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Abstract
In [Math. Oper. Res., 2011], Fleischer et al. introduced a powerful technique for solving the generic
class of separable assignment problems (SAP), in which a set of items of given values and weights
needs to be packed into a set of bins subject to separable assignment constraints, so as to maximize
the total value. The approach of Fleischer at al. relies on solving a configuration LP and sampling a
configuration for each bin independently based on the LP solution. While there is a SAP variant for
which this approach yields the best possible approximation ratio, for various special cases, there
are discrepancies between the approximation ratios obtained using the above approach and the
state-of-the-art approximations. This raises the following natural question: Can we do better by
iteratively solving the configuration LP and sampling a few bins at a time?

To assess the potential of the iterative approach we consider a specific SAP variant as a case-study,
Uniform Cardinality Constrained Multiple Knapsack, for which we answer this question
affirmatively. The input is a set of items, each has a value and a weight, and a set of uniform capacity
bins. The goal is to assign a subset of the items of maximum total value to the bins such that (i)
the capacity of any bin is not exceeded, and (ii) the number of items assigned to each bin satisfies a
given cardinality constraint. While the technique of Fleischer et al. yields a

(
1 − 1

e

)
-approximation

for the problem, we show that iterative randomized rounding leads to efficient polynomial time
approximation scheme (EPTAS), thus essentially resolving the complexity status of the problem.
Our analysis of iterative randomized rounding may be useful for solving other SAP variants.
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1 Introduction

We consider problems in the class of maximizing assignment problems with packing constraints,
also known as separable assignment problems (SAP). A general problem in this class
is defined by a set of bins and a set of items to be packed in the bins. There is a value vij

(also called profit sometimes) associated with assigning item i to bin j. We are also given a
separate packing constraint for each bin j. The goal is to find an assignment of a subset of
the items to the bins which maximizes the total value accrued. This class includes several
well studied problems such as the generalized assignment problem (GAP).
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In [12], Fleischer at al. introduced a powerful technique for solving SAP and its variants.
The technique relies on first solving a configuration linear programming (configuration-LP)
relaxation of the problem. Subsequently, configurations (i.e., feasible subsets of items for a
single bin) are sampled independently according to a distribution specified by the LP solution
to obtain an integral solution for the given instance. For many SAP variants, such as GAP,
the approximation guarantee of the resulting algorithm is (1− 1/e).

Intuitively, we can do better using the following iterative randomized rounding approach:
Iteratively solve a configuration LP relaxation of the problem for the remaining items and
bins and sample a few configurations based on the distribution specified by the LP solution,
until all bins are used. We note that if the LP is solved only once and all of the bins are
packed based on the solution, then we have exactly the algorithm of Fleischer et al. [12].
This raises the following question:

Can iterative randomized rounding improve the approximation ratio of [12]?

As shown in [12], under standard complexity assumptions, there is a SAP variant for
which their approximation ratio of (1− 1/e) is the best possible. However, for various
special cases (such as multiple knapsack and GAP), there are discrepancies between
the approximation guarantee obtained using the algorithm of [12] and the state-of-the-art
approximations. This indicates that the iterative approach may potentially lead to improved
approximation for some variants (compared to [12]). Hence, to assess the potential of the
iterative approach we focus as a case study on one interesting SAP variant, namely, Uniform
Cardinality Constrained Multiple Knapsack (CMK). Specifically, we show that
iterative randomized rounding is superior to the technique of [12] and use it to essentially
resolve the complexity status of this problem.

An input for CMK consists of a set of items, each has a value and a weight, and a set of
uniform capacity bins. The goal is to assign a subset of the items of maximum total value
to the bins such that (i) the total weight of items in each bin does not exceed its capacity,
and (ii) the number of items assigned to each bin satisfies a given cardinality constraint.1
CMK has real-world applications in cloud computing, as well as in manufacturing systems
and radio networks (see the full version of the paper [9]).

1.1 Related Work
Iterative randomized rounding of configuration-LPs has been recently used for obtaining the
current state-of-the-art approximation for vector bin packing in [17]. In this problem, the
goal is to pack a set of items, each given by a d-dimensional size vector for some d > 1, in a
minimum number of d-dimensional bins, where a subset of items fits in a bin if it adheres to
the capacity constraints in all dimensions. We are not aware of an application of iterative
randomized rounding of configuration-LPs for maximization problems.

The multiple knapsack with uniform capacities (UMK) problem is the special
case of CMK with no cardinality constraint, or equivalently, where the cardinality constraint
is larger than the total number of items. In the more general multiple knapsack (MK)
problem, the capacity of the bins may be arbitrary. In terms of approximation algorithms,
UMK and MK are well understood. A polynomial time approximation scheme PTAS for

1 See a more formal definition in Section 1.3.



I. Doron-Arad, A. Kulik, and H. Shachnai 27:3

UMK was given by Kellerer [16]. Later, Chekuri and Khanna [5] developed the first PTAS
for MK and ruled out the existence of a fully PTAS (FPTAS), already for UMK with only
two bins. Jansen designed more involved efficient PTAS (EPTAS) for MK [13, 14], thus
resolving the complexity status of the problem.2

For CMK, a randomized (1− 1/e)-approximation follows from the previously mentioned
results of Fleischer et al. [12] for SAP. More specifically, the authors present a randomized
algorithm for SAP whose approximation guarantee is ((1− 1/e) · β), where β is the best
approximation ratio for the single bin subproblem.3 A slightly more efficient approximation
ratio for CMK follows from a recent result of Cohen et al. [7] who give a randomized
(1− ln(2)/2− ε) ≈ 0.653-approximation for uniform 2-dimensional vector multiple knapsack.
In this problem, the cardinality constraint of CMK is generalized to a second knapsack
constraint.

