at most m such
that each h-MCL formula φ with qr(φ) ≤ m is equivalent to some formula in Υ.

Let Υ = {ψ1, . . . , ψN} be the finite set of h-MCL formulas with quantifier rank at most
m satisfying the previous claim. We consider the h-MCL formulas of the form

ψ1 ∧ . . . ∧ ψN

where ψi is either ψi or ¬ψi for all i ∈ [1, k]. Let us denote by β1, . . . , βℓ these formulas
(note that ℓ = 2N ). By construction, for each h-structure Sh, there is exaclty one i ∈ [1, ℓ]
such that Sh |= βi. Moreover, each formula ψi ∈ Υ can be expressed as the disjunction of
all and only the formulas in {β1, . . . , βℓ} whose associated conjunct ψi is ψi. Thus, by the
previous claim, Properties 1–3 easily follow. ◀

Local isomorphism on h-structures. The equivalence relation ≡0 over h-structures can
be characterized as follows. Given two h-structures, Sh = (S,C1, . . . ,Ck) and S ′

h =
(S ′,C′

1, . . . ,C′
h), we say that Sh and Sh are locally-isomorphic (for MCL) if the follow-

ing conditions hold, where S = ⟨T,Lab⟩ and S ′ = ⟨T′,Lab′⟩:
for all i ∈ [1, h], Ci is a singleton iff C′

i is a singleton;
for all i ∈ [1, h] and p ∈ AP, Ci ⊆ Tp iff C′

i ⊆ T′
p, where Tp = {w ∈ T | p ∈ Lab(w)} and

T′
p = {w ∈ T′ | p ∈ Lab′(w)}.

for all i, j ∈ [1, h], Ci ⊆ Cj iff C′
i ⊆ C′

j ;
for all i, j ∈ [1, h], Ci ≤ Cj iff C′

i ≤ C′
j .

Note that two structures are always locally-isomorphic and two h-structures are 0-rank
equivalent iff they are locally-isomorphic.

Ehrenfeucht-Fraissé Games for MCL. The rank-equivalence relation ≡m over the class of
h-structures has an elegant characterization in terms of Ehrenfeucht-Fraissé games (EF-games)
over h-structures. The EF-game Gm(Sh,S ′

h) over two h-structures Sh = (S,C1, . . . ,Ch) and
S ′
h = (S ′,C′

1, . . . ,C′
h) is played by two players called the spoiler and the duplicator. Each

play consists of m-rounds. At i-th round, with i ∈ [1,m], the spoiler chooses a chain in one of
the two structures S and S ′, after which the duplicator responds by choosing a chain in the
other structure which she believes matches the chain chosen by the spoiler. After m-rounds,
there will be m chains C1, . . . ,Cm selected in the structure S, and corresponding m chains
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C′
1, . . . ,C

′
i selected in the structure S ′. The duplicator wins if the two (h+m)-structures

(S,C1, . . . ,Ch,C1, . . . ,Cm) and (S ′,C′
1, . . . ,C′

h,C
′
1, . . . ,C

′
m) are locally-isomorphic (note that

this entails that the original h-structures Sh and S ′
h need to be locally-isomorphic). Otherwise,

the spoiler wins. We say that the duplicator has a winning strategy in the game Gm(Sh,S ′
h)

if it is possible for him to win each play whatever choices are made by the opponent. The
h-structures Sh and S ′

h are m-game equivalent, written Sh ∼m S ′
h if the duplicator has a

winning strategy in the game Gm(Sh,S ′
h). If Sh ∼m S ′

h and Sh and S ′
h are h-word structures,

we write Sh ∼ω
m S ′

h. By classical arguments, one can show that the m-game equivalence
relation corresponds to the rank equivalence ≡m.

▶ Proposition 4.2. For all h,m ∈ N and h-structures Sh and S ′
h, Sh ≡m S ′

h iff Sh ∼m S ′
h.

Proof. First, we observe that for each m ≥ 0, ∼m is the unique equivalence relation satisfying
the following properties for all h-structures Sh = (S, . . .) and S ′

h = (S ′, . . .):
1. if m = 0, then Sh ∼0 S ′

h iff Sh and Sh are locally isomorphic;
2. if m > 0, then:

(forth) for each chain C of S, there is a chain C′ of S ′ such that (Sh,C) ∼m−1 (S ′
h,C′),

where (Sh,C) and (S ′
h,C′) denote the (h+ 1)-structures defined in the obvious way;

(back) for each chain C′ of S ′, there is a chain C of S such that (Sh,C) ∼m−1 (S ′
h,C′).

Thus, it suffices to show that the equivalence relation ≡m satisfies the previous conditions
with ∼m replaced with ≡m. If m = 0, the result trivially follows. Now, assume that m > 0.
We focus on the forth condition. Let C be a chain of S. According to Proposition 4.1, let β be
the unique (m−1)-type for (h+1)-structures such that (Sh,C) |= β. Hence, Sh |= ∃CXh+1. β.
By Proposition 4.1, β is an (h+ 1)-MCL formula with qr(β) ≤ m− 1. Since Sh ≡m S ′

h, it
follows that S ′

h |= ∃CXh+1. β. Hence, there exists a chain C′ ∈ S ′ such that (S ′
h,C′) |= β.

Thus, being β the (m− 1)-type for (h+ 1)-structures, we obtain that (Sh,C) ≡m−1 (S ′
h,C′),

and we are done. ◀

4.2 A Composition Theorem for MCL
We provide now a characterization of the game-equivalence relation ∼m over 1-structures on
AP, for a given m ≥ 1, in terms of the game-equivalence relation ∼ω

2m over word-structures
defined over a suitable set of atomic propositions.

Fix m ≥ 1. Referring to Proposition 4.1, let β1, . . . , βℓ be the m-types of the equivalence
relation ≡m over the class of structures. Recall that for each structure S, there is exactly
one m-type βi for some i ∈ [i, ℓ] such that S |= βi (we say that βi is the m-type of S). Given
a structure S, a node w of S, a child wC of w in S, and i ∈ [1, ℓ], let NS(w,wC, i) be the
(possibly infinite) cardinality of the set of children w′ of w in S such that w′ ≠ wC and
the substructure (i.e., the labeled subtree) of S rooted at w′ has m-type βi. We denote by
fS(w,wC) the mapping in [1, ℓ] → [0,m], where for each i ∈ [1, ℓ], fS(w,wC)(i) is defined as:

fS(w,wC)(i)≜
{

NS(w,wC, i) if NS(w,wC, i) < m

m otherwise.

Thus, fS(w,wC)(i) approximates NS(w,wC, i) with the greatest number in [0,m] which is
smaller or equal to NS(w,wC, i). We consider the finite set APm of propositions defined as:

APm ≜ 2AP∪{c} ×
(
[1, ℓ] 7→ [0,m]

)
× [1, . . . , ℓ].

Let (S,C) be a 1-structure with labeling Lab. For each infinite branch π of S such that π
contains the chain C (note that if C is infinite, then π is uniquely determined), we denote by
ω(S, π,C) the infinite word over 2APm defined as follows for all positions j ≥ 0:

ω(S, π,C)(j) = {(Lab(π(j)) ∪ ♭, fS(π(j), π(j + 1)), kj)}
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where (i) ♭ = {c} if π(j) ∈ C, and ♭ = ∅ otherwise, and (ii) kj is such that βkj is the m-type
of the substructure of S rooted at π(j+ 1). Thus the label of the jth position of ω(S, π,C)(j)
is a singleton and corresponds to the label of the jth node of the infinite path π of S extended
with additional information concerning the m-type of the subtree rooted at node π(j+1), the
m-types of the subtrees rooted at the children of π(j) which are not in π, and the indication
whether node π(j) belong to the chain C or not. Note that the infinite word ω(S, π,C) can
be seen as the word-structure (π,Lab′), where Lab′(π(j)) = ω(S, π,C)(j) for each j ≥ 0.

The importance of the word-structure ω(S, π,C) is that it captures the whole of the
1-structure (S,C) with respect to the distinguishing power of 1-MCL formulas with quantifier
rank at most m. In particular, we establish the following crucial result.

▶ Lemma 4.3 (From MCL-games on 1-structures to MCL-games on word-structures). Let
m ≥ 1, (S,C) and (S ′,C′) be two 1-structures, and π and π′ be two infinite branches of S
and S ′, respectively, such that C ⊆ π and C′ ⊆ π′. Then:

ω(S, π,C) ∼ω
2m ω(S ′, π′,C′) ⇒ (S,C) ∼m (S ′,C′).

Proof. We need some additional definitions and preliminary observations. Let S1 = (S,C)
be a 1-structure, and π be an infinite branch of S such that C ⊆ π. We observe that each
chain of S which is not contained in the branch π can be partitioned into two chains C1 and
C2 of S such that C1 is a subset of the path π and there exists a child w′ of some node w of
π such that w′ is not a π-node and C2 is a non-empty chain of the subtree of S rooted at
node w′. This justifies the following definition. A π-term of S1 is either a chain of π, or a
tuple of the form (C1, w,T,C2) such that the following holds:

C1 is a finite chain of π and w is a node of π which is a descendant of all nodes in C1;
there is a child w′ of w in S such that w′ /∈ π, T is the labeled subtree of S rooted at
node w′, and C2 is a non-empty chain of T.

For a compound π-term t = (C1, w,T,C2) of S1, we write T(t) for T, C1(t) for C1, C2(t) for
C2, and Cw(t) for w. For a simple π-term t consisting of a chain of π, C1(t) is for t, and T(t),
C2(t), and Cw(t) denote the empty set. For each h ≥ 0, a (π, h)-term of S1 is a tuple of the
form (t1, . . . , th) where t1, . . . , th are π-terms of S1. We make the following observation:

Disjointness property. For π-terms (C1, w,T,C2) and (C′
1, w

′,T′,C′
2) of S1, either T = T ′

or T ∩ T ′ = ∅. Moreover, if T ∩ T ′ = ∅, then C2 ∩ C′
2 = ∅ (in particular, C2 and C′

2 are not
related by the descendant relation).

Fix two 1-structures S1 = (S,C) and S ′
1 = (S ′,C′), an infinite branch π of S1 with C ⊆ π,

and an infinite branch π′ of S ′
1 with C′ ⊆ π′. Let Sω = ω(S, π,C) and S ′

ω = ω(S ′, π′,C′).
Given m ≥ 1, h ∈ [0,m], a (π, h)-term tr = (t1, . . . , th) of S1, and a (π′, h)–term tr′ =
(t′1, . . . , t′h) of S ′

1, we say that tr and tr′ are m-consistent if the following holds:
1. for all i ∈ [1, h], T(ti) ̸= ∅ iff T(t′i) ̸= ∅. Moreover, if T(ti) ̸= ∅, then:

let ti1 , . . . , tip and t′i′1
, . . . , t′i′

p′
be the ordered sequences of compound terms in tr

and tr′, respectively, having tree-component T(ti) and T(t′i), respectively. Then,
p = p′, and ij = i′j for all j ∈ [1, p]. Moreover, (ST(ti),C2(ti1), . . . ,C2(tip)) ∼m−p
(S ′

T(t′
i
),C2(t′i1), . . . ,C2(t′ip)).

2. (Sω,C1(t1),Cw(t1), . . . ,C1(th),Cw(th)) ∼ω
2m−2h (S ′

ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h)).

By the disjointness property and since m ≥ 1 (recall that the special proposition c of APm
marks the nodes of the chains C and C′ of ω(S, π,C) and ω(S ′, π′,C′), respectively), the
following result easily follows.

TIME 2024
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▷ Claim 4.4. Let tr = (t1, . . . , th) be a (π, h)-term of S1 and tr′ = (t′1, . . . , t′h) be a
(π′, h)-term of S ′

1. If tr and tr′ are m-consistent, then the (h+ 1)-structures (S,C,C1(t1) ∪
C2(t1), . . . ,C1(th) ∪ C2(th)) and (S ′,C′,C1(t′1) ∪ C2(t′1), . . . ,C1(t′h) ∪ C2(t′h)) are locally
isomorphic.

Assume that ω(S, π,C) ∼ω
2m ω(S ′, π′,C′). We need to prove that S1 ∼m S ′

1. By Claim 4.4
(for the case where h = 0), S1 and S ′

1 are locally isomorphic. Now, given 0 ≤ h < m, assume
that after h-rounds in the EF-game Gm(S1,S ′

1), there are h π-terms t1, . . . , th selected in the
structure S and corresponding h π′-terms t′1, . . . , t′h selected in the structure S ′ such that
tr = (t1, . . . , th) and tr′ = (t′1, . . . , t′h) are m-consistent with respect to S1 and S ′

1. Moreover,
assume that at the (h+ 1)-round the spoiler chooses a π-term th+1 in S (the case where the
choice is made on the structure S ′ is similar). We show that the duplicator can respond by
choosing a π′-term t′h+1 in S ′ such that the tuples (t1, . . . , th, th+1) and (t′1, . . . , t′h, t′h+1) are
still m-consistent with respect to S1 and S ′

1. Hence, by Claim 4.4, the result follows. We
focus on the case where th+1 is a compound term π-term of the form (C1, w,T,C2) (the case
where th+1 is a chain of π is simpler). We distinguish two cases:

there is some term ti in tr such that T(ti) = T: let ti1 , . . . , tiN be the ordered sequence of
compound terms in tr having T as tree-component. Note that Cw(tij ) = w for all j ∈ [1, N ].
Since tr and tr′ are m-consistent with respect to S1 and S ′

1, it holds that T(t′i) = T′
i ̸= ∅,

t′i1 , . . . , t
′
iN

is the ordered sequence of compound terms in tr′ having T′ as tree-component,
and there is a node w′ of π (the parent of the T′-root) such that Cw(t′ij ) = w′ for all
j ∈ [1, N ]. Moreover, (ST,C2(ti1), . . . ,C2(tiN )) ∼m−N (S ′

T′ ,C2(t′i1), . . . ,C2(t′i1)) and
(Sω,C1(t1),Cw(t1), . . . ,C1(th), Cw(th)) ∼ω

2m−2h (S ′
ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h)).

Thus, since N < m, in the EF-game over the substructures ST and S ′
T′ , the du-

plicator can pick a chain C′
2 of T′ such that (ST,C2(ti1), . . . ,C2(tiN ),C2) ∼m−(N+1)

(S ′
T′ ,C2(t′i1), . . . ,C2(t′iN ),C′

2). Moreover, since h < m, in the EF-game over the word struc-
tures Sω and S ′

ω, the duplicator can pick a chain C′
1 of π′ such that (Sω,C1(t1),Cw(t1), . . . ,

C1(th), Cw(th),C1, {w}) ∼ω
2m−2(h+1) (S ′

ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h),C′
1, {w′}).

Note that w′ must be a descendant of all nodes in C′
1. Hence, by setting t′h+1 to

(C′
1, w

′,T′,C′
2), the result follows.

there is no term in tr having tree-component T: let ti1 , . . . , tiN be the (possibly empty)
ordered sequence of compound terms in tr whose second component is w. Since h < m

and tr and tr′ are m-consistent, in the EF-game over the word structures Sω and S ′
ω,

the duplicator can pick a chain C′
1 of π′ and a node w′ ∈ π′ which is a descendant of

all nodes in C′
1 such that (Sω,C1(t1),Cw(t1), . . . ,C1(th), Cw(th),C1, {w}) ∼ω

2m−2(h+1)
(S ′
ω,C1(t′1),Cw(t′1), . . . ,C1(t′h),Cw(t′h),C′

1, {w′}). Hence, t′i1 , . . . , t
′
iN

is the (possibly
empty) ordered sequence of compound terms in tr′ whose second component is w′.
Since the label of w in Sω and the label of w′ in S ′

ω coincide and N < m, by construction
of the word-structures Sω and S ′

ω, there must be a child w′′ of w′ in S ′ such that w′′ /∈ π′

and for the subtree T′ of S ′ rooted at w′′, it holds that ST ≡m S ′
T′ and T′ ≠ T(t′ij ) for

all j ∈ [1, N ]. Being C2 ⊆ T and m ≥ 1, in the EF-game over the substructures ST and
S ′

T′ , the duplicator can pick a chain C′
2 of T′ such that (ST,C2) ∼m−1 (ST,C2). We set

t′h+1 = (C′
1, w

′,T′,C′
2), and the result follows. ◀

We can now state a composition theorem for 1-MCL formulas over 1-structures, which
allows to express such formulas in terms of MCL sentences over word-structures on 2APm

(or, equivalently, MSO sentences over infinite words on 2APm).

▶ Theorem 4.5 (Composition Theorem for MCL). For all m ≥ 1 and 1-MCL formulas φ(X)
over AP with qr(φ) ≤ m, there is an MCL sentence ψ over APm such that for each 1-structure
(S,C) and infinite branch π of S with C ⊆ π, we have (S,C) |= φ(X) ⇔ ω(S, π,C) |= ψ.
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Proof. According to Proposition 4.1, we consider the following formulas:
the m-types α1(X), . . . , αℓ(X) for 1-structures. By Proposition 4.1, there is I ⊆ {1, . . . , ℓ}
such that φ(X) is equivalent to

∨
p∈I αp(X).

The 2m-types γ1, . . . , γh for the MCL-sentences over word-structures on APm.

We denote by Γ the finite set of 2m-types γi with i ∈ [1, h] such that there exist a
1-structure (S,C) and an infinite branch π of S with C ⊆ π so that (S,C) |= φ(X) and
ω(S, π,C) |= γi. The desired MCL sentence ψ is then given by

∨
γi∈Γ γi. We prove the

following, hence the result directly follows.

▷ Claim. For each 1-structure (S,C) and infinite branch π of S so that C ⊆ π, it holds that
(S,C) |= φ(X) if and only if ω(S, π,C) |= γi, for some γi ∈ Γ.

To prove the claim, let (S,C) and π be as in the claim. By Proposition 4.1, there is a
unique i ∈ [1, h] such that ω(S, π,C) |= γi.

If (S,C) |= φ(X), then by construction, γi ∈ Γ. Assume now that γi ∈ Γ. It remains
to show that (S,C) |= φ(X). We assume the contrary and derive a contradiction. Hence,
there exists p′ ∈ [1, ℓ] \ I such that (S,C) |= αp′(X). Since γi ∈ Γ, there exist p ∈ I, a
1-structure (S ′,C′), and an infinite branch π′ of S ′ with C′ ⊆ π′ so that (S ′,C′) |= αp(X)
and ω(S ′, π′,C′) |= γi. Since ω(S, π,C) |= γi, it follows that ω(S, π,C) ≡ω

2m ω(S ′, π′,C′).
Thus, by Proposition 4.2 and Lemma 4.3, we obtain that (S,C) ≡m (S ′,C′), which is a
contradiction since (S,C) and (S ′,C′) have distinct m-types. ◀

4.3 From MCL to CECTL*
By exploiting Theorem 4.5, we show that the logics MCL and CECTL* have the same
expressiveness.

▶ Theorem 4.6. MCL and CECTL* are equally expressive.

Proof. By [3], each CECTL* state formula has an equivalent MCL sentence. Thus, it
suffices to show that for each MCL sentence, there is an equivalent CECTL* state formula.
Let φ be an MCL sentence. The result is shown by an induction argument on the quantifier
rank qr(φ).

