
Accountable Secret Leader Election
Miranda Christ #

Columbia University, New York, NY, USA

Kevin Choi #

New York University, NY, USA

Walter McKelvie
Columbia University, New York, NY, USA

Joseph Bonneau #

New York University, NY, USA
a16z crypto research, New York, NY, USA

Tal Malkin #

Columbia University, New York, NY, USA

Abstract
We consider the problem of secret leader election with accountability. Secret leader election protocols
counter adaptive adversaries by keeping the identities of elected leaders secret until they choose
to reveal themselves, but in existing protocols this means it is impossible to determine who was
elected leader if they fail to act. This opens the door to undetectable withholding attacks, where
leaders fail to act in order to slow the protocol or bias future elections in their favor. We formally
define accountability (in weak and strong variants) for secret leader election protocols. We present
three paradigms for adding accountability, using delay-based cryptography, enforced key revelation,
or threshold committees, all of which ensure that after some time delay the result of the election
becomes public. The paradigm can be chosen to balance trust assumptions, protocol efficiency,
and the length of the delay before leaders are revealed. Along the way, we introduce several new
cryptographic tools including re-randomizable timed commitments and timed VRFs.

2012 ACM Subject Classification Security and privacy → Cryptography

Keywords and phrases Consensus Protocols, Single Secret Leader Election, Accountability

Digital Object Identifier 10.4230/LIPIcs.AFT.2024.1

Funding Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the United States Government,
DARPA, Andreessen Horowitz, the Algorand Foundation, Google, the National Science Foundation,
or any other supporting organization.
Miranda Christ: Supported by NSF grants CCF-2107187, CCF-2212233, and CCF-2312242, by
LexisNexis Risk Solutions, by the Algorand Centres of Excellence programme managed by Algorand
Foundation, and by a Google CyberNYC Award.
Kevin Choi: Supported by DARPA Agreement HR00112020022 and NSF grant CNS-2239975.
Joseph Bonneau: Supported by DARPA Agreement HR00112020022, NSF grant CNS-2239975, and
a16z crypto research.
Tal Malkin: Supported by NSF grant CCF-2312242, by the Algorand Centres of Excellence programme
managed by Algorand Foundation, and by a Google CyberNYC Award.

1 Introduction

In proof-of-stake (PoS) blockchains, an essential challenge is randomly choosing a participant
as the leader. The role of leaders varies by protocol, but they may perform tasks like
compiling transactions into a block to propose to the network or voting to confirm proposed
blocks. A desirable property of leader election is secrecy: nobody knows who the leader is

© Miranda Christ, Kevin Choi, Walter McKelvie, Joseph Bonneau, and Tal Malkin;
licensed under Creative Commons License CC-BY 4.0

6th Conference on Advances in Financial Technologies (AFT 2024).
Editors: Rainer Böhme and Lucianna Kiffer; Article No. 1; pp. 1:1–1:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchrist@cs.columbia.edu
mailto:kevin.choi@nyu.edu
mailto:jcb@cs.nyu.edu
mailto:tal@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.AFT.2024.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Accountable Secret Leader Election

until they have revealed themselves in the course of fulfilling their duty. Secrecy is important
in mitigating adaptive attacks, where an adversary may attempt to selectively corrupt (or
launch a denial-of-service attack on) a leader before they can fulfill their duty. Adaptive
attacks can be prevented in the so-called you only speak once (YOSO) [21] or erasures model,
in which elected leaders delete their signing key prior to broadcasting their election. This
ensures that when leaders become publicly known, it is already too late to corrupt them.

The first secret leader election (SLE) protocols (e.g., Algorand [23]) are probabilistic.
Each user has an equal and independent chance of being assigned as leader, meaning there is
inherently some probability of multiple leaders (or none) being elected. This undermines
determinacy and adds overhead, motivating Protocol Labs [30] to propose single secret
leader election (SSLE). Boneh et al. [8] were the first to formally define and construct SSLE
protocols, which ensure that only a single leader (or another precise number) is elected. They
proposed several constructions which have found their way to practice. Their DDH-based
scheme was later adapted into Whisk, a practical SSLE protocol designed and proposed
for use in Ethereum in EIP-7441 [22]. Other SSLE constructions have also been proposed
with varying efficiency-security tradeoffs, including protocols with stronger security notions
such as post-quantum security [10], adaptive security [12], UC security [13]; and a higher-
communication protocol that better accommodates non-uniform stake distributions [4]. As
secret leader election is necessary to attain fairness in the presence of adaptive corruptions, it
has been studied in recent blockchain constructions like Ouroboros Crypsinous (implicitly, in
the UC framework) and Fantômette (under the name of “delayed unpredictability”) [26, 2].
An even stronger notion, wherein a leader’s identity is kept private even after they publish a
block, was proposed in [20].

Withholding attacks. Unfortunately, all known secret leader election schemes have the
property that if the leader fails to perform its duty and announce itself, the other parties
have no way of learning who the absentee leader was. This may not seem problematic,
as leaders are typically rewarded for publishing blocks so there is an opportunity cost to
failing to claim leadership. However, the choice to claim leadership or withhold creates
an opportunity for elected leaders to introduce bias into the randomness used to elect
future leaders. Wahrstätter [32] showed that a similar attack is indeed profitable today for
nodes in Ethereum’s RANDAO beacon chain, a core component of its consensus protocol.1
Withholding attacks on RANDAO may be even more profitable if combined with manipulating
randomness used by application-layer protocols which rely on it as a randomness beacon.
This attack is not unique to Ethereum – in fact, Ferreira et al. [19] showed that a version
of it inherently exists for all “cryptographic self-selection protocols” in which leaders are
randomly chosen based on past values of the blockchain alone.

These attacks are troubling first because they incentivize leader absenteeism, which slows
down the protocol (undermining liveness). Even worse, they threaten fairness, as validators
with greater stake can gain a greater advantage through this strategy. Intuitively, this is
because the chance of being elected once in an epoch is linear while the chance of being
elected twice is quadratic in the stake. In the limit, these attacks create a rich-get-richer
effect, motivating large coalitions and undermining decentralization.

1 In this attack, validators withhold from contributing randomness to the beacon chain, foregoing some
contribution reward to improve future election chances. Ethereum does not currently employ secret
leader election, so the attack is detectable; however, there are proposals to do so.

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:3

Table 1 Summary of our constructions.

Construction Section P/S Approach

SSLE + RRTC 4.1 Single Delay-based. Users generate their key material as time-
lock puzzle outputs and publish the corresponding inputs.

Timed weak
VRFs 4.2 Probabilistic

Delay-based. Uses a new primitive called a timed VRF,
where anyone (even without the secret key) can evaluate
the VRF using a slow function.

Financial
punishment 5.1 Either Incentive-based.

Indexed VRFs 5.2 Probabilistic Incentive-based. From hash functions and requires linear
precomputation.

Indexed VRFs 5.2 Probabilistic
Incentive-based. From groups of unknown order. Does
not require linear precomputation and allows all users to
work in the same group.

Indexed VRFs 5.2 Probabilistic
Incentive-based. From trapdoor permutations. Less pre-
computation but each user must maintain its own trap-
door.

SSLE +
ThrPKE 6 Single

Committee-based. Uses threshold cryptography to en-
crypt key material to a committee, which can reconstruct
this key material if it is later withheld by a leader.

Our contributions. To address the problem of withholding attacks, we propose accountable
secret leader election, in which the other validators eventually learn the identity of a negligent
leader. Of course, it is critical that they do not learn the leader’s identity too early, to
maintain secrecy. We define both strong accountability (in which a withholding leader is
identified precisely) and weak accountability, in which all participants who deviate from the
protocol are identified (although we may not know which of them was the elected leader).

We then propose concrete constructions for both single and probabilistic SLE, summarized
in Table 1. Our constructions fit into three distinct approaches:
1. Timed Accountability (delay-based). Any party can evaluate a delay function (e.g.,

verifiable delay function) to learn the leader’s identity after some delay. The time delay
of the slow function ensures that no party can learn a leader’s identity until after its slot
to perform its duty has passed, even with a dishonest majority.

2. Key-Reveal Accountability (incentive-based). A validator must reveal its identity in
all past elections in order to either claim leadership or unstake. This approach is simple,
but only gives weak accountability and relies on economic incentives.