We note that a PTAS for CMK can be obtained using ideas of [5]. We outline the main
steps. First, item values are discretized into O(log n) value classes, where n is the number of
items. Then, enumeration is used to roughly determine the number of items taken from each
value class. Clearly, one should take from each value class the items with smallest weights,
leading to a reduced problem of packing sufficient items from each value class in the m given
(uniform) bins. Packing these items in (1 + ε) ·m + O(1) uniform bins can be done using
an asymptotic FPTAS for bin packing with cardinality constraint [11] (or more generally,
for bin packing with a partition matroid [8]). Finally, the algorithm keeps the m bins with
highest values. We note that the running time of the enumeration step is very high. This
leaves open the question whether CMK admits an EPTAS.

1.2 Our Results
Our main contribution is in showing that iterative randomized rounding can substantially
improve the approximation guarantee of the configuration-LP rounding approach of [12]. The
analysis is based on concentration bounds; thus, our iterative algorithm is applied to a slightly
restricted subclass of CMK instances in which the value of each configuration is relatively
small, and the number of bins is large w.r.t. the given error parameter. Recall that even for
two bins the problem does not admit an FPTAS [5]. Hence, we do not expect the iterative
approach to work for a small number of bins. More specifically, given an error parameter
ε ∈ (0, 0.1) we say that a CMK instance I is ε-simple if (i) every feasible subset of items C

which can be packed in a single bin has value at most ε30 ·OPT(I), (ii) m > exp(exp(ε−30)),
and (iii) ε ·m ∈ N, where m is the number of bins and OPT(I) is the optimum value of I.4
For clarity, we first state our algorithmic result for the subclass of ε-simple CMK instances
(see Section 3 for more details).

▶ Theorem 1. For every ε ∈ (0, 0.1) and an ε-simple CMK instance I, iterative randomized

rounding (see Algorithm 1) returns a (1− ε)-approximation for I in time
(

|I|
ε

)O(1)
, where

|I| is the encoding size of I.

An in depth look into the algorithm of Fleischer et al. [12] reveals that the approximation
ratio of their algorithm on ε-simple instance is not better than

(
1− 1

e

)
, indicating the

improved ratio in Theorem 1 stems from the use of the iterative approach.

2 We give formal definitions of approximation schemes in Section 2.
3 The paper [12] shows that the existence of an FPTAS for the single bin subproblem, as in the case

of 0/1-knapsack with cardinality constraint, implies a (1 − 1/e)-approximation for the corresponding
variant of SAP.

4 In our discussion of ε-simple instances, we did not attempt to optimize the constants.
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We give a simple reduction showing that our algorithm for ε-simple instances yields a
randomized EPTAS for general CMK instances.

This essentially resolves the complexity status of CMK, since an FPTAS is ruled out [5].

▶ Theorem 2. There is a randomized EPTAS for CMK.

For the proof of Theorem 2 see Section 3.

1.3 Technical Overview
In the following, we outline our algorithmic approach and its analysis. For clarity, we focus
in this section on high-level ideas and omit some technical details to improve clarity. We
start with a more formal definition of CMK. An instance of CMK consists of a set of items
I, a weight function w : I → [0, 1], a value function v : I → R≥0, a number of bins m ∈ N>0,
and a cardinality constraint k ∈ N>0. A solution is a tuple (C1, . . . , Cm) such that for all
j ∈ {1, . . . , m} it holds that Cj ⊆ I, |Cj | ≤ k and w(Cj) =

∑
i∈Cj

w(i) ≤ 1. The value of
the solution (C1, . . . , Cm) is

∑
i∈S v(i) where S =

⋃m
j=1 Cj . The goal is to find a solution of

maximum value. Note that we allow the sets C1, . . . , Cm to intersect, but if an item appears
in multiple sets its value is counted only once.

The Algorithm

Our algorithm applies an iterative randomized rounding approach based on a configuration-
LP. The use of such linear program dates back to the work of Karmarkar and Karp on bin
packing [15], and such linear programs are commonly used in approximation algorithms for
resource allocation problems (e.g., [3, 1, 12, 13, 17, 7]).

We use a configuration polytope P (ℓ) ⊆ [0, 1]I , where ȳ ∈ P (ℓ) can be intuitively
interpreted as “there is a way to fractionally pack the items into ℓ bins such that each
item i ∈ I is packed ȳi times”. The algorithm takes as an input a value ε > 0 which serves
as a discretization factor and determines the approximation ratio. Our iterative approach
uses 1

ε iterations, and each iteration packs ε ·m of the remaining bins. Therefore, at the
beginning of the j-th iterations, (j − 1) · ε ·m bins were packed (in previous iterations) and
(1− (j − 1) · ε) ·m bins are still empty. We use Sj to denote the set of items that were not
packed by the end of the j-th iteration (and thus are still available for packing). The main
steps of the algorithm are as follows.

1. Initialize S0 ← I to be all the items.
2. For j from 1 to 1

ε do:
a. Solve the linear program

max
∑
i∈I

ȳi · v(i)

s.t. ȳ ∈ P (m · (1− (j − 1) · ε))
ȳi = 0 ∀i ∈ I \ Sj−1

(1)

That is, we want to obtain a maximum value using m · (1− (j − 1) · ε) bins and only
items in Sj−1. Let ȳj be the solution found.

b. Sample ε ·m bins according to the solution ȳj (defined more formally in later); update
Sj to be Sj−1 minus all the items packed in the current iteration.

3. Return the collection of m packed bins.
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The linear program in (1) can be approximated efficiently, but cannot be solved exactly in
polynomial time. For the purpose of this technical overview, we assume it can be solved
exactly. In Item 2b we use the randomized rounding technique for configuration LPs of
Fleischer et al. [12]. The same randomized rounding technique is commonly used by other
algorithms (e.g., [3, 1, 17, 2]). We give the full details on the sampling process in Section 3.

High Level Analysis

Let Qj be the set of items packed in the j-th iteration (that is, Qj = Sj \ Sj−1). In the j-th
iteration, the linear program uses m · (1− (j − 1) · ε) bins and attains value of

∑
i∈I ȳj

i · v(i),

with an average value of
∑

i∈I
ȳj

i
·v(i)

m·(1−(j−1)·ε) per bin. As the number of bins sampled in each
iteration is small, it can be shown that with high probability the average value per bin in
the packing generated by the randomized rounding is roughly the same as the average value
in the fractional solution. That is,∑

i∈Qj
v(i)

ε ·m
≈

∑
i∈I ȳj

i · v(i)
m · (1− (j − 1) · ε) ,

or equivalently,

∑
i∈Qj

v(i) ≈ ε ·
∑

i∈I ȳj
i · v(i)

1− (j − 1) · ε .