Base case. Let φ be an MCL sentence such that qr(φ) = 1. Since the existential chain
quantifier ∃C distributes over disjunction, φ is equivalent to a Boolean combination of
sentences of the form ∃CX.ψ, where ψ is a conjunction of atoms in X, i.e., atoms of the form
X ⊆ p or X ≤ X or sing(X), or negations of atoms in X.

Fix an MCL sentence of the form ∃CX.ψ, where ψ is a conjunction of atoms in X or
negations of atoms X. We show that there is an equivalent CECTL* formula. Hence, the
result follows. We assume that ∃CX.ψ is satisfiable (otherwise, ∃CX.ψ is equivalent to ¬⊤,
and the result trivially follows). We distinguish two cases:

ψ holds when X is bound to the empty chain. In this case, ∃CX.ψ is equivalent to ⊤,
and the result follows.
ψ does not hold when X is bound to the empty chain: in this case, the atomic for-
mula X ≤ X corresponds to sing(X) and there exist distinct atomic propositions
p1, . . . , pn, q1, . . . , qm such that ψ can be rewritten as

ξ ∧
i=n∧
i=1

X ⊆ pi ∧
j=m∧
j=1

¬(X ⊆ qj)

TIME 2024
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where either ξ = ⊤, or ξ = sing(X), or ξ = ¬sing(X). We focus on the case where
ξ = ¬sing(X) (the other cases being similar). Note that for an atom X ⊆ pi and two
chains C and C′ of a structure (Kripke tree) S = ⟨T,Lab⟩ such that C ⊆ C′, (S,V2[X 7→
C′]) |= X ⊆ pi entails that (S,V2[X 7→ C]) |= X ⊆ pi (intuitively, the satisfaction relation
is downward-closed for atoms X ⊆ pi). Moreover, (S,V2[X 7→ C]) |= ¬(X ⊆ qj) iff
there is a node w ∈ C such that qj /∈ Lab(w). It follows that a structure (Kripke tree)
S = ⟨T,Lab⟩ is a model of ∃CX.ψ iff there exist ℓ ∈ [2,m+ 2] and a finite chain C of S
having cardinality ℓ such that (i) pi ∈ Lab(w) for all i ∈ [1, n] and w ∈ C, and (ii) for
all j ∈ [1,m], there exists w ∈ C so that qj /∈ Lab(w). These requirements can be easily
captured by a CTL* formula (and thus by a CECTL* formula as well). Hence, the
result follows.

Induction step. Let m ≥ 1 and assume that for each MCL sentence with quantifier rank at
most m, there is an equivalent CECTL* state formula. Fix an MCL sentence of the form
∃CX.φ(X) with qr(φ) ≤ m. We show that ∃CX.φ(X) has an equivalent CECTL* state
formula. Hence, the result follows. For the fixed m ≥ 1, let β1, . . . , βℓ be the m-types for
MCL sentences over structures on AP. Since β1, . . . , βℓ have quantifier rank at most m, by
the induction hypothesis, there exist CECTL* state formulas β̂1, . . . , β̂ℓ such that βi and β̂i
are equivalent for each i ∈ [1, ℓ]. Recall that APm = 2AP∪{c} × ([1, ℓ] 7→ [0,m]) × [1, ℓ]. Let
AP′

m obtained from APm by removing the special proposition c from the first component
2AP∪{c} of APm. For a structure S (over AP) and an infinite branch π of S, we write ω(S, π)
to mean the word-structure ω(S, π, ∅). Note that ω(S, π) corresponds to an infinite word
over AP′

m. Recall that for each MSO sentence ϕ over infinite words, one can construct a
Büchi NWA accepting the models of ϕ. Moreover, Büchi NWA are closed under projection
and a Büchi NWA can be converted into an equivalent parity DWA [42]. Thus, since MCL
over word structures corresponds to MSO over infinite words, by applying Theorem 4.5 to
the 1-MCL formula φ(X), there exists a parity NWA Dφ over AP′

m such that the following
holds.

▷ Claim 4.7. For each structure S, there exists a chain C of S such that (S,C) |= φ(X) if
and only if there exists an infinite branch π of S so that ω(S, π) ∈ L(Dφ).

Let Υ ≜ ([1, ℓ] 7→ [0,m]) × [1, ℓ]. Now, for each (f, k) ∈ Υ, we define a CECTL* path
formula θ(f,k) expressing, for a given structure S, infinite branch π of S, and node w ∈ π,
that:

for each i ∈ [1, ℓ], let N be the (possibly infinite) number of distinct children w′ of w
such that the substructure of S rooted at w′ has m-type βi. Then:

case i ̸= k: N = f(i) if f(i) < m, and N ≥ f(i) otherwise;
case i = k: N = f(i) + 1 if f(i) < m, and N ≥ f(i) + 1 otherwise.

The substructure of S rooted at the child w′ of w along π has m-type βk.

θ(f,k) ≜ (X β̂k) ∧
∧

i∈[1,ℓ]

θi(f,k), where

θi(f,k) ≜


Df(i)β̂i, if f(i) = m ∧ i ̸= k;
Df(i)β̂i ∧ ¬Df(i)+1β̂i, if f(i) < m ∧ i ̸= k;
Df(i)+1β̂i, if f(i) = m ∧ i = k;
Df(i)+1β̂i ∧ ¬Df(i)+2β̂i, if f(i) < m ∧ i = k.

Since β1, . . . , βℓ are the m-types for MCL sentences, by construction, the following holds.
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▷ Claim 4.8. Given a structure S, an infinite branch π of S, and i ≥ 0, there is exactly one
element (f, k) ∈ Υ such that (S, π, i) |= θ(f,k).

Let Dφ =
〈
2AP × Υ,QD, δD, qD,I ,ΩD

〉
be the parity DWA of Claim 4.7. For each

(f, k) ∈ Υ, we consider the parity NWA N(f,k) =
〈
2AP,QN , δN , (qD,I , f, k),ΩN

〉
over 2AP

with initial state (qD,I , f, k) which simulates Dφ by keeping track in the current state
of the guessed second component of the next input symbol. Formally QN = QD × Υ,
δN ((q′, f ′, k′), a) =

∨
(f ′′,k′′)∈Υ

(δD(q′, (a, f ′, k′)), f ′′, k′′) and ΩN (q′, (f ′, k′)) = ΩD(q′) for all

q′ ∈ QD, a ∈ 2AP, and (f ′, k′) ∈ Υ. Note that for (f, k) ̸= (f ′, k′), the parity NWA N(f,k)
and N(f ′,k′) differ only for the initial state. Moreover, let τ be the testing function assigning
to each state (q′, f ′, k′) ∈ QN the CECTL* path formula θ(f ′,k′). By construction and
Claim 4.7, we obtain the following characterization of the structures satisfying the MCL
sentence ∃CX.φ(X).

▷ Claim 4.9. For each structure S = (T,Lab), S |= ∃CX.φ(X) iff for some infinite branch π
of S and some (f, k) ∈ Υ, there is an accepting run ν of N(f,k) over Lab(π(0))Lab(π(1)) . . .
such that (S, π, i) |= τ(ν(i)) for all i ≥ 0.

Given a finite path πf of a structure S = (T,Lab), a good run of N(f,k) over πf is a
finite path νf of N(f,k) over the Lab-labeling of πf such that (S, πf (i)) |= τ(ν(i)) for all
0 ≤ i < |πf |.

We now show that the characterization of the set of models of ∃CX.φ(X) in Claim 4.9
can be captured by a CECTL* formula. For all states (q, f, k) ∈ QN and set P ⊆ QN , we
denote by (q,f,k)NP the testing NWAf with test function τ and whose embedded NWAf is
obtained from the automata N(f,k) by setting a fresh copy of (q, f, k) as initial state, and
P as set of accepting states. This fresh copy behaves as (q, f, k) and has the same test as
(q, f, k), and ensures that the automaton cannot accept the empty word. Finally, let QN,even
be the set of states in QN having even color, and for each (q, f, k) ∈ QN , let QN > (q, f, k)
be the set of states in QN having color greatest than the color of (q, f, k). We consider the
CECTL* state formula Eψ where the CECTL* path formula ψ is defined as follows:

ψ ≜
∨

(f,k)∈Υ

∨
(q′,f ′,k′)∈QN,even

(ψ1(f, k, q′, f ′, k′) ∧ ψ2(f, k, q′, f ′, k′)

ψ1(f, k, q′, f ′, k′) ≜ ⟨(qD,I ,f,k)N{(q′,f ′,k′)}⟩[(q′,f ′,k′)NQN>(q′,f ′,k′)]¬⊤
ψ2(f, k, q′, f ′, k′) ≜ [(qD,I ,f,k)N{(q′,f ′,k′)}]⟨(q′,f ′,k′)N{(q′,f ′,k′)}⟩⊤

Thus, an infinite branch π of a structure S satisfies the path formula ψ iff there exist
(f, k) ∈ Υ and (q′, f ′, k′) ∈ QN,even such that the following conditions hold:

there is a good run of N(f,k) over some non-empty prefix π(0) . . . π(i) of π from state
(qD,I , f, k) to the state with even color (q′, f ′, k′). Moreover, no good run of N(f,k) over
some non-empty infix of π from position i which starts and ends at state (q′, f ′, k′) visits
a state with color greatest than color of (q′, f ′, k′).
for each good run of N(f,k) over some non-empty prefix π(0) . . . π(i) of π from state
(qD,I , f, k) to state (q′, f ′, k′), there is a good run f N(f,k) over some non-empty infix of
π from position i which starts and ends at state (q′, f ′, k′).

The first condition is expressed by the conjunct ψ1(f, k, q′, f ′, k′) of ψ, while the second
condition is expressed by the conjunct ψ2(f, k, q′, f ′, k′). By Claim 4.9, correctness of the
construction directly follows from the following claim whose proof relies on the mutual-
exclusivity condition expressed in Claim 4.8.
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▷ Claim 4.10. For each structure S = (T,Lab) and infinite branch π of S, (S, π, 0) |= ψ iff
for some (f, k) ∈ Υ, there exists an accepting run ν of N(f,k) over Lab(π(0))Lab(π(1)) . . .
such that (S, π, i) |= τ(ν(i)) for all i ≥ 0.

The left-right implication in Claim 4.10 easily follows from construction. For the
right-left implication, assume that for some (f, k) ∈ Υ, there is an accepting run
ν = (q0, f0, k0)(q1, f1, k1) . . . of N(f,k) over ρ = Lab(π(0))Lab(π(1)) . . . with (q0, f0, k0) =
(qD,I , f, k) such that (S, π, i) |= θ(fi,ki) for all i ≥ 0. Since ν is accepting, there ex-
ists a state (q′, f ′, k′) ∈ QN,even having an even color n such that n is the maximum
color associated to the states which occur infinitely many times along ν. We show that
(S, π, 0) |= ψ1(f, k, q′, f ′, k′) ∧ ψ2(f, k, q′, f ′, k′). Hence, the result follows. We focus on
the conjunct ψ2(f, k, q′, f ′, k′) (the proof for the conjunct ψ1(f, k, q′, f ′, k′) is similar). By
construction of ψ2(f, k, q′, f ′, k′), it suffices to show that for all j ≥ 0 and accepting runs νf
of (qD,I ,f,k)N{(q′,f ′,k′)} over ρ[0, j] whose states satisfy the associated tests, then νf is a prefix
of ν. Let νf = (q′

0, f
′
0, k

′
0) . . . (q′

j+1, f
′
j+1, k

′
j+1) be such a finite run over ρ[0, j] such that

(q′
0, f

′
0, k

′
0) = (qD,I , f, k) and for all i ∈ [0, j + 1], (S, π, i) |= θ(f ′

i
,k′

i
). Since (S, π, i) |= θ(fi,ki)

for all i ≥ 0, by Claim 4.8, it follows that (f ′
i , k

′
i) = (fi, ki) for all i ∈ [0, j + 1]. Thus, since

Dφ is deterministic, we deduce that q′
i = qi for all i ∈ [0, j + 1], and the result follows. This

concludes the proof of Claim 4.10.
At this point, the equivalence between ∃CX.φ(X) and Eψ directly follows from Claims

4.9 and 4.10. This concludes the proof of Theorem 4.6. ◀

5 Conclusion

In this work, we adopted a compositional approach to prove the expressive equivalence of
Monadic Chain Logic (MCL) and the counting extension CECTL* of ECTL*. Recent
work [3] has established that the graded version (HGTA) of Hesitant Tree Automata (HTA)
and their first-order extension (HFTA) represent the automata counterparts of the logics
CECTL* and MCL, respectively. As a corollary of our main results, we obtain the following
chain of equivalence:

▶ Corollary 5.1. The logics CECTL* and MCL and the classes of automata HGTA and
HFTA are all equivalent formalisms.

It would be interesting to explore the applicability of a compositional approach to Monadic
Tree Logic (MTL) [2], a fragment of MSO where second-order quantifiers range over trees.
The goal here is to gain insights into the expressiveness of various extensions of standard
temporal logics for strategic reasoning, such as Substructure Temporal Logic (STL), a
temporal logic that allows implicit predication over substructures/subtrees [4, 5].
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Abstract
We study the problem of model checking linear temporal logic formulae on finite trajectories generated
by polyhedral differential inclusions, thus enriching the landscape of models where such specifications
can be effectively verified. Each model in the class comprises a static and a dynamic component.
The static component features a finite set of observables represented by (non-necessarily convex)
polyhedra. The dynamic one is given by a convex polyhedron constraining the dynamics of the
system, by specifying the possible slopes of the trajectories in each time instant. We devise an exact
algorithm that computes a symbolic representation of the region of points that existentially satisfy a
given formula φ, i.e., the points from which there exists a trajectory satisfying φ.
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1 Introduction

Formal verification has been a central topic in computer science for decades, and model
checking has emerged as a key technique for this purpose. In this paper, we focus on
continuous-time and infinite-state systems, which are essential for cyber-physical applications
[20]. We represent the state of our systems using a vector of real-valued variables, whose
dynamics are governed by a constant polyhedral inclusion of the type ẋ ∈ F , where F is
a convex polyhedron. Such dynamics correspond to the single-location dynamics of linear
hybrid automata (LHAs) [13]. Whereas reachability in LHAs is undecidable [14], we show in
this paper that model checking a linear temporal property on a single location is a decidable,
albeit challenging, problem.

As specification language, we consider a real-time interpretation of linear temporal logic
on finite traces (Ltlf ), that we call Rtlf following Reynolds [22]. Compared to Ltlf (and
Ltl), Rtlf does not include an explicit next operator, which is commonly omitted when
considering continuous time domains, but includes both a strict and non-strict version of
the until operator. In our interpretation, time is real-valued and each atomic proposition
denotes a polyhedral region of the state-space. Hence, users can exploit the familiar syntax
of Ltl to express complex properties involving continuous variables and their relationships.

The polyhedral inclusions that define our trajectories bestow a considerable degree of
flexibility, affording room for behaviours, commonly referred to as Zeno behaviours, which
may lack a plausible physical rationale or clash with the symbolic abstraction adopted in this
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ṫ = 1
ȧ ∈ [−1, 1]
ḃ ∈ [−2, 2]

ȧ + ḃ ∈ [−2, 2]

−1 1

−2

−1

1

2

ȧ

ḃ

Figure 1 The flow and its projection on the (ȧ, ḃ) plane.

paper. To avoid these issues, since our observables are polyhedral regions of the state-space,
we restrict our attention to trajectories that transition between polyhedra finitely often
within any bounded time interval. We call this notion well behavedness and compare it with
similar notions in the existing literature.

Our main contribution is a symbolic algorithm to determine the set of initial states
from which the system supports a well-behaved trajectory that satisfies a given property, a
problem that we call the existential denotation problem for Rtlf . The algorithm is based on
a translation from Rtlf to Ltlf , followed by the classical automata construction for Ltlf .
Then, the finite-state automaton is used as a guide for a backward symbolic computation of
the existential denotation of the input formula.

The results of the existential denotation problem can be used in two ways, depending
on the interpretation given to the input model. Indeed, the non-determinism inherent in a
polyhedral inclusion can be meant either in an angelic (i.e., controllable) or demonic (i.e.,
uncontrollable) sense. In the first case, a constraint of the type ẋ ∈ [1, 2] is taken to mean
that the variable x can be steered by the system to grow with any rate between 1 and 2. In
the second case, the same constraint signals that the environment may choose any growth
rate between 1 and 2. Given a model with angelic non-determinism, one may use the results
in this paper to verify that the system can be controlled into satisfying a specified property.
If instead the non-determinism is meant to be interpreted as demonic, one will specify an
error condition and check from which states the environment can generate a trajectory that
engenders the error. Our work has potential applications in a variety of domains, including
robotics and control systems, and offers new insights into the analysis of polyhedral systems.

A Motivating Example. Consider a system of two tanks connected with a pump and holding
a liquid. An inlet pours liquid into the first tank at an uncertain and time-varying rate,
which however is known to be contained in [1, 2]. The pump shifts liquid from the first tank
to the second tank at a varying rate contained in [1, 2]. Finally, an outlet extracts liquid from
the second tank at a varying rate contained in [0, 3]. If we represent the level in the first
(resp., second) tank with variable a (resp., b) and we add a clock t to measure the passage of
time, the above constraints lead to the dynamic laws reported in Figure 1.

Notice that the above semantics allows levels to become negative: we guarantee that
this does not happen using the formula φinv = G(a ≥ 0 ∧ b ≥ 0). Suppose that we want to
find the initial states from which the system, within the first 10 time units, can first reach a
configuration where a ≥ b + 1 and later reach another configuration where b ≥ a + 1. This
property is captured by the following formula:

φgap
1 = φinv ∧ (t = 0) ∧ G(t ≤ 10) ∧ F

(
a ≥ b + 1 ∧ F(b ≥ a + 1)

)
.
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This example also shows that, despite not directly supporting time bounds on the temporal
operators, Rtlf allows to talk about absolute time, by introducing an extra variable t into
the model to represent time. In Section 6, we show how our algorithm can readily compute
the set of initial points supporting a trajectory that satisfies the above formula, as well as
several variations thereof.

Related Work. Several temporal logics have been proposed in the literature to express
properties of real-time systems. Some proposals enrich classical temporal logic with new
operators specific for real time, like decorating the until operator with time bounds. That is
the case of Mtl [16], Mitl [2], and Stl [18]. Other approaches, including ours, reinterpret
the original Ltl on real time. In particular, Reynolds investigates the validity problem for
Ltl interpreted over real time [22].

The dynamics we support generalise the single-mode (i.e., single-location) dynamics of
timed automata [1] and constant-rate multi-mode systems (MMS) [4], and correspond to
the single-mode dynamics of linear hybrid automata (LHA) [13]. In the case of MMS’s,
reachability is a decidable problem, yet full Ltl model checking is not. Notably, Blondin
et al. have recently delineated a range of decidable syntactic fragments in this context [8].
When it comes to LHAs, even the reachability problem is undecidable [14]. This has not
prevented the development of approximate or incomplete approaches, included in tools like
SpaceEx [12] and NYCS [6].

If we go even higher in expressivity ladder of models for single-mode systems, the
polyhedral inclusion characterising our model can be considered as a special case of an affine
system with controllable inputs (i.e., a dynamics of the type ẋ = Ax + b + Bu where A = 0
and the control input u plays the role of nondeterminism). In that model, a sound but
incomplete synthesis approach for Ltl specifications was proposed [15].