3. Threshold Accountability (committee-based). A quorum of validators exceeding some
threshold can work together to reconstruct the identity of a past leader. This approach
relies on an honest majority of validators, as a malicious majority coalition could learn
the identity of upcoming leaders prematurely.

In building these schemes, we identify and construct new cryptographic primitives. We
define and construct re-randomizable timed commitments, used for single secret leader
election, and timed VRFs, used for Algorand-style secret leader election. We also propose
novel constructions of indexed VRFs, which were proposed by [17] with applications to
Algorand-style secret leader election.

2 Preliminaries

We use λ to denote the security parameter, and poly(λ) and negl(λ) to denote polynomial
and negligible functions of λ, respectively. We use $←− (or $−→) to denote the output of a
randomized algorithm, or sampling uniformly at random from a range. We assume all

AFT 2024

1:4 Accountable Secret Leader Election

adversaries are limited to running in probabilistic polynomial time (PPT) in the security
parameter λ; some adversaries are further limited to running in σ(t) steps on at most p(t)
parallel processors where noted. We let [k] denote the set {1, . . . , k}, and we use (a, b) to
denote the set of integers x such that a < x < b. We use v to denote a vector (v1, . . . , vn),
and write v[i] for the ith component of v.

Our schemes use a number of standard cryptographic primitives, including time-lock
puzzles, threshold public-key encryption, verifiable delay functions (VDFs), and non-
interactive zero-knowledge proofs. We describe the syntax and properties of these primitives
in the full version.

3 A Taxonomy of Leader Election Protocols

Different leader election protocols may offer different properties:
Public vs. secret. In public leader elections, all participants learn the identity of the elected

leader at once. This can be achieved by running any distributed randomness protocol [14,
25] and using the output to select a random leader. In this work we are only concerned
with secret leader election. In secret leader election, by contrast, participants do not
know who the elected leader(s) is/are until they reveal themselves. Secrecy helps prevent
adaptive attacks, such as targeted corruption or denial-of-service attacks against upcoming
leaders.

Number of leaders. One might want the protocol to elect just a single leader or a committee
of k leaders. If used to elect a block proposer, one leader is typically desired.

Single vs. probabilistic number of leaders. Somewhat confusingly, a single leader election
protocol always elects the same number of leaders, which may be one or a committee of
size k. Boneh et al. [8] considered the case of electing a single leader with no variance,
hence the name “single,” even though they noted that their techniques naturally extend
naturally to electing a larger committee. Probabilistic leader election protocols will elect
k leaders on average but might elect more or fewer due to the randomness of the protocol.
While single leader election is preferable, it is challenging to guarantee when combined
with secrecy.

Weighting. Unweighted leader election protocols give each participant the same probability
of being elected. Weighted protocols give different participants different probabilities of
election, for example, proportional to their stake in a PoS setting.

In this paper, we only consider secret election protocols where each participant should
be elected with equal probability. We consider both protocols where a single leader must
always be elected (Single Secret Leader Election) and protocols where the number of leaders
to be elected varies randomly (Probabilistic Secret Leader Election). All of our protocols
generalize to electing a committee of any size.

Below, we recall the definition of Single Secret Leader Election from [8]. We modify the
syntax slightly to make it accountable; in particular, we modify Register to take as input a
list L of all users’ registrations thus far and output a list L′ with the new user’s registration
appended. Consequently, we also modify Register to take this list as input. We also combine
Elect1 and Elect2 into a single protocol for ease of presentation, as [8] notes can be done for
the shuffle-based protocol we build off of. We note that this syntax does not require leader
uniqueness and encompasses some Probabilistic Secret Leader Election protocols as well;
thus, we define it here as simply Secret Leader Election.

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:5

▶ Definition 1 (Secret Leader Election [8]). A secret leader election (SLE) protocol is a tuple
of PPT algorithms and protocols SLE = (SLE.Setup, SLE.Register, SLE.Elect, SLE.Verify)
SLE.Setup(λ, ℓ, N) → pp, sk1, . . . , skN , st0 is an algorithm that takes in the number of

parties N and an optional lower bound ℓ on the number of required participants in each
election, and outputs public parameters and secret keys for all parties.

SLE.Register(i, pp, st, L) → st′, L′ is a protocol run by all parties. It takes as input the
index i of the registering party, the public parameters pp, the current state st, and the
registration list L. It outputs an updated state st′ and an updated registration list L′. The
registering party i receives a nonce ki.

SLE.Elect(pp, st, R, i, ki, ski) → 1/0, π/⊥ is an algorithm run by each party i to determ-
ine if they won the election. R is a randomness beacon value, ki is the user’s nonce, and
ski is the user’s secret key. If user i was elected, outputs (1, π) where π is a proof that
they won. Otherwise, it outputs (0,⊥).

SLE.Verify(i, pp, st, R, πi) → 1/0 is an algorithm run by each party to verify that user i

with proof πi indeed won the election at state st with randomness R.

Informally, an SLE protocol must be unpredictable in that an adversary controlling some
subset of the parties cannot predict with non-negligible advantage which honest party was
elected (in the event that an honest party is elected).

3.1 Single Secret Leader Election
Single secret leader election (SSLE) follows the syntax defined in Definition 1 and must
satisfy uniqueness, fairness, and unpredictability as defined first in [8]. Uniqueness ensures
that only a single party can be accepted as winner of each election. Fairness ensures that
an adversary corrupting c out of N parties can win the election with probability at most
c
N . Unpredictability ensures that the identity of the winner cannot be predicted before they
reveal themselves.

Boneh et al. [8] defined these properties in terms of security games, where an adversary and
challenger engage in the SSLE protocol. The adversary controls the corrupted participants,
and the challenger controls the honest participants. The adversary can request that certain
honest parties register for elections, and it can specify the inputs itself for corrupted parties
to register.

Catalano et al. [12] identified a shortcoming in these definitions, which they subsequently
fixed in [13]. We apply their fix and provide these modified definitions below. We defer
further discussion of this modification to the full version. There, we prove that for a natural
class of protocols, security under the original definitions of [8] implies security under the
more stringent definitions of [13].

When we say that an SSLE protocol is secure, we mean that is is fair, unpredictable, and
unique under the modified definitions below.

▶ Definition 2 (Uniqueness [8, 13]). Let UNIQUE[A, λ, ℓ, N] denote the uniqueness experiment
with security parameter λ, played by an adversary A and a challenger C as follows:
Setup phase. A picks a number c < N as well as a set of indices M ⊊ [N], |M | = c of

users to corrupt. The challenger C runs pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and
gives A the parameters pp, state st0, and secrets ski for i ∈M .

Elections phase. Adversary A can choose any set of users to register for elections and for
any number of elections to occur, where A plays the role of users Ui for i ∈M and C plays
the role of the rest of the users. The challenger C also generates the election randomness
R ∈ R. To register a (corrupted or uncorrupted) user, A sends the index i of the user

AFT 2024

1:6 Accountable Secret Leader Election

to C, and C and A together run the protocol Register(i, pp, st, L) to update the state to
st′ and the list to L′. If the Register protocol aborts, the game immediately ends with
output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Output phase. For each election in the elections phase, A outputs values (bi, πi) for each
i ∈M . The experiment outputs 0 if for each election with randomness R ∈ R and state
st, there is at most one user Ui∗ (either corrupted or uncorrupted) who outputs bi∗ = 1
and πi∗ such that Verify(i∗, pp, st, R, πi∗) = 1. Otherwise the experiment outputs 1.
We say an SSLE scheme is unique if no PPT adversary A can win the uniqueness game
except with negligible probability. That is, for all PPT A and for any ℓ < N the quantity

Pr [UNIQUE[A, λ, ℓ, N] = 1] ≤ negl(λ).

If uniqueness only holds so long as there are at least t uncorrupted users participating in
each election, we say that the protocol is t-threshold unique.

▶ Definition 3 (Unpredictability [8, 13]). Let UNPRED[A, λ, ℓ, N, n, c] denote the unpredict-
ability experiment with security parameter λ, played by an adversary A and a challenger C
as follows:
Setup phase. A picks a set of indices M ⊊ [N], |M | = c of users to corrupt. The challenger
C runs pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and gives A the parameters pp, state
st0, and secrets ski for i ∈M .

