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Abstract
We provide a unified framework in which the three emotions at the heart of narrative tension (curiosity,
suspense and surprise) are formalized. This framework is built on non-monotonic reasoning which
allows us to compactly represent the default behavior of the world and to simulate the affective
evolution of an agent receiving a story. After formalizing the notions of awareness, curiosity, surprise
and suspense, we explore the properties induced by our definitions and study the computational
complexity of detecting them. We finally propose means to evaluate these emotions’ intensity for a
given agent listening to a story.
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1 Introduction

Humans tell stories to make sense of the world and communicate their understanding of what
happens. Storytelling supposes to be able to sort out which events are worth telling, deciding
on a level of detail for describing events, selecting among possible causes the ones which are
deemed worth telling. It also supposes to make use of an affective machinery for capturing an
audience’s attention (emotional contagion, suspense elicitation...). In the act of storytelling,
structural and affective phenomena are thus combined with communicative goals in mind.
This combination has indeed shown its effectiveness in this respect: the phenomenon of
narrative transportation (the experience of being immersed in a story) has been linked to
persuasion [27]. The narrative paradigm therefore provides an appropriate framework, in
which causal reasoning about the situations narrated [53] is combined with narrative devices
to encourage the audience’s emotional involvement [51], to study and model how opinion is
formed and evolves. Building a framework for reasoning about and unveiling storytelling
mechanics could pave the way for intellectual self-defense supporting tools, enabling citizens
to arm themselves against hostile disinformation or influence campaigns.
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10:2 What Killed the Cat? Towards a Logical Formalization of Curiosity in Narratives.

Previous works in structural narratology have studied the way stories are conveyed to their
audience and seminal work from (for instance) Genette [25] or Propp [45] have previously
served as the backbone inspiration for computational narrative models and storytelling
systems [43]. Whilst the operationalization of narrative theories is still subject to debate
and caution, such works have shed light on how the story material to tell and the manner
in which it is told interacts with a model of the listener1 (which, depending on the media
used for conveying the story can also be a reader, a spectator, or even a gamer): the act of
storytelling can thus be understood as knowledge transfer and manipulation of her beliefs.

According to Sternberg [51] or Baroni [5], emotions more specific to narratives which are
suspense, curiosity and surprise are critical to retain the interest of the listener. Drivers of
the narrative tension, they are paramount in maximizing her engagement. In this paper we
focus on these narrative tension’s building blocks.

In the field of computational narratives, numerous studies and frameworks exist to tell
interactive stories, a number of them as an application of planning technologies [13] allowing
to adapt the narrative to each user’s actions. However, adapting a narrative to a model of the
user’s emotions remains largely a challenge that needs to be addressed to favor engagement:
narrative engagement depends partly on the appropriate maintenance of narrative tension,
itself based on the uncertainty occurring in a narrative [9], and listener’s models based on
a formalization of related emotions have comparatively been less addressed so far in the
literature. While suspense and surprise have been the object of previous studies [15] [23],
there is – to our knowledge – still no curiosity model applicable to narratives.

In the following, we present a preliminary study for characterizing these emotions from
an epistemic standpoint, with a focus on modeling the listener’s curiosity depending on her
beliefs and knowledge using a propositional language. Our overarching aim is to provide
a unifying framework allowing to represent emotions relevant to the characterization of
narrative tension and its evolution, which would enable to discuss their relationships and
ultimately help establish dramatic metrics about a narrative.

In Section 2, we describe the main emotions supporting narrative tension. We also
describe the problems and solutions for formalizing reasoning about action and change, as
well as the ways in which the notions of surprise and awareness have been treated in the
literature. Section 3 details our proposal, which relies on a non-monotonic framework resulting
from extending propositional logic with default rules. The properties of the framework are
presented in Section 4, along with some preliminary ideas for developing metrics.

2 Background on reasoning about change and narrative tension

In order to reason about a story, it is useful to dispose of a way to handle the concepts involved
for understanding a sequence of facts and events. We first briefly outline the background to
this vast subject, before discussing the formalization of emotions in the literature.

2.1 Reasoning about action and change
The formalization of action and change is an old field of research in the domain of knowledge
representation and reasoning in AI. There are many different reasoning tasks in this field (see
e.g. [18]) like prediction of the new state of the world after an action (which is related to belief

1 For sake of homogeneity, we use the term listener in all the paper, while this kind of agent is called
interpret by Baroni.



F. Dupin de Saint-Cyr, A.-G. Bosser, B. Callac, and E. Maisel 10:3

update [55, 30]), or integration of an observation (which is related to belief revision [2]), or
event abduction which consists in guessing which event took place, or scenario extrapolation
[19, 17] which consists in taking a partial description of facts and events that occurred and
complete it (by prediction or event abduction) or scenario recognition [16].