Structure of the Paper. The paper is organised as follows. Section 2 introduces polyhedral
systems and their trajectories, and discusses the notion of well-behavedness and its relationship
with other standard regularity conditions. Section 3 defines the classical (i.e., discrete) and
continuous semantics of Ltlf and Rtlf , respectively. Section 4 provides the technical
framework to discretise trajectories into traces and Rtlf formulae into Ltlf formulae.
Section 5 presents our algorithm for the existential denotation problem, and Section 6
describes the experiments performed on our prototype implementation.

2 Polyhedral Systems, Trajectories, and Signals

We study continuous-time and continuous-state dynamic systems, whose state x ∈ Rn

evolves non-deterministically under a differential inclusion of the type ẋ ∈ Flow, for a fixed
convex polyhedron Flow. In the following, we shall use the symbol R+ to denote the set of
non-negative reals and X to denote the complement of a set X ⊆ Rn.

Polyhedra. A convex polyhedron is the intersection of a finite number of strict or non-strict
half-spaces. A polyhedron is a finite union of convex polyhedra and a polytope is a bounded
convex polyhedron. We denote by Poly(Rn) (resp., CPoly(Rn)) the set of polyhedra (resp.,
convex polyhedra) on Rn. We shall use the letters P, Q to refer to convex polyhedra and
letters A, B, G for general polyhedra, instead. For a polyhedron G, we denote by Patch(G)
its representation as a finite set of convex polyhedra, called the patches of G. Also, cl(P ) is
topological closure of P , obtained by replacing all strict half-spaces with non-strict ones.

TIME 2024
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Atomic propositions. In the rest of the paper, we assume a finite set AP of atomic
proposition symbols. Each atomic proposition p ∈ AP is interpreted as a polyhedron
[p] ∈ Poly(Rn), called its interpretation. That is, [p] is the set of points where p holds. For
a set of atomic propositions α ⊆ AP, we denote with [[α]] the interpretation of the set α,
namely the set of points where all and only the propositions in α hold. That is,

[[α]] =
⋂
p∈α

[p] ∩
⋂

p∈AP\α

[p].

By definition, [[α]] is a polyhedron. Observe that [[{p}]] ⊆ [p] and the inclusion may be strict.
For instance, if [p] = {x ≥ 0} and [q] = {x ≥ 2}, then [[{p}]] = {0 ≤ x < 2}. Moreover, for
any two sets of atomic propositions α1, α2 ⊆ AP, either [[α1]] = [[α2]] or [[α1]] ∩ [[α2]] = ∅.
Hence, the image of 2AP under [[·]] is a partition of Rn into polyhedra.

Trajectories under polyhedral differential inclusions. We are interested in dynamic systems
that obey a given polyhedral differential inclusion. Therefore, we assume a fixed convex
polyhedron Flow ⊆ Rn called the flow constraint, and we omit it from the notation whenever
possible. We call the pair P = (Flow, [·]) a polyhedral system.

For a number T ∈ R+, we use ⟨0, T ] as a shorthand for one of the two right-closed
intervals, either (0, T ] or [0, T ], with left endpoint 0 and right endpoint T . Given a point
x ∈ Rn, a finite-time trajectory (trajectory from now on) starting from x is a function
f : ⟨0, T ]→ Rn, such that: (i) limt→0 f(t) = x, (ii) f is continuous, (iii) f is differentiable
everywhere in its domain except for a finite number of points, (iv) whenever the derivative
ḟ(t) is defined, it holds that ḟ(t) ∈ Flow. When ⟨0, T ] = [0, T ] (resp., ⟨0, T ] = (0, T ]) we say
that f is left-closed (resp., left-open). We use Traj(x) to denote the set of all trajectories
starting from x.

The interpretation [·] of the atomic propositions induces a mapping from trajectories to
functions of type ⟨0, T ]→ 2AP , called bounded signals [17] (signals from now on), over which
we shall base the semantics of the logics defined in Section 3. Namely, given a trajectory f ,
we denote with σf the signal assigning to each time instant t the set of atomic propositions
that are true at f(t). Formally,

σf (t) ≜ {p ∈ AP | f(t) ∈ [p]}.

For a signal σ and a time t ∈ ⟨0, T ], we denote by σ∼t, with ∼∈ {>,≥}, the left-open or
left-closed suffix of σ starting at t defined as follows: σ∼t(t′) = σ(t + t′), for all t′ such that
t′ ∼ 0 and t + t′ ∈ ⟨0, T ].

2.1 Well-Behavedness and Finite Variability
A well-behaved trajectory f : ⟨0, T ]→ Rn is a trajectory that crosses any hyperplane a finite
number of times, i.e., for all hyperplanes H there is a finite set of times 0 = t0 < t1 < . . . <

tk = T such that, during every open interval (ti, ti+1), the trajectory f lies in the same closed
half-space induced by H. We denote by Trajwb(x) the set of all well-behaved trajectories
starting from a point x ∈ Rn.

Considering the membership in a half-space as an observable, the condition above states
that the truth value of the observable along the trajectory f changes only a finite number
of times in every bounded time interval. This last property is equivalent to the notion of
discrete variation, as observed in [9].
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These notions can be compared to classical notion in analysis such as analyticity and
Lipschitz continuity. Recall that a trajectory f is analytic in a point t in its domain if it is
smooth at t and the Taylor’s series of f at t converges to f in some open neighbourhood
of t. Moreover, f is said to be analytic if it is analytic in every point of its domain and
piecewise analytic if it is analytic in every point of its domain except for a finite number.1
The following result follows from Theorem 16 of [9].

▶ Proposition 1. On the set of trajectories, piecewise analyticity implies well-behavedness.

A trajectory f , instead, is Lipschitz continuous on X ⊆ R+ if there exists K ≥ 0 such
that, for all t1, t2 ∈ X,

∥f(t1)− f(t2)∥ ≤ K · |t1 − t2|,

where ∥·∥ denotes the Euclidean norm. Moreover, f is locally Lipschitz continuous if for all
t ∈ R+ there exists a neighbourhood of t, where f is Lipschitz continuous.

▶ Proposition 2. On the set of trajectories, Lipschitz continuity and well-behavedness are
incomparable notions.

Next, we provide an alternative characterisation of well-behavedness. A polyhedral
partition of Rn is a finite set of mutually disjoint convex polyhedra whose union is Rn.

▶ Proposition 3. A trajectory is well-behaved iff, for all polyhedral partitions of Rn and all
time instants t ∈ R+, the trajectory changes polyhedron a finite number of times during [0, t].

We say that a signal σ : ⟨0, T ] → 2AP has finite variability if it changes its value only
a finite number of times. Formally, this means that there exists a strictly-increasing finite
sequence of time points 0 = t0 < . . . < tk = T and a finite sequence of observables
{αi}k−1

i=0 ⊆ 2AP such that, for all indexes 0 ≤ i < k and time instants t ∈ (ti, ti+1), it holds
true that σ(t) = αi. We call any such sequence of time points τ = {ti}k

i=0 ⊆ R+ a time-slicing
of σ and denote the set of these sequences TS(σ). Note that this set does not depend on
whether the signal is left-open or not, i.e., TS(σ) = TS(σ>0).

As we shall show in the Section 4, the notion of (finite) time-slicing is an essential
component of the solution technique proposed in this paper, which reduces the problem of
checking Rtlf formaulae to that of checking Ltlf formulae interpreted on finite discrete
abstractions of bounded signals. The existence of a time-slicing for a signal as defined above,
however, relies on the finite variability property of that signal, as infinite-variability bounded
signals do not admit finite time-slicing.

An immediate consequence of Proposition 3 is that for any polyhedral system P, all
well-behaved trajectories induce finite variability signals.

▶ Proposition 4. If a trajectory f is well-behaved, then the corresponding signal σf has finite
variability.

In the rest of the paper we shall leave the polyhedral system implicit, consider only
well-behaved trajectories and, therefore, only finite variability signals. The following table
summarises the main semantic notions and their intuitive meaning.

1 Note that this is a slight adaptation of the classical notion to the case of functions defined on a bounded
domain.
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Table 1 Main notions used in the paper: three types of trace-like objects (from the most concrete
to the most abstract), three types of runs of an automaton, and the time decomposition of a signal.

Type Name Role Symbol

⟨0, T ] → Rn Trajectory Behaviour of a polyhedral system f

⟨0, T ] → 2AP Signal Interpretation of Rtlf σ

{0, 1, . . . , k} → 2AP Trace Interpretation of Ltlf w

{0, 1, . . . , k} → S Discrete run Behaviour of a finite automaton rd

⟨0, T ] → S Continuous run Continuous behaviour of a finite automaton rc

⟨0, T ] → (Rn × S) Hybrid run Pairing of a trajectory and a continuous run ρ

{0, 1, . . . , k} → R+ Time-slicing Time decomposition of a signal to generate traces τ

3 Linear Temporal Logics

Linear Temporal Logic (Ltl) was introduced by Pnueli to specify and verify properties of
reactive systems [19]. Given a set of atomic propositions AP, an Ltl formula is composed
of atomic propositions, the Boolean connectives conjunction (∧) and negation (¬), and the
temporal operators next (X) and two flavors of until: strict (U̇) and non-strict (U).

Ltl formulae are built up in the usual way from the above operators and connectives,
according to the following grammar:

φ := p | ¬φ | φ ∧ φ | Xφ | φ U φ | φ U̇ φ,

where p is an atomic proposition in AP. We denote by |φ| the length of formula φ.
The semantics of Ltl is typically given w.r.t. infinite sequences (i.e., words) of sets of

atomic propositions in AP, a.k.a. discrete traces, to capture properties of discrete infinite
computations. Since we are interested in the verification of continuous systems, we shall
also consider a semantics based on signals, in a similar vein to some previous works [22].
In Section 5, we describe how the discrete and the continuous semantics are related, a
connection that we leverage to reduce verification of continuous properties to a combination
of verification of discrete properties and geometric reasoning. Both for the discrete and
the continuous version, we consider the bounded semantic fragments, where formulae are
interpreted over finite words and bounded signals, respectively.

Discrete Semantics. In this paper, we consider the semantic fragment Ltlf [10], where
formulae are interpreted over non-empty finite words w = w0w1 . . . wn of symbols in the
alphabet Σ = 2AP . For all i = 0, . . . , n, we denote by w≥i the suffix of w starting from wi.
The satisfaction relation w |= φ is defined as follows:

w |= φ, for φ ∈ AP, if and only if φ ∈ w0;
w |= ¬φ if and only if w |= φ does not hold;
w |= φ1 ∧ φ2 if and only if w |= φ1 and w |= φ2;
w |= Xφ if and only if |w| > 1 and w≥1 |= φ;
w |= φ1 U φ2 if and only if there exists i ≥ 0 such that w≥i |= φ2 and, for all j such that
0 ≤ j < i, it holds w≥j |= φ1;
w |= φ1 U̇ φ2 if and only if there exists i > 0 such that w≥i |= φ2 and, for all j such that
0 < j < i, it holds w≥j |= φ1.

▶ Theorem 5 ([10]). For all Ltlf formulae φ there exists a finite automaton Aφ that accepts
all and only the models of φ.
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Continuous Semantics. As it is customary, Rtlf , the continuous version of Ltlf , is
identified as the fragment without the next-time operator X. The semantics of Rtlf formulae
is given with respect to signals σ : ⟨0, T ]→ 2AP in the following way:

σ |= φ, for φ ∈ AP, if and only if:
φ ∈ σ(0), if σ is left-closed, and
there exists t′ ∈ ⟨0, T ] such that φ ∈ σ(t′′), for all t′′ ∈ (0, t′), otherwise;

σ |= φ1 U φ2 if and only if there exists t ∈ ⟨0, T ] such that σ≥t |= φ2 and σ≥t′ |= φ1, for
all t′ ∈ ⟨0, T ] with t′ < t;
σ |= φ1 U̇ φ2 if and only if there exists 0 < t ≤ T such that σ≥t |= φ2 and σ≥t′ |= φ1, for
all 0 < t′ < t.
While the base case for left-closed signals is standard, we stipulate that a left-open signal

satisfies an atomic proposition p ∈ AP if there exists an initial left-open interval contained
in the domain of the signal, where p is observed.

Note that on a left-open signal the semantics of the operators U and U̇ coincide. Moreover,
unlike in Ltlf where the operators U̇ and U are inter-derivable thanks to the presence of
the operator X, in Rtlf this is not the case and U̇ turns out to be strictly more expressive
than U (a proof of this result can be found in [21]). Indeed, in both Ltlf and Rtlf , we
have that φ1 U φ2 ≡ φ2 ∨ (φ1 ∧ φ1 U̇ φ2) and in Ltlf only it holds, in addition, that
φ1 U̇ φ2 ≡ X(φ1 U φ2). The semantics of Rtlf essentially corresponds to a bounded version
of the logic by the same name from [22], except that we consider both left-open and left-closed
signals and we omit the past operator Since.

The Problem. In this work we are interested in solving the problem of computing the
existential denotation of an Rtlf formula defined as follows.

▶ Definition 6. Given an Rtlf formula φ and a polyhedral system P on the same set of
atomic propositions, the existential denotation of φ on P is the set of points of Rn from
which there exists a well-behaved trajectory whose signal satisfies φ.

Note that a solution to the existential denotation problem also allows us to solve the
model-checking problem, where we ask whether a given point x ∈ Rn is the source of some
trajectory in P whose signal satisfies the formula.

4 Discretisation

To address the model-checking problem for Rtlf , we reduce it to a suitable decision problem
for the discrete version of the logic. Specifically, we show that, for all Rtlf formulae φ on
a set of atomic propositions AP, there exists an Ltlf formula dsc(φ) on the extended set
AP ∪{sing} such that a signal σ satisfies φ iff the discrete traces induced by σ satisfy dsc(φ).
This result is proved at the end of this section as Theorem 11. First, we need to define and
characterise the discrete versions of signals (Section 4.1) and formulae (Section 4.2).

4.1 Discretising Signals
Recall from Section 2.1 that a time-slicing τ = {ti}k

i=0 ∈ TS(σ) of a signal σ decomposes
σ into a finite sequence of slices corresponding to an alternation of singular and open time
intervals. Introduce the function sliceτ

σ : [0, tk]→ {0, . . . , 2k}, associating each time instant
t ∈ [0, tk] with the index of its slice sliceτ

σ(t). Formally:
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sliceτ
σ(t) =

{
2i, if t = ti;
2i + 1, if t ∈ (ti, ti+1).

Given a time-slicing τ of a signal σ, we now define the discrete trace trace(σ, τ) by
lumping together in a single object the time instants of each open interval (ti, ti+1) and
inserting between any two such intervals the observables of the singular time point separating
them. We maintain the distinction between open and singular intervals by means of an
accessory atomic proposition sing that holds true in all and only the time points (i.e., singular
intervals) ti of the time-slicing τ . Denote again by αi the set of observables holding true in
the open interval (ti, ti+1). The discretisation trace(σ, τ) is the finite word defined below for
both left-closed and left-open signals. We use trace(σ, τ)i ⊆ AP ∪ {sing} to denote the i-th
symbol of the discrete trace. Formally, for a left-closed signal σ : [0, T ]→ 2AP and an index
j ∈ {0, . . . , 2k}, we set:

trace(σ, τ)j ≜

{
σ(ti) ∪ {sing}, if j is even and i = j/2;
αi, if j is odd and i = (j − 1)/2.

For a left-open signal σ : (0, T ]→ 2AP and an index j ∈ {0, . . . , 2k − 1}, we set:

trace(σ, τ)j ≜

{
αi, if j is even and i = j/2;
σ(ti) ∪ {sing}, if j is odd i = (j + 1)/2.

Before continuing with the discretisation of the specification, we state a commutativity
property enjoyed by the composition of the discretisation function with the suffix operation
on signals, time-slicings, and traces. In particular, for some t ≤ T , we define ({ti}k

i=0)≥t ≜
{t′

i}k′

i=0, with k′ ≜ k− l, t′
0 ≜ 0, and t′

i ≜ ti+l−t, for all i ∈ {1, . . . , k′}, where l ∈ {0, 1, . . . , k}
is the maximum index such that tl ≤ t, which also corresponds to

⌊
sliceτ

σ(t)
2

⌋
. Note that, if

τ ∈ TS(σ), then τ≥t ∈ TS(σ≥t) = TS(σ>t).

▶ Lemma 7. Let σ : ⟨0, T ]→ 2AP be a signal, τ ∈ TS(σ) one of its time-slicings, t ∈ ⟨0, T ]
a time instant in the signal domain, and h = sliceτ

σ(t) the corresponding slice index. Then,
it holds true that:

trace(σ, τ)≥h = trace(σ≥t, τ≥t), if sing ∈ trace(σ, τ)h;
trace(σ, τ)≥h = trace(σ>t, τ≥t), otherwise.

In addition, it is immediate to see that a trace of a signal satisfies the following property
concerning the auxiliary sing atomic proposition. In words, (a) singular and open intervals
alternate throughout the trace, (b) the trace must end in a singular interval, and (c) the
trace starts in a singular interval iff the underlying signal is left-closed.

▶ Proposition 8. For a signal σ : ⟨0, T ]→ 2AP and a time-slicing τ ∈ TS(σ), it holds that
trace(σ, τ) |= G((sing ↔ X¬sing) ∨ last) ∧ F(last ∧ sing), where last ≜ ¬X⊤. Moreover, σ is
left-closed iff trace(σ, τ) |= sing.

4.2 Discretising Formulae
We can now introduce the required transformation from Rtlf to Ltlf . Intuitively, this
translation exploits the segmentation induced by a time-slicing of a signal to verify whether
the observable changes along the signal actually satisfy the property prescribed by the Rtlf

formula. Formally, we set the following:
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dsc(p) ≜ p

dsc(¬φ) ≜ ¬dsc(φ),
dsc(φ1 ∧ φ2) ≜ dsc(φ1) ∧ dsc(φ2),
dsc(φ1 U φ2) ≜ dsc(φ1) U (dsc(φ2) ∧ (dsc(φ1) ∨ sing)),
dsc(φ1 U̇ φ2) ≜ (sing ∧ X dsc(φ1 U φ2)) ∨ (¬sing ∧ dsc(φ1 U φ2)).

To prove the correctness of the above transformation, we first need to state two properties
enjoyed by the semantics of Rtlf . In the following, we say that a signal σ : ⟨0, T ]→ 2AP is
B-uniform, for an interval B ⊆ ⟨0, T ], if σ(t) = σ(t′), for all t, t′ ∈ B.

▶ Lemma 9. For all Rtlf formulae φ, signals σ : ⟨0, T ]→ 2AP , and open intervals B ⊆ (0, T ]
such that σ is B-uniform, the following holds true: σ∼1t1 |= φ iff σ∼2t2 |= φ, for all t1, t2 ∈ B
and ∼1,∼2 ∈ {≥, >}.