Elections phase. Adversary A can choose any set of users to register for elections and for
any number of elections to occur, where A plays the role of users Ui for i ∈M and C plays
the role of the rest of the users. The challenger C also generates the election randomness
R ∈ R. To register a (corrupted or uncorrupted) user, A sends the index i of the user
to C, and C and A together run the protocol Register(i, pp, st, L) to update the state to
st′ and the list to L′. If the Register protocol aborts, the game immediately ends with
output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Challenge phase. At some point after all users Uj for j ∈ [n] have registered, A indicates
that it wishes to receive a challenge, and one more election occurs. In this election,
C does not send (bj , πj) for each uncorrupted user to A. Let Ui be the winner of this
election. The game ends with A outputting an index i′ ∈ [N]. If, for Ui elected in the
challenge phase, i ∈M , then the output of UNPRED[A, λ, ℓ, N, n, c] is set to 0. Otherwise,
UNPRED[A, λ, ℓ, N, n, c] outputs 1 iff i = i′.
We say that an SSLE scheme S is unpredictable if no PPT adversary A can win the
unpredictable game with greater than negligible advantage when the winner of the election
is uncorrupted. That is, for all PPT A, for any c ≤ n− 2, n ≤ N , and for any ℓ < N

the quantity

Pr [UNPRED[A, λ, ℓ, N, n, c] = 1|i ∈ [N] \M] ≤ 1
n− c

+ negl(λ).

If unpredictability only holds for c < t for some t > 0, we say that S is t-threshold
unpredictable.

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:7

▶ Definition 4 (Fairness [8, 13]). Let FAIR[A, λ, ℓ, N, n, c] denote the uniqueness experiment
with security parameter λ, played by an adversary A and a challenger C as follows:
Setup phase. A picks a set of indices M ⊊ [N], |M | = c of users to corrupt. The challenger
C runs pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and gives A the parameters pp, state
st0, and secrets ski for i ∈M .

Elections phase. Adversary A can choose any set of users to register for elections and for
any number of elections to occur, where A plays the role of users Ui for i ∈M and C plays
the role of the rest of the users. The challenger C also generates the election randomness
R ∈ R. To register a (corrupted or uncorrupted) user, A sends the index i of the user
to C, and C and A together run the protocol Register(i, pp, st, L) to update the state to
st′ and the list to L′. If the Register protocol aborts, the game immediately ends with
output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Challenge phase. At some point after all users Uj for j ∈ [n] have registered, A indicates
that it wishes to receive a challenge, and one more election occurs. FAIR[A, λ, ℓ, N, n, c]
outputs 1 if there is no i ∈ [n] \M for which Verify(i, pp, st, R, πi) = 1 in the challenge
election.
We say that an SSLE scheme S is fair if no PPT adversary A can win the fairness game
with greater than negligible advantage. That is, if for all PPT A, n ≤ N, c < n, and for
any ℓ < N ,

|Pr [FAIR[A, λ, ℓ, N, n, c] = 1]− c/n| ≤ negl(λ).

If fairness only holds for c < t for some t > 0, we say S is t-threshold fair.

[8] notes that these definitions can be easily extended to accommodate elections picking a
fixed number of multiple leaders. This is in contrast to probabilistic leader election protocols,
where the number of elected leaders may vary randomly from election to election.

3.2 Accountability for Single Secret Leader Election
Here, we define an additional property: accountability. An accountable scheme features
a Recover protocol that informs all parties when an elected leader withholds. This allows
the protocol to impose consequences on withholding parties, whereas with standard leader
election, parties could withhold undetectably.
SSLE.Recover(pp, st, R, L, Ui) → 1/0/⊥ takes as input a state st, a random beacon out-

put R, a registration list L, and a user Ui. If the output is 1, this means that Ui could
generate a valid proof of leadership πi with respect to state st with randomness R. If the
output is 0, Ui could not generate such a proof. If the output is ⊥, Ui must have deviated
from the protocol in some way, and it is unknown whether they could prove leadership.

Both strong and weak accountability require that for any honest user, Recover outputs 1 if
the user can claim the election, and 0 otherwise. Strong accountability additionally requires
that Recover outputs 1 whenever a (possibly misbehaving) user could claim to be the winner
of the election at state st with random beacon output R. For strong accountability, Recover
never outputs ⊥.

AFT 2024

1:8 Accountable Secret Leader Election

Weak accountability has the weaker condition Recover does not output 0 for any (possibly
misbehaving) user that could claim to win the election (i.e., that user i can produce a proof
π such that Verify(i, pp, st, R, πi) = 1). It may output either 1 or ⊥ when the winning user
misbehaves. Weak accountability is useful even in the case that the output is ⊥, as this
proves that the user in question must have misbehaved.

In our delay-based approaches, Recover is a slow non-interactive algorithm that can be
run by any individual party in time much longer than the election protocol takes to run. This
delay ensures unpredictability. In our committee-based approaches, Recover is an interactive
protocol run by the committee that should succeed as long as a threshold of them participate
honestly. In key-reveal approaches, Recover requires keys to be disclosed by participants
after some number of elections. As withholding parties may also withhold their keys, this
approach requires some incentive for revealing.

Defining Accountability

In defining accountability, we follow the style of definitions from [8] for the properties of
uniqueness, unpredictability, and fairness.

The definitions of [8] involve a game where the adversary may corrupt some subset of
the parties and run the SSLE protocol while controlling these parties and interacting with
the honest parties. We essentially reproduce this game from these previous definitions and
modify only the output phase to capture accountability, and the elections phase to apply a
fix similar to that of [13]. That is, the adversary wins the game if it causes the protocol to
abort. In the accountability game, the adversary aims to cause an election round where a
corrupted party is elected and Recover fails to recover their nonce.

▶ Definition 5 ((Strong, Weak) Accountability). We let wACCOUNT[A, λ, ℓ, N, n] and
sACCOUNT[A, λ, ℓ, N, n] denote the weak and strong accountability games played between an
adversary A and a challenger C:
Setup phase. A picks a set of indices M ⊊ [N] of users to corrupt. C runs

pp, sk1, . . . , skN , st0 ← SSLE.Setup(λ, ℓ, N) and gives A the parameters pp, state st0,
and corrupted parties’ secrets ski for i ∈M .

Elections phase. A can choose any set of users to register for elections and for any number
of elections to occur, where A plays the role of users Ui for i ∈M and C plays the role of
the rest of the users. The challenger C also generates the election randomness R ∈ R. To
register a (corrupted or uncorrupted) user, A sends the index i of the user to C, and C
and A together run the protocol Register(i, pp, st, L) to update the state to st′ and the list
to L′. If the Register protocol aborts, the game immediately ends with output 1.
Each election begins with C generating (bi, πi) ← SSLE.Elect(pp, st′, R, i, ski) for each
uncorrupted user that has registered for the election. For each uncorrupted user i that has
not registered for that election, it sets (bi, πi) = (0,⊥). Finally, C sends (bj , πj) for each
uncorrupted user to A.

Output Phase. For each election in the elections phase, A outputs values (bi, πi) for each
i ∈M .
We say A violates correctness if it falsely blames an honest user in some way. More
precisely, it violates correctness if and only if for some election that occurred with
randomness R, state st, and registration list L at election time, there is some uncorrupted
user Ui′ such that either:

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:9

Falsely blames an honest user for withholding: bi′ = 0 where
(bi′ , πi′)← SSLE.Elect(pp, st′, R, i′, ski′) and SSLE.Recover(pp, st′, R, L,Ui′) = 1, or

Falsely blames an honest user for other misbehavior:
SSLE.Recover(pp, st′, R, L,Ui′) = ⊥.

The strong accountability experiment outputs 1 if and only if A violates correctness, or for
some election with randomness R, state st′, and registration list at election time L, there is
a corrupted user Ui∗ who outputs bi∗ = 1 and πi∗ such that SSLE.Verify(i∗, pp, st, R, πi∗) =
1 and SSLE.Recover(pp, st, R, L,Ui∗) ̸= 1.
The weak accountability experiment outputs 1 if and only if A violates correcness,
or for some election with randomness R and state st, and registration list at elec-
tion time L, there is a corrupted user Ui∗ who outputs bi∗ = 1 and πi∗ such that
SSLE.Verify(i∗, pp, st, R, πi∗) = 1 and SSLE.Recover(pp, st, R, L,Ui∗) = 0.
We say an SSLE scheme is strongly/weakly accountable, respectively, if no PPT adversary
A can win the strong/weak accountability game except with negligible probability. That is,
for all PPT A and for any ℓ < N ,

Pr [(s/w)ACCOUNT[A, λ, ℓ, N, n] = 1] ≤ negl(λ).