These reasoning tasks were studied in various frameworks, the representation of actions
in a compact way has given rise to some problems known as the frame, the ramification and
the qualification problems [38, 24, 37]. In propositional logic, these problems were solved by
a majority of approaches by introducing a special symbol for expressing a causal rule relating
preconditions of an action to its effect (indeed classical implication cannot separate a cause
from a consequence due to contraposition). Actions are first described by such rules, then
given the set of causal rules, a set of formulas (called frame axioms) are generated stating
that any fluent f is true at time t+ 1 if and only if it was (a) true at t and no causal rule
concluding ¬f can be fired at t or (b) false at t and a causal rule concluding f can be fired.

As a proof of concept, we choose to use propositional logic in this article where we face a
problem that can be viewed as an extension of belief extrapolation with narrative tension
analysis. However in order to perform non-monotonic reasoning (which allows agents to
change their minds and thus accept surprises), we use default rules of the form a ⇝ b to
encode causal relations. Note that another prominent formalization of default rules was given
by Reiter in [46], but we choose to rely on a simpler formalism at first.

Logical approaches to computational narratives have been proposed in the past. In [10],
(Intuitionistic) Linear logic has been argued to be a suitable representational model for
narratives for its capacity to finely represent narrative actions through the production
and consumption of resources. This language provides the symbol ◦ which can be used
in A ◦B to express the validity of transforming resource A into resource B, the flow of
resources consumption through the associated sequent calculus allowing to establish causal
relations. Dynamic logic [29] and its epistemic extensions [8] are formalisms with higher
expressiveness. In this work, we propose to characterize narrative tension phenomenon
in propositional logic (extended with default rules) to demonstrate the representational
uniformity of these concepts and their relationships with each other. We will explore how to
encode them in aforementioned logics in the future, keeping in mind the challenges raised by
their operationalization in their most expressive fragments [3].

2.2 Emotions supporting narrative tension
Psychological models of emotions are often used in the field of affective computing such
as models from Ekman [22] or Plutchik [44] (which include surprise). Other works [41]
consider that every emotion should have a valence and, as a consequence, surprise, which
is inherently neither good nor bad, is considered as a different affective phenomenon. As
we position ourselves in the context of studying the emotional states of a listener, we will
rely on the characterizations given by Baroni in [5]. Curiosity occurs when there is a partial
omission of crucial knowledge: at a given stage when experiencing the storytelling experience,
the listener knows they are missing important information. Suspense arises when an event
could potentially lead to an impacting result – be it good or bad – to the storyline, and is
correlated with anticipation. Surprise results from a rupture from previous expectations,
which retroactively invalidates some of the predictions made by the listener: the listener
has expectations about how the story will develop, based on story genre or common sense.
Going against these expectations while maintaining coherence is what causes surprise. Baroni
distinguishes curiosity and suspense from surprise, as the former two are tied to anticipation
and an urge to know, whilst the latter arises sporadically as the narrative progresses, which
will be reflected in our model.

TIME 2024
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Related to suspense, the concept of narrative closure also reflects the epistemic nature of
storytelling (as theorized by Carroll [14]): this encompasses the phenomenological feeling of
finality that is generated when all the questions saliently posed by the narrative to the listener
are answered. Previous work in the psychology of narrative understanding [53] has also tied
the perception of the importance of story events to causal relationships’ perception. In this
paper we borrowed from this work, especially tracing a graph representing the narrative
with nodes being actions, preconditions and effects and edges being causal relations. We will
consider the degree of a node as reflecting its importance in the narrative, reading it as, the
more an action is a consequence and has consequences the more important it is.

2.3 Logical models of emotions, surprises and awareness
The logical representation of emotions has already received some attention, see e.g. Lorini [34]
or Adam [1] who formalized emotions based on the OCC theory [41]. In these works (which
relies on a modal logic for BDI agents), an agent has beliefs, including beliefs about what is
good for herself, and expresses different emotions such as joy or sadness.

The particular case of surprise was studied by several authors in computer science, but
the first study is due to an economist named Shackle [48] who defined the degree of surprise
associated with an event as the degree of impossibility of this event given the uncertain
knowledge about the situation considered. In Lorini and Castelfranchi [33], the role of
surprise is investigated in the context of belief update. They associate a surprise with a
difficulty to integrate the new piece of information, this occurs when there is a form of
inconsistency between expectation and perception. Surprise was recently formalized in the
context of the analysis of jokes by [20], indeed surprise has been considered as an important
ingredient for laughter by many authors, the model of surprise of [20] is based on a revision
operator and non-monotonic reasoning: to be surprised the listener of a joke should be able
to jump to conclusions that can be questioned and even revised.