Proof. The proof proceeds by structural induction on the Rtlf formula φ.
[Base case φ = p ∈ AP]. W.l.o.g., let us assume σ∼1t1 |= φ. It is easy to see
that there necessarily exists t ∈ B such that p ∈ σ(t). Indeed, if ∼1 =≥, by the
semantics of atomic propositions on left-closed signals, we can choose t = t1, since
p ∈ σ≥t1(0) = σ(t1). If, ∼1 = >, instead, again by the semantics of atomic propositions,
this time for left-open signals, there exists a non-empty open interval (t1, t′) ⊆ (t1, T ]
such that p ∈ σ≥t1(t′′ − t1) = σ(t′′), for all t′′ ∈ (t1, t′). Since, by hypothesis, B is a
non-empty open interval with t1 ∈ B, the intersection B ∩ (t1, t′) is non-empty as well.
Therefore, we can arbitrarily choose t as an element of this intersection. At this point,
consider the left-closed subinterval C ≜ [t2, sup(B)) of B. Due to the B-uniformity of the
signal σ, it holds that p ∈ σ(t′) = σ(t), for all t′ ∈ C. Hence, by using C as witness, it is
immediate to show that σ∼2t2 |= φ, independently from the specific relation ∼2.
[Inductive case]. The Boolean operators ¬ and ∧ are trivial to deal with, so we focus
on the strict until operator only, i.e., we consider the case φ = φ1 U̇ φ2. W.l.o.g., let us
assume σ∼1t1 |= φ. Independently from the relation ∼1, by definition of the semantics of
the temporal operator U̇, there exists t ∈ (t1, T ] such that σ≥t |= φ2 and σ≥t′ |= φ1, for
all t′ ∈ (t1, t). Since, by hypothesis, B is an open interval and t1 ∈ B, the intersection
B ∩ (t1, t) is necessarily non-empty. Thus, there exists an instant t′ ∈ B such that
σ≥t′ |= φ1. So, by the inductive hypothesis applied to the formula φ1, it holds that
σ≥t′ |= φ1, for all t′ ∈ B. Now, two cases may arise depending on whether t belongs to B
as well.

[t < sup(B)]. Since σ≥t |= φ2, by the inductive hypothesis applied to the formula
φ2, it holds that σ≥t′ |= φ2, for all t′ ∈ B. Then, as an immediate consequence, any
t ∈ (t2, sup(B)) satisfies σ≥t |= φ2 and σ≥t′ |= φ1, for all t′ ∈ (t2, t). Hence, σ∼2t2 |= φ

holds, independently from the specific relation ∼2.
[t ≥ sup(B)]. Since t2 ∈ B, it holds that t2 < t. Hence, to prove that σ∼2t2 |= φ,
it only remains to show that σ≥t′ |= φ1, for all t′ ∈ (t2, t). Obviously, the open
interval (t2, t) can be decomposed into the disjoint union of the two adjacent intervals
(t2, sup(B)) and [sup(B), t). At this point, the required property clearly follows from
the fact that (t2, sup(B)) ⊂ B and [sup(B), t) ⊂ (t1, t), as φ1 holds true on all points
of these two intervals. ◀

▶ Lemma 10. For all Rtlf formulae φ, signals σ : ⟨0, T ]→ 2AP , and time instants t ∈ ⟨0, T ],
the following holds true: σ>t |= φ iff there exists a time instant t′ ∈ (t, T ] such that σ≥t′′ |= φ,
for all t′′ ∈ (t, t′).
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The following theorem, which leverages the above two lemmas, establishes the correctness
of the discretisation and allows us in the next section to reduce verification of Rtlf properties
against signals to verification of Ltlf properties against discrete traces.

▶ Theorem 11. For all Rtlf formulae φ, signals σ, and time-slicings τ ∈ TS(σ), it holds
that σ |= φ iff trace(σ, τ) |= dsc(φ).

Proof. The proof proceeds by structural induction on the formula, where we consider an
arbitrary time-slicing τ = {ti}0≤i≤k of σ.

[Base case φ = p ∈ AP]. For the base case, we distinguish the two cases of left-
closed and left-open signals. If σ is left-closed, then, by definition of trace(σ, τ), it
holds that trace(σ, τ)0 = σ(0) ∪ {sing}. Hence, being dsc(p) = p, we have σ |= p iff
trace(σ, τ) |= dsc(p). If, on the other hand, σ is left-open, then trace(σ, τ)0 = σ(t), for
every t ∈ (0, t1), since, by definition of time-slicing of σ, the observables are constant in
each open interval (ti, ti+1). Now, σ |= p iff p ∈ σ(t), for all t ∈ (0, t1). It immediately
follows, then, that σ |= p iff trace(σ, τ) |= dsc(p).
[Inductive case]. We shall focus on the inductive case where φ = φ1 U̇ φ2, since the
cases of the Boolean operators are trivial,while the case for U is essentially a simplified
version of U̇. In the following, let ζ ≜ dsc(φ1 U φ2).
For the first direction of the equivalence, let us consider the case of a left-closed sig-
nal σ : [0, T ] → 2AP and assume σ |= φ1 U̇ φ2. Then, by the semantics, there is
a t ∈ (0, T ] with σ≥t |= φ2 and, for all t′ ∈ (0, t), it holds σ≥t′ |= φ1. Being
σ left-closed, it holds that sing ∈ trace(σ, τ)0, hence, we only need to show that
trace(σ, τ)≥0 |= Xζ, i.e., trace(σ, τ)≥1 |= dsc(φ1) U (dsc(φ2) ∧ (dsc(φ1) ∨ sing)), by
definition of dsc(φ1 U φ2). We have two more cases, depending on whether t belongs
to the time-slicing τ or is contained in one of its open intervals. If sliceτ

σ(t) belongs
to {ti}0≤i≤k, let j be the position in the discrete trace corresponding to the instant t,
i.e., j ≜ sliceτ

σ(t) > 0. Then, sing ∈ trace(σ, τ)j and trace(σ≥t, τ≥t) = trace(σ, τ)≥j ,
by Lemma 7. By the inductive hypothesis, trace(σ≥t, τ≥t) |= dsc(φ2) and, hence, we
obtain trace(σ, τ)≥j |= dsc(φ2) ∧ sing. If, on the other hand, t ∈ (ti, ti+1), for some
index 0 ≤ i < k, then σ is clearly B-uniform, if we take B = (ti, t] ⊂ (ti, ti+1). Hence,
by Lemma 9, we have σ≥t |= φ2, for all t ∈ B and, by Lemma 10 and the fact that
inf(B) = ti, we conclude σ>ti

|= φ2. Taking j ≜ sliceτ
σ(t) = sliceτ

σ(ti) + 1, we have
that sing ̸∈ trace(σ, τ)j and trace(σ>ti , τ≥ti) = trace(σ, τ)≥j , by Lemma 7. By applying
the inductive hypothesis, we obtain trace(σ>ti

, τ≥ti
) |= dsc(φ2). In this case, we know

from the assumption that σ≥t′ |= φ1, for all ti < t′ < t. Then, by applying again
Lemma 9 and Lemma 10, we obtain that trace(σ>ti

, τ≥ti
) |= dsc(φ1). Thus, we can

conclude trace(σ, τ)≥j |= dsc(φ2) ∧ dsc(φ1). Regardless of the case, we have obtained
that trace(σ, τ)≥j |= dsc(φ2) ∧ (dsc(φ1) ∨ sing). Let us now consider any t′ ∈ J, where
J = (0, ti), if t = ti, and J = (0, ti], if t ∈ (ti, ti+1), for some index 0 ≤ i < k. We have two
cases, depending on whether t′ = tj or t′ ∈ (tj , tj+1), for some 0 < j < i. By applying to t′

the same reasoning we applied to t above, using the inductive hypothesis and Lemmas 7, 9,
and 10, we obtain that trace(σ, τ)≥j |= dsc(φ1), for j = sliceτ

σ(t′). Since, in addition,
{sliceτ

σ(t′) | t′ ∈ J} = {1, . . . , j − 1}, we can conclude that trace(σ, τ)≥j |= dsc(φ1),
for all 1 ≤ j < j. Together with trace(σ, τ)≥j |= dsc(φ2) ∧ (dsc(φ1) ∨ sing), this
gives us trace(σ, τ)≥1 |= dsc(φ1) U̇ (dsc(φ2) ∧ (dsc(φ1) ∨ sing)), which, in turn, implies
trace(σ, τ) |= sing ∧ X(dsc(φ1) U̇ dsc(φ2) ∧ (dsc(φ1) ∨ sing)), since sing ∈ trace(σ, τ)0
in this case. Hence, trace(σ, τ) |= sing ∧ Xζ and, finally, trace(σ, τ) |= dsc(φ1 U̇ φ2) as
required.
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For the other direction of the equivalence, assume trace(σ, τ ) |= dsc(φ1 U̇ φ2). Since we are
considering a left-closed signal σ, we have sing ∈ trace(σ, τ )0 and, therefore, trace(σ, τ ) |=
(sing ∧ Xζ). As a consequence, trace(σ, τ)≥1 |= dsc(φ1) U (dsc(φ2) ∧ (dsc(φ1) ∨ sing)).
By the semantics of U, there exists an index j ≥ 1 such that trace(σ, τ)≥j |= (dsc(φ2) ∧
(dsc(φ1) ∨ sing)) and trace(σ, τ)≥z |= dsc(φ1), for all 1 ≤ z < j. We have two cases, de-
pending on whether trace(σ, τ )j contains the proposition sing or not. If sing ∈ trace(σ, τ )j ,
then trace(σ, τ )≥j |= dsc(φ2)∧ sing and j = sliceτ

σ(ti), for some 0 < i ≤ k. By Lemma 7,
trace(σ, τ)≥j = trace(σ≥ti , τ≥ti). Therefore, trace(σ≥ti , τ≥ti) |= dsc(φ2). By the in-
ductive hypothesis, then, σ≥ti

|= φ2. For the other case, sing ̸∈ trace(σ, τ)j , hence,
trace(σ, τ)≥j |= dsc(φ2) ∧ dsc(φ2) and j = sliceτ

σ(t), for all t ∈ (ti, ti+1) and some
0 ≤ i < k. For all such t, then, we obtain trace(σ, τ)≥j = trace(σ>t, τ≥t), thanks to
Lemma 7 and, then, also trace(σ>t, τ≥t) |= dsc(φ2) ∧ dsc(φ2). By the inductive hypo-
thesis, it holds σ>t |= φ2 ∧ φ2, for each such t. Lemma 9, then, gives us σ≥t |= φ2 ∧ φ2,
for all t ∈ (ti, ti+1). Now, take any t′ ∈ J, where J = (0, ti), if sing ∈ trace(σ, τ)j , and
J = (0, ti], otherwise. Clearly, sliceτ

σ(t′) ∈ {1, . . . , j−1} and we have two cases, depending
on whether t′ is an element of τ or lies in one of its open intervals. In the first case,
let tz ≜ t′ and z ≜ sliceτ

σ(tz) < j. Since trace(σ, τ)≥z |= dsc(φ1) and, by Lemma 7,
trace(σ, τ )≥z = trace(σ≥tz

, τ≥tz
), we conclude trace(σ≥tz

, τ≥tz
) |= dsc(φ1) and, by the in-

ductive hypothesis, also σ≥tz
|= φ1. If, on the other hand, t′ ∈ (tl, tl+1), for some l, let us

set z ≜ sliceτ
σ(t′) < j. Lemma 7 in this case gives us trace(σ, τ )≥z = trace(σ>t′ , τ≥t′). We

know that trace(σ, τ)≥z |= dsc(φ1), hence, trace(σ>t′ , τ≥t′) |= dsc(φ1). By the inductive
hypothesis, σ>t′ |= φ1 and, by Lemma 9, also σ≥t′ |= φ1. Putting everything together,
we have shown that there is a time t ∈ (0, T ] such that σ≥t |= φ2 and σ≥t′ |= φ1, for all
t′ ∈ (0, t], which coincides with the semantic condition for σ |= φ1 U̇ φ2.
The proof of the inductive case when the signal σ is left-open is essentially the same, except
that the first letter trace(σ, τ)0 of trace(σ, τ) does not contain sing, as it corresponds
to the first open interval (t0, t1) of the time-slicing, and that dsc(φ1 U̇ φ2) reduces to
¬sing ∧ ζ in this case. ◀

In conclusion, as an immediate corollary of the above result, we have the following
theorem, where with every Rtlf formula φ we associate the Ltlf formula

φ̂ ≜ dsc(φ) ∧ sing ∧ G((sing ↔ X¬sing) ∨ last) ∧ F(last ∧ sing) . (1)

▶ Theorem 12. For all Rtlf formulae φ, left-closed signals σ, and time-slicings τ ∈ TS(σ),
it holds that σ |= φ iff trace(σ, τ) |= φ̂.

5 Model Checking RTLf on Polyhedral Systems

In this section, we describe the algorithm that solves the existential denotation problem for
Rtlf on polyhedral systems. Unless differently specified, we consider a fixed Rtlf formula
φ over the set of atomic propositions AP, and a fixed polyhedral system P on AP. Before
describing the algorithm itself, we introduce two auxiliary operators on polyhedra.

5.1 The Basic Operators
The algorithm presented in Section 5.3 (Algorithm 1) requires a function reach♭(A, B) that
takes as arguments a possibly non-convex polyhedron A and a convex polyhedron B, and
identifies the set of points of A that can reach B while staying in A ∪B. The ♭ superscript
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can be either 0 or +, corresponding to different timing constraints: a point from A belongs to
reach0(A, B) if it can immediately enter into B, whereas it belongs to reach+(A, B) if it can
enter into B after a positive delay. Formally, for all polyhedra A and convex polyhedra B:

reach0(A, B) ≜
{

x ∈ A | ∃f ∈ Trajwb(x), t > 0 . ∀t′ ∈ (0, t] : f(t′) ∈ B
}

;
reach+(A, B) ≜

{
x ∈ A | ∃f ∈ Trajwb(x), t > 0 : f(t) ∈ B and ∀t′ ∈ (0, t) : f(t′) ∈ A

}
.

Moreover, we need to split the result of reach♭(A, B), which is a general polyhedron, into
convex polyhedra, each contained in one of the patches of A. To this aim, we introduce the
following split function. For all polyhedra A and A′ ⊆ A, the function split(A′, A) returns
a set of pairs {(Pi, Xi)}i=1,...,n such that: (i) Pi and Xi are convex polyhedra such that
Xi ⊆ Pi, (ii) each Pi is one of the patches of A, and (iii) A′ is the union of the Xi’s. It is
straightforward to implement the function split using Boolean operations on polyhedra.

Computing the reach operators. We now show how to compute the value of reach♭ with a
finite number of geometric operations. First, define the positive pre-flow P↙>0 of a convex
polyhedron P as the set of points that can reach P after a positive delay. Formally:

P↙>0 ≜
{

x ∈ Rn | ∃d ∈ Flow, t > 0 : x + d · t ∈ P
}

.

Lemma 13 below deals with reach0, whereas Lemma 14 provides an algorithm for reach+.
Their proofs can be found in Appendix A.

▶ Lemma 13. For all polyhedra A and convex polyhedra B the following holds:

reach0(A, B) = A ∩ cl(B) ∩B↙>0 .

When it comes to computing reach+, we shall make use of the May Reach While Avoiding
operator RWAm(Y, Z), that collects the points from which some admissible trajectory can
reach a point in the set Y while avoiding all the points in the set Z. The operator is formally
defined as follows:

RWAm(Y, Z) ≜ {x ∈ Rn | ∃f ∈ Trajwb(x), t ≥ 0 : f(t) ∈ Y and ∀t′ ∈ [0, t) : f(t′) ∈ Y ∪Z}.

An algorithm for computing RWAm using symbolic operations on polyhedra is presented
in [7]. The following lemma formalises the connection between RWAm and reach+.

▶ Lemma 14. For all polyhedra A and convex polyhedra B the following holds:

reach+(A, B) =
⋃

P ∈Patch(A)

RWAm(TP , A), where TP ≜ P ∩ (cl(P ) ∩B)↙>0 .

As far as the computational complexity is concerned, first notice that the implementation
of the algorithm is based on symbolic operations on polyhedra, whose complexity is already
exponential in the worst case. A loose measure of complexity can be obtained by counting
the number of symbolic operations involved.

The operator reach0 involves a constant number of geometric operations, specifically
intersections of polyhedra, closure operations and positive time-elapse [5]. The computation
of reach+(A, B), instead, requires at most |Patch(A)| calls to RWAm. An analysis of the
algorithm for RWAm (see Theorem 3 in [7]) shows that computing RWAm(Y, Z) requires at
most k ·mO(m) symbolic operations, where k and m are, respectively, the number of convex
patches of Y and Z. The analysis also shows that the number of patches of the output
cannot excede mO(m). Summarising, reach+(A, B) requires at most mO(m) operations, with
m the number of convex patches of A, since B is a single patch, and its output contains at
most mO(m) patches.
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5.2 The Finite Automaton
Our algorithm works on a finite automaton that checks the satisfaction of φ, while ensuring
a number of extra properties. The automaton is obtained by applying the classic Ltlf -to-
automata construction to the formula φ̂ defined in (1).

Let Aφ̂ = (S, δ, λ, S0, SF ) be the finite automaton corresponding to φ̂, according to
Theorem 5. Recall that λ labels each state in S with a subset of ÂP = AP ∪ {sing}.
For convenience, we write [[s]] for [[λ(s)]] to denote the polyhedron interpreting the set of
propositions labelling s.

We assume w.l.o.g. that Aφ̂ satisfies the following properties. Properties (a) and (c)
are directly encoded in φ̂, while property (b) is enforced via a simple modification of the
automaton.

▶ Proposition 15. The finite automaton Aφ̂ satisfies the following properties:
(a) The initial states are labelled with sing.
(b) The initial states have no predecessors.
(c) The underlying graph is bipartite in (Ssing, Sopen), where Ssing is the set of all states

labelled with sing, while Sopen is its complement.

We denote by Rund(f) the set of all initial runs of Aφ̂ on the discrete traces of f . For a
trajectory f and a time slicing τ = {ti}k

i=0 ∈ TS(σf ), let w be the corresponding discrete
trace and rd one of the runs of Aφ̂ on w. We define the continuous run rc for rd and τ as
follows:

rc(t) =
{

rd(2 · i) if t = ti, for some i,

rd(2 · i + 1) if t ∈ (ti, ti+1), for some i.

We denote with Runc(f) the set of continuous runs induced by f as just described.
Moreover, we define the notion of hybrid run as the function ρ = λt . (f(t), rc(t)) pairing

a trajectory with one of its continuous runs. Let HRun(x) be the set of hybrid runs (f, rc),
where f ∈ Trajwb(x) and rc ∈ Runc(f).

5.3 The Algorithm
We now describe the main step in the procedure to solve the existential denotation problem,
expressed in pseudo-code as the function ∃Denot(·) in Algorithm 1. Theorem 18 at the end
of this section describes the top-level invocations that start the process, which begins from a
final state of the automaton and then works recursively backward towards the initial states.

Roughly speaking, a call to ∃Denot(s, P, X, V ) computes the points from where there
exists a hybrid run of the automaton ending in the state s and in a point in the convex
polyhedron X. Moreover, X is assumed to be contained in P , and P must be a patch of
[[s]]. The role of the parameter V is explained below. In the following, for a state s ∈ S, let
type(s) = 0, if sing ∈ λ(s), and type(s) = +, otherwise.

To ensure termination, the algorithm keeps track of the patches associated with open
states in Sopen that have been visited in the current sequence of recursive calls. Those are
the patches in which the induced trajectory must spend some positive amount of time. This
information is kept in the map V , that associates with each state s the set of patches of [[s]]
already encountered by the algorithm.