If accountability only holds as long as there are at least τ uncorrupted users participating
in SSLE.Recover, we say that the scheme is τ -threshold (weakly/strongly) accountable.

3.3 Probabilistic Secret Leader Election

Recall that in probabilistic secret leader election (PSLE), the number of elected leaders is
randomly distributed. Often, this number is one in expectation, and there is a tie-breaking
procedure to agree on a single leader when the protocol elects multiple. PSLE encompasses
a large class of protocols that lack unifying definitions, and the SSLE definitions presented
above do not apply because of differing syntax and number of elected leaders. In this paper,
we focus on an approach to PSLE which we call Algorand-style PSLE, an abstraction of the
scheme used by Algorand [23].

Algorand-style PSLE. Each party holds a VRF public-secret key pair (Kpub, Kpriv). A
fresh random beacon value R is generated for each election and is available to all parties.
A party wins an election if (y, π)← VRF.Eval(Kpriv, R) and y < T , where T is a threshold
controlling the expected number of parties elected. Parties can prove they have been elected
by providing their VRF proof π, which other parties can verify using their public key. In
the event that multiple parties’ VRFs yield values under the threshold, the winner is chosen
according to some tie-breaking rule.

By pseudorandomness of the VRF, prior to the winner revealing its proof it is not possible
to tell who has won the election. Thus, if a winner never reveals their VRF output, it is
impossible to tell that they should have won. Furthermore, if there is a tie, it is impossible
to tell that the winning party withheld.

In Section 4.2, we show how to make Algorand-style PSLE accountable by using a notion
called a timed VRF that we define. This allows all other parties to evaluate VRF outputs
using a slow function (that preserves secrecy since it takes longer to evaluate than the election
takes to run).

AFT 2024

1:10 Accountable Secret Leader Election

4 The Delay-based Approach

One approach is to replace cryptographic primitives with time-based variants. In general,
time-based cryptographic variants feature a fast computation function (requiring a secret
key) and an equivalent slow (inherently sequential) computation function which can be
computed by anybody. Timed commitments are a classic example: the original committer
can efficiently open the commitment, but any party can force open the commitment via a
slow computation.

Time-based primitives can add accountability to protocols by keeping some information
(such as the identity of a leader) secret in the short term while enabling eventual public
computation for accountability. Security relies on the assumed computational delay, without
any economic assumptions or an honest majority.2 We show two new time-based cryptographic
tools which can be used for secret leader election: re-randomizable timed commitments and
timed verifiable random functions.

4.1 Accountable SSLE from re-randomizable timed commitments
We can construct an accountable SSLE protocol by replacing the commitments from the
shuffle-based protocol of [8] with re-randomizable timed commitments (RRTCs), which we
define and construct here. An RRTCs commits to random keys in such a way that the
commitments can be re-randomized, and for a limited time period the commitments are
hiding. After this time period, anyone can open the commitment to learn the key. Our RRTC
construction combines the DDH-based commitment scheme used in [8] with any time-lock
puzzle in a natural way. We extend the definitions of re-randomizable commitments from [10]
and timed commitments from [9].

▶ Definition 6 (Re-Randomizable Timed Commitment (RRTC)). An RRTC is a tuple of
algorithms (Setup, Commit, Randomize, Test, SlowOpen) with the following syntax and proper-
ties:
Setup(λ, t) → pp: outputs public parameters pp,
Commit(pp, t) → (c, k, aux): outputs a commitment c, a key k, and auxiliary information

aux,
Randomize(pp, c) → c′: outputs a re-randomization c′ of the commitment,
Test(pp, c, k) → {true, false}: outputs true or false depending on whether k is a valid key

for the (possibly re-randomized) commitment c,
SlowOpen(pp, c, aux) → k̃: if c is an honestly formed commitment, outputs the key k̃ = k

committed to by c.

Correctness: If c is an honestly-formed (and possibly re-randomized) commitment to k,
Test(pp, c, k) = true.

Binding: It is computationally infeasible to find c, k, k′ such that Test(pp, c, k) and
Test(pp, c, k′).

Hiding for random keys: The commitment reveals nothing about k.
Honest soundness: Given an honestly-formed (and possibly honestly re-randomized) com-

mitment, SlowOpen recovers the committed key.
Re-randomizability: Randomize outputs another valid commitment to the same key.

2 A dishonest majority assumption may seem odd since many applications of leader election exist in
scenarios like consensus protocols, which require an honest supermajority. However, we note that there
may be subtle differences in the majority’s honesty, for example they might collude to learn a future
leader’s identity early but not to actively disrupt consensus.

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:11

Unlinkability: An adversary running in sequential time at most t cannot determine if c̃ is a
re-randomization of commitment c1 (committing to k1) or of commitment c2 (committing
to k2) given that c̃ is a re-randomization of one of them.

Setup(λ, t)→ pp

TLP.pp $←− TLP.Setup(λ, t)
G, g, p

$←− GroupGen(λ)
pp← (G, g, p, TLP.pp)

Commit(pp, t)→ (c, k, aux)

x, y
$←− TLP.GenRandPuzzle(TLP.pp)

kL, kR ← H(x, y)
r

$←− Zp

c = (gr, grkL)
k ← kL||kR

aux ← x

Randomize(pp, c)→ c′

(u, v) := c

r′ $←− Zp

c′ ← (ur′
, vr′

)

Test(pp, c, k)→ {true, false}
(u, v) := c
kL||kR ← k

return (ukL
?= v)

SlowOpen(pp, c, aux)→ k̃
x← aux
k̃ ← H(x, TLP.Solve(TLP.pp, x))

Figure 1 Our re-randomizable timed commitment scheme.

Honest soundness. Our honest soundness property is a relaxation of the soundness property
defined by Boneh and Naor [9]. Soundness requires that a recipient can be convinced that
an honestly generated commitment is well-formed. In contrast, we require only that if the
commitment is honestly formed, SlowOpen recovers the key. This relaxation is sufficient
for a weak form of accountability where one is satisfied with punishing participants for
publishing malformed commitments after the fact. Furthermore, one can efficiently prove
that a puzzle failed to open correctly: Simply compute k̃ ← SlowOpen(pp, c, aux) and show
that for (u, v) = c, uk̃ ̸= v. If the commitment were well-formed, we would have uk̃ = v.

Our RRTC construction from DDH. [8] suggests the following construction of a re-
randomizable commitment based on the Decisional Diffie-Hellman (DDH) assumption. Let
G be a cyclic group of prime order p for which the (DDH) assumption holds, and let g ∈ G
be a generator for this group. Their commitment to a uniformly random key k is (gr, grk)
for a uniform r. To open a commitment (u, v) given k, one checks that uk = v. Furthermore,
this commitment can be re-randomized by drawing a uniform r′ and computing (ur′

, vr′).
We define our scheme, shown in Figure 1, to be compatible with the commitments

generated in the shuffle-based protocol of [8], which results in the slightly unnatural use
of terms kL, kR. If the above commitment is used in the SSLE protocol, two parties may
submit commitments to the same k. Therefore, kL, kR are introduced to detect when two
commitments (gr, grk), (gr′

, gr′k) have the same nonce k and prevent such a registration.
Each party reveals kiR at registration time, and in order to open their commitment ci = (u, v)
they must provide k′

i such that k′
iL, k′

iR ← H(k′
i), k′

iR = kiR, and ukiL = v. Only a party
that has revealed a matching k′

iR can claim to be leader for that commitment. Thus, if two
parties submit commitments to the same kL, the hash function ensures either that one of
them can never claim an election, or they must have the same kR. We check for duplicate
kR’s at registration time to rule out this latter case. We also note that Commit could instead
output (g, gkL), which would still be hiding and binding for random keys. However, this
would allow an adversary to distinguish between commitments that have and have not been
re-randomized, and this scheme would not achieve unlinkability as defined in [10].

