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Abstract
We present Verbose Lean, a library using the flexibility of the Lean programming language and proof
assistant to teach undergrad mathematics students how to read and write traditional paper proofs.
After explaining our main pedagogical goals, we explain how students use the library with varying
levels of assistance to write proofs that are easy to transfer to paper because they look like natural
language. We then describe how teachers can customize the student experience based on their
specific pedagogical goals and constraints. Finally we describe some aspects of the implementation
of the library, emphasizing how new aspects of the very recently released version 4 of Lean allow a
lot of flexibility that could benefit many new creative uses of a proof assistant.
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1 Introduction

The transition from high-school mathematics to proof-based university mathematics is a
well-known challenge for students. In the recent past, there have been several experiments
using proof assistants to help students in this transition [1, 2, 4, 7, 12, 16, 17]. Here we really
mean courses that consider the proof assistant only as an intermediate tool, not as a final
goal. Note this tool is applicable to any kind of mathematics in principle, but this account
and the library it describes are biased towards elementary real analysis which is used in
France as the main introduction to rigorous proofs.
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27:2 Teaching Mathematics Using Lean and Controlled Natural Language

Verbose Lean1 is a teaching library and meta library for the Lean programming language
and proof assistant. Lean is due mostly to Leonardo de Moura at Microsoft Research and
then Amazon Web Service and the Lean Focussed Research Organization2. Our library
has three main layers. The bottom one is a set of tactics (i.e., proof producing programs)
mimicking the granularity of proofs on paper. The middle one is a controlled natural language
syntax whose goal is to ease the transition to paper proofs, at the cost of being slightly more
difficult to write. The third layer is made of mechanisms that help students to write proofs
by suggesting potential next steps. All layers are customizable, even without programming
knowledge, and everything exists in French and English and is translatable to other languages.

This paper is intended for mathematics teachers and for people who want to see examples
of using Lean’s flexibility. It is organized roughly in order of decreasing importance. We
first explain our pedagogical goals, then describe the student experience, then the teacher
experience before concluding with some aspects of the implementation. That last section is
more technical but could be useful to anyone interested in what can be done with Lean.

2 Main pedagogical goals

The first main goal is to train students to have a clear view of the current state of the proof:
what is currently being proven, what are the current assumptions, which mathematical
objects are fixed. The next pedagogical goal is to train students to automatically perform
proof steps depending of the syntactic structure of the current goal. For instance, a direct
proof of a universally quantified statement starts with fixing an object of the relevant type.

A basic requirement here is to make sure that every statement has a clear status: is it
something that is known to be true? Something that we assume? Something that will be
proven soon? We claim that this goal is much easier to achieve if there is a clear separation
between stating, proving and using. For any given logical operator or quantifier, there are
syntactic rules that explain how to form a mathematical statement using it together with
some previously existing statements. Then there are rules that explain how to prove such
a statement. Finally there are rules about how to use such a statement. This distinction
seems obvious, but in practice it is very blurred, both by students and by professional
mathematicians. Of course the difference is that mathematicians know what they are doing
even when they are very sloppy about this distinction. We think that enforcing a clear
distinction is very useful for beginners, although it can feel pedantic to more advanced people.
One of the most frequent cases is failing to distinguish between stating the existence of a
mathematical object satisfying some condition and fixing a witness. An example would be
to say or write “since f is continuous and ε is positive, there exists δ such that. . . ” and
then refer to some δ on the following line. The other very common one is more tied to
using symbols instead of text. It uses the implication symbol as an abbreviation of the word
“hence” or “therefore”, and more generally mixing using an implication and stating one. An
example would be writing on a blackboard “f is polynomial =⇒ f is continuous” instead
of “f is polynomial hence continuous”. This misuse of a symbol is extremely problematic
for beginners since this alternative meaning of the symbol turns every legitimate use into
nonsense, and beginners lack the expertise required to understand which meaning is used.
For instance reading the definition of convergence of a function f towards a number l at
some point x0 with this interpretation for the implication symbol gives “for every positive ε,

1 https://github.com/PatrickMassot/verbose-lean4
2 https://lean-fro.org/
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there exists some positive δ such that for every x, |x− x0| < δ hence |f(x)− l| < ε”. A less
ubiquitous but still common example is a confusion between stating a claim starting with a
universal quantifier and beginning a proof of such a statement.