Observe the left hand term is the value attained from items packed in the j-th iteration. In
each iteration of the algorithm the distribution by which the bins are sampled is updated, so
the algorithm does not pack items already packed in previous iterations (by the constraints
ȳi = 0 for i ∈ I \ Sj−1 in (1)). Thus, we have that Q1, . . . , Qε−1 are disjoint. It follows that
the value of the solution returned by the algorithm is

v(I \ Sε−1) =
ε−1∑
j=1

∑
i∈Qj

v(i) ≈ ε ·
ε−1∑
j=1

∑
i∈I ȳj

i · v(i)
1− (j − 1) · ε (2)

Ideally, we would like the average value per bin to be (at least) OPT
m in each of the

solutions ȳj , where OPT is the value of the optimal solution of the instance. That is, the
average value per bin in each of the iterations remains the average value per bin in the
optimum. As ȳj conceptually uses m · (1− (j − 1)ε) bins, this implies that∑

i∈I

ȳj
i · v(i) ≳

OPT
m
·m · (1− (j − 1) · ε) = OPT · (1− (j − 1) · ε) , (3)

for every j ∈ [ε−1]. If we assume (3) holds and plug it into (2), we get that the value of the
solution returned by the algorithm is

v(I \ Sε−1) ≈ ε ·
ε−1∑
j=1

∑
i∈I ȳj

i · v(i)
1− (j − 1) · ε ≳ ε ·

ε−1∑
j=1

OPT · (1− (j − 1) · ε)
1− (j − 1) · ε = OPT.

That is, the algorithm returns a solution of value close to OPT (not strictly better naturally),
assuming (3) holds. This leaves us with the goal of showing that (3) holds with high
probability.

APPROX/RANDOM 2024



27:6 An EPTAS for Cardinality Constrained Multiple Knapsack

Linear Structures and Equation (3)

To show that (3) holds we define a random vector γ̄j ∈ [0, 1]I for every j ∈ [ε−1]. We use γ̄j

to lower bound the value of the configuration-LP. We show that with high probability (i) the
value of γ̄j (that is,

∑
i∈I γ̄j

i · v(i)) is ≈ (1 − (j − 1)ε) · OPT and (ii) γ̄j ∈ P ((1 + δ) ·mj)
where mj = (1− (j − 1) · ε) ·m is the number of remaining bins at the beginning of the j-th
iteration and δ > 0 is small. Once properties (i) and (ii) are shown, it follows that γ̄j

1+δ is
a solution of high value for the linear program in the j-th iteration, and (3) immediately
follows as the algorithm finds an optimal solution in every iteration. Property (i) is shown
using a simple calculation of the expected value of the vector γ̄j followed by an application
of a concentration bound which shows that with high probability the value of γ̄j does not
deviate afar from its expected value. Showing property (ii) is more challenging.

The polytope P (ℓ) can be represented via a finite set of linear constraints S ⊆ RI
≥0

by P (ℓ) = {ȳ ∈ [0, 1]I | ∀ū ∈ S : ū · ȳ ≤ ℓ} (the set S is the same for every ℓ). While S
is finite, its size is non-polynomial in the input instance. A naive approach to show that
γ̄j ∈ P ((1 + δ)mj) is to consider each constraint ū ∈ S separately, and apply concentration
bounds to show ȳ · ū ≲ mj with high probability. Subsequently, the union bound can be used
to lower bound the probability that ȳ · ū ≲ mj for every ū ∈ S simultaneously. However, due
to the large number of vectors in S, a direct application of the union bound does not lead to
such useful lower bound.

We use a linear structure to overcome the above challenge. The linear structure provides an
approximate representation of the configuration polytope using a small number of constraints
(that is, the number of constraints only depends on ε). As the number of constraints is
reduced, we can now apply the above logic successfully − use a concentration bound to show
that each constraint of the linear structure holds independently with high probability, and
then use the union bound to show that all the constraints hold simultaneously with high
probability. By the properties of the linear structure, once we show that all constraints hold,
we are guaranteed that γ̄j ∈ P ((1 + δ) ·mj), as stated in (ii).

The concept of linear structure was introduced in [17]. It is essentially a non-constructive
version of the subset oblivious algorithms used by the Round&Approx framework of [3]. We
construct the linear structure for CMK based on ideas from [17, 1]. The structure leverages
the relatively simple structure of the cardinality constraint.

Technical Contribution

In this paper, we present the first use of an iterative randomized rounding approach of
a configuration-LP for a maximization problem. As such, the paper provides the basic
foundations required for the analysis of iterative randomized rounding for maximization
problems. Iterative randomized rounding of a configuration-LP has been recently used for bin
packing problems in [17]. Indeed, in some places the analysis only requires simple adaptations
of ideas from [17]. In other parts, the adaptation is more challenging.

These challenges arise mainly due to the fact that while in bin packing all the remaining
items must be fully packed by the configuration-LP, in maximization problems the remaining
items may be partially selected or not selected at all by the configuration-LP. Thus, the
probability of an item to be packed after j iterations may take different values for different
items. In contrast, this probability is the same for all items in the case of bin packing.
Similarly, while in the case of bin packing all items must be packed by the configuraiton-LP
in every iteration, in maximization problem there is a degree of freedom in the selection
of items to be packed. This, in turn, led to a different approach for the use of the linear
structure.
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We note that while the paper [7] deals with a generalization of CMK and uses several
similar concepts (configuration LP, sampling, subset oblivious algorithms), the algorithm
in [7] does not use an iterative approach. It relies on two separate stages: the first uses a
randomized rounding of a configuration-LP that is solved once, and the second stage uses
a combinatorial algorithm. We believe the analysis of the iterative randomized rounding
algorithm presented in this paper will be useful in showing iterative randomized rounding
yields an improved approximation for the Uniform 2-dimensional Vector Multiple Knapsack
(2d-UMK) problem considered in [7]. The main challenge in applying our analysis to 2d-UMK
is that our analysis relies on a robust linear structure, which is unlikely to exist for 2d-UMK
(as that would lead to a PTAS, contradicting the hardness results in [7]). This can potentially
be bypassed with the use of an analog of the linear structure that holds for 2d-UMK and
adaption of the analysis to this potential structure.