When s is an initial state, the result is clearly X itself (Line 1). Otherwise, an updated
map V ′ is computed, where the patch P is added to V (s) if s is an open state (Line 3).
The for loop at Lines 4–9 iterates over the incoming edges of s. For each such edge (s′, s),
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Line 5 sets A to the region of [[s′]] that has not been already visited. Line 6 computes the
set of points of A that can reach some point in X, either leaving A immediately, if s′ is
a singular state (type(s) = 0), or lingering in A for some time, if it is open (type(s) = +).
Line 7 splits the resulting set A′ into a set of distinct pairs (Qi, Yi), where Yi is the maximal
convex polyhedron contained in A′ and in the patch Qi of A. Each such pair (Qi, Yi), then,
gives rise to a recursive call on the state s′ with targets Yi and Qi at Line 9. The results of
all such calls are gathered in Result, which is returned at Line 10.

Algorithm 1 Function ∃Denot(s, P, X, V ). For simplicity, we omit from the notation two
implicit arguments: the finite automaton Aφ̂ = (S, δ, λ, S0, SF ) and the polyhedral system P.

input : s ∈ S;
P : convex polyhedron in Patch([[s]]);
X: convex polyhedron included in P ;
V : map from states u ∈ S to a subset of the patches of [[u]];

output : A polyhedron in Rn

1 if s ∈ S0 then return X

2 Result ← ∅
3 V ′ ← if s ∈ Ssing then V else V [s 7→ V (s) ∪ {P}]
4 foreach state s′ ∈ S such that (s′, s) ∈ δ do
5 A← [[s′]] \V (s′)
6 A′ ← reachtype(s′)(A, X)
7 {(Q1, Y1), . . . , (Qn, Yn)} ← split(A′, A)
8 for i = 1, . . . , n do
9 Result← Result ∪ ∃Denot(s′, Qi, Yi, V ′)

10 return Result

The following lemmas state the characteristic properties of the function ∃Denot, namely
termination (Lemma 16), and soundness and completeness (Lemma 17).

▶ Lemma 16. For all convex polyhedra P and X, such that P ∈ Patch([[s]]) and X ⊆ P ,
and maps V : S →s 2Patch([[s]]), the call to ∃Denot(s, P, X, V ) terminates after at most
|S|O(m·|S|) ·mO(m2·|S|) symbolic operations on polyhedra, with m the maximum number of
patches in the denotation of any state.

Proof. First, we prove that the recursion depth is bounded by 1 + 2 ·
∑

s∈S |Patch([[s]])|. Let
χ = (s0, P0), (s1, P1), . . . be the sequence of first and second arguments in a stack of recursive
calls to ∃Denot, with (s0, P0) being the bottom of the stack. Recall that by design si ∈ S

and Pi is one of the patches of [[si]]. Considere a pair (si, Pi) with si ∈ Sopen . The recursive
call issued from a state si at recursion level i adds the patch Pi to V (si) (Line 3). From that
point on, i.e., at recursion levels j > i, if state s′ considered at Line 4 is si, the assignment
at Line 5 ensures that the patch Pi is not passed to the next recursive call. Hence, either
sj ≠ si or Pj ̸= Pi. Equivalently, the pair (si, Pi), cannot occur again in the sequence χ. By
the generality of (si, Pi), we obtain that the sequence χ contains no duplicate pairs whose
state is in Sopen. Since states in χ strictly alternate between Sopen and Ssing, this proves
the bound on the recursion depth. Termination follows from the fact that the number of
recursive calls at each level is plainly finite. As to the bound on the symbolic operations,
observe that, since the output of reach+ contains at most mO(m) patches and the loop at
Line 4 iterates on the states of the automaton, the branching degree of the recursion tree of
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the algorithm is bounded by |S| ·mO(m). Its depth, instead, is bounded by 1 + 2 ·m · |S| as
shown above. Hence, the overall number of symbolic operations required by algorithm is
bounded by |S|O(m·|S|) ·mO(m2·|S|). ◀

A hybrid run ρ, with time-slicing {ti}k
i=0, ends in the pair (X, s), for a set of points

X ⊆ Rn and a state s ∈ S, if either s ∈ Ssing and ρ is in (X, s) at the last instant of time in
its domain, or s ∈ Sopen and ρ resides in (X, s) for some final open time interval bounded by
tk. Formally:

if s ∈ Ssing, then ρ(tk) ∈ X × {s};
otherwise, there exists t∗ ∈ (tk−1, tk) such that ρ(t) ∈ X × {s}, for all t ∈ [t∗, tk).

Moreover, we denote by Visited(ρ) the set of pairs (P, s), composed of a patch P ∈ Patch([[s]])
and a state s, traversed by ρ at any time. We say that a hybrid run ρ avoids a pair (P, s)
if (P, s) ̸∈ Visited(ρ). This notion of avoidance generalises to pairs (A, s), with A a set of
patches, and to sets of such pairs, in the obvious way.

The following lemma shows that for every hybrid run ρ there exists a similar hybrid run
ρ′′ that crosses a given pair (P, s), with s ∈ Sopen , at most once.

▶ Lemma 17. For all states s ∈ S, convex polyhedra P ∈ Patch([[s]]) and X ⊆ P , and maps
V : S →s 2Patch([[s]]) such that P ̸∈ V (s), we have that ∃Denot(s, P, X, V ) returns the set of
all points x from which there is a hybrid run ρ ∈ HRun(x) such that: (a) ρ ends in (X, s);
(b) ρ avoids V ; (c) if s ∈ Sopen, then ρ avoids (P, s), except for the last slice.

The following theorem describes the initial arguments required by Algorithm 1 to solve
the existential denotation problem.

▶ Theorem 18. For all Rtlf formulas φ and polyhedral systems P on the same set of
atomic propositions, let φ̂ be the corresponding Ltlf formula, Aφ̂ be the finite automaton
for φ̂, and

X =
⋃

s∈SF

⋃
P ∈Patch([[s]])

∃Denot(s, P, P, ∅).

Then, X is the set of points from which there exists a trajectory that satisfies φ.

Proof. Assume there exists a trajectory f from point x that satisfies φ, i.e., x = f(0) and
σf |= φ. Let us pick an arbitrary τ = {ti}0≤i≤k in TS(σf ) and let y ≜ f(tk). Then,
by Theorem 12, trace(σf , τ) |= φ̂. By definition of Aφ̂, there exists an accepting run
r ∈ Runs(Aφ̂) for trace(σf , τ) that ends in some final state s ∈ SF . Let α be the last symbol
of trace(σf , τ), then y belongs to some patch P of [[sF ]] = [[α]]. Let now ρ = (f, rc) be the
hybrid run from x whose second component rc is the continuous run of r and τ . Clearly, ρ

ends in (P, sF ), hence it satisfies condition (a) of the statement of Lemma 17 (conditions (b)
and (c) hold trivially for ρ). Therefore, Lemma 17 ensures that x ∈ ∃Denot(s, P, P, ∅) and
the thesis follows.

For the other direction, let x be a point in ∃Denot(s, P, P, ∅), for some s ∈ SF and
P ∈ Patch([[s]]). By Lemma 17, there exists a hybrid run ρ = (f, rc) from x that ends in
(P, s), where P is a patch of [[s]] and rc is a continuous run of some discrete run r ∈ Runs(Aφ̂)
and some time-splitting τ for f . The run r is accepting since it ends in the same final state
s ∈ SF as rc and it accepts the word trace(σf , τ). This means that trace(σf , τ) |= φ̂ and
Theorem 12, then, ensures that σf |= φ. ◀
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6 Experiments

In this section, we report on the experiments performed with our implementation, which is
based on Parma Polyhedral Library [5] as the underlying engine for the symbolic manipulation
of polyhedra. Our prototype implementation starts from an Rtlf formula φ and computes
its discretisation φ̂ according to Equation (1). This formula is translated into standard Ltl
(see [10]) in order to obtain a non-deterministic Büchi automaton recognising its models using
Spot [11]. The NBA is then turned into an NFA A recognising the finite traces satisfying φ̂.
The obtained automaton, together with the polyhedral system providing the flow constraints
and the polyhedral denotations of the atomic propositions of φ, are finally fed to ∃Denot
(Algorithm 1).

We ran some experiments based on the two-tank model described in the introduction.
The experiments consist of two families of Rtlf properties, called φgap

k and φnogap
k , of the

following form:

φ⋆
k ≜ G inv ∧ t0 ∧ G tmax ∧ F

(
p ∧ F

(
q ∧ · · · ∧ F

(
p ∧ Fq

)))︸ ︷︷ ︸
k times

where k ≥ 1, ⋆ ∈ {gap, nogap}, and the interpretations of the atomic propositions is reported
in the following table:

[p] [q] [inv] [t0] [tmax]
φgap

k a ≥ b + 1 b ≥ a + 1 a ≥ 0 ∧ b ≥ 0 t = 0 t ≤ 10
φnogap

k a > b b > a a ≥ 0 ∧ b ≥ 0 t = 0 t ≤ 10

Both families require a trajectory that satisfies the invariant inv, starts at time t = 0
(represented by the proposition t0) and ends at time 10 (enforced by the formula G tmax), and
alternates k times between the propositions p and q. The only difference between the two
families is in the polyhedral interpretations [p] and [q] of the atomic propositions p and q.

From a semantic standpoint, the first family φgap
k requires a trajectory to alternate k

times between two disjunct and non-adjacent half-spaces. Since the flow constraint is a
bounded (convex) polyhedron, the intensities of the derivatives are bounded, hence there is a
minimum amount of time that any trajectory, reaching a point of the half-space a ≥ b + 1,
requires to reach the half-space b ≥ a + 1. As a consequence, the number of alternations
possible from different points may differ. The further away from the border of the half-spaces
a point is, the fewer alternations are possible.

In the second family φnogap
k , instead, the two half-spaces between which to alternate are

adjacent. Therefore, no minimum time is needed to move from one to the other. This means
that, if a trajectory can reach a > b and, from there, also reach b > a, then it may keep
alternating between the two an arbitrary number of times.

Figure 2 shows the denotations of the two families of formulas, both limited to the cross
section for t = 0. In particular, Figure 2a shows the different regions of points satisfying the
Rtlf property indexed with the corresponding value of k. As explained above, the bigger
the value of k, the smaller the region of points. For example, only the points in the dark blue
region in the middle satisfy φgap

10 , whereas the points satisfying φgap
9 additionally include

the two light blue strips. Observe also that the region of points in the half-space a ≥ b + 1
satisfying the property φgap

k is bigger than the region of points in the half-space b ≥ a + 1
that satisfies the same property. This is due to the fact that a trajectory from the points in
latter region must spend additional time to first reach the half-space a ≥ b + 1, leaving less
time, with respect to the points in the former region, to perform the alternations. Figure 2b,
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Figure 2 The results of the experiments for the two families of Rtlf properties.

instead, is perfectly symmetric and shows that all the points from where one can reach
the diagonal a = b in the allotted time can alternate between the two half-spaces k times,
regardless of the value of k.
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A Additional Proofs

▶ Proposition 2. On the set of trajectories, Lipschitz continuity and well-behavedness are
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is Lipschitz continuous because it is differentiable in (0, +∞) and its derivative is bounded.
However, it is not well-behaved because it crosses the hyperplane y = 0 infinitely often in
any time interval (0, a), with a > 0. ◀
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Proof. Take any polyhedral partitioning {Pi}i∈I of Rn that respects the propositions in
AP, meaning that, for all i ∈ I and p ∈ AP, either Pi ∩ [p] = ∅ or Pi ⊆ [p]. Since f

is well-behaved, it must change convex polyhedron in {Pi}i∈I a finite number of times in
⟨0, T ]. Let Pi1 , . . . , Piz be the sequence of convex polyhedra traversed by f in that interval
and τ = {ti}k

i=0 ⊆ R+ the sequence of instants in which f changes polyhedron in the
sequence, with the possible addition of instants 0 and T , if needed. Since the polyhedral
partitioning respects AP, every Pij

is contained in [[α]], for some α ⊆ AP. Hence, τ is a
suitable time-slicing of f . The thesis follows then from the finite length of τ . ◀

▶ Lemma 10. For all Rtlf formulae φ, signals σ : ⟨0, T ]→ 2AP , and time instants t ∈ ⟨0, T ],
the following holds true: σ>t |= φ iff there exists a time instant t′ ∈ (t, T ] such that σ≥t′′ |= φ,
for all t′′ ∈ (t, t′).

Proof. The proof proceeds by induction on the Boolean structure of the Rtlf formula φ,
where we consider as base cases the atomic propositions and the U̇ temporal formulae. Since
the inductive cases of Boolean operators ¬ and ∧ are trivial to deal with, here we focus on
the base cases for atomic propositions and U̇ only. Recall that U is a derived operator.

[Base case φ = p ∈ AP]. Since σ>t is a left-open signal, by the semantic of atomic
propositions, σ>t |= p holds iff there exists a non-empty open interval (t, t′) ⊆ (t, T ] such
that p ∈ σ>t(t′′ − t) = σ(t′′), for all t′′ ∈ (t, t′), which also means σ≥t′′ |= p, again by the
semantic of atomic propositions, this time on left-closed signals. Hence, the truth of the
statement is immediately verified.
[Base case φ = φ1 U̇ φ2, only-if direction]. By the semantics of the temporal
operator U̇, if σ>t |= φ1 U̇ φ2, then there exists t2 ∈ (t, T ] such that σ≥t2 |= φ2 and
σ≥t1 |= φ1, for all t1 ∈ (t, t2). As an immediate consequence, by using precisely t′ ≜ t2 as
witness of the second property, we have σ≥t′′ |= φ1 U̇ φ2, for all t′′ ∈ (t, t′).
[Base case φ = φ1 U̇ φ2, if direction]. Let τ = {ti}k

i=0 ∈ TS(σ>t) be a time-slicing
of the suffix σ>t of the signal σ and j ∈ {1, . . . , k} the smallest index such that either
(a) σ≥t+tj

|= φ2 or (b) σ≥t+t′′ |= φ2, for all t′′ ∈ (tj−1, tj). The existence of such an index
is ensured by the fact that at every time instant t′′ of the non-empty open interval (t, t′)
the until formula φ1 U̇ φ2 is satisfied. Now, suppose by contradiction that σ>t ̸|= φ1 U̇ φ2.
Since φ2 is satisfied either at time instant t + tj or at all time instants t + t′′, with
t′′ ∈ (tj−1, tj), the only possibility for the until formula to be falsified is the existence
of at least one time instant t1, either in (t, t + tj) or in (t, tj−1], such that σ≥t1 ̸|= φ1.
However, this would clearly lead to σ≥t′′ ̸|= φ1 U̇ φ2, for all t′′ ∈ (t, t1), which contradicts
the hypothesis. ◀

The following lemma is a straightforward adaptation of Lemma 1 from [3], used in the
proofs of Lemma 13 and Lemma 14.

▶ Lemma 19 ([3]). For any convex flow constraint Flow, convex polyhedron X and points
x1, x2 ∈ X, the following two conditions are equivalent for all t∗ ≥ 0:
1. there exists a trajectory f such that f(0) = x1 and f(t∗) = x2;
2. there is a straight-line trajectory f ′(t) ≜ x1 + d · t, with d ∈ Flow, such that f ′(0) = x1,

f ′(t∗) = x2 and f ′(t) ∈ X, for all t ∈ [0, t∗].

▶ Lemma 13. For all polyhedra A and convex polyhedra B the following holds:

reach0(A, B) = A ∩ cl(B) ∩B↙>0 .
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Proof. Let ∆ ≜ A∩ cl(B)∩B↙>0. To show that ∆ ⊆ X0, we just need to observe first that
if x ∈ ∆, then x ∈ A. Moreover, x ∈ B↙>0, which means that there is a direction d ∈ Flow
such that x + d · t ∈ B, for some t > 0. In addition, since x ∈ cl(B) and B is convex, we have
that x + d · t′ ∈ B, for all t′ ∈ (0, t]. But f(t) = x + d · t is clearly an admissible trajectory
that satisfies the required conditions for x to be in X0. Hence, the conclusion.

For the other direction, let x ∈ X0, f be any admissible witness trajectory and t > 0
be such that f(t′) ∈ B for all t′ ∈ (0, t]. Let, in addition, y ≜ f(t). By convexity of B, the
segment connecting x and y lies entirely in cl(B). Since y can be reached from x following
an admissible trajectory, by convexity of Flow and Lemma 19, there is a direction d ∈ Flow
such that y = x + d · t. Clearly, the set

{z ∈ Rn | z = x + d · t′, for some t′ ∈ [0, t]}

contains all and only the points of the segment from x to y and is, therefore, contained in
cl(B). Hence, we conclude that x ∈ A ∩ cl(B) ∩B↙>0, as required. ◀

▶ Lemma 14. For all polyhedra A and convex polyhedra B the following holds:

reach+(A, B) =
⋃

P ∈Patch(A)

RWAm(TP , A), where TP ≜ P ∩ (cl(P ) ∩B)↙>0 .

Proof. First, observe that, by definition, TP ⊆ P ⊆ A. As a consequence, we obtain that:

RWAm(TP , A) = {x ∈ Rn | ∃f ∈ Trajwb(x), t ≥ 0 : f(t) ∈ TP and ∀t′ ∈ [0, t) : f(t′) ∈ A}.

Consider any point x ∈ RWAm(TP , A), a trajectory f witnessing its membership to the set
RWAm(TP , A), a time instant t ∈ R+ such that f(t) ∈ TP and f(t′) ∈ A, for all t′ ∈ [0, t),
and let y ≜ f(t) ∈ TP . Clearly, y ∈ P and also y ∈ (cl(P ) ∩B)↙>0. This means that
there is an admissible straight trajectory f ′ that, in a strictly positive amount of time,
leads from y to a point belonging both to the closure of P and to B. Let t∗ > 0 be a time
instant such that f ′(t∗) ∈ cl(P ) ∩ B. Since f ′ is a straight trajectory and P is a convex
polyhedron, f ′(t′) is contained in P , hence also in A, for all t′ ∈ [0, t∗). By concatenating
f with f ′ we obtain an admissible trajectory f ′′ defined as follows: f ′′(t′) = f(t′), for all
t′ ∈ [0, t], and f ′′(t′) = f ′(t′ − t), for all t′ ∈ (t, t + t∗]. Clearly, f ′′ leads from x ∈ A to
a point z ∈ B, while never leaving A except, possibly, in the last instant. In addition,
x = f(0) = f ′′(0) and f(0) is required to belong to A. By combining these observations, we
obtain that for all x ∈ RWAm(TP , A) it holds that there exists f ∈ Trajwb(x) and t ∈ R>0
with f(t) ∈ B and for all t′ ∈ (0, t), f(t′) ∈ A. Hence, for all P ∈ Patch(A), we have that
RWAm(TP , A) ⊆ reach+(A, B).