AFT 2024

1:12 Accountable Secret Leader Election

Achieving soundness using NIZKs. One could modify our scheme to satisfy the stronger
notion of soundness from [9] by requiring the committer to provide a non-interactive zero
knowledge proof π that c is a commitment to H(x, TLP.Solve(x)) for x = aux. This could
be achieved could use a generic zk-SNARK; for this, it is convenient to use a VDF as the
time-lock puzzle to avoid heavy computation in verifying its output. Designing a sound
RRTC without the use of generic SNARKs is an interesting direction for future work.

The BEHG protocol. We now briefly recall the “high-communication” variant of the
shuffle-based SSLE scheme (also known as the BEHG protocol) from Boneh et al. [8], which
we describe generically for any re-randomizable commitment scheme. In this variant, we
maintain a public list of commitments belonging to the parties in the election. When a new
user registers, they generate a nonce and corresponding commitment. They re-randomize the
commitments in the list, shuffle them, and insert their own commitment at a random location.
This new user posts a NIZK proof that they shuffled the list correctly: each commitment in
the old list appears exactly once, re-randomized, in the new list.

The algorithms for this scheme do the following. Setup creates an empty to-be-shuffled list
l, to which commitments will be added when users register; (in our modified protocol, it also
creates an empty not-to-be-shuffled list L). In Register, the registering user samples a random
key ki and splits its hash into two parts kiL, kiR ← H(ki), then computes a re-randomizable
commitment ci to kiL. It re-randomizes the commitments in l and shuffles l, then inserts ci

into l at a random location. It also provides a NIZK proof of honest shuffling. Each user
then examines the current state to get the list l and checks that the list was properly shuffled
using this proof. It also checks that none of the keys kjR are duplicated. If either of these
checks fails, the list is reverted to its most recent state and the protocol continues. Elect uses
a random beacon value R given as input to choose a random commitment (i.e. the winning
commitment) in l. If run by the user that submitted this commitment, including its key ki

as input, it outputs a proof πi that includes an opening proof for that commitment, allowing
the user to claim that election. Verify can be run by any user, and it checks if the revealed
(by Ui) key k̃ is consistent with Ui’s kiR from the registration list L and if k̃ is consistent
with the winning commitment.

A delay-based accountable SSLE scheme. Next, we’ll show that we can slightly modify
this scheme to be weakly or strongly accountable. Our scheme is described below, and further
detail is given in the full version.

The main modification is to use our RRTC instead of their original commitment scheme;
our RRTC is exactly the same as their scheme except that our key ki is chosen as the hash
of an input-output pair to a time-lock puzzle and our kiL and kiR are derived directly from
ki instead of H(ki) (as there is no need to hash twice). The weakly accountable version uses
our RRTC with honest soundness, and the strongly accountable version uses our RRTC with
the additional proof of well-formedness to achieve full soundness. We detail our modifications
below; they include a small modification to SSLE.Register and defining a Recover algorithm.

We make a small modification to SSLE.Register: when a user Ui registers, it must add its
registration to L. L is a list of auxiliary information that each party adds to when registering
that SSLE.Recover will use. L is separate from the shuffled list, and L is not shuffled or used
in the elections. To be more specific, SSLE.Register generates the commitment (c, k, aux)
using RRTC.Commit and appends (kiR, c, aux, idi) to L, where idi is a string representing its
identity. It then re-randomizes c using RRTC.Randomize to obtain (gri , grikiL) and continues
as in the original protocol from [8]. For the strongly accountable version, during Register all

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:13

users check the proof of commitment well-formedness and reject the registration if it fails. To
claim an election for a chosen commitment (u, v), a party provides k′ = k′

L||k′
R and (x′, y′)

such that k′ = H(x′, y′), uk′
L = v, and k′

R matches the on-chain kR from that party’s initial
registration.

We define Recover(pp, st, R, L,Ui) → 1/0/⊥ for this scheme as follows. Recover first
parses st to obtain the current shuffled list of entries and uses R to choose the winning
commitment com∗. It then iterates through L (in case Ui registered multiple times). For each
entry (kiR, c, aux, idi) in L added by Ui, it computes k̃ ← SlowOpen(pp, c, aux). It checks that
Test(pp, c, k̃) = true; if not, it moves onto the next entry in L added by Ui. If it continues,
it parses k̃L||k̃R ← k̃. If Test(pp, com∗, k̃) = true, it outputs 1. If Test(pp, com∗, k̃) =
false, it continues. After it has iterated through all of L, it outputs ⊥ if it observed that
Test(pp, c, k̃) = false for any c added to L by Ui. Otherwise, it outputs 0.

▶ Theorem 7. The high-communication shuffling-based SSLE scheme from [8] is a weakly
accountable SSLE scheme when instantiated with our RRTC scheme as described above
(assuming an adversary that runs in sequential time less than t). It is a strongly accountable
SSLE scheme when we modify our RRTC scheme to require the committer to provide a NIZK
proof that the commitment was honestly generated.

The proof of this theorem is given in the full version.

Commitment expiry. A timed commitment is no longer hiding after enough time has passed
for SlowOpen to be evaluated. Therefore, this scheme is not secret if registrations remain
in the list for time greater than t, where t is the runtime of SlowOpen. The most natural
solution is to run the protocol in epochs of length less than t. At the beginning of each
epoch, the list is cleared and all users must re-register; this ensures that commitments do
not stay in the list for too long. Although this re-registration increases communication, this
increase can be traded off with the delay required to recover withholders’ identities. If one is
willing to increase this delay t, one can tolerate longer epochs and fewer re-registrations.

Protocol optimizations
Efficient TLP generation. Preparing a commitment requires generating a time-lock puzzle
pair (x, y). For classic repeated-squaring time-lock puzzles, Rivest et al. proposed generating
(x, y = x(2t) (mod N)) by taking advantage of the trapdoor φ(N) to compute a reduced
exponent e = 2t (mod φ(N)). This approach also applies for modern VDFs in an RSA
group [33]. The drawback of this approach is that each puzzle must use its own modulus N ,
making efficient hardware implementation more difficult.

A better approach utilizes re-randomizable VDFs [1]. Observe that users do not need to
compute a TLP on a specific value; rather, a TLP for a random x is sufficient. Re-randomizable
VDFs (of which repeated-squaring VDFs are a natural example) enable computing random
input/output pairs given a single precomputed value (g, h = g(2t)). Observe that (gα, hα)
is also a valid VDF input/output pair for any α. Hence, users can generate a puzzle by
choosing a random α and setting (x, y)← (gα, hα).

Outsourcing TLP computation. In order to learn the nonce for a pair (c, aux), or discover
that (c, aux) was malformed, one must compute the output of a TLP on aux. As this
computation is slow by design, it is desirable to have a mechanism to outsource this task.
Since all registrations (c, aux) are posted on-chain, we could allow any member of the public
to compute these TLP outputs on the participants’ behalf. This party could report a
malformed commitment by posting this TLP output and a proof of correctness on-chain;

AFT 2024

1:14 Accountable Secret Leader Election

this is especially convenient if one uses a VDF as the TLP. The protocol can then slash
(confiscate the deposited capital of) the offending participant, and the reporter could receive
some of the slashed stake.3

4.2 Accountable PSLE from timed VRFs
In Algorand-style PSLE [23], each party holds a VRF public-secret key pair (Kpub, Kpriv).
Kpub is known to all. Here, we make the modeling assumption that a fresh random beacon
value R is generated for each election; in Algorand’s actual protocol, R is a function of the
last block produced. R is available to all parties in the election. A party wins an election
if (y, π) ← VRF.Eval(Kpriv, R) and y < T , where T is a threshold specifying the expected
number of parties elected. Parties can prove they have been elected by providing their VRF
proof π, which other parties can verify using their public key. By pseudorandomness of
the VRF, prior to the winner revealing its proof it is not feasible to learn who has won the
election.

In the event that multiple parties’ VRFs yield values under the threshold, the party with
the lowest VRF output is chosen as the winner. An unintended consequence of this tie-
breaking rule is a way for malicious participants to bias the election. Because the randomness
R is a function of the previous leader’s identity, an adversary that controls two parties whose
VRF outputs y1 and y2 are both below T may choose which party’s output to reveal in
order to generate more favorable randomness for the next election. That is, if y1 < y2, the
adversary might choose not to reveal y1 so that its party with y2 can propose the next block.
Because other parties cannot compute the VRF, they cannot learn that the party with y1
withheld. This attack is therefore undetectable.