1.4 Organization
In Section 2 we give some definitions and notation. Section 3 presents our main algorithm
and an outline of its analysis. In Section 4 we give the detailed analysis (proofs of Lemmas 6,
7, 10 and 11). The proofs of Lemma 9 and Lemma 4 are given in the full version of the
paper [9].

2 Preliminaries

We start with some definitions and notation. Let OPT(I) be the value of an optimal solution
for an instance I of a maximization problem Π. For α ∈ (0, 1], a solution x for the instance I

is an α-approximate solution if its value is at least α ·OPT(I). For α ∈ (0, 1], we say that A is
an α-approximation algorithm for Π if for any instance I of Π, A outputs an α-approximate
solution for I. An algorithm A is a randomized α-approximation for Π if for any instance I

of Π it always returns a solution for I, and the solution is an α-approximate solution with
probability at least 1

2 . A polynomial-time approximation scheme (PTAS) for a maximization
problem Π is a family of algorithms (Aε)ε>0 such that for any ε > 0, Aε is a polynomial-time
(1− ε)-approximation algorithm for Π. As the running time of a PTAS may be impractically
high, two restrictive classes of PTAS have been proposed in the literature: (Aε)ε>0 is an
efficient PTAS (EPTAS) if the running time of Aε is of the form f

( 1
ε

)
· nO(1), where f is an

arbitrary function, and n is the bit-length encoding size of the input instance; (Aε)ε>0 is
a fully PTAS (FPTAS) if the running time of Aε is bounded by

(
n
ε

)O(1). Given a boolean
expression D, we define 1D ∈ {0, 1} such that 1D = 1 if D is true and 1D = 0 otherwise.

We give an alternative definition of our problem that will be used in the technical sections.
An instance of CMK is a tuple I = (I, w, v, m, k), where I is a set of items, w : I → [0, 1]
is the weight function, v : I → R≥0 is the value function, m ∈ N>0 is the number of bins,
and k ∈ N>0 is the cardinality constraint. A configuration of the instance I is C ⊆ I such
that |C| ≤ k and w(C) =

∑
i∈C w(i) ≤ 1. Let CI be the set of all configurations of I, and

CI(i) = {C ∈ C | i ∈ C} the set of all configurations which contain i ∈ I. When clear from
the context, we simply use C = CI and C(i) = CI(i).

A solution of I is a tuple of m configurations S = (C1, . . . , Cm) ∈ Cm. The value of
the solution S = (C1, . . . , Cm) is v(S) = v

(⋃
b∈[m] Cb

)
(generally, for any set B ⊆ A and

a function f : A→ R≥0, we use f(B) =
∑

b∈B f(b)). The objective is to find a solution of
maximum value. Let OPT(I) be the optimal solution value for the instance I, and |I| the
encoding size of I. W.l.o.g., we consider a tuple with fewer than m configurations to be
a solution. In this case, for some r ≤ m, the tuple (C1, . . . , Cr) ∈ Cr is equivalent to the
solution (C1, . . . , Cr, ∅, . . . , ∅) ∈ Cm.

APPROX/RANDOM 2024



27:8 An EPTAS for Cardinality Constrained Multiple Knapsack

Our main algorithm, given in Section 3, is applied to a restricted subclass of simple
instances. We now give a more formal definition for this subclass of instances.

▶ Definition 3. Let ε ∈ (0, 0.1), We say that a CMK instance I = (I, w, v, m, k) is ε-simple
if the following conditions hold.

For every C ∈ C, we have that v(C) ≤ ε30 ·OPT(I).
m > exp(exp(ε−30))
ε ·m ∈ N.

We give a reduction showing that our algorithm for ε-simple instances yields a randomized
EPTAS for general CMK instances.5 This is formalized in the next lemma (we give the proof
in [9]).

▶ Lemma 4. Given ε ∈ (0, 0.1) such that ε− 1
2 ∈ N, let A be a randomized algorithm which

returns a (1− ε)-approximate solution for any ε-simple CMK instance I in time
(

|I|
ε

)O(1)
.

Then, there is a randomized EPTAS for CMK.

Theorem 2 follows from Theorem 1 and Lemma 4.

3 The Algorithm

In this section, we formally present our iterative randomized rounding algorithm for ε-simple
CMK instances. The algorithm relies on a linear programming (LP) relaxation of CMK that
we formalize through the notion of fractional solutions.

A fractional solution for an instance I = (I, w, v, m, k) is a vector x̄ ∈ RC
≥0; the value x̄C

represents a fractional selection of the configuration C for the solution. The coverage of x̄ is
the vector cover(x̄) ∈ RI

≥0 defined by

∀i ∈ I : coveri(x̄) = (cover(x̄))i =
∑

C∈C(i)

x̄C .

The vector x̄ is feasible if cover(x̄) ∈ [0, 1]I . The size of x̄ is ∥x̄∥ =
∑

C∈C x̄C (throughout
this paper, for every vector z̄ ∈ Rn we use ∥z̄∥ =

∑n
i=1 |z̄i|). The value of ȳ ∈ [0, 1]I is

v(ȳ) =
∑

i∈I ȳi ·v(i). The value of x̄ is the value of the cover of x̄, that is, v(x̄) = v(cover(x̄)).
For ℓ ∈ N>0, let [ℓ] = {1, . . . , ℓ}.