All those logical errors (or at least sloppy writing) also impact achieving a third pedagogical
goal which is to train students to make a clear distinction between bound and free variables.
This is very related to keeping track of what is fixed in the current state of the proof, but with
the additional twist that some variable name can appear simultaneously as the name of a
free variable and as a bound variable in some assumption or in the current target statement.

The next teaching goal that we want to achieve with this technology is to train students
to classify proof steps into safe reversible steps that require no initiative and risky irreversible
steps that require some creativity. Here irreversible means it can lead to a goal that is not
provable. An example in the first category is fixing a positive number at the beginning
of a proof using the definition of continuity, or extracting a witness out of an existential
assumption. An example in the second category would be announcing an existential witness
or specializing a universally quantified assumption to a unique object. The alternation
between routine safe steps and risky creative steps is a crucial aspect of mathematical proof
creation. This is not necessarily emphasized when presenting a proof on a blackboard.

On top of that there is a final goal which is to learn how to choose indirect strategies
instead of simply following the syntax of the current target. Those includes stating and
proving an intermediate fact, using a lemma instead of reproving everything, and the use of
the excluded middle axiom, e.g. through proofs by contradiction or contraposition.

The usual interfaces of proof assistants have many qualities that help achieving those
goals. Near the beginning of the proof of sequential continuity from continuity, the proof
assistant can display something like:

f : R → R
u : N → R
x0 : R
hu : u converges to x0
hf : f is continuous at x0
ε : R
ε_pos : ε > 0
δ : R
δ_pos : δ > 0
hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε
⊢ ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε

This display is called the tactic state. Most lines describe either a mathematical object that
is fixed in the proof or an assumption. The last line shows the current goal.

This is already tremendously useful to students, and completely impractical to emulate
on a blackboard or in print. But there are also many challenges. The most obvious one
is the need to learn the syntax of the software. In order to progress in proofs, one need
to use tactics that are commands which usually do not look like mathematics but rather
like programming. This is not a crucial problem, especially with students who also learn
programming in other courses. But it does take time, so this issue prevents using a proof
assistant on the side of a regular course with no dedicated time. A much more serious issue
is that having a proof assistant syntax that is very different from paper proofs makes it a lot
harder to transfer proving skills to paper. This is true in the direct case of transcribing a
proof done on the computer but also in the longer run when students try to prove things on
paper without writing a formal proof first.

ITP 2024



27:4 Teaching Mathematics Using Lean and Controlled Natural Language

A second challenge is to set up the right kind of automation. Traditional paper proofs are
very far from mentioning every lemma that is used. Mentioning every lemma systematically
is counter-productive with respect to the goals listed above. An extreme example would
be lemmas asserting the commutativity and associativity of addition and multiplication of
numbers. More generally, things that are too obvious to be mentioned on paper should be
done automatically by the proof assistant, whereas things that we want to see justified on
paper should not. But this is an extremely vague specification. In practice it is even often
inconsistent because it is pretty difficult to be consistent about what we want to see on
paper. Powerful automation is also potentially problematic for students who have very slow
computers with little memory, and it can make error reporting more complicated. But it is
crucial for the success of that kind of use of proof assistants in teaching.

A last challenge is that most countries do not use English as their main language. This is
especially relevant for very young students.

3 Using the library as a student

3.1 Tactic language
In this section we will show what Verbose Lean looks like from the point of view of student
users. We will show several possible variations but it is probably unwise to show all those
variations to students. The following is a typical exercise solution.