The characterization of curiosity provided by Baroni emphasizes that the listener is aware
of its incomplete knowledge and that surprise is linked to a notion of disturbance which makes
the agent to question his assumptions/beliefs and leads him to reconsider his understanding
of the story. This reconsideration reminds the operation of awareness raising introduced
by [54] to allow agents “to make their implicit knowledge explicit”. Logical models taking
into account agent’s awareness have previously been defined in the literature. As Halpern [28]
states, traditionally when reasoning about agents’ beliefs, it is assumed they are aware of
every proposition. Modica and Ristichini [39] first came up with a definition of awareness
based on knowledge, stating that an agent is aware of p if he knew p or if he knew he did
not know p. Halpern extends on this by introducing implicit knowledge, where agents are
aware of all propositions and can reason with them ; and explicit knowledge, which captures
the conclusions of which the agent is explicitly aware of. In this system, explicit knowledge
is also implicit, while the reverse is not necessarily true.

Previous works have proposed models for agents in computational narratives such as [40]
or [12] based on Belief, Desire and Intention (BDI). In [47], a BDI agent aiming to simulate
player behavior in interactive stories takes into account the player personality. Other work
has assigned personality stereotypes to users [52, 4] according to their interactions with the
system. Whilst such models allow personalizing an interactive narrative, they would not
enable a storytelling engine to finely drive the narrative tension. By contrast, the Suspenser
system by [15] offers an operationalization for suspense elicitation, one of the three drivers
of narrative tension. In Suspenser, suspense is maximized by ordering multiple story bits
at the discourse level. We lay in this paper the groundwork for ultimately representing in
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a unified logical framework suspense, curiosity and surprise, the three drivers of narrative
tension. This will build strong foundations for future generative and interactive systems able
to operate both at the story and discourse levels.

We approach the modelization of curiosity, suspense and surprise as constructs at given
moments of a narrative experience from the listener’s beliefs and by non-monotonic reasoning
about these beliefs. Doing so, we believe our model is compatible with previous formalization
while providing new insights.

3 Formalizing curiosity, surprise and suspense

We first present an example to illustrate the concepts introduced throughout this article.

▶ Example 1 (The box). To illustrate the framework, we present a short story involving
three agents, Albert, Erwin as well as a protagonist Cecilia2 (respectively agents A, E and
C). A short narrative : “Cecilia enters her office. She sees a box lying on her desk that was
not there when she last left the room.” Our hypothesis is that this event sparks curiosity in
Cecilia’s mind. We look at it from the point of view of Cecilia who reasons in a closed world
where nothing, except three particular events (Albert putting a box on Cecilia’s desk, Erwin
doing it, Cecilia opening the box) can interact with the state of the world.

We consider a set of variable symbols V denoted by Latin lower case letters, from this
set of symbols we build the vocabulary VT containing all variables of V indexed by all the
integers taken in the set T = {0, 1, .., N} representing time points. L is the propositional
language based on VT with the usual connectors and constants ∨, ∧, ¬, →, ≡, ⊥ and ⊤
denoting respectively the logical connectors “or”, “and”, “not”, material implication and
logical equivalence, contradiction, and tautology. The symbol |= represent satisfiability.
Let Ω denote the set of interpretations induced by VT , we will often use ω for naming a
particular interpretation in Ω, each interpretation will be described by the list of literals
satisfied by it, e.g., considering the vocabulary V = {a, b}, and a set of two time points
T = {0, 1} ω = (a0, ¬b0, ¬a1,¬b1) is an interpretation in Ω that associates the truth
value True to a and False to b at time step 0 and False to a and b at time step 1. The set
Mod(A) ⊆ Ω is the set of interpretations satisfying the set of propositional formulas A ⊆ L
(Mod(A) = {ω ∈ Ω|ω |=

∧
φ∈A φ}), the same notation is used to represent the set of models

of a formula Mod(φ) = {ω ∈ Ω|ω |= φ}.

▶ Example 1 (continued). To study this flow of events taking place in 4 time steps denoted
T = {0, 1, 2, 3} we need a vocabulary V = {box, A, E, C, empty, visible} meaning respectively
there is a box on Cecilia’s desk, agent A puts a closed box on the desk, agent E puts a closed
box on the desk, agent C opens the box, there is nothing in the box and something inside the
box is uncovered (and thus the box has been opened). In the language L built on V and T , the
following expression is an example of a well-formed formula: (A0 ∨E0)∧box1 ∧C2 ∧¬empty2.

Default rules are rules that tolerate exceptions and allow us to reason in presence of
incomplete information, by assuming that the situation is not exceptional when there is no
evidence for the contrary. The notation α⇝ β (with α, β ∈ L) is used to represent a default
rule interpreted as when α is true, it is more plausible that β is true than false.

2 We consider a story involving Albert Einstein, Erwin Schrödinger and Cecilia Payne-Gaposchkin, hence
the cat in the title.

TIME 2024



10:6 What Killed the Cat? Towards a Logical Formalization of Curiosity in Narratives.