A solution S = (C1, . . . , Cm) for I, where C1, . . . , Cm are disjoint and non-empty, can be
encoded as a feasible fractional solution x̄ ∈ {0, 1}C defined by x̄Cb

= 1 for every b ∈ [m],
and x̄C = 0 for every other configuration. It is easy to verify that ∥x̄∥ = m, coveri(x̄) = 1
for every i ∈ S, coveri(x̄) = 0 for every i ∈ I \ S, and v(x̄) = v(S).

We use fractional solutions to define a linear program (LP). Let K be a set and γ̄ ∈ RK .
The support of γ̄ is supp(γ̄) = {i ∈ K | γ̄i ̸= 0}. Let I = (I, w, v, m, k) be a CMK instance.
For every set S ⊆ I of remaining items and ℓ ∈ N remaining bins, we define the configuration
LP of S and ℓ by

LP(S, ℓ) :

max v(x̄)
s.t. x̄ is a feasible fractional solution for I

supp(x̄) ⊆ 2S

∥x̄∥ = ℓ

5 In our discussion of ε-simple instances, we did not attempt to optimize the constants.
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That is, in LP(S, ℓ) exactly ℓ configurations are selected6, and these configurations contain
only items in S. We can formally define the configuration polytope P (ℓ) discussed in
Section 1.3 via fractional solutions by

P (ℓ) = {cover(x̄) | x̄ is a feasible fractional solution for I and ∥x̄∥ ≤ ℓ} . (4)

It can be shown that LP(Sj , (1− (j − 1) · ε) ·m) is equivalent to the linear program in (1).
A generalization of LP(S, ℓ) for the separable assignment problem (SAP) was considered

in [12]. Given pi ≥ 0 for every i ∈ I, the paper [12] shows that linear programs such as
LP(S, ℓ) admit an FPTAS whenever the single bin problem − of finding C ∈ C such that∑

i∈I pi is maximized − admits an FPTAS. As the single bin case of CMK has an FPTAS
(e.g., [4, 18, 10]), we get the following.

▶ Lemma 5. There is an algorithm which given a CMK instance I = (I, w, v, m, k), S ⊆ I,

ℓ ∈ N and ε > 0, finds a (1− ε)-approximate solution for LP(S, ℓ) in time
(

|I|
ε

)O(1)
.

Given a fractional solution x̄ such that ∥x̄∥ ̸= 0, we say that a random configuration
R ∈ C is distributed by x̄, and write R ∼ x̄, if Pr(R = C) = x̄C

∥x̄∥ for all C ∈ C.
The pseudocode of our algorithm for CMK is given in Algorithm 1. In each iteration

1 ≤ j ≤ ε−1, the algorithm uses the solution x̄j for LP(Sj−1, mj) to sample ε·m configurations,
where Sj−1 is the set of items remaining after iteration (j − 1), and mj is the number of
remaining (unassigned) bins.

Algorithm 1 Iterative Randomized Rounding.

input : Error parameter ε ∈ (0, 0.1), ε− 1
2 ∈ N, and an ε-simple CMK

instance I = (I, w, v, m, k)
output : A solution for the instance

1 Initialize S0 ← I

2 for j = 1, . . . , ε−1 do
3 Find a (1− ε)-approximate solution x̄j for LP(Sj−1, mj), where

mj = m (1− (j − 1) · ε).
4 Sample independently q = ε ·m configurations Rj

1, . . . , Rj
q ∼ x̄j .

5 Update Sj = Sj−1 \
(⋃q

b=1 Rj
b

)
.

6 Return as solution
(

Rj
b

)
1≤j≤ε−1, 1≤b≤q

Consider the execution of Algorithm 1 with the input I = (I, w, v, m, k) and ε ∈ (0, 0.1)
such that ε− 1

2 ∈ N. The notations we use below, such as x̄j , Sj , and Rj
b, refer to the variables

used throughout the execution of the algorithm. Clearly, Algorithm 1 returns a solution
for I. Furthermore, by Lemma 5, the running time of the algorithm is polynomial in I and
ε−1. Let V = v

(⋃ε−1

j=1
⋃q

b=1 Rj
b

)
= v (I \ Sε−1) be the value of the returned solution.

Main Lemmas

In the following, we describe the main lemmas we prove in order to lower bound the value
of V . The proofs of the lemmas are given in Section 4 and the full version of the paper [9].

6 Note that x̄∅ may be greater than 1.
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27:10 An EPTAS for Cardinality Constrained Multiple Knapsack

A simple calculation shows that the expected value of v(Rj
b), given all the samples up

to (and including) iteration (j − 1), is v(x̄j)
m·(1−(j−1)·ε) . To compute the expected value of

v
(⋃q

b=1 Rj
b

)
, we need to take into consideration events in which an item i ∈ I appears in

several configurations among Rj
1, . . . , Rj

q. In Section 4.2 we show that, since only a small
number of configurations are sampled in each iteration (in comparison to the overall remaining
number of bins), such events have small effect on the expected value (with the exception of
the last ε− 1

2 iterations). This observation is coupled with a concentration bound to prove
the next lemma.

▶ Lemma 6. With probability at least 1− exp
(
−ε−8), it holds that

V = v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I).

Lemma 6 is the formal statement of (2). Lemma 6 essentially reduces the problem of
deriving a lower bound for V to obtaining a lower bound on v(x̄j).

To obtain a lower bound for v(x̄j) we use the following steps. We define random
vectors γ̄j ∈ [0, 1]I for every j ∈ [ε−1] such that v(γ̄j) is high, and there is z̄j such that
cover(z̄j) = γ̄j−1 and ∥z̄j∥ ≈ mj . We scale down z̄j to obtain a solution for LP(Sj−1, mj)
of value ≈ v(γ̄j−1), and consequently get a lower bound for v(x̄j). We use a linear structure
defined below, to show the existence of z̄j . We further use auxiliary random vectors λ̄j to
define γ̄j .

Let (Ω,F , Pr) be the probability space defined by the execution of the algorithm. Define
the σ-algebras F0 = {∅, Ω} and Fj = σ

(
{Rj′

b | 1 ≤ j′ ≤ j, 1 ≤ b ≤ q}
)

. That is, Fj describes
events which only depend on the outcomes of the random sampling up to (and including) the
j-th iteration of the algorithm. We follow the standard definition of conditional probabilities
and expectations given σ-algebras (see, e.g., [6]).