We provide accountability by replacing the VRF in Algorand-style elections with a timed
VRF, a new primitive which we define. A timed VRF has a slow open function that can
be run by anyone, without knowledge of the secret key. The slow open function requires a
lengthy computation, and before this delay the VRF retains its pseudorandomness. Timed
VRFs share some similarities with VDFs, but they are pseudorandom and evaluation is fast
given a private key. When we replace the VRFs in Algorand-style PSLE with timed VRFs,
all parties eventually learn all other parties’ VRF outputs for all elections. Thus, all parties
that have withheld can be identified.

Here, we delineate the formal properties of a timed VRF. We can also define timed weak
VRFs (akin to weak VRFs [11]), which are only pseudorandom on randomly chosen inputs:

Our timed VRF definition is (adapted from [27, 16]):

▶ Definition 8 (Timed VRF). A Timed VRF is a tuple of algorithms (KeyGen, Eval, SlowEval,
Verify) where:
KeyGen(λ, t) → (Kpub, Kpriv): generates a key pair which allows public evaluation with a

time delay of t.
Eval(Kpriv, x) → (y, π): outputs a value y using the private key Kpriv, and a correctness

proof π. This function should be fast to evaluate.
SlowEval(Kpub, x) → (y, π): outputs a value y for input x without using the private key

by completing a sequential computation.
Verify(Kpub, x, y, π) → 1/0: checks if y is the correct evaluation of x under Kpub given

proof π.

3 While we leave the exact incentive design as an open question, it is important that the reporter receive
some but not all of the slashed stake. Observe that a malicious user can prove their commitment is
malformed without executing a slow computation. If the reporter receives all of the slashed stake, a
malicious user could report themselves and effectively suffer no penalty.

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:15

KeyGen(λ, t)→ (Kpub, Kpriv)
(Kpub, Kpriv)← tdVDF.KeyGen(λ, t)

Eval(Kpriv, x)→ (y, π)
y′, π′ ← tdVDF.tdEval(Kpriv, x)
π ← (y′, π′)
y ← H(y′)

SlowEval(Kpub, x)→ (y, π)
y′, π′ ← tdVDF.Eval(Kpub, x)
π ← (y′, π′)
y ← H(y′)

Verify(Kpub, x, y, π)→ {true, false}
(y′, π′)← π
return H(y′) = y ∧
tdVDF.Verify(Kpub, x, y′, π′)

Figure 2 Our timed VRF scheme from a trapdoor VDF.

Correctness: For any honestly-formed key pair (Kpub, Kpriv) and input x, given outputs
(y, π) ← Eval(Kpriv, x) and (y′, π′) ← SlowEval(Kpub, x), it should hold that both
Verify(Kpub, x, y, π) and Verify(Kpub, x, y′, π′) return true.

Unique provability: For every Kpub, x, no PPT adversary can find two outputs (y1, π1) and
(y2, π2) such that y1 ̸= y2 and both Verify(Kpub, x, y1, π1) and Verify(Kpub, x, y2, π2) return
true.

Strong t-pseudorandomness: For all PPT adversariesA = (A0,A1) whereA1 is t-sequential,
it holds that:

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Kpub, Kpriv)← GenKey(λ, t)
(x∗, σ)← AEval(Kpriv,·)

0 (Kpub)
b

$←− {0, 1}
y0 ← Eval(Kpriv, x∗)

y1
$←− Y

b′ ← AEval(Kpriv,·)
1 (σ, yb)


≤ 1

2 + negl(λ)

Weak t-pseudorandomness: For all PPT, t-sequential adversaries A, it holds that:

Pr


b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Kpub, Kpriv)← GenKey(λ, t)
x∗

$←− X
b

$←− {0, 1}
y0 ← Eval(Kpriv, x∗)

y1
$←− Y

b′ ← AEval(Kpriv,·)(σ, yb)


≤ 1

2 + negl(λ)

Timed weak VRFs from trapdoor VDFs
We present an efficient construction, given in Figure 2, of a timed weak VRF from a trapdoor
VDF, as formalized by Wesolowski [33]. Wesolowski observes that while repeated squaring is
conjectured to be an inherently sequential function in a group of unknown order, given the
group order it becomes efficient as the exponent 2t can be reduced modulo the group order.
Therefore, the group order serves as a trapdoor enabling efficient computation of the VDF
for arbitrarily high delay parameters. The RSA group4 (Z/N)∗ is a natural example with
the group order φ(N) serving as the trapdoor.

4 Note that using (Z/N)∗ is insecure for VDFs as the low-order assumption does not hold, instead the
group of quadratic residues QRN or the group G+ = (Z/N)∗/{±1} should be used [7, §6].

AFT 2024

1:16 Accountable Secret Leader Election

The weak pseudorandomness of the construction given in Figure 2 follows almost directly
from its unpredictability when considered as a VDF. Unpredictability of a VDF requires that
an adversary cannot predict the output on a random input; [6] notes that hashing the output
of a function that is unpredictable in this sense yields a pseudorandom output in the random
oracle model. Thus, we obtain a function whose output is pseudorandom on a random input
which is exactly weak pseudorandomness. We note that in our model of Algorand-style PSLE,
the input to the VRF is a random value R, and thus weak pseudorandomness is sufficient.
Furthermore, as long as the distribution of the input x has λ bits of min-entropy, H(x) is
uniform in the random oracle model.

5 The Key-disclosure Approach

We can achieve accountability if all users reveal their secret keys after each election, enabling
any party to recompute what the results should have been and detect any deviation. Of
course, the critical question is how we can ensure that users actually disclose their key
material.

5.1 Key disclosure via slashing
The most general approach is to compel users to publish key material under the the threat of
slashing, or losing deposited capital, if key material is not properly disclosed. This approach
works naturally for staking protocols in which users have committed a pool of deposited stake
to participate. One option is for users to disclose and re-key at regular intervals (e.g. after
each epoch). This adds continual overhead, but many protocols already impose a similar
requirement of per-epoch setup. Another option is to have users disclose only when they
attempt to withdraw their deposited capital and stop acting as participants (unstaking).
This reduces the frequency and overhead of key disclosure but means it will take longer to
detect misbehavior. Finally, users might disclose whenever they are elected as leader or
otherwise stand to earn rewards. This approach works naturally with protocols employing
the YOSO paradigm [21] to defend against adaptive adversaries, in which case keys are
one-time use by design.

Whenever users disclose keys, a waiting period is needed before any withdrawal of staked
capital to ensure adequate time for auditors to check for misbehavior using the disclosed key,
for example by re-deriving all VRF values the user should have computed under this key
and seeing if the users did not act as leader when they were expected to. They also require
careful analysis of incentives; if slashing penalties are too low, attackers may be willing to
absorb the loss as part of an attack. We leave detailed mechanism design of this approach as
future work but note that it is a simple and potentially powerful tool.

5.2 Implicit key disclosure from indexed VRFs
We can improve the approach of disclosing key material whenever a user is elected leader
by using an indexed VRF (iVRF) instead of a VRF in Algorand-style leader election. This
idea of an iVRF was formalized by Esgin et al. [17], though the construction was used earlier
by Azouvi et al [3]. The iVRF Eval function takes as input the index i, and proving a VRF
value for index i reveals the key material for all indices j ≤ i. In a distributed consensus
setting, the index is the round number, observing that (for protocols with per-round finality),
there is no downside to revealing key material for past rounds. Interestingly, while Esgin et

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:17

KeyGen(λ, m)→ (Kpub, Kpriv)

Kpriv
$←− {0, 1}λ

Kpub = Km = Hm(Kpriv)

Eval(Kpriv, x, i, m)→ (y, π)
π = Ki := Hm−i(Kpriv)
y = H(Ki, x)

Verify(Kpub, x, i, y, π)→ {true, false}
return Hi(π) = Kpub ∧ y = H(π, x)

Figure 3 An indexed VRF from hash functions, due to Esgin et al. [17].