▶ Example 1 (continued). In order to be able to encode this example we propose to use
default rules to express that by default some fluents keep their value: the following rule is
expressing that when there is no box at time point 0 then by default there is no box at time
point 1: ¬box0 ⇝ ¬box1. This rule admits exceptions: namely, if A puts a box on the desk
at time point 0 then generally there is a box at time point 1: A0 ∧ ¬box0 ⇝ box1.

Given a set of default rules ∆ it is possible to define a ranking of these rules according
to their specificity, thanks to “System Z” algorithm [42], the default base is then called
stratified, its stratas are the formulas with the same rank3. Note that there are sets of default
rules that do not admit a Z ordering, such default sets are called “inconsistent” in [26]. In
this paper, we restrict ourselves to consistent default sets. From a stratified default base
lexicographic-entailment [6, 32] is a non-monotonic inference relation which imposes that the
more specific the rules, the more mandatory it is to comply with them:

▶ Definition 1 (Lex-inference [6]). Let ∆ = ∆1 ∪ · · · ∪ ∆n be a stratified default base with n
strata ordered from the most specific strata ∆1 to the least specific one ∆n, and let A and B
be two subsets of ∆, and α, β be two formulas of L,

Notations: str (for “strict”) is a function that translates a set of default rules into a set
of formulas of L, i.e., str(A) =

⋃
α⇝β∈A{¬α ∨ β}. For all i ∈ [1, n], and any E ⊆ ∆, Ei

denotes the ith strata of E: Ei = E ∩ ∆i.
A is Lex-preferred to B given ∆, denoted A ≻∆ B,

iff there exists k ∈ [1, n] s.t.
{

|Ak| > |Bk| and
∀i < k, |Ai| = |Bi|

A is a Lex-preferred α-consistent subbase of ∆ if A ⊆ ∆ and str(A) ∪ {α} ̸|= ⊥ and for
any B ⊆ ∆ s.t. str(B) ∪ {α} ̸|= ⊥, B ̸≻∆ A holds
α |∼∆ β iff for any Lex-preferred α-consistent subbase B of ∆, str(B) ∪ {α} |= β

▶ Example 1 (continued). Let us consider that the common knowledge about the world
consists only in the default persistence of the fluents box, empty and visible and on the
default effects of the occurrences of events A, E and C when their preconditions hold.

∆ =



¬box0 ⇝ ¬box1 (A0 ∨ E0) ∧ ¬box0 ⇝ box1
box0 ⇝ box1 C0 ∧ ¬visible0 ⇝ visible1
¬empty0 ⇝ ¬empty1 C0 ∧ ¬visible0 ∧ empty0 ⇝ ¬visible1
empty0 ⇝ empty1 ¬box1 ⇝ ¬box2
¬visible0 ⇝ ¬visible1 ...

visible0 ⇝ visible1 C2 ∧ ¬visible2 ∧ empty2 ⇝ ¬visible3


System Z will give a stratification in three strata where all persistence rules (of the form

vt ⇝ vt+1 or ¬vt ⇝ ¬vt+1) are in the least specific stratum ∆3 (since they are tolerated
by all the other rules). As seen before, (A0 ∨ E0) ∧ ¬box0 ⇝ box1 describes an exception
to the persistence of ¬box, just as C0 ∧ ¬visible0 ⇝ visible1 describes an exception to the
persistence of ¬visible which leads us to place them in ∆2, the latter itself admits an exception
described by rule C0 ∧ ¬visible0 ∧ empty0 ⇝ ¬visible1 making it the most specific rule thus
placed in ∆1 by System Z algorithm. At the end, we get:

3 System Z ordering method is based on the tolerance notion between rules. More precisely, a rule
r = α ⇝ β is tolerated by a set of n rules R ⊆ ∆ iff α ∧ β ∧

∧
αi⇝βi∈R

(¬αi ∨ βi) is consistent. The
process continues until ∆ contains only rules tolerated by all the other ones, they constitute the most
specific stratum called ∆1 (∆n being the least specific stratum, with n being the number of iterations).
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∆1 =
{
Ct ∧ ¬visiblet ∧ emptyt ⇝ ¬visiblet+1

}
t∈{0,1,2}

∆2 =
{
Ct ∧ ¬visiblet ⇝ visiblet+1
(At ∨ Et) ∧ ¬boxt ⇝ boxt+1

}
t∈{0,1,2}

∆3 =
{
vt ⇝ vt+1
¬vt ⇝ ¬vt+1

}
t ∈ {0, 1, 2}
v ∈ {box, empty, visible}

Using lexicographic inference we get: ¬box0 |∼∆ ¬box1 and ¬box0 ∧ (A0 ∨ E0) |∼∆ box1,
meaning that a priori if there was no box at time 0, there is no box at time 1, but knowing
that either A or E has placed a box makes it more plausible that there is a box at time 1.