Exercise "Continuity implies sequential continuity"
Given: (f : R → R) (u : N → R) (x0 : R)
Assume: (hu : u converges to x0) (hf : f is continuous at x0)
Conclusion: (f ◦ u) converges to f x0

Proof:
Let′s prove that ∀ ε > 0, ∃ N, ∀ n ≥ N, |f (u n) - f x0| ≤ ε
Fix ε > 0
By hf applied to ε using that ε > 0 we get δ such that

δ_pos : δ > 0 and Hf : ∀ x, |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε
By hu applied to δ using that δ > 0 we get N such that

Hu : ∀ n ≥ N, |u n - x0| ≤ δ
Let′s prove that N works : ∀ n ≥ N, |f (u n) - f x0| ≤ ε
Fix n ≥ N
By Hf applied to u n it suffices to prove |u n - x0| ≤ δ
We conclude by Hu applied to n using that n ≥ N

QED

In this simple proof, all steps correspond directly to ordinary Lean tactics. Hence we can
compare with the following code that builds exactly the same proof.

example (f : R → R) (u : N → R) (x0 : R) (hu : u converges to x0)
(hf : f is continuous at x0) : (f ◦ u) converges to f x0 := by

change ∀ ε > 0, ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε
intro ε ε_pos
rcases hf ε ε_pos with ⟨δ, δ_pos, Hf⟩
rcases hu δ δ_pos with ⟨N, Hu⟩
use N
intro n n_ge
suffices |u n - x0| ≤ δ from Hf (u n) this
exact Hu n n_ge
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The first difference with the default syntax of Lean is that the statement clearly distin-
guishes the objects, the assumptions and the conclusion. Then each proof line looks like
natural mathematical language, but it is actually as rigid as any programming language.
Remember the goal of this language is not to be easier to write, it is to be easier to transfer
to paper.

The first line is completely optional, it only unfolds a definition. The second line shows
how bounded quantifiers are handled by the library. The core logic of Lean does not involve
those quantifiers. Given a predicate P , say on real numbers, the statement ∀ε > 0, P (ε) is a
notation for ∀ε, ε > 0 =⇒ P (ε). In Verbose Lean, introducing a positive number can be
done in one step (of course it can also be done in two steps). This generates a name ε_pos
for the assumption that ε is positive. The next tactic, that spans the third and fourth lines
above, uses that positivity but in a declarative way. However it does use the name hf that
was assigned to the continuity assumption on f . We will refer to the approach that states
claims without referring to names of assumptions as the nameless approach. A syntactic
variant here would be to write

Since f is continuous at x0 and ε > 0 we get δ such that
δ_pos : δ > 0 and Hf : ∀ x, |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε

which only list claims and does not even explicitly mention ε before mentioning its positivity.
Another important style choice is the use of backward reasoning at the end, witnessed by

the words “it suffices to prove”. One could also replace the last two lines with

Since ∀ n ≥ N, |u n - x0| ≤ δ and n ≥ N we get h : |u n - x0| ≤ δ
Since ∀ x, |x - x0| ≤ δ → |f x - f x0| ≤ ε and |u n - x0| ≤ δ we

conclude that |f (u n) - f x0| ≤ ε

which uses both the nameless approach and forward reasoning only (those two aspects are
independent, we gathered them only to prevent a combinatorial explosion of examples).
The nameless approach is not purely stylistic, it also involves some implicit reasoning. For
instance, with the same assumptions, we could write since ε ≥ 0 and the library would
silently derive this from ε > 0.

The example used so far only uses two definitions and the rules of logic. It features both
using and proving statements formed using quantifiers and implication. Stating a universally
quantified claim on line one and starting its proof on line 2 are very distinct operations. The
first one involves the quantifier symbol while the second one involves the word “Fix”.

The distinction between stating existence and extracting a witness is handled in a more
subtle way. We could first state the existence using the symbols ∃ δ and then have something
like “Let us fix such a δ”. Nothing prevents a teacher from implementing this syntax, but the
trick of saying we get δ such that is a very nice compromise which distinguishes fixing a
witness from merely stating existence and which stays very light to read.

The distinction between claiming an implication and using it is handled very simply.
First the implication symbol is used only when stating. Then both backward and forward
uses of implication mention both the implication and its premise. This applies both to the
style referring to assumption names and to the nameless style.

Let us now consider another example: proving the squeeze theorem.