Fix an optimal solution (C∗
1 , . . . , C∗

m) for the instance and let S∗ =
⋃m

j=1 C∗
j be the set of

items in this solution. Also, given a set S ⊆ I denote by 1S the vector z̄ ∈ {0, 1}I satisfying
z̄i = 1 for i ∈ S, and z̄i = 0 otherwise.

We define γ̄j and λ̄j inductively using S∗. Define γ̄0 = 1S∗ , that is γ̄0
i = 1 for every

i ∈ S∗ and γ̄0
i = 0 for every i ∈ I \ S∗. For every j ∈ [ε−1 − 1] define λ̄j ∈ RI

≥0 by

λ̄j
i = 1− j · ε

1− (j − 1)ε ·
1

Pr(i ∈ Sj | Fj−1) · γ̄
j−1
i (5)

for all i ∈ Sj−1 and λ̄j
i = 0 for i /∈ Sj−1. Intuitively, the expression Pr(i ∈ Sj | Fj−1) in (5)

is the probability that item i will still be available for packing after the j-th iteration, where
the probability is calculated at the end of the iteration j − 1. Also, for every j ∈ [ε−1 − 1]
define γ̄j ∈ RI

≥0 by

γ̄j
i = 1i∈Sj

· λ̄j
i ∀i ∈ I. (6)

Observe that λ̄j is Fj−1-measurable random variable whereas γ̄j is Fj-measurable. Intuitively,
this means that the value of λ̄j is known by the end of the (j − 1)-th iteration, while the
value of γ̄j is only known by the end of the j-th iteration.

The lower bound on v(γ̄j−1) relies on a simple calculation of expectations followed by a
concentration bound. By induction it can be shown that E[γ̄j−1

i ] = (1 − (j − 1)ε) · 1i∈S∗ ,
and therefore,

E[v(γ̄j−1)] = (1− (j − 1)ε) · v(S∗) = (1− (j − 1)ε) ·OPT(I).

We use concentration bounds to show that indeed v(γ̄j−1) does not deviate from its expected
value.
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▶ Lemma 7. With probability at least 1− exp(−ε−20), it holds that

∀j ∈ [ε−1] : v(γ̄j−1) ≥ (1− ε(j − 1)) ·OPT(I)− ε3 ·OPT(I).

We give the proof of Lemma 7 in the full version of the paper [9].
Our next challenge is to show that there is a solution for LP(Sj−1, mj) whose cover is

roughly γ̄j−1, which can be alternatively stated as γ̄j−1 ∈ P (ℓ) where ℓ ≈ mj , and P (ℓ) is
as defined in (4). To this end, we introduce a linear structure for CMK. The main idea in
linear structures is that they allow us to determine that γ̄j ∈ P (ℓ) by checking if γ̄j satisfies
a small number of linear inequalities.

Given a vector ū ∈ RI
≥0 which defines an inequality in the linear structure, we use concen-

tration bounds to show that γ̄j · ū ≤ E[γ̄j · ū]+ξ, where ξ is an error terms. The concentration
bounds we use only provide useful guarantees if the error term ξ is of order of the maximum
sum of entries in ū w.r.t. a single configuration, that is, tol(ū) = max

{∑
i∈C ūi |C ∈ C

}
. We

refer to the value tol(ū) as the tolerance of ū. We consequently require the linear structure
to be robust to additive errors of order of the tolerance. Also, we say that S ⊆ I can be
packed into ℓ ∈ N bins if there are ℓ configurations C1, . . . , Cℓ ∈ C such that

⋃ℓ
b=1 Cb = S.

▶ Definition 8 (Linear Structure). Let (I, w, v, m, k) be a CMK instance and δ > 0 a
parameter. Also, consider a subset S ⊆ I such that S can be packed in ℓ ∈ N bins. A δ-linear
structure of S is a set of vectors L ⊆ RI

≥0 which satisfy the following property.
Let ȳ ∈ ([0, 1] ∩Q)I , 0 < α < 1 and t > 0, such that

1. supp(ȳ) ⊆ S

2. ∀ū ∈ L : ū · ȳ ≤ α · ū · 1S + t · tol(ū)
Then, there is a fractional solution x̄ whose cover is ȳ and ∥x̄∥ ≤ α · ℓ + 20δℓ + (t + 1) ·
exp(δ−5).

The size of the structure L is |L|.

Alternatively, a δ-linear structure guarantees for S that for every ȳ ∈ [0, 1]I with rational
entries, 0 < α < 1 and t > 0, if supp(ȳ) ⊆ S and ȳ satisfies |L| linear inequalities, then
ȳ ∈ P (α · ℓ + 20δℓ + (t + 1) · exp(δ−5)).

In [9] we prove the next result.

▶ Lemma 9. Given δ > 0, let I = (I, w, v, m, k) be a CMK instance, and S ⊆ I a subset
which can be packed into ℓ > exp(δ−5) bins. Then there is a δ-linear structure L of S of size
at most exp

(
δ−4).

The above lemma is an adaptation of a construction of [17] used to solve the vector bin
packing problem, in which there are additional requirements for the packing of S. Our
adaptation leverages the relative simplicity of a cardinality constraint to omit these additional
requirements.

We use Lemma 9 to show the existence of an ε2-linear structure of S∗, where S∗ is the
set of items in an optimal solution. We use the linear structure to show the existence of
a fractional solution z̄j such that cover(z̄j) = γ̄j−1 and ∥z̄j∥ ≈ (1 − (j − 1)ε)m for every
j ∈ [ε1]. A simple scaling is then used to construct a solution for LP(Sj−1, mj) and establish
the following lower bound on v(x̄j).