Note that in this example, for the sake of simplicity, we want to make a closed world
assumption (CWA) in order to express that the only possible way to change the variable
box (respectively visible) from false to true is the occurrence of A or E (respectively the
performance of action C):

CWA = {(¬boxt ∧ boxt+1) → (At ∨ Et), (¬visiblet ∧ visiblet+1) → Ct}t∈{0,1,2}

From the set of default rules and the close world assumption, we can then obtain: {box1} ∪
CWA |∼∆ box0 meaning that the most plausible interpretation is that when there is a box at
time point 1 it means that there was already a box at time 0. However, if we know that there
were no box at time 0 then {box1,¬box0} ∪ CWA |∼∆(A0 ∨ E0)

We choose to use the lexicographic entailment in this paper, because [6] have shown that
it is a powerful non-monotonic inference relation that satisfies the set of rational properties
called System P. The System P, introduced by Kraus, Lehmann and Magidor [31], gathers
properties that should follow rationally when one wants to deduce new inferences from a set
of existing inference rules. The following definition describes an agent epistemic states via
the pieces of information that she believes.

▶ Definition 2 (Agent epistemic state and inference). A user is represented by a tuple
B = (F,BL, B∆) composed of a set F ⊆ L of formulas representing facts, and two sets
BL ⊆ L and B∆ respectively representing the strict and default rules known by the agent, the
default rules of B∆ are expressions of the form α⇝ β with α, β ∈ L.

When F ∪BL and B∆ are both consistent4, the user is equipped with an inference relation
between formulas of L denoted |∼B defined by:

α |∼B β iff
{α} ∪ F ∪BL is consistent and
for any Lex-preferred (α ∧

∧
φ∈F ∪BL

φ)-consistent subbase A ∈ B∆,

A ∪ {α} ∪ F ∪BL |= β

In the following, |∼B φ is a shortcut for ⊤ |∼B φ.

In order to formally introduce curiosity, we need to define awareness. This will be done
by simply stating that an agent is aware of a variable if this variable appears in the facts
contained in its epistemic state, and we assume that when an agent is aware of a variable
then it becomes also aware of every variable of the strict or default rules of its epistemic
state containing this variable (mimicking a kind of introspection). We use the notation v⊂φ
to express that the variable v appears in the formula φ, this notation can be applied to
variables of VT as well as of V.

4 Here consistent is not used with the same meaning: for the propositional formulas it means classical
logic consistency, while for the default rules base it means that the base can be stratified.

TIME 2024
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▶ Definition 3 (awareness). An agent represented by B = (F,BL, B∆) is
aware of a variable v ∈ V if

there is a formula φ ∈ F s.t. v⊂φ or
there is a formula φ ∈ BL ∪ str(B∆) s.t. v⊂φ and there is a variable v′ ⊂φ of which
the agent is aware; and

aware of a formula φ ∈ L iff for any variable vt ⊂φ, the agent is aware of v.

▶ Example 1 (continued). Let us consider that the epistemic state of agent C is (∅,CWA,∆ =
∆1 ∪ ∆2 ∪ ∆3), in this case it does not know any fact, which means that it is not aware of
anything. Assume now that at time point 1, our agent Cecilia comes to her office and sees a
box on her desk, then the epistemic state of agent C is ({box1},CWA,∆). In this state, it is
aware that a box is on the desk, moreover by introspection its is aware of the possibility to
open it due to rule concerning C, the possibility that Albert or Erwin are able to put it on the
desk, the possibility that this box is empty or that something inside of it could be visible.

The following definition enables us to keep only formulas that do not concern a time
point later than a given time point t, i.e., keep the formulas such that all their variables are
indexed by time points no later than t.

▶ Definition 4 (epistemic state until t). Given an epistemic state (F,BL, B∆) and a time
point t ∈ [0, N ], the epistemic state until t, denoted B→t = (F→t, BL→t, B∆→t), is defined
by: F→t = {φ ∈ F | for all vt′ ⊂φ, t′ ≤ t}, BL→t = {φ ∈ BL| for all vt′ ⊂φ, t′ ≤ t}, B∆→t =
{δ ∈ B∆| for all vt′ ⊂str({δ}), t′ ≤ t}.

In the following, we use [φ]<t (and respectively [φ]≤t, [φ]>t, [φ]≥t and [φ]t) to denote
that φ is a formula containing only variables indexed by time points earlier than t (resp.
earlier than or equal to t, strictly later than t, later than or equal to t, equal to t).

▶ Remark 1. For any formula φ ∈ F→t ∪BL→t ∪ str(B∆→t), [φ]≤t holds.

An agent is curious about a formula at time point t if according to its epistemic state until t
it is aware of this formula but it is not able to deduce its truth value at time t.