For the other direction, assume x ∈ reach+(A, B). Then there exist f ∈ Trajwb(x) and
t ∈ R>0, with f(t) ∈ B and f(t′) ∈ A, for all t′ ∈ (0, t). Since A is a polyhedron and f is
well-behaved, the trajectory can only change convex polyhedron in Patch(A) a finite number
of times. This means that there is a last patch of A traversed by f before entering B in
which f lingers for a positive amount of time. Let P be such a patch. Since as soon as
f exits from P it enters B, it must do so by passing at time t through a point in B that
lies on the border between P and B, that is f(t) ∈ cl(P ) ∩ B. Let t∗ ∈ [0, t) be a time
interval such that f(t′) ∈ P , for all t′ ∈ (t∗, t). By convexity of P and Flow and thanks to
Lemma 19, we obtain that f(t′) ∈ P ∩ (cl(P ) ∩B)↙>0= TP , for all t′ ∈ (t∗, t). But then f

is a witness of the membership of x to the set RWAm(TP , A). As a consequence, we obtain
that reach+(A, B) ⊆

⋃
P ∈Patch(A) RWAm(TP , A). ◀

The next lemma is instrumental in proving the completeness of Algorithm 1 in Lemma 17.
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▶ Lemma 20. For all hybrid runs ρ, states s ∈ Sopen, and patches P ∈ Patch([[s]]), there
exists a hybrid run ρ′ such that:

ρ′ starts and ends in the same pairs as ρ;
ρ′ passes at most once through the pair (P, s);
Visited(ρ′) ⊆ Visited(ρ);
the length of the shortest discrete trace of ρ′ is smaller than or equal to that of ρ.

Proof. Assume that ρ passes at least twice through the pair (P, s). Let t1, t2 be two times
in the domain of ρ belonging to the first and to the last visit to (P, s). In particular,
ρ(ti) ∈ (P, s), for i = 1, 2. Let ρ(ti) = (xi, s), we define a new hybrid run ρ′ by connecting
with a straight trajectory point x1 to x2. By convexity of the flow, such trajectory is feasible.
By convexity of P , such trajectory is entirely contained in P . The rest of ρ′ follows exactly
ρ. It is easy to see that ρ′ satisfies all properties required by the thesis. ◀

▶ Lemma 17. For all states s ∈ S, convex polyhedra P ∈ Patch([[s]]) and X ⊆ P , and maps
V : S →s 2Patch([[s]]) such that P ̸∈ V (s), we have that ∃Denot(s, P, X, V ) returns the set of
all points x from which there is a hybrid run ρ ∈ HRun(x) such that: (a) ρ ends in (X, s);
(b) ρ avoids V ; (c) if s ∈ Sopen, then ρ avoids (P, s), except for the last slice.

Proof.

Soundness. First, we prove that the base case of the algorithm is sound, that is, that the
points returned at Line 1 satisfy the lemma items. Any initial state of Aφ̂ is in itself a run of
Aφ̂ of length 1 from an initial state. If s is an initial state, by Proposition 15(a) it includes
the sing proposition. Then, for all x ∈ X let f be the trajectory of duration 0 defined by
f(0) = x. Its discrete trace wf contains a single symbol and induces the run rd = s in Aφ̂.
The hybrid run (f, rc) ends in (X, s), giving Item (a); and avoids V , because its only point
is (x, s) and, by assumption, x ∈ P ̸∈ V (s). Thus, we have Item (b). Item (c) trivially holds
since s ̸∈ Sopen .

Next, we consider the points added to the result at Line 9. We proceed by induction on
the length k of the longest sequence of pairs (si, Pi)i=0,...,k−1 such that: (i) the sequence
(si)i=0,...,k−1 is a (not necessarily initial) run of Aφ̂ ending in sk−1 = s, (ii) Pk−1 = P , (iii)
each Pi is a patch of [[si]], (iv) if si ∈ Sopen then Pi ̸∈ V (si), (v) all the pairs (si, Pi) such
that si ∈ Sopen are distinct. Note that Items (i) and (v) imply that the length of these
sequences is bounded by twice the number of distinct non-singular pairs. We call the length
so defined k(s, P, V ).

In the base case, k(s, P, V ) = 1. Then, the algorithm does not perform any recursive call,
because for each predecessor s′ of s, the set A′ ≜ reachtype(s′)(A, X) computed at Line 6 is
empty, with A ≜ [[s′]] \V (s′). Indeed, assume by contradiction, that there is a predecessor s′

of s whose set A′ is not empty. Therefore, the must be a pair (Q, Y ) ∈ split(A′, A), where Q

is a patch of A and the sequence (s′, Q)(s, P ) has all the properties (i)–(v) needed to prove
that k(s, P, V ) > 1, contradicting the assumption of the base case. We conclude that either
s has no predecessors, or A′ is empty. Hence, no points are added to the result at Line 9.

For the inductive case, assume that the longest sequence described above has length
greater than 1. Let s′ be a predecessor of s and let {(Q1, Y1), . . . , (Qn, Yn)} be split(A′, A).
For all i = 1, . . . , n, we apply the inductive hypothesis to s′, Qi, and V ′, where V ′ = V [s 7→
V (s) ∪ {P}], if s ∈ Sopen , and V ′ = V , otherwise, as prescribed by Line 3. In order to apply
the inductive hypothesis, we prove that k(s′, Qi, V ′) < k(s, P, V ) in both cases. Assume by
contradiction that h ≜ k(s′, Qi, V ′) ≥ k(s, P, V ) and let ξ ≜ (si, Pi)i=0,...,h−1 be the sequence
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of length h corresponding to (s′, Qi, V ′). We extend ξ′ with the pair (s, P ), thus obtaining
the sequence ξ′ ≜ ξ · (s, P ) of length h + 1. We can show that ξ′ satisfies all five Items (i)-(v)
w.r.t. (s, P, V ). Items (i)-(iii) are trivially true, so we can focus on the remaining two:

If s ∈ Sopen , then Item (iv) follows from the assumption that P ̸∈ V (s), while Item (v) is
due to the fact that no pair in ξ can be equal to (s, P ), since P ∈ V ′(s).
If s ∈ Ssing, then both Items (iv) and (v) hold trivially.

Hence, ξ′ is a sequence satisfying (i)-(v) w.r.t. (s, P, V ), so k(s, P, V ) ≥ h + 1, which
contradicts the hypothesis.

Now, consider a point x in ∃Denot(s′, Qi, Yi, V ′) and the witness hybrid run ρ′ = (f ′, r′)
provided by the inductive hypothesis, whose trajectory f ′ goes from x to Yi ⊆ A, and let
{tj}k

j=0 be its time-slicing. In the following we shall extend ρ′ to reach (X, s), using the
definition of reach, while satisfying the Items (a), (b), and (c) of the lemma. We again
distinguish two cases.

[s′ ∈ Ssing] By Proposition 15(c), type(s′) = 0 and s ∈ Sopen . In this case, f ′ must end
in some point z ∈ Yi. Since Yi ⊆ A′ = reach0(A, X), let f ′′ be the trajectory that starts
in z, immediately enters X, and remains inside X in the interval (0, ϵ), for some ϵ > 0.
Let f be the concatenation of f ′ and f ′′. It is immediate to observe that τ = {tj}k+1

j=0 ,
with tk+1 = (tk + ϵ), is a time-slicing of f .
Let us set ρ ≜ (f, r) , where r is the continuous run of f that has the following form:

r(t) =
{

r′(t) if 0 ≤ t ≤ tk

s if tk < t < tk + ϵ.

Clearly, ρ is a hybrid run in HRun(x) with τ one of its time-slicings.
As, by construction, ρ ends in (X, s), we obtain that Item (a) holds. Item (b) is satisfied,
since ρ′ avoids V ′, by assumption P ̸∈ V (s), and V is pointwise included in V ′. Item (c),
instead, follows from the fact that V ′ = V [s 7→ V (s) ∪ P ].
[s′ ∈ Sopen] Obviously, type(s′) = +, and s ∈ Ssing. Recall that ρ′ ends in (Yi, s′) and
let t′ > tk−1 be any time instant such that y ≜ f ′(t′) ∈ Yi. Observe that r(t′) = s′,
since there cannot be a state change within the same time slice. Let f ′′ be the witness
trajectory given by the property of reach+(A, X), which starts in y, reaches X, and in the
intermediate times remains inside A = [[s′]] \ V (s′). Now, let f be the trajectory obtained
by concatenating the prefix of f ′ ending in y with f ′′ and τ = {t0, t1, . . . , tk−1, t∗}, with
t∗ = t′ + ϵ, where ϵ is the duration of f ′′. Observe that f(t) ∈ [[s′]], for all t ∈ (tk−1, t∗).
Indeed, (tk−1, t′) ⊆ (tk−1, tk) and, by hypothesis, f ′ lies in [[s′]] in latter interval. Moreover,
f ′′ lies in A ⊆ [[s′]] in the interval (0, ϵ), hence f lies in A ⊆ [[s′]] in the interval (t′, t∗).
Clearly, the signal of f is constant, and equal to λ(s′)∩AP, in the entire interval (tk−1, t∗),
therefore τ is a proper time slicing for f . Let us set ρ ≜ (f, r) , where r is the continuous
run of f that has the following form:

r(t) =


r′(t) if 0 ≤ t ≤ tk−1

s′ if tk−1 < t < t∗

s if t = t∗.

Trivially, ρ satisfies Item (c). Moreover, ρ satisfies Item (b), since ρ′ avoids V ′ = V and
at all times f ′′ is either contained in A, which is disjoint from V (s′), or in X, which is
disjoint from V (s) by assumption. Item (a) holds as well, since wf = wf ′ · λ(s). Indeed,
the trajectory f ′′ entirely lies in [[s′]] except for its last point, which belongs to [[s]].
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Completeness. Given s ∈ S, P ∈ Patch([[s]]), X ⊆ P , and V , let y be a point from which
there is a hybrid run satisfying Items (a)-(c). Among those hybrid runs, let ρ = (f, rc) be one
that induces a shortest discrete trace, and let τ = {ti}k

i=0 be the corresponding time-slicing.
Formally, (ρ, τ) ∈ arg min(f,_)∈HRun(x),τ∈T S(σf )|trace(σf , τ)|.

Let w ≜ trace(σf , τ) and k(y, s, P, X, V ) be the length of w. We prove that y ∈
∃Denot(s, P, X, V ) by induction on k(y, s, P, X, V ).

Base case [k(y, s, P, X, V ) = 1]: By Item (a), s is an initial state. By Proposition 15(a),
s ∈ Ssing. Since the only left-closed trajectories with a discrete trace of length one are
those with zero duration, we have that f starts and ends in y, which implies y ∈ X, by
Item (a). By Line 1 of Algorithm 1, we have that y ∈ ∃Denot(s, P, X, V ), thus, the
thesis follows.
Inductive case [k(y, s, P, X, V ) > 1]: Let w = w′ · α, with α ⊆ ÂP and s′ ∈ S the state
of Aφ̂ preceding s in rc. Note that α = λ(s) and s ̸∈ S0, by Proposition 15(b). We
distinguish two cases.
[s ∈ Ssing]: By Proposition 15(c), s′ ∈ Sopen. Let A′ = reach+(A, X), with A =
[[s′]] \ V (s′). Since f is well-behaved and lies in A′ in the last open slice (tk−1, tk) of τ ,
there exists a pair (Q, Y ) ∈ split(A′, A) and ϵ > 0 such that f lies in Y ⊆ Q at all times in
(tk−1, tk−1 + ϵ]. Consider the prefix ρ′ = (f≤t+ϵ, rc

≤t+ϵ), clearly ρ′ ends in (Y, s′) and its
discrete trace is obtained from w by removing the last symbol α. By applying Lemma 20
to ρ′ and (Q, s′), there exists a hybrid run ρ′′ that starts and ends where ρ′ does, passes
only once through (Q, s′), satisfies Visited(ρ′′) ⊆ Visited(ρ′), and the induced discrete
trace is no longer than the one of ρ′. Therefore, k(y, s′, Q, Y, V ) < k(y, s, P, X, V ). Hence,
y satisfies the inductive hypothesis w.r.t. s′, Q, Y , and V , as witnessed by ρ′′, and so
y ∈ ∃Denot(s′, Q, Y, V ). Since (s′, s) ∈ δ and (Q, Y ) ∈ split(A′, A), the algorithm at
Line 9 adds y to the set Result, which is then returned.
[s ∈ Sopen]: By Proposition 15(c), s′ ∈ Ssing. Let A′ = reach0(A, X), with A =
[[s′]]\V (s′). Since ρ ends in (X, s), there exists (Q, Y ) ∈ split(A′, A) such that f(tk−1) ∈ Y .
Next, consider the prefixes f ′ = f≤tk−1 , ρ′ = ρ≤tk−1 , and τ ′ = {ti}k−1

i=0 . Clearly, ρ′ ends in
({f(tk−1)}, s′). Let V ′ = V [s 7→ V (s) ∪ {P}] as in Line 3 of the algorithm. By Items (b)
and (c) on ρ w.r.t. y, s, P , X, and V , it holds that ρ′ avoids V and (P, s). Hence, ρ′

avoids V ′. It follows that ρ′ satisfies Items (a)-(c) with respect to y, s′, Q, Y , and V ′.
Moreover, the discrete trace trace(σf ′ , τ ′) is strictly shorter than w by construction. We
then have that k(y, s′, Q, Y, V ′) < k(y, s, P, X, V ) and, by inductive hypothesis, we obtain
that y ∈ ∃Denot(s′, Q, Y, V ′). Since (s′, s) ∈ δ and (Q, Y ) ∈ split(A′, A), the algorithm
at Line 9 adds y to Result, which is then returned. ◀
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Abstract
The analysis and summarization of temporal networks are crucial for understanding complex
interactions over time, yet pose significant computational challenges. This paper introduces
FastMinTC+, an innovative heuristic approach designed to efficiently solve the Minimum Timeline
Cover (MinTCover) problem in temporal networks. Our approach focuses on the optimization
of activity timelines within temporal networks, aiming to provide both effective and computation-
ally feasible solutions. By employing a low-complexity approach, FastMinTC+ adeptly handles
massive temporal graphs, improving upon existing methods. Indeed, comparative evaluations on
both synthetic and real-world datasets demonstrate that our algorithm outperforms established
benchmarks with remarkable efficiency and accuracy. The results highlight the potential of heuristic
approaches in the domain of temporal network analysis and open up new avenues for further research
incorporating other computational techniques, for example deep learning, to enhance the adaptability
and precision of such heuristics.
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1 Introduction

Modern applications are increasingly incorporating new data abstractions that necessitate
redefined approaches to data summarization and synthesis. Notably, with the widespread
availability of temporal information, many datasets, traditionally modeled as networks, are
now being treated as temporal networks [10, 18], i.e., graphs G = (V, E) that include temporal
edges representing interactions among a set of entities V , where each edge (u, v, t) ∈ E

captures the interaction at time t between entities u and v.
This paper introduces a novel heuristic, FastMinTC+, aimed at summarizing temporal

networks – a critical area for data compression, visualization, interactive analysis, and noise
reduction. Temporal network summarization poses unique challenges stemming from their
inherent complexity and the diverse objectives of summarization, for which different methods
have been proposed [17]. These methods employ a variety of techniques, including temporal
motifs [19], graphlets [11], vocabulary-based summaries [26], evolutionary patterns [27], and
community evolution [21]. While effective, such techniques can be complex and difficult to
interpret. To simplify, research has shifted towards using activity time intervals to represent
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interactions between entities [24, 25, 8, 5, 4, 6, 7]. An interaction between two entities
is accounted for if, at the time of their interaction, at least one of the entities is active.
This summarization task involves identifying these latent activity intervals for all entities,
producing an activity timeline that encompasses the entire network. This problem, known
as Minimum Timeline Cover (MinTCover) problem, was introduced by Rozenshtein et
al. [25], with the goal of identifying crucial time intervals that elucidate significant network
events.

To illustrate the importance of activity timelines in understanding events, consider the
launch of ChatGPT by OpenAI in November 2022. This event, which quickly captured public
attention due to its advances in AI and large language model (LLM ) capabilities, sparked
widespread social media engagement and discussions on AI ethics and potential technological
innovations. Figure 1 shows a co-occurrence graph on the left, where vertices represent
hashtags and edges connect hashtags that appear together in posts. On the right side of Figure
1, a temporal network model visualizes these interactions, highlighting how data structured
in timelines of (entity, time-interval) pairs can offer deep insights into significant events.
These timelines, indicated in purple, outline key moments such as the initial launch and
subsequent debates around AI, underlining the central entities’ roles in shaping discussions.
This method of mapping event timelines is central to solving the MinTCover problem.

Figure 1 Example of a co-occurrence graph (left side) and temporal network framework (right
side) with event timelines (in purple). The analysis of hashtags coming from social media discussions
on two distinct events in time intuitively shows the relationship between activity timelines and
events, which are the objective of the MinTCover problem.

Despite the interpretability and effectiveness of this problem, studies on the hardness and
parametrized complexity highlight that MinTCover is NP-hard and, when considering more
than one time interval, not even approximable within any constant factor (deciding whether
there exists a solution of span 0 is indeed an NP-complete problem) [25, 8, 5, 4]. From hence,
our research focuses on the development of approximation and heuristic algorithms capable
of generating satisfactory timeline covers in feasible time frames. In this study, we introduce
a novel local search heuristic for the MinTCover problem, employing a low-complexity
approach in order to make it feasible even on large-scale graphs. The performance of our
method are shown with an experimental evaluation on both synthetic and real-world datasets.
The experiments show that our algorithm improves upon existing methods, both for efficiency
and accuracy.

The rest of the paper is organized as follow. In Section 2 we formally define the
MinTCover problem and we present some related works on approximate solutions. In
Section 3, we describe our heuristic, FastMinTC+, for solving the MinTCover problem. In
Section 4 we provide the experimental results on the outlined comparison. Final considerations
and future direction are described in Section 5.
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2 Preliminaries

2.1 Problem Definition and Notions
Let G = (V, E) be a temporal graph, with V a set of vertices and E a set of temporal edges,
where each edge is a triple (u, v, t) ∈ E, such that (u, v) ∈ V and t is a timestamp indicating
the time that an interaction between vertices u and v takes place. We consider unweighted
undirected graphs. Given a vertex u ∈ V we define, E(u) = {(u, v, t) ∈ E} as the set of
temporal edges incident in u, N((u, t)) = {v|(u, v, t) ∈ E} as the set of vertices incident in u

at timestamp t, T (u) = {t|(u, v, t) ∈ E} as the set of timestamps of edges incident in u.
Following the definition provided in [7], given a temporal graph G = (V, E) and a vertex

u ∈ V , the local degree of u in a timestamp t, denoted as degL((u, t)) = |N((u, t))|, is
the number of temporal edges incident in u at a timestamp t, while the global degree of a
vertex u, denoted as deg(u) =

∑T
t=1 degL((u, t)) is the number of temporal edges incident

in u in the overall time domain. Moreover, we define the overall density of an undirected
graph as the ratio of the number of edges |E| with respect to the maximum possible edges:
d = 2|E|

|V |(|V |−1)|T | . We consider graph to be sparse when |E| = O(|V |+ |T |).
Given two numbers su, eu, with su ≤ eu we define Iu = [su, eu] as the activity interval

of vertex u and T = {Iu}u∈V as an active timeline of G. Given an interval Iu = [su, eu],
δ(Iu) = eu − su is the span of interval Iu.

▶ Definition 1 (Timeline Cover). Given a temporal graph G = (V, E) and an activity timeline
T = {Iu}u∈V , we say that T covers G if ∀(u, v, t) ∈ E, t ∈ Iu or t ∈ Iv.