▶ Lemma 10. With probability at least 1− exp(−ε−20), it holds that

∀j ∈ [ε−1] : v(x̄j) ≥ (1− ε) ·
(

1− 30 · ε2

1− (j − 1)ε

)
· v(γ̄j−1).
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27:12 An EPTAS for Cardinality Constrained Multiple Knapsack

We give the proof of Lemma 10 in [9]. Together, Lemma 10 and Lemma 7 essentially
give the formal proof of (3). Finally, using Lemmas 6, 7, and 10, we obtain the next result,
whose proof is given in [9].

▶ Lemma 11. With probability at least 1−exp(−ε−5), it holds that V ≥ (1−60
√

ε) ·OPT(I).

Theorem 1 follows directly from Lemma 11.

4 The Analysis

Consider an execution of Algorithm 1 with the input I = (I, w, v, m, k) and ε > 0. We use
the notation and definitions as given in Section 3. Also, let ȳj = cover(x̄j) be the coverage
of x̄j . Observe x̄j and ȳj are Fj−1-measurable. That is, their values are determined by
the outcomes of the samples up to (and including) the j − 1 iteration. As in Section 3 we
let (C∗

1 , . . . , C∗
m) be an optimal solution for the instance I. We define S∗ =

⋃m
b=1 C∗

b and
OPT = v(S∗) = OPT(I).

4.1 Concentration Bounds
Before we give the proofs of Lemmas 6, 7, 10, and 11, we need to introduce some concentration
bounds for self-bounding functions.

▶ Definition 12. A non-negative function f : Xn → R≥0 is called self-bounding if there exist
n functions f1, . . . , fn : Xn−1 → R such that for all x = (x1, . . . , xn) ∈ Xn,

0 ≤ f(x)− ft(x(t)) ≤ 1, and
n∑

t=1

(
f(x)− ft(x(t))

)
≤ f(x),

where x(t) = (x1, . . . , xt−1, xt+1, . . . , xn) ∈ Xn−1 is obtained by dropping the t-th component
of x.

We rely on the following concentration bound due to Boucheron, Lugosi and Massart [3].

▶ Lemma 13. Let f : Xn → R≥0 be a self-bounding function and let X1, . . . , Xn ∈ X be
independent random variables. Define Z = f(X1, . . . , Xn). Then the following holds:
1. Pr (Z ≥ E[Z] + t) ≤ exp

(
− t2

2·E[Z]+ t
3

)
, for every t ≥ 0.

2. Pr (Z ≤ E[Z]− t) ≤ exp
(
− t2

2·E[Z]

)
, for every t > 0.

The setting considered in [3] can be trivially extended to a setting in which the random
variable are conditionally independent on a σ-algebra G (see [6] for the definition of conditional
independence) and the function f itself is a G-measurable random function. This is formally
stated in the next lemma.

▶ Lemma 14. Let (Ω,F , Pr) be a finite probability space and let G ⊆ F be a σ-algebra. Let
D be a finite set of self-bounding function from χℓ to R≥0 and let f ∈ D be a G-measurable
random function. Also, let X1, . . . , Xℓ ∈ χ be random variables which are conditionally
independent given G. Define Z = f(X1, . . . , Xn). Then the following holds:
1. Pr (Z ≥ E[Z | G] + t | G) ≤ exp

(
− t2

2·E[Z | G]+ t
3

)
, for every t ≥ 0.

2. Pr (Z ≤ E[Z | G]− t | G) ≤ exp
(
− t2

2·E[Z | G]

)
for every t ≥ 0.

The generalization in Lemma 14 is required since the variables Rj
1, . . . , Rj

q are dependent for
q > 1 while being conditionally independent given the variables Rj′

b for every j′ < j and
b ∈ [q]. The following construction for self-bounding function was shown in [7].
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▶ Lemma 15. Let I = (I, w, v, m, k) be a CMK instance, and h : I → R≥0. For some

ℓ ∈ N>0 define f : Cℓ → R≥0 by f(C1, . . . , Cℓ) =
h(
⋃

i∈[ℓ]
Ci)

η where η ≥ maxC∈C h(C). Then
f is self-bounding.

4.2 The proof of Lemma 6
The first step towards the proof of Lemma 6 is to show a lower bound on the probability of
an item to appear in one of the sampled configurations Rj

1, . . . , Rj
q in terms of ȳj

i .

▶ Lemma 16. For every i ∈ I and j ∈
[
ε−1] it holds that Pr (i ∈ Sj−1 \ Sj | Fj−1) ≥

1− exp
(
−ε · ȳj

i

1−(j−1)ε

)
.

Proof. By a simple calculation,

Pr (i ∈ Sj−1 \ Sj | Fj−1) = Pr
(

i ∈
q⋃

b=1
Rj

b

∣∣∣∣∣ Fj−1

)

= 1− Pr
(

i /∈
q⋃

b=1
Rj

b

∣∣∣∣∣ Fj−1

)

= 1−
q∏

b=1
Pr
(

i /∈ Rj
b

∣∣∣ Fj−1

)
= 1−

q∏
b=1

(
1− Pr

(
i ∈ Rj

b

∣∣∣ Fj−1

))
= 1−

q∏
b=1

(
1− Pr

(
Rj

b ∈ C(i)
∣∣∣ Fj−1

))
.

(7)

The third equality holds as Rj
1, . . . , Rj

q are conditionally independent given Fj−1. Therefore,
by (7) and since the configurations are distributed by x̄j we have

Pr (i ∈ Sj−1 \ Sj | Fj−1) = 1−
q∏

b=1

(
1− Pr

(
Rj

b ∈ C(i)
∣∣∣ Fj−1

))

= 1−
(

1−
∑

C∈C(i) x̄j
C

∥x̄j∥

)q

= 1−
(

1− ȳj
i

m · (1− (j − 1) · ε)

)ε·m

= 1−

(1− ȳj
i

m · (1− (j − 1) · ε)

)m·(1−(j−1)·ε)
ȳ

j
i


ε·ȳ

j
i

(1−(j−1)·ε)

≥ 1−
(
e−1) ε·ȳ

j
i

(1−(j−1)·ε)

= 1− exp
(
− ε · ȳj

i

(1− (j − 1) · ε)

)
.