▶ Definition 5 (curiosity). An agent with state B is curious about φ ∈ L at t ∈ T if, according
to B→t, it is aware of φ and |̸∼B→t

φ and |̸∼B→t
¬φ.

▶ Example 2. Coming back to Example 1, the epistemic state of C being B = ({box1},
CWA, ∆), its state at 0 is B→0 = (∅, ∅, ∅), meaning that at 0 it is aware of nothing, thus
according to Definition 5 it is not curious about anything at 0. In the epistemic state B, she
first thinks that {box1} ∪ CWA |∼∆ box0. However, she remembers that there was no box on
her desk at time 0 before she left her office. Meaning that her epistemic state is now B′ =
({¬box0, box1},CWA,∆) which enables her to draw the inference {¬box0, box1} |∼B′(A0∨E0),
however there is no way of knowing which of Albert or Bernard (or both) dropped off the box.
More formally, we can say that Cecilia is curious about the possibility that Albert dropped
off the box at time 0 because she is aware of this possibility and {¬box0, box1} |̸∼B′ A0 and
{¬box0, box1} |̸∼B′ ¬A0.

Now if we consider that Albert told Cecilia that he placed a box on her desk at 0 before
she entered her office. In that case, the epistemic state of Cecilia is B′′ = ({A0, ¬box0,
box1},CWA,∆), there is no more ambiguity as she knows who put it there, hence she is not
curious about A0.
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To define suspense, we propose for this formalization to use Baroni’s description of
primary suspense [5] which relies solely on temporal and belief factors. Baroni also describes
other types of suspense involving different emotional components (empathy and identification
with a protagonist for instance). These components affect suspense by strengthening the
intensity of curiosity, and we will leave them for further study at the time being. The
following definition expresses that an agent feels suspense about a formula φ when this agent
is curious about it at time t, and thinks that it is not impossible for facts or events (below
denoted ψ) to come to light and reveal the truth of φ (satisfying curiosity about it at last).

▶ Definition 6 (suspense). An agent represented by an epistemic state B = (F,BL, B∆) feels
suspense about φ ∈ L at time point t if
1. according to B, the agent is curious about φ at time t and
2. there is a formula ψ ∈ L such that [ψ]>t and F→t ∪BL ∪ {ψ} consistent and
3. there is t′ > t s.t. either |∼B′ φt′ or |∼B′ ¬φt′ holds, with B′ = (F ∪ {ψ}, BL, B∆).

▶ Example 3. In the context of Example 1, assume now that agent C has the following
epistemic state B = ({¬box0, box1,¬visible1},CWA,∆). Here, at time 1 agent C is aware
of the box, she is also aware that it is either empty or not, but has no way at this time to
know which is true. Formally, |̸∼B empty and |̸∼B ¬empty. Hence she is curious about the
variable empty at time point 1. Still according to Definition 3, the agent is also aware of the
formulas (C2 ∧ ¬visible2 ⇝ visible3) and (C2 ∧ ¬visible2 ∧ empty2 ⇝ ¬visible3). Meaning
she is aware she will know the content of the box once she opens it.

More precisely, the formula ψ = C2∧visible3 can be added to the facts of the epistemic state
because {¬box0, box1,¬visible1} ∪ CWA ∪{C2 ∧ visible3} is consistent. Now, B′ = ({¬box0,
box1, ¬visible1, C2, visible3},CWA,∆) yields |∼B′ ¬empty2. Hence Cecilia feels suspense
at time 1 about the truth value of empty.

In order to formalize surprise, following [20], we propose to exploit our non-monotonic
setting that enables agents to imagine several more or less plausible situations, i.e., enables
them to incorporate new contradicting information by revising previous conclusions. This is
required in order to avoid locking the agent in a state of total incomprehension. Surprise can
then be defined by the occurrence of a formula that was unexpected but which is completely
plausible.

▶ Definition 7 (surprise). An agent represented by B = (F,BL, B∆) is surprised at time
t about a formula φ ∈ L if φ ∈ F→t and B→t is consistent (φ occurred and it was not
impossible) and B′ = (F→t−1, BL→t, B∆→t) is such that: |∼B′ ¬φ (φ was unexpected)

▶ Example 2 (continued). Cecilia is surprised to find the box at time 1. Indeed, given the
epistemic state B = ({¬box0, box1},CWA,∆), before seeing the box at time 1, the persistence
of ¬box0 into ¬box1 was the most plausible evolution. More formally, we can check that
box1 ∈ F and B′ = ({¬box0},CWA→1,∆→1) is such that |∼B′ ¬box1, and B is consistent
(hence B→1 as well).

4 Properties and graduality

In this section we show several simple properties relating the three emotions, moreover we
establish the computational complexity of their detection.

TIME 2024
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4.1 Properties derived from the definitions
An agent who knows nothing is aware of nothing.