Setup(λ, m)→ pp

G, g, e
$←− GroupGen(λ)

g←
{

gei
}m

i=0
pp← (G, g, g)

KeyGen(λ, pp) $−→ (Kpub, Kpriv)

Kpriv = α
$←− B

Kpub = (g[m])α

Eval(pp, Kpriv, x, i, m)→ (y, π)
(G, g, g)← pp
π = Ki := (g[m− i])α

y = H(Ki, x)

Verify(Kpub, x, i, y, π)→ {true, false}
return πei

= Kpub ∧ y = H(π, x)

Figure 4 An indexed VRF from groups of unknown order. The space B must be large enough to
ensure gα is indistinguishable from random for α

$←− B. Statistical security can be achieved with
|B| ≥ 2 · |G|; whereas |B| ≥ 22λ under the SEI assumption [15].

al. proposed indexed VRFs due to their simplicity and potential for quantum-resistance, we
observe here that they also provide accountability by enabling observers to compute a user’s
past VRF values each time they publish a VRF output in any round.

We first recall Esgin et al.’s construction from hash chains [17] (Figure 3), then present
two novel constructions of iVRFs. Our iVRF from groups of unknown order decreases
precomputation cost relative to [17] and allows all users to work in the same group (Figure 4).
Our construction based on a trapdoor permutation (Figure 5) offers the novel advantage
that users can maintain the same key indefinitely (e.g. for an unlimited number of indices)
with no precomputation.

5.2.1 Indexed VRFs from hash functions
The Esgin et al. [17] indexed VRFis similar to classic notions of hash chains [24, 28], as shown
in Figure 3. Essentially, each user computes a chain of round-specific keys Ki = Hm−i(Kpriv)
for round i. The total number of indices supported, m, should be chosen to cover, say, one
epoch. Note that revealing πi = Ki as a proof for round i makes computing prior values
easy for indices j ≤ i: simply compute Kj = Hi−j(Ki).

Naively, computing and verifying this proof requires computing O(m) hashes each, though
some tradeoffs are available if the prover stores some intermediate keys Kj to compute proofs
with O(

√
m) computation and storage. Esgin et al. also describe tree-based variants enabling

logarithmic verification costs, though all of them appear to require O(m) computation during
KeyGen.

5.2.2 Indexed VRFs from groups of unknown order
We present an indexed VRF construction in Figure 4 based on groups of unknown order,
without assuming a trapdoor. This can have practical benefits in enabling all computation
to be performed in one group. We replace the hash function in the above construction

AFT 2024

1:18 Accountable Secret Leader Election

KeyGen(λ, e)→ (Kpub, Kpriv)

p, q ← GenPrimes(λ)
N ← p · q
e← GenExponent(λ)
K0 $←− (1, N)
Kpub ← (N, e, K0)
d = e−1 (mod φ(N))
Kpriv ← (d, φ(N))

Eval(Kpriv, Kpub, x, i)→ (y, π)
N, e, K0 ← Kpub
d, φ(N)← Kpriv
d̃ = di (mod φ(N))
π ← Ki := (K0)d̃ (mod N)
y = H(Ki, x)

Verify(Kpub, x, i, y, π)→ {true, false}
e, N, K0 ← Kpub

return πei

= K0 (mod N) ∧ y = H(π, x)

Figure 5 An indexed VRF from trapdoor permutations. We present the scheme here working in
the RSA group (Z/N)∗, though the idea is generic to any trapdoor permutation. As presented, this
scheme requires linear work (in i) per verification. This can be reduced to constant cost by caching
the latest value of Ki after each evaluation.

with computing eth roots modulo N . However, in this protocol we do not assume users
know the trapdoor, so naively they must precompute the entire chain of keys Ki, as
with the hash-based indexed VRF. Implemented in this way, this approach has no clear
advantage over the hash-based approach. However, notice that the precomputed chain
K = {Kpriv, (Kpriv)e, (Kpriv)e2

, . . . , } can be computed only once in global setup, and then
randomized by each user as needed. This randomization is straightforward: given a precom-
puted chain g = {g0 = g, g1 = ge, g2 = ge2

, . . . }, a user can sample5 a random exponent
α← B and compute a randomized chain g′ = {(g0)α, (g1)α = (gα)e, (g2)α = (gα)e2

, . . . }.
This approach removes the linear precomputation and supports efficient proof computation.

Assuming access to the precomputed string g, needed elements of a user’s randomized chain
g′ can be produced on-demand as g′[j] = (g[j])α. It is also possible to provide efficient proofs
of correctness for any evaluation, by adding a succinct proof of exponentiation showing that
πi = Kpub. Since the group order is unknown, either Wesolowski proofs [33] or Pietrzak
proofs [29] may be used.

5.2.3 Indexed VRFs from trapdoor permutations
We present a new construction in Figure 5 based on trapdoor permutations. Essentially,
we replace the hash function in the hash-based construction with a trapdoor permutation,
such that computing forwards on the chain involves inverting the permutation with the help
of the trapdoor, and going backwards involves evaluating the permutation. Instantiated
with an RSA group, this involves computing eth roots modulo N . This is easy given the
trapdoor φ(N) but otherwise believed hard for suitably chosen N under the (weak) RSA
assumption [18]. This construction is similar to each user running a private STROBE
randomness beacon [5].

Naively, verifying that a revealed key Ki chains back to the original key K0 in Kpub
requires O(i) work via re-execution. This can be avoided via a succinct proof of exponentiation.
However, note that since the prover knows the trapdoor φ(N), Pietrzak proofs [29] (which

5 The size of this exponent required for security depends on assumptions. Under the Short Exponent
Indistinguishability assumption (SEI) [15], for α sampled from the range [0, 22λ] the value of gα will be
indistinguishable from random in G. Without this assumption, α must be sampled from the the range
[0, |G| · 22λ].

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:19

require O(log i) work to verify) must be used instead. Wesolowski proofs [33] are not strongly
unique [31] if the prover knows the trapdoor and hence would make the iVRF unsound.
Alternatively, a more practical approach is for verifiers to cache the most recent revealed
key Ki after each epoch (instead of the originally published value K0), leaving only constant
work to verify at each index.

6 The Committee-based Approach

In a fundamentally different approach to accountable SSLE, we leverage threshold (public-
key) encryption. Each participant’s nonce is threshold-encrypted to the public key of
a committee after a threshold cryptographic setup, and then published alongside each
participant’s commitment in the registration list L so that a threshold number of participants
can collaborate to reconstruct the nonce of a leader that withholds later. We assume, without
loss of generality, that this committee is the group of all SSLE participants, although it could
even be a separate group of outsiders.

An accountable SSLE scheme using threshold encryption. The following changes are
made to the BEHG “high-communication” protocol to yield an accountable SSLE scheme
(denoted by ThrPKE-SSLE) that uses threshold encryption. First, SSLE.Setup also runs
ThrPKE.Setup. Next, a user Ui registering via SSLE.Register must additionally append
cti = ThrPKE.Enc(pp, ki) to the registration list L. (cti is not included in the shuffled list).6
This still means that the winning element of the final shuffled list ℓ is a commitment c̃. Given
this, we modify SSLE.Verify and SSLE.Recover as follows:
SSLE.Verify(i, pp, st, R, π) outputs 1 if the revealed key k̃ is consistent with kiR, the

winning commitment c̃, and also cti (with the randomness used to make the encryption
also supplied by the revealer as part of π), and 0 otherwise.

SSLE.Recover(pp, st, R, L, Ui) outputs 1/0/⊥ as follows. SSLE.Recover first parses st to
obtain the current shuffled list of entries and uses R to choose the winning commitment
c̃ = (ũ, ṽ). It then finds Ui’s entry (kiR, ci, cti, idi) in L and interactively (involving at least
τ out of n users) runs the algorithm ThrPKE.Dec to let k̃ = ThrPKE.Dec(pp, {ski}i∈S , cti)
and k̃L||k̃R ← H(k̃). It outputs 1 if both kiR = k̃R and ũk̃L = ṽ. It outputs 0 otherwise.

After Recover is run, the registration list must be cleared and all participants must re-register.
To improve efficiency, rather than running Recover after every withheld election, one could
run Recover once per time period of some length, or only after m leaders have withheld. This
would still return all of these leaders’ identities but mitigate frequent re-registration, at the
cost of learning these identities later.

▶ Theorem 9. Assuming honest shuffling, ThrPKE-SSLE is a single secret leader election
protocol that satisfies strong (and weak) accountability, given an adversary that controls less
than τ participants.

The proof is included in the full version.