The inequality holds since (1− 1
x )x ≤ 1

e for all x ≥ 1. ◀
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The next lemma uses Lemma 16 to lower bound the total value of sampled configurations
in the j-th iteration.

▶ Lemma 17. For all j ∈
[
ε−1 − ε− 1

2

]
it holds that

E [v(Sj−1 \ Sj) | Fj−1] ≥ v(x̄j) ·
(

ε− ε
3
2

) 1
1− (j − 1)ε .

Proof. By Lemma 16 we get

E [v(Sj−1 \ Sj) | Fj−1] =
∑
i∈I

v(i) · Pr (i ∈ Sj−1 \ Sj | Fj−1)

≥
∑
i∈I

v(i) ·
(

1− exp
(
−ε · ȳj

i

1− (j − 1)ε

))

≥
∑
i∈I

v(i) ·

ε · ȳj
i

1− (j − 1)ε −
(

ε · ȳj
i

1− (j − 1)ε

)2


=
∑
i∈I

v(i) ·
(

ε · ȳj
i

1− (j − 1)ε ·
(

1− ε · ȳj
i

1− (j − 1)ε

))
.

(8)

The second inequality follows from 1− exp(−x) ≥ x− x2 for all x ≥ 0. By (8) we have

E [v(Sj−1 \ Sj) | Fj−1] ≥
∑
i∈I

v(i) ·
(

ε · ȳj
i

1− (j − 1)ε ·
(

1− ε · 1
1− (ε−1 − ε− 1

2 − 1)ε

))

=
∑
i∈I

v(i) ·
(

ε · ȳj
i

1− (j − 1)ε ·
(

1− ε

ε + ε
1
2

))

= 1
1− (j − 1)ε ·

(
ε− ε2

ε + ε
1
2

)
·
∑
i∈I

v(i) · ȳj
i

= 1
1− (j − 1)ε ·

(
ε− 1

ε−1 + ε− 3
2

)
· v(x̄j)

≥ v(x̄j) ·
(

ε− ε
3
2

) 1
1− (j − 1)ε .

The first inequality holds since j ≤ ε−1−ε− 1
2 and since x̄j is a feasible solution for LP(S, mj);

thus, ȳj ∈ [0, 1]I . ◀

We can also use Lemma 14 to show that the value of the configurations sampled in the
j-th iteration does not deviate significantly from its expected value.

▶ Lemma 18. For all j ∈ [ε−1] it holds that

Pr
(

v(Sj−1 \ Sj) ≤ E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
)
≤ exp

(
−ε−9) .

Proof. Recall that q = ε ·m. Define a function f : Cq → R≥0 by f(X) = v(S)
ε30·OPT(I) for all

X = (C1, . . . , Cq) ∈ Cq. Since I is ε-simple it holds that v(C) ≤ ε30 · OPT for all C ∈ C,
thus, by Lemma 15 it follows that f is a self-bounding function. Therefore,
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Pr
(

v(Sj−1 \ Sj) ≤ E
[
v (Sj−1 \ Sj)

∣∣ Fj−1
]
− ε10 ·OPT(I)

∣∣∣∣ Fj−1

)
= Pr

(
f
(

Rj
1, . . . , Rj

q

)
≤ E

[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]
− ε−20

∣∣∣∣ Fj−1

)

≤ exp

− ε−40

2 · E
[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]
 .

(9)

The inequality holds by Lemma 14. In addition, since Rj
1, . . . , Rj

q is a solution for I, it also
holds that

E
[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]
≤ OPT(I)

ε30 ·OPT(I) = ε−30. (10)

Hence, by the above

Pr
(

v(Sj−1 \ Sj) ≤ E
[
v (Sj−1 \ Sj)

∣∣ Fj−1
]
− ε10 ·OPT(I)

∣∣∣∣ Fj−1

)

≤ exp

− ε−40

2 · E
[
f
(

Rj
1, . . . , Rj

q

) ∣∣∣∣ Fj−1

]


≤ exp
(
− ε−40

2 · ε−30

)
= exp

(
−ε−10

2

)
≤ exp

(
−ε−9) .

(11)

The first inequality holds by (9). The second inequality follows from (10). For the last
inequality, recall that ε < 0.1. Therefore, by (11) it holds that (unconditionally on Fj−1),

Pr
(

v(Sj−1 \ Sj) ≤ E
[
v (Sj−1 \ Sj)

∣∣ Fj−1
]
− ε10 ·OPT(I)

)
≤ exp

(
−ε−9) . ◀

The proof of Lemma 6 follows from Lemma 17 and Lemma 18.

▶ Lemma 6. With probability at least 1− exp
(
−ε−8), it holds that

V = v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I).
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Proof.

Pr

v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I)



≥ Pr

 ∧
j∈
[

ε−1−ε− 1
2

]
v(Sj−1 \ Sj) ≥ v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε10 ·OPT(I)




≥ Pr

 ∧
j∈
[

ε−1−ε− 1
2

]
(

v(Sj−1 \ Sj) ≥ E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
) .

≥ 1− Pr

 ∨
j∈
[

ε−1−ε− 1
2

]
(

v(Sj−1 \ Sj) < E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
) .

(12)

The first inequality holds because if all ε−1− ε− 1
2 events in the second expression occur, then

so is the event in the first expression. The second inequality holds by Lemma 17. By (12)
and the union bound

Pr

v(I \ Sε−1) ≥
ε−1−ε− 1

2∑
j=1

v(x̄j) ·

(
ε− ε

3
2

)
1− (j − 1)ε − ε9 ·OPT(I)


≥ 1−

∑
j∈
[

ε−1−ε− 1
2

]Pr
(

v(Sj−1 \ Sj) ≥ E [v (Sj−1 \ Sj) | Fj−1]− ε10 ·OPT(I)
)

≥ 1− ε−1 · exp
(
−ε−9)

≥ 1− exp(−ε−8).

The second inequality holds Lemma 18. For the last inequality, recall that ε < 0.1. ◀

The remaining proofs are given in the full version of the paper [9].
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