▶ Proposition 1. If the epistemic state of an agent has no fact, i.e, B = (∅, BL, B∆) then
the agent is not aware of any variable.

Proof. Even if BL or B∆ are non-empty, there is no awareness since no variable appears
in F . ◀

This kind of agent is not curious nor able to feel suspense since curiosity requires awareness,
and suspense requires curiosity.

▶ Corollary 2 (of Proposition 1). If the epistemic state of an agent has no fact, i.e., B =
(∅, BL, B∆), then the agent is not curious and does not feel suspense about any formula at
any time point.

The following proposition states that an omniscient agent (i.e., an agent with complete
information about the world) is never curious nor able to feel suspense.

▶ Proposition 2. If the epistemic state B = (F,BL, B∆) of an agent admits only one most
plausible interpretation in Ω, then for any finite formula, there is no time point where the
agent is curious or feels suspense about it.

Proof. In order to be curious, there should exist at least one variable whose truth value
is unknown. Hence there should be at least two interpretations that are equally most
plausible. ◀

Because surprise occurs when the agent expects something and then the opposite happens,
it means that it is not curious about it (because the surprise makes it know it).

▶ Proposition 3. Given an epistemic state B of an agent, if the agent is surprised about φ
at time t then the agent is not curious about φ neither at time t− 1 nor at time t.

Proof. Let us assume that B = (F,BL, B∆) is surprised at time t about a formula φ ∈ L,
it means that φ ∈ F→t and B→t is consistent and B′ = (F→t−1, BL→t, B∆→t) is such that:
|∼B′ ¬φ. It means that the agent could infer the truth value of φ at time t− 1, hence she
was not curious at t− 1. Now since φ ∈ F and B→t consistent then |∼B→t

φ hence she is not
curious about it at t. ◀

This proposition shows that surprise and curiosity are antagonists in a given epistemic
state, however we can imagine stories where the same event sequence may produce curiosity
(e.g. by keeping some information hidden, namely the name of the murderer) when told in a
given way and surprise when told differently (e.g. revealing this same information at start).
The following proposition shows the complexity class of the decision problems associated to
awareness, curiosity, suspense and surprise.

▶ Proposition 4. Given an epistemic state B, a formula φ ∈ L and a time point t ∈ T ,
Deciding whether B is aware of φ at time point t is linear
Deciding whether B is curious or feels suspense or surprise about φ at t is PNP-complete.

Proof. In order to check awareness about a variable, it is enough to check membership of
this variable to a set of formulas, which is linear in the size of the epistemic state, this process
should be repeated for all the variables of a formula to check formula awareness. Concerning
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A0 E0 C0box0empty0 visible0

A1 E1 C1box1empty1 visible1

Figure 1 Causal graph induced by the epistemic state B→1.

curiosity, in addition to a test of awareness, it uses two lexicographic inference tests which
have been shown to be in PNP by [21]. Suspense requires a curiosity check and a consistency
check of the strict part of the base B, which is a SAT problem hence NP-complete. It then
requires several lexicographic inferences in order to find the time point where |∼B′ φt′ or
|∼B′ ¬φt′ holds. Surprise requires a consistency check of the default base of B (which is a
PNP-complete problem according to [21]) and a lexicographic inference, hence the result. ◀

The complexity PNP of these decision problems is due to the use of the lexicographic
inference in their definition. Note that the upper bound (N) on time steps could relieve
the computational complexity as obtained in traditional STRIPS planning [11] where the
complexity of certain decision problems drops from PSPACE-complete to NP-complete.
Note also that formulation of AI planning in answer set programming gives rise to similar
complexity [50].

4.2 Towards defining measures
For further characterizing narrative tension, we need to quantify the intensity of the emotions
generated in an agent when listening to a story. This section is a first attempt towards
this goal. We propose three definitions of the emotional intensity of curiosity, suspense and
surprise. In the following definition we propose to rely on findings from Trabasso and Sperry
[53] as a heuristic in order to evaluate the intensity of the curiosity. We first define the causal
graph associated with an epistemic state as the one relating variables of VT with the links
induced by the default rules and strict rules of the epistemic state.

▶ Definition 8 (causal graph). The causal graph GB induced by an epistemic state B =
(F,BL, B∆) is a pair (VB , EB) with

VB = {vt ∈ VT |vt ⊂φ,φ ∈ F ∪BL ∪ str(B∆)} is the set of vertices of GB

EB = {(vt, v
′
t′) ∈ VT × VT |vt ⊂α, vt′ ⊂β, α⇝ β ∈ B∆} ∪

{(vt, v
′
t′) ∈ VB × VB | {lt} ∪ F ∪BL |= l′t′ with lt ∈ {vt,¬vt}, l′t ∈ {v′

t′ ,¬v′
t′}}

We illustrate this definition on the epistemic state of Cecilia until time point 1.