6 cti may be included in the shuffled list if the encryption scheme yields an unlinkable commitment
as defined in [10], where no adversary can distinguish between two commitments (that include these
ciphertexts), even if they have been adversarially re-randomized. Including cti in the shuffled list would
allow the committee to decrypt only the winning ciphertext in Recover rather than the whole registration
list.

AFT 2024

1:20 Accountable Secret Leader Election

7 Conclusion

We propose and define the notion of accountability for secret leader election. Our schemes
take three distinct approaches to address the threat of withholding attacks in secret leader
election protocols. These schemes offer a variety of trade-offs between computational overhead
for participants, communication requirements, the time delay before absentee leaders will be
detected, and strong-versus-weak accountability. Exploring these trade-offs in practice for
concrete protocols is an important avenue for future work.

A fundamental question to ask in practice is how promptly is accountability required?
Committee-based approaches have the advantage of enabling accountability nearly imme-
diately after a leader fails to act during their turn in a protocol, as the committee can
compute the election results whenever desired. Delay-based approaches inevitably introduce
a longer waiting period, as delay functions must be parameterized conservatively to ensure
that malicious attackers cannot compute them quickly enough to learn the election results
early. Furthermore, honest parties might not start computing the delay function until after a
leader fails to act, to avoid the cost of always computing it even when the leader is honest.
Finally, key-disclosure approaches may offer an even longer waiting period for accountability:
until the next time a missing leader is elected (or unstakes) or until the end of an epoch.

We also leave open the fundamental question of incentives and mechanism design. Clearly,
the key disclosure approach hinges entirely on appropriately incentivizing participants to
reveal keys. Delay-based approaches require incentivizing some party to compute the delay
functions, which may become non-trivial if they must be computed for every participant.
Even the committee-based approaches require incentivizing a committee to act when a leader
fails to show up, and not to conspire to learn election results early.

Finally, all of our protocols can, at best, serve as a detection mechanism for withholding
attacks (but not prevent them absolutely). Thus, it is vital to design appropriate penalties
(slashing) to ensure that such attacks are not profitable. At the same time, slashing may
introduce new incentive issues if attackers are incentivized to try denial-of-service attacks
on leaders as they attempt to broadcast during their slot. From the point of view of an
accountability mechanism there is no difference between a leader who withholds and a leader
whose network connection is jammed while they are legitimately attempting to broadcast a
block.

Precisely because of these open questions, we present a variety of options rather than a
single approach. We hope that future work can utilize these as a toolbox to improve the
security of secret leader election protocols in practice.

References
1 Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-lived zero-knowledge proofs and

signatures. In Asiacrypt, 2022.
2 Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Betting on Blockchain Consensus

with Fantomette. arXiv preprint, 2018. arXiv:1805.06786.
3 Sarah Azouvi, Patrick McCorry, and Sarah Meiklejohn. Winning the caucus race: Continuous

leader election via public randomness. arXiv preprint, 2018. arXiv:1801.07965.
4 Michael Backes, Pascal Berrang, Lucjan Hanzlik, and Ivan Pryvalov. A framework for

constructing Single Secret Leader Election from MPC. In ESORICS, 2022.
5 Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris Kogias, Kevin Lewi,

Ladi de Naurois, Valeria Nicolaenko, Arnab Roy, and Alberto Sonnino. STROBE: Stake-based
Threshold Random Beacons. In AFT, 2023.

6 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable Delay Functions. In
CRYPTO, 2018.

https://arxiv.org/abs/1805.06786
https://arxiv.org/abs/1801.07965

M. Christ, K. Choi, W. McKelvie, J. Bonneau, and T. Malkin 1:21

7 Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Verifiable Delay Functions.
Cryptology ePrint Archive, Paper 2018/712, 2018.

8 Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader election.
In AFT, 2020.

9 Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, 2000.
10 Dan Boneh, Aditi Partap, and Lior Rotem. Post-Quantum Single Secret Leader Election

(SSLE) From Publicly Re-randomizable Commitments. In AFT, 2023.
11 Zvika Brakerski, Shafi Goldwasser, Guy N Rothblum, and Vinod Vaikuntanathan. Weak

Verifiable Random Functions. In TCC, 2009.
12 Dario Catalano, Dario Fiore, and Emanuele Giunta. Adaptively secure single secret leader

election from DDH. In PODC, 2022.
13 Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally composable

single secret leader election from pairings. In PKC, 2023.
14 Kevin Choi, Aathira Manoj, and Joseph Bonneau. SoK: Distributed Randomness Beacons. In

IEEE Security & Privacy, 2023.
15 Geoffroy Couteau, Michael Klooß, Huang Lin, and Michael Reichle. Efficient range proofs

with transparent setup from bounded integer commitments. In Eurocrypt, 2021.
16 Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs

and keys. In PKC, 2005.
17 Muhammed F. Esgin, Oguzhan Ersoy, Veronika Kuchta, Julian Loss, Amin Sakzad, Ron

Steinfeld, Xiangwen Yang, and Raymond K. Zhao. A new look at blockchain leader election:
Simple, efficient, sustainable and post-quantum. Cryptology ePrint Archive, Paper 2022/993,
2022.

18 Dankrad Feist. RSA Assumptions. rsa.cash/rsa-assumptions/, 2022.
19 Matheus VX Ferreira, Ye Lin Sally Hahn, S Matthew Weinberg, and Catherine Yu. Optimal

Strategic Mining Against Cryptographic Self-Selection in Proof-of-Stake. In Economics and
Computation, 2022.

20 Chaya Ganesh, Claudio Orlandi, and Daniel Tschudi. Proof-of-stake protocols for privacy-aware
blockchains. In Eurocrypt, 2019.

21 Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen, Tal Rabin,
and Sophia Yakoubov. YOSO: You Only Speak Once: Secure MPC with Stateless Ephemeral
Roles. In CRYPTO, 2021.

22 dapplion George Kadianakis, Justin Drake. EIP-7441: Upgrade block proposer election to
Whisk. URL: https://eips.ethereum.org/EIPS/eip-7441.

23 Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In SOSP, 2017.

24 Neil Haller. The S/KEY one-time password system. In NDSS, 1994.
25 Alireza Kavousi, Zhipeng Wang, and Philipp Jovanovic. SoK: Public Randomness. Cryptology

ePrint Archive, Paper 2023/1121, 2023.
26 Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros Crypsinous:

Privacy-Preserving Proof-of-Stake. In IEEE Security & Privacy, 2019.
27 Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In FOCS, 1999.
28 Adrian Perrig, , Ran Canetti, JD Tygar, and Dawn Song. Tesla broadcast authentication.

RSA CryptoBytes, 5, 2002.
29 Krzysztof Pietrzak. Simple verifiable delay functions. In ITCS, 2018.
30 Protocol Labs. Secret single-leader election (SSLE). URL: https://github.com/protocol/

research-RFPs/blob/master/RFPs/rfp-6-SSLE.md.
31 Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar Weippl.

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness. In
NDSS, 2020.

32 Toni Wahrstätter. Selfish Mixing and RANDAO Manipulation. ethresear.ch/t/
selfish-mixing-and-randao-manipulation/16081, 2023.

33 Benjamin Wesolowski. Efficient verifiable delay functions. In Eurocrypt, 2019.

AFT 2024

rsa.cash/rsa-assumptions/
https://eips.ethereum.org/EIPS/eip-7441
https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md
https://github.com/protocol/research-RFPs/blob/master/RFPs/rfp-6-SSLE.md
ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081
ethresear.ch/t/selfish-mixing-and-randao-manipulation/16081

	1 Introduction
	2 Preliminaries
	3 A Taxonomy of Leader Election Protocols
	3.1 Single Secret Leader Election
	3.2 Accountability for Single Secret Leader Election
	3.3 Probabilistic Secret Leader Election

	4 The Delay-based Approach
	4.1 Accountable SSLE from re-randomizable timed commitments
	4.2 Accountable PSLE from timed VRFs

	5 The Key-disclosure Approach
	5.1 Key disclosure via slashing
	5.2 Implicit key disclosure from indexed VRFs
	5.2.1 Indexed VRFs from hash functions
	5.2.2 Indexed VRFs from groups of unknown order
	5.2.3 Indexed VRFs from trapdoor permutations

	6 The Committee-based Approach
	7 Conclusion