Figure 2 shows an example of timeline covering over a 2-timestamps graph with 5 nodes.

Figure 2 A temporal graph with 5 vertices and 9 edges, distributed over two timestamps. In
purple we can see a possible timeline cover represented by intervals Iv1 = [0, 1] and Iv4 = [0, 1]. This
is a timeline cover since every edge (u, v, t) ∈ E is such that t is in either Iu or in Iv.

The trivial timeline Iu = [min T (u), max T (u)] provides a cover but may have unnecessarily
long intervals. Indeed, the task is to find a timeline that has the most compact intervals
possible according to some objective functions: the sum-span of a timeline T , S(T ) =∑

u∈V δ(Iu), or the max-span of a timeline, ∆T = maxu∈V δ(Iu), are the objective functions
proposed in the literature [25].

According to these quality measures, it is possible to define two problems:

▶ Definition 2 (MinTCover+). Given a temporal network G = (V, E), find a timeline
T = {Iu}u∈V that covers G and minimizes the sum-span S(T ).
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▶ Definition 3 (MinTCover∞). Given a temporal network G = (V, E), find a timeline
T = {Iu}u∈V that covers G and maximize the max-span ∆T .

The selection of either the Sum or Max formulation of the problem is contingent upon
the specific application context. Generally, the Max formulation facilitates the derivation
of a worst-case bound on the duration of all activity intervals; however, this approach is
susceptible to outliers, whereby a single long interval may precipitate solutions characterized
by disproportionately high costs. Conversely, the Sum formulation is advisable in scenarios
characterized by considerable variability in the duration of events anticipated within the
activity timeline.

These problems can be further extended to allow k active intervals per vertex. It has been
shown that also when there is only one activity interval per vertex, i.e., k = 1, while the Max
problem can be reduced to 2-Sat, and solved optimally in linear time, the Sum problem
is NP-hard [8]. For this reason, in this research, we focus on designing and implementing
an heuristic algorithm for the Sum problem, with k = 1, given the scarcity of heuristics
even for this case, with the goal of proposing an efficient and effective approach also for
massive graphs. For this problem we provide an exact Integer Linear Programming (ILP)
formulation in Appendix A, considered mainly to evaluate the performance of our method
on small datasets. We will refer to this problem (MinTCover+) as MinTCover.

2.2 Related Works

The MinTCover problem, being a recent and NP-hard problem, has limited researches
which focus primarily on the study of the parametric complexity and the development of
approximate algorithms aimed at theoretical outcomes. Thus, in the following we describe
these approximate solutions and, since in building our heuristic we mainly based on established
Minimum Vertex Cover (MVC) heuristics, we also introduce the state-of-the art solutions for
MVC.

2.2.1 Approximate Solutions

For MinTCover, few approximate solutions have been proposed. In [25], Rozenstein et
al. propose an inner point iterative method as a strategy to solve this problem by initially
considering a subproblem named Coalesce. This subproblem involves finding optimal
activity timelines that include predetermined time points for each vertex, called inner points.
These points are essentially estimates on where a vertex is presumed to be active. The
challenge is to construct intervals around these points to cover all interactions. Remarkably,
the authors develop a method to find a 2-approximate solution to the Coalesce problem in
linear time, by first providing an ILP formulation, then by relaxing the integrality constraint
to write the dual, whose solution is then used iteratively to refine the MinTCover algorithm.
Each iteration adjusts the inner points based on the activity intervals derived from the
Coalesce solution, until the changes in the solution become negligible, indicating that
the intervals are covering all interactions with minimal total duration. This method not
only ensures comprehensive interaction coverage but also strives to minimize the overall
activity time across the network. If from the one hand the authors where able to find a
2-approximate solution to the Coalesce problem, they cannot provide an approximation
factor for MinTCover, even though they can compute a solution for this latter problem in
linear time.
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An O(T log n) factor approximation algorithm, that consists of two main phases, is
proposed by Dondi et al. in [6, 7]. The algorithm works by considering the union graph
Gu = (V, Eu) of the temporal graph G = (V, E), which is a static labeled graph, where
labels for each edge are the union of all the timestamps t associated to edges (u, v, t),
for each pair (u, v). The first phase consists in finding a minimum vertex cover with a
2-factor approximation algorithm [12] for the subgraph of the union graph that contains
edges with at least three labels. For each vertex of this set is defined an activity interval
that spans the entire temporal graph starting from 1. The vertices in this set are then
removed from the temporal graph G, resulting in a temporal graph G′ such that each pair of
vertices is connected by at most two temporal edges. Then the second phase, inspired by
an approximation algorithm for SetCover [9], uses a randomized rounding algorithm to
find an approximation solution to a variant of the problem called Minimum Non-Consecutive
Timeline Cover (Min-NC-TCover) where each vertex can be active in non consecutive
timestamps. Then they define a solution of MinTCover where each vertex is active in an
interval that includes the minimum and maximum timestamp where the vertex is active in
the computed solution of Min-NC-TCover.

2.2.2 Heuristics for Minimum Vertex Cover
MinTCover is a variant in temporal graphs of MVC, a classical NP-hard optimization
problem that consists of, given an undirected unweighted graph G = (V, E), finding a
minimum sized subset S ⊆ V such that every edge in G has at least one endpoint in S.

The MVC problem is often addressed by iteratively solving its decision version, which
involves identifying a vertex cover of a specified size k. The process begins with the
construction of a vertex cover. If a vertex cover of k vertices is found, one vertex is removed,
reducing the target size to k− 1, and a local search is initiated to find a smaller vertex cover.
The current candidate solution, denoted as C, includes the vertices selected for covering.
Each vertex v ∈ C has an associated loss, defined as the number of covered edges that would
become uncovered if v were removed from C. Conversely, for vertices not in C, a gain is
calculated based on the number of uncovered edges that would become covered upon their
addition. Both loss and gain are used to score vertices, which also have an age indicating the
time since their status last changed. The iterative process involves swapping vertices in C

with those outside of it, a step known as exchanging step.
The FastVC [3] (which in turn is inspired by NuMVC [2]) is a heuristic algorithm,

known for its efficiency in handling large graphs, which makes it of practical relevance for
real-world applications, where rapid solutions are needed. The algorithm works by following
the procedure depicted before, adopting a two-stage exchange method as exchanging step,
introduced in the NuMVC algorithm, which consists in firstly removing a vertex from C,
then adding a new vertex not in C, updating the scoring properties (loss and gain) at each
stage. The great advantage of FastVC is that to enhance the efficiency and effectiveness
of the vertex selection process it mainly relies on the Best from Multiple Selection (BMS)
heuristic, which works by generating multiple candidate solutions, choosing the best among
them based on a predefined criterion (the one that leads to the smallest vertex cover).

This approach is particularly useful since in problem like MVC the solution space is
large and complex, thus direct evaluation of all possible selections would be computationally
expensive. By using BMS, FastVC can more effectively explore the solution space, as it
avoids getting trapped in local minima – a common problem in greedy and local search
algorithms. It provides a way to balance exploration and exploitation by periodically allowing
the algorithm to consider a range of potential moves (vertex additions or removals) rather
than being confined to the immediate best move.
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More recently, the use of Deep Learning (DL) approaches has been proposed for defining
heuristics for NP-hard problems over graphs, like MVC, highlighting that representation
learning based approaches are better in building solution to combinatorial optimization
over graphs with respect to end-to-end approaches [20]. Some of the most effective research
investigation directions are based on using Reinforcement Learning (RL) [13, 1], Graph
Neural Networks (GNNs) [16, 14] or the Attention Mechanism [15] by firstly learning a
representation of the graph and then by leveraging this representation with autoregressive
machine learning-based procedure, local search or greedy search to build the final solution.

3 FastMinTC+

In this section we describe our FastMinTC+ algorithm, which solves the MinTCover
problem in an iterative way, following a local search procedure and a heuristic optimization
similar to the one adopted by FastVC [3].

3.1 Overall Algorithm
The FastMinTC+ overall algorithm (outlined in Algorithm 1) is composed of an initialization
step, to compute an initial minimal timeline, and an exchange step, to reduce the span of the
initial computed timeline.

Algorithm 1 FastMinTC+(G, cutoff).

Input: graph G = (V, E, T ), cutoff time
Output: A minimal timeline cover of G, T ∗ = {Iu}u∈V

T , loss← InitializeTC(G)
gain((v, t))← 0 for each (v, t) /∈ T
T ∗ ← T
while elapsed ≤ cutoff do

if T covers all edges AND S(T ) < S(T ∗) then
T ∗ ← T

end
T ← T \ {(v, t) : loss((v, t)) ≤ loss((u, t)), ∀(v, t), (u, t) ∈ T
(v, t)← SelectRndVertex(T , k)
T ← T \ {(v, t)}
e← a random uncovered edge
(v, t)← the endpoint of e with greater gain breaking ties in favor of the one not

included in the solution for a larger number of iterations
T ← T ∪ {(v, t)}
update loss of vertices N(v) in T and gain of vertices N(v) not in T

end

The initialization step is carried out by the InitializeTC procedure, which returns an
initial timeline which is granted to be minimal, and computes the loss value for each pair
(v, t) ∈ T , which corresponds to the number of edges that would become uncovered, by
removing (v, t) from the computed timeline. We remember that the timeline T is a set of
intervals Iv = [sv, ev], one for each vertex v ∈ V . Thus, we can consider T as an ordered list
of pairs (v, t) such that, for each vertex v ∈ V , we have exactly two pairs: (v, sv), (v, ev),
with sv ≤ ev. For each vertex in the timeline, thus, the loss is computed only for timestamps
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sv and ev and not for intermediate timestamps in the interval. After letting computing the
initial timeline and the corresponding loss, the initialization step computes the gain, which
is defined for each vertex (v, t) /∈ T as the number of uncovered edges that would become
covered by adding (v, t) to the timeline.

The solution is then refined in the exchange step, with a two-stage exchange method, by
firstly removing from the timeline the pair (vertex, timestamp) with minimum loss from
the activity timeline computed and then by randomly reducing the length of the intervals
selecting a second pair (vertex, timestamps) to be removed from the activity timeline with
the SelectRndVertex procedure. Then, the algorithm picks a random uncovered edge e, and
chooses the endpoint with greater gain adding it into T , breaking ties in favor of the endpoint
that have not been included in the solution for a larger number of iterations. Note that along
with removing or adding a vertex, the loss and gain values of the vertex and its neighbors
are updated accordingly.

3.2 Initialization Algorithm

The initialization procedure is outlined in Algorithm 2 and consists of an extending phase
and a shrinking phase.

Algorithm 2 InitializeTC(G).

Input: graph G = (V, E, T )
Output: timeline cover of G T = {Iu}u∈V , loss((v, t)) for each (v, t) ∈ T
for e ∈ E do

if e is uncovered then
add the timestamp t to the activity interval of the endpoint of e with higher
degree in t

end
end
// initialize loss to 0 (considering only the minimum and maximum t of each interval

of v in T )
loss((v, t))← 0 for each (v, t) ∈ T
for e ∈ E do

if only one endpoint of e belongs to T then
for the endpoint (v, t) ∈ T , loss((v, t)) + +

end
end
// remove redundant vertices
for (v,t) ∈ T do

if sv < ev then
if loss((v,t))=0 then
T ← T \ {(v, t)}
update loss of vertices N(v) in T

end
end

end

During the extending phase, the procedure begins with an empty set T , progressively
augmented by evaluating and incorporating edges one at a time. If an edge e is found to be
uncovered, the endpoint of e with higher degree is added to T . It is straightforward that
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at the end of this phase we obtain a timeline cover. The shrinking phase consists in first
computing the loss value of pairs (v, t) in T , only for the initial and final timestamps of each
interval (thus, we do not compute the loss for the intermediate timestamps in the interval,
i.e., ∀Iu = [su, eu] ∈ T , we compute the loss only for (u, su) and (u, eu)). This phase possibly
shrinks an interval length, by removing the initial or final timestamp, if the loss is equal to 0.
When computing the loss of (v, t) with respect to an edge (u, v, t), we consider the entire
interval on vertex u, i.e., Iu = [su, eu]. If it holds that su < t < eu, we do not increment the
loss value of v since the edge (u, v, t) is already covered.

After computing the loss, the algorithm checks if there are vertices in the timeline with
loss = 0. If it finds a (v, t) with loss = 0 and Iv = [sv, ev] is such that sv < ev, then Iv is
shrinked with a new timestamp r as follows: if t = sv, sv is replaced by r, which is the first
timestamp in T (v) greater than sv (which may not necessary be sv + 1 if v is not active in
sv + 1); if t = ev, ev is replaced by r, which is the next timestamp in T (v) smaller than ev

(which may not necessary be ev − 1 if v is not active in ev − 1).
Subsequently loss of vertices in N((v, t)) is increased by 1 and loss of vertex (v, r) is

computed considering the vertex in N((v, r)).
This algorithm grants to return a minimal solution according to Theorem 4 (proof is

provided in Appendix B). A timeline cover is minimal if removing any (v, t) would make it
not a timeline cover, thus the loss(v, t) > 0, ∀(v, t) ∈ T .

▶ Theorem 4. The timeline T = {Iu}u∈V returned by the initializeTC algorithm is a
minimal timeline cover.

3.3 Random Vertex Selection Algorithm
A critical function for FastMinTC+ is SelectRndVertex, outlined in Algorithm 3, which
chooses a vertex from the candidate vertex set T to remove.

Algorithm 3 SelectRndVertex(T , k).

Input: A timeline T , a parameter k
Output: an element of T
best ← a random vertex (v, t) from T
for 1 to k-1 do

tmp ← a random vertex (u, r) from T
if loss(tmp) < loss(best) then

best ← tmp
end

end
return best

This algorithm follows the structure of the cost-effective BMS heuristic, which picks k

elements (where k is a parameter) randomly with replacement from the set T , and then
returns the one with lowest loss value. The set T is composed of all the pairs (v, t) that
belong to the activity timeline T and whose timestamps are an initial or ending timestamp of
an interval. In this way, we only remove from the timeline vertices which are at the beginning
or end of the interval, with the goal of reducing the length of the activity timelines avoiding
producing multiple intervals for the same vertex. From hence, Theorem 5 holds (proof is
provided in Appendix C).
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▶ Theorem 5. With k ≥ 50, the probability that the SelectRndVertex algorithm choose a
vertex whose loss value is not grater than 90% vertices in T is grater or equal to 0.9948.

3.4 Heuristic Complexity Analysis

The overall FastMinTC+ heuristic (outlined in Algorithm 1), as seen, is composed of two
main parts: the initialization step (i.e., the InitializeTC procedure outlined in Algorithm 2,
followed by the gain initialization) and the exchange step (i.e., the iterative cycle carried out
for an elapsed time smaller or equal to a given cutoff time, that uses the SelectRndVertex
procedure, outlined in Algorithm 3 as two-stage exchange method). Thus, the complexity of
the FastMinTC+ heuristic relies on the complexity of Algorithms 2 and 3.

In the following we denote n = |V |, m = |E| and t = |T |.
Let us first focus on the complexity of the InitializeTC algorithm. This can be divided in

three parts: the extending phase, the initialization of the loss values and the shrinking phase.
It is straightforward that the complexity of the extending phase is O(m). Indeed, to compute
the extending phase, it is necessary to scan the set of edges E one time, adding, for every
scanned edge, the endpoint with higher degree. As far as loss computation is concerned, it
depends on the number of vertices (v, t) ∈ T . Since we add, for each vertex v ∈ V exactly
two timestamps (the start and end of the activity interval, namely, sv, ev), the dimension of
the computed activity timeline is exactly |T | = 2n. It follows that the complexity for the
initialization of the loss is O(n). In order to update the loss values, we must check if an
edge is covered by one of two vertices of the timeline; we need to scan the set of edges E,
the complexity is O(m). Thus, the overall complexity of loss initialization is O(n + m). For
the shrinking phase, the complexity depends on the number of updates performed over the
loss values. Since each vertex is updated at most once for each edge incident in it, the total
number of possible updates is bounded to the sum of the global degrees of each vertex, i.e.,∑

v∈V deg(v) = 2m, thus the complexity of the shrinking phase is O(m + n). Therefore, the
overall complexity of the InitializeTC algorithm is O(m + n).

Let’s now move to the SelectRndVertex procedure. Since the algorithm only performs
comparison operation for pair of elements at a time for each iteration, the complexity is
O(k), where k is the number of iteration. Since k is constant, the overall complexity is O(1).

Consider now the FastMinTC+ heuristic. From the previous analysis, it holds that
the computational complexity of the initialization phase, i.e., the one derived from the
InitializeTC algorithm, is O(m + n). For the exchange step, the complexity can be derived
by: 1) checking whether T covers all edges, which can be done summing the gain values
of (v, t) /∈ T with complexity O(n): if the sum is 0, it means that T is a minimal cover; 2)
getting the vertex (v, t) with lower loss value, which can be done with complexity O(n); 3)
select a random vertex with the SelectRndVertex procedure, which has complexity O(1); 4)
extract a random uncovered edge e and add the endpoint of e with greater gain, breaking
ties in favor of the older one, which has the same complexity as the loss update operation,
thus O(m + n); 5) update loss and gain values, which have both complexity O(m). Thus,
the overall time complexity of the exchange step is O(m + n), leading to an overall time
complexity of the FastMinTC+ heuristic equals to O(m + n).

4 Performance Evaluation

In this section we provide the results of our experiments on FastMinTC+. We evaluate it
against state-of-the-art approaches on both synthetic and real world graphs.
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4.1 Dataset Description
In the current literature, there are no publicly available datasets for the MinTCover problem.
The sole study addressing experimental analysis on real and synthetic instances is presented
in [25]. However, this study has significant limitations: firstly, the method proposed for
generating synthetic datasets does not ensure that the computed ground truth is optimal,
complicating the assessment of the algorithm’s performance against exact solvers; secondly,
the real-world dataset employed is not publicly accessible, precluding reproducibility of the
results. To address these gaps, we have developed three distinct datasets, each designed for
specific evaluative purposes:

Dataset1 consists of 264 synthetically generated instances of sparse temporal graphs,
characterized by a low temporal edge-to-vertex ratio (|E| = O(|V |+ |T |)). These graphs
vary considerably, with vertex counts |V | = [10, 10000], timestamp sets T = [4, 5000], and
edges |E| = [10, 1000000]. This dataset facilitates comparisons between the proposed
heuristic and state-of-the-art algorithms across sparse graph scenarios, which reflect
conditions found in many real-world datasets. For more granular analysis, instances are
categorized as small (up to 50 vertices and 20 timestamps), medium (up to 500 vertices
and 500 timestamps), and hard (up to 10000 vertices and 5000 timestamps).
Dataset2 includes 195 synthetically generated instances of dense temporal graphs (|E| ≫
O(|V |+|T |)). These instances also range in size with vertices |V | = [10, 10000], timestamps
T = [2, 5000], and edges |E| = [100, 20000000]. The purpose of Dataset2 mirrors that
of Dataset1, but focuses on denser graphs. Similar to Dataset1, it is divided into small
(up to 30 vertices and 4 timestamps), medium (up to 1000 vertices and 100 timestamps),
and hard categories (up to 10000 vertices and 5000 timestamps) to account for scalability
concerns.
Dataset3 comprises 25 publicly available instances of temporal benchmark graphs sourced
from the DIMACS repository [22]. This dataset was curated to include a diverse array
of graphs in terms of edge count |E|, vertex count |V | and timestamp range |T |, thus
resulting in a set of graphs with densities D that ranges from 8,49 E-10 to 4,74 E-01. The
primary aim of Dataset3 is to evaluate the performance of the proposed heuristic against
state-of-the-art algorithms on benchmark graphs, thereby assessing their applicability to
practical scenarios.