▶ Example 3 (continued). Considering B = ({¬box0, box1,¬visible1},CWA,∆), the causal
graph induced by B→1 is shown in Figure 1.

▶ Definition 9 (curiosity intensity). Given an agent with state B = (F,BL, B∆) and curious
about φ ∈ L at t ∈ T , her curiosity intensity level is cB(φ, t) =

∑
vt′ ⊂φ deg(vt′) where

deg(x) is the degree of the node x in the causal graph induced by B.

▶ Example 3 (continued). Given the epistemic state of Cecilia B = ({¬box0, box1, ¬visible1},
CWA, ∆), she is the most curious about ¬visible1 with intensity 5, denoted cB(¬visible, 1) =
5. Not that the degree of visible1 is only four on Figure 1 but there is a supplementary
outgoing arc from visible1 to visible2 when considering B instead of B→1.
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Suspense intensity

0
t

t0

SMax

c

α β γ

Figure 2 Suspense intensity along time (c being the level of curiosity felt at time t0).

Lets us now consider an example of suspense evolution. As previously explained, we base
our definition only on beliefs and time. According to Baroni [5], once curiosity is aroused
then the suspense begins and lasts until it reaches a plateau, at which point it diminishes
and gradually fades away, unless the suspense is resolved in the meantime. We propose to
consider that the suspense profile of an agent is available under the form of a quadruplet
(α, β, γ, SMax) where α is the duration before reaching the maximum of intensity SMax, β
the length of the plateau and γ the descent duration (see Figure 2). Thus, suspense intensity
is a function of the curiosity intensity at the time it is first felt and of the duration between
its triggering and its resolution.

▶ Definition 10 (suspense intensity). Given an epistemic state B = (F,BL, B∆) and a
suspense profile p = (α, β, γ, SMax) then the intensity of the suspense feeling at t is

sp
B(φ, t) =



0 if t < t0
SMax −c

α (t− t0) + c if t ∈ [t0, t0 + α]
SMax if t ∈ [t0 + α, t0 + α+ β]
− SMax

γ (t− t0 − α− β) + SMax if t ∈ [t0 + α+ β, t0 + α+ β + γ]
0 if t ≥ t0 + α+ β + γ

where t0 is the earliest time where the agent was curious about φ and c = cB(φ, t0) is the
curiosity intensity at t0.

Note that in this definition, the suspense intensity may only vary according to the profile
of the agent and the duration. A more refined way to handle this would be to define a
decreasing persistence of awareness, enabling the agent to forget a variable after some delay,
it would be in accordance with the common knowledge that the suspense should be revived
from time to time.

Concerning surprise intensity about a formula φ, we propose to adopt the point of view
of Shackle [48] as done in [20], by assimilating it to the degree of impossibility of φ (or
equivalently the possibility degree of ¬φ). It amounts to finding the most specific rule that
is violated by φ ∪ F ∪BL, the more specific this rule, the more surprising φ becomes5.

▶ Definition 11 (surprise intensity). Given an epistemic state B = (F,BL, B∆ = ∆1 . . .∆n)
where there is a surprise at time t, the surprise intensity is surpB(φ, t) = n− i, where i is
the most specific strata level, s.t. there is a rule α⇝ β ∈ ∆i with {φ ∧ α} ∪ F ∪BL |= ¬β.

The definitions of this section are a first step towards being able to compare stories with
respect to the intensity of emotions they generate in the agent listening to them.

5 Such a definition is classical in possibility theory, and more specifically in the context where a default
rule α⇝ β is interpreted as a constraint on a possibility measure Π see e.g., [7]. This constraint being
Π(α ∧ β) > Π(α ∧ ¬β) expressing that when α is true, having β true is more possible than β false.
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5 Conclusion

This paper aims at providing a unified framework in which the three emotions at the
heart of narrative tension, namely curiosity, surprise, and suspense are formalized and their
relationships clarified. This framework is built on non-monotonic reasoning for representing
compactly the default behavior of the world and also for simulating the reasoning of an
agent in front of a story. The use of non-monotonic reasoning induces a cost in complexity:
the detection problems associated with the three emotions are in PNP (due to the use of
lexicographic inference). For each of the three emotions, we describe methods to evaluate
their intensity.

While we illustrated our formalization by adopting the point of view of a single agent in a
chronological story for the sake of clarity, it does not preclude its adaptability for storytelling
using other points of views such as an extradiegetic narrator disclosing knowledge to the
listener through a discourse that does not reflect the timeline of the story.

To operationalize this model, we plan to investigate different frameworks that are equipped
with solvers namely PDDL planning, Linear logic with Ceptre [35] and propositional default
logic with TouIST [49]. Moreover, the inherent growing complexity of this problem for
scaling to complex narratives requires further study about the granularity of story events,
for instance inspired by discussions about the representation of causality [36].
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