4.2 Experimental Results
To evaluation our heuristic FastMinTC+ we benchmark it against both an optimal solution
derived from the ILP formulation (Equation 1 in Appendix A) and the principal approximation
algorithms discussed in Section 2.2.1. The compared algorithms include the iterative method
for inner points (Inner) as outlined in [25], and the two-phases approach (2Phases)
introduced in [7]. Our evaluations span three datasets, assessing both the quality (measured
by the length of the sum-span of the timelines S(T )) and scalability (determined by execution
time) of each solution. The algorithmic comparison varies by dataset and instance complexity;
for Dataset1 and Dataset2, all four algorithms are evaluated on small instances. However, the
ILP solution is omitted from medium instances and both the ILP and 2Phases are excluded
from hard instances due to computational limitations. Only Inner and FastMinTC+ are
analyzed for Dataset3 due to their superior performance.

In running the test, for the FastMinTC+ algorithm, we set the parameter k = 50
and instead of setting a time limit, we define a number of 2000 iteration for the exchange
step. The algorithm is executed 5 times each with a different shuffling of the edges, and the
best result is reported. For the Inner algorithm we set the number of iterations to 10 (as
suggested by the authors). No parameters have to be set for the 2Phases approximation.
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We implement our algorithm FastMinTC+ in the Python programming language
(version 3.12). The code for Inner is open-source and implemented in Python (version 2) [23].
For the 2Phases algorithm no implementation were available online, thus, we implement
it in Python (version 3.12). Experiments are carried out on a MacBook Pro (2017) under
MacOS, using a 16GB RAM and 4 cores of a i7-3,1 GHz CPU.

4.2.1 Sparse Instances Results
The comprehensive results for Dataset1, consisting of sparse graphs, are summarized in
Table 1. FastMinTC+ consistently outperforms both Inner and 2Phases in small
instances. Specifically, compared to the sum-span calculated by the ILP and other algorithms,
FastMinTC+ approximates the ILP-derived solution more closely than its competitors.
Among the 189 simple instances in Dataset1, FastMinTC+ provides a superior solution
(i.e., a shorter sum-span) compared to Inner 177 times and to 2Phases 154 times. In the
subset of 25 medium instances, FastMinTC+ continues to outperform, invariably offering
better solutions than 2Phases and surpassing Inner in 14 instances. Similar trends are
observed in the 50 hard instances, where FastMinTC+ excels over Inner 34 times.

The fact that 2Phases’s performance downgrade with larger instances, aligns with the
fact that it provides an approximate factor proportional to the number of timestamps.

A notable finding from this experiment pertains to the average execution times. Clearly,
the ILP algorithm, while providing optimal solutions, is significantly slower even for basic
sparse instances. 2Phases encounters scalability issues, notably in hard instances where
experiments could not be conducted due to prohibitive execution times. Conversely, Fast-
MinTC+ is faster, even in large sparse instances, typically requiring an order of magnitude
less time to compute the solution compared to Inner.

Thus, although FastMinTC+ generally outperforms Inner and 2Phases, it may not
be invariably the superior choice for sparse graphs, unless graph size increases to a point
where Inner becomes computationally impractical.

Table 1 Experimental Results on Dataset1 - small, medium and hard instances. Results show
that the proposed heuristic produces for sparse graphs better results with respect to the approximate
solutions in a smaller time.

Dataset1 Algorithm Average
Execution Time

Average
Sum Span

Small
Instances

ILP 1,13 E-01 1,01 E+00
2Phases 8,68 E-02 3,37 E+00
Inner 9,37 E-04 7,05 E+00
FastMinTC+ 5,39 E-04 3,02 E+00

Medium
Instances

2Phases 3,52 E+01 80,1 E+03
Inner 1,21 E-01 71,1 E+03
FastMinTC+ 4,32 E-02 70,9 E+03

Hard
Instances

Inner 1,75 E+02 16,01 E+06
FastMinTC+ 1,43 E+01 15,95 E+06

4.2.2 Dense Instances Results
The comprehensive results for Dataset2, composed of dense graphs, are summarized in Table 2.
The findings from evaluations of small, medium, and hard instances are parallel to those
observed in Dataset1, reinforcing the quality and the scalability of the proposed heuristic.
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Notably, the difference in average sum-span and execution time between FastMinTC+ on
both approximate and exact solutions is more pronounced here than in Dataset1. Indeed,
as far as sum-span is concerned, in all 195 test cases assessed, Inner only outperformed
FastMinTC+ once in a small instance scenario, while as far as execution time is concerned,
FastMinTC+ always outperforms Inner, reaching, on average, a larger delta with respect
to tests on Dataset1, with a maximum delta of 3492,17 seconds on the instance with
10000 vertices and 5000 timestamps. These results validate FastMinTC+’s capability to
effectively scale to larger instances. Moreover, they suggest a distinct advantage in favor of
FastMinTC+ when handling dense graphs, indicating its overall preferable performance
relative to Inner in such contexts.

Table 2 Experimental Results on Dataset2 - small, medium and hard instances. Results confirm
that the proposed solution produces for dense graphs better results with respect to the approximate
solutions in a smaller time.

Dataset2 Algorithm Average
Execution Time

Average
Sum Span

Small
Instances

ILP 9,62 E+01 8,24 E+00
2Phases 3,29 E-01 27,85 E+00
Inner 2,68 E-03 20,39 E+00
FastMinTC+ 5,73 E-04 11,88 E+00

Medium
Instances

2Phases 8,54 E+00 28,69 E+03
Inner 5,81 E-01 28,38 E+03
FastMinTC+ 9,81 E-02 27,08 E+03

Hard
Instances

Inner 8,96 E+02 14,74 E+06
FastMinTC+ 1,82 E+01 14,05 E+06

4.2.3 Real World Instances Results

Experiments conducted on real-world graphs corroborate the findings observed in the synthetic
test instances too. Detailed results for these real-world instances are presented in Tables 3
and 4. For each graph considered, Table 3 provides the results in terms of sum-span, while
Table 4 provides the results in terms of execution time.

Overall, FastMinTC+ demonstrates superior performance in terms of sum-span com-
pared to Inner on non-sparse graphs. Specifically, in the analysis of 25 real-world instances,
FastMinTC+ achieves a better sum-span in 17 cases. Notably, the instances where Inner
outperforms FastMinTC+ are characterized by particularly low densities, with a maximum
density value of 6,27 E-04 and an average density value of 1,09 E-04. In contrast, the instances
where FastMinTC+ outperforms Inner are characterized by a maximum density value
of 4,47 E-01 and an average density value of 1,26 E-01. It is also worth noting that there
are, albeit rarer, cases of graphs with very low densities (such as ia-contacts-dublin with
D = 8.98E − 08) where FastMinTC+ outperforms Inner, while there are no cases of dense
graphs where Inner outperforms FastMinTC+. This confirms that, while FastMinTC+
should be always preferable in the case of dense graphs, it should be taken into account also
in the case of sparse graphs, representing a valid alternative to Inner even in these cases.

The results also confirm the best performance in terms of execution time of the Fast-
MinTC+, which always achieves a lower execution time compared to Inner.
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Table 3 Experimental Results on real-world publicly available graphs from Dataset3. For each
considered graph we report the information on the size of the network and the results in terms of
sum-span S(T ) of Inner and FastMinTC+.

Graph |E| |V| |T| D Inner
S(T )

FMTC+
S(T )

aves-sparrow-social 516 52 1 3,89E-01 1,40E+01 1,00E+01
aves-wildbird-network 11900 202 5 1,17E-01 5,88E+02 4,78E+02
copresence-InVS13 394247 95 20128 4,39E-03 1,53E+06 1,49E+06
copresence-InVS15 1283194 219 21535 2,50E-03 3,71E+06 3,64E+06
copresence-LH10 150126 73 12604 4,53E-03 3,97E+05 3,87E+05
copresence-LyonSchool 6594492 242 3123 7,24E-02 7,02E+05 6,64E+05
copresence-SFHH 1417485 403 3148 5,56E-03 9,26E+05 8,92E+05
copresence-Thiers13 18613039 328 8937 3,88E-02 2,57E+06 2,45E+06
email-dnc 39264 1892 19382 1,13E-06 2,54E+05 5,84E+05
fb-wosn-friends 1269502 63731 736674 8,49E-10 8,99E+08 9,83E+08
ia-contacts-dublin 415912 10972 76943 8,98E-08 1,00E+06 9,60E+05
ia-contacts-hypertext2009 20818 113 5245 6,27E-04 3,50E+05 3,93E+05
ia-digg-reply 87627 30398 83942 2,26E-09 1,41E+08 1,76E+08
ia-hospital-ward-proximity 32424 75 9452 1,24E-03 3,26E+05 3,18E+05
ia-primary-school-proximity 125773 242 3099 1,39E-03 6,51E+05 6,30E+05
a-prosper-loans 3394979 89269 1258 6,77E-07 9,78E+05 1,00E+06
a-retweet-pol 61157 18470 60500 5,93E-09 1,06E+07 1,21E+07
insecta-ant-colony1 111578 113 40 4,41E-01 3,46E+03 3,25E+03
insecta-ant-colony3 241280 160 40 4,74E-01 5,07E+03 4,77E+03
insecta-ant-colony5 194317 152 40 4,23E-01 4,36E+03 4,14E+03
mammalia-raccoon-proximity 1997 24 51 1,42E-01 7,73E+02 7,61E+02
rec-amz-Baby 915446 596316 4868 1,06E-09 2,80E+06 2,91E+06
reptilia-tortoise-network-bsv 554 136 3 2,01E-02 9,60E+01 5,00E+01
reptilia-tortoise-network-fi 1713 787 8 6,92E-04 5,5E+02 3,12E+02
SFHH-conf-sensor 70261 403 3508 2,47E-04 7,11E+05 8,27E+05

TIME 2024



20:14 FastMinTC+: An Heuristic for the MinTCover Problem

Table 4 Experimental Results on real-world publicly available graphs from Dataset3. For each
considered graph we report the information on the size of the network and the results in terms of
execution time of Inner and FastMinTC+.

Graph |E| |V| |T| D Inner
elapsed

FMTC+
elapsed

aves-sparrow-social 516 52 1 3,89E-01 0,01 0,00
aves-wildbird-network 11900 202 5 1,17E-01 0,09 0,05
copresence-InVS13 394247 95 20128 4,39E-03 2,52 1,07
copresence-InVS15 1283194 219 21535 2,50E-03 8,50 3,47
copresence-LH10 150126 73 12604 4,53E-03 1,00 0,39
copresence-LyonSchool 6594492 242 3123 7,24E-02 43,65 15,92
copresence-SFHH 1417485 403 3148 5,56E-03 9,59 3,18
copresence-Thiers13 18613039 328 8937 3,88E-02 114,17 43,69
email-dnc 39264 1892 19382 1,13E-06 0,39 0,13
fb-wosn-friends 1269502 63731 736674 8,49E-10 11,36 7,19
ia-contacts-dublin 415912 10972 76943 8,98E-08 3,38 1,12
ia-contacts-hypertext2009 20818 113 5245 6,27E-04 0,13 0,06
ia-digg-reply 87627 30398 83942 2,26E-09 0,98 1,49
ia-hospital-ward-proximity 32424 75 9452 1,24E-03 0,21 0,09
ia-primary-school-proximity 125773 242 3099 1,39E-03 0,80 0,32
a-prosper-loans 3394979 89269 1258 6,77E-07 36,98 23,71
a-retweet-pol 61157 18470 60500 5,93E-09 0,73 0,77
insecta-ant-colony1 111578 113 40 4,41E-01 0,66 0,31
insecta-ant-colony3 241280 160 40 4,74E-01 1,39 0,61
insecta-ant-colony5 194317 152 40 4,23E-01 1,12 0,50
mammalia-raccoon-proximity 1997 24 51 1,42E-01 0,01 0,01
rec-amz-Baby 915446 596316 4868 1,06E-09 18,16 12,53
reptilia-tortoise-network-bsv 554 136 3 2,01E-02 0,14 0,64
reptilia-tortoise-network-fi 1713 787 8 6,92E-04 0,02 0,01
SFHH-conf-sensor 70261 403 3508 2,47E-04 0,45 0,19
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5 Conclusion and Future Works

This research tackled the complex problem of summarizing temporal networks, aiming to
optimize the timeline cover for entities within a temporal graph. We introduced a novel
heuristic approach, FastMinTC+, which significantly advances the field by offering a
computationally feasible solution to the MinTCover problem. Our method leverages low-
complexity approximate heuristics, shown to be very effective on the related MVC problem on
static networks, enabling the effective processing of massive graphs, a notable improvement
over existing methodologies.

Experimental results, on both synthetic and real-world datasets, demonstrates that Fast-
MinTC+ achieves superior performance compared to state-of-the-art algorithms, enhancing
computational efficiency and maintaining a high level of accuracy and reliability in identify-
ing sub-optimal timeline covers. These results underscore the potential of our heuristic to
facilitate deeper insights into temporal data analysis.

Looking ahead, the integration of DL techniques presents a promising avenue for fur-
ther enhancing the efficacy of our heuristic. Specifically, exploring the synergy between
our heuristic approaches and DL models could yield innovative strategies for tackling the
MinTCover problem. These developments are poised to redefine the boundaries of temporal
network analysis, opening up new possibilities for both theoretical and practical applications
in the field.
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A ILP formulation for MinTCover

The MinTCover problem can be formulated as an ILP mainly considering a variable
xu,t ∈ {0, 1} whose value is 1 if t is included in the activity interval of u, 0 otherwise. With
this variable we can formulate the following constraints:

Edge Coverage: For each edge (u, v, t) ∈ E, at least one between u and v must have t in
its activity interval. This can be expressed as xu,t + xv,t ≥ 1∀(u, v, t) ∈ E.
Activity Interval definition: for each vertex u and for each timestamp t, if t is included
in the activity interval of u, then the following should hold: su ≤ t ≤ eu. This means
that if xu,t = 1, then su ≤ t and eu ≥ t. This can be expressed, by adding a constant
M ≥ max(T ), with two conditions, one over su and one over eu as follows:

1. su ≤ t ∗ xu,t + M(1− xu,t)
2. eu ≥ t ∗ xu,t −M(1− xu,t)
Indeed, if xu,t = 0, it holds that M ≥ su and −M ≤ eu, otherwise it holds that su ≤ t

and eu ≥ t.
Length of the Interval : for each vertex u, the length of the activity interval is by definition
δ(Iu) = eu − su. This is the objective function to be minimized. For simplicity, we can
define δ(Iu) = du.

With these variables and constraints we can formulate the ILP as in Equation 1.

minimize
∑
u∈V

du

subject to xu,t + xv,t ≥ 1 ∀(u, v, t) ∈ E

su ≤ t ∗ xu,t + M(1− xu,t) ∀u ∈ V, ∀t ∈ T

eu ≥ t ∗ xu,t −M(1− xu,t) ∀u ∈ V, ∀t ∈ T

(1)

B InitializeTC’s minimality: Proof

Theorem 4 states that the timeline T = {Iu}u∈V returned by the initializeTC algorithm,
outlined in Algorithm 2, is a minimal timeline cover.
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Consider the timeline T = {Iu}u∈V produce as output by the extending phase, which
may be modified in the shrinking phase. By construction, at the end of the extending phase
T is a timeline cover. We now prove Theorem 4 by showing that: 1) the timeline T returned
by the procedure is a timeline cover; 2) loss value of any vertex in the timeline T does not
decrease; 3) the timeline T returned after the shrinking phase is minimal.

Proof.
1) Suppose to perform ith iteration of the shrinking phase. Note that, if T is a timeline

cover at the ith iteration, it is a timeline cover also at the (i + 1)th iteration. Indeed,
if loss(v, t)i+1 > 0, then T does not change; if loss(v, t)i+1 = 0, then (v, t) is removed,
but according to the definition of loss, removing such vertex (v, t) would not generate
any new uncovered edge. From hence, since T is a timeline cover at iteration 0, it is a
timeline cover also the end of the shrinking phase (ith iteration).

2) Notice that during the shrinking phase, the loss value of any vertex (v, t) in T does not
decrease. Indeed, if at the ith iteration loss(v, t)i > 0 the iteration does nothing, thus
its loss value does not decrease; if loss(v, t)i = 0, then all vertices in N(v) belong to T ,
otherwise, if at the ith iteration there exists a vertex (u, t) : (u, v, t) ∈ E and (u, t) /∈ T ,
by definition loss(v, t)i would be at least 1. So, in case loss(v, t)i = 0, (v, t) is removed
and along with that, the loss value of each vertex u ∈ N(v) is increased by one as, after
this iteration, the removal of u would make the edge (u, v, t) from covered to uncovered.
The loss of all the vertices not in N(v) do not change.

3) Suppose now that after the shrinking phase, there exists a vertex (v, t) in T whose removal
keeps T a timeline cover. Supposing that the shrinking phase takes i iteration, from the
assumption we can say that loss(v, t)i = 0, by definition of loss. Since the loss value of
any vertex (v, t) in T does not decrease according to point 2 of this proof, the value of
loss(v, t) at the ith iteration is at most 0, thus, since loss values are non-negative it is
exactly 0. Therefore, (v, t) would have been removed at the ith iteration. This complete
the proof by contradiction. ◀

C SelectRndVertex Quality: Proof

Theorem 5 states that with k ≥ 50, the probability that the SelectRndVertex algorithm,
outlined in Algorithm 3, choose a vertex whose loss value is not grater than 90% vertices in
T is grater or equal to 0.9948.

Proof. Consider a real number ρ ∈ (0, 1), the probability of the event E = {the loss value of
the element chosen by the SelectRndVertex algorithm is not greater than ρ|T | elements in
the set T } is Pr(E) ≥ 1− ( ρ|T |−1

|T | )k > 1− ρk.
Indeed, ρ|T | is the number of elements in the ρ fraction of T with the worst losses (i.e.,

higher loss). Thus, considering that each random selection from T is independent, ρ|T |
|T |

represents the chance of selecting one of the worst ρ|T | elements in one selection. It follows
that ρ|T |−1

|T | is the probability of selecting an element whose loss value is higher or equal than
(1 − ρ)|T | elements. After k iterations, ( ρ|T |−1

|T | )k is the probability that all the iterations
randomly select elements inside of the worst elements set. From hence 1− ( ρ|T |−1

|T | )k > 1− ρk

is the probability that at least one of the k iterations selects an element from within the top
elements set.

This means that for k = 50, the probability that the SelectRndVertex algorithm choose a
vertex whose loss value is not greater than ρ = 90% vertices in T is Pr(E) ≥ 1−0.950 > 0.9948,
where we consider the probability of event E to be greater or equal to the computed value,
since there might be the case that more than one elements in those ρ|T | elements have the
same loss value, which is the minimum among loss values of all the ρ|T | element. ◀
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