Example "The squeeze theorem."
Given: (u v w : N → R) (l : R)
Assume: (hu : u converges to l) (hw : w converges to l)

(h : ∀ n, u n ≤ v n) (h′ : ∀ n, v n ≤ w n)
Conclusion: v converges to l

ITP 2024



27:6 Teaching Mathematics Using Lean and Controlled Natural Language

Proof:
Fix ε > 0
Since u converges to l and ε > 0 we get N such that

hN : ∀ n ≥ N, |u n - l| ≤ ε
Since w converges to l and ε > 0 we get N′ such that

hN′ : ∀ n ≥ N′, |w n - l| ≤ ε
Let′s prove that max N N′ works : ∀ n ≥ max N N′, |v n - l| ≤ ε
Fix n ≥ max N N′

Since n ≥ max N N′ we get hn : n ≥ N and hn′ : n ≥ N′

Since ∀ n ≥ N, |u n - l| ≤ ε and n ≥ N we get
hNl : -ε ≤ u n - l and hNd : u n - l ≤ ε

Since ∀ n ≥ N′, |w n - l| ≤ ε and n ≥ N′ we get
hN′l : -ε ≤ w n - l and hN′d : w n - l ≤ ε

Let′s prove that |v n - l| ≤ ε
Let′s first prove that -ε ≤ v n - l
Calc -ε ≤ u n - l by assumption

_ ≤ v n - l since u n ≤ v n
Let′s now prove that v n - l ≤ ε
Calc v n - l ≤ w n - l since v n ≤ w n

_ ≤ ε by assumption
QED

The beginning of the proof uses the same tactics as our first example. New things start
with the line Since n ≥ max N N′ we get hn : n ≥ N and hn′ : n ≥ N′. Here we are
using a lemma claiming that n ≥ max(N, N ′) implies that n ≥ N and n ≥ N ′. But this
lemma is not mentioned explicitly. The tactic saw that the claim n ≥ max(N, N ′) is not a
conjunction so it tried splitting it into the announced conclusions using so-called anonymous
fact splitting lemmas. Here anonymous refers to the fact that their names do not appear
in the proof script, but of course they actually do have names. The next two tactics (each
spanning two lines) use the exact same mechanism using an anonymous lemma that splits
an inequality with shape |x| ≤ y into −y ≤ x and x ≤ y.

The next tactic Let′s prove that |v n - l| ≤ ε is completely optional, it recalls
what is the current goal since it was never explicitly spelled out and we just went through
three tactics that created new facts without changing current goal. This tactic could also
have been used right after Fix n ≥ max N N′.

The next line is something new: Let′s first prove that -ε ≤ v n - l. This tactic
can be used to start a conjunction proof. But here the current goal is not a conjunction, it is
turned into a conjunction by a so-called anonymous goal splitting lemma, which happens to
be the converse of the anonymous fact splitting lemma used before (but those are completely
separate lemmas from the framework’s point of view).

This tactic does a bit more than applying the lemma and splitting the resulting conjunction.
Indeed we want to force students to announce the second part of the conjunction when
the first one is proven. So instead of showing directly the second goal, the tactic state
displays: You need to announce: Let′s now prove that v n - l ≤ ε and refuses3 any
other tactic.

Returning to what happens during the proof of the first inequality, we see some computa-
tion introduced by the Calc word. This is based on the builtin Lean calc tactic, but the
justifications are specific to our library. The first one in the example is by assumption which

3 We were hesitant to make this mandatory, but seeing it in the Coq waterproof project convinced us.
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implicitly refers to the hNl assumption. A more explicit justification could be from hNl.
What comes after the word from could also contain the words applied to and using that
as in the third tactic of our first example. The next justification uses since which indicates
a nameless approach: we claim that u n ≤ v n without explaining why; the tactic has to
instantiate the assumption h to the free variable n. But there is more to it since this fact
by itself is not sufficient to justify that calculation step. The tactic has to secretly invoke a
lemma saying that ∀x, y, z, x ≤ y =⇒ x− z ≤ y − z. This is handled internally by calling
the gcongr tactic of Carneiro and Macbeth.

Those two examples illustrate the main mechanisms that we use to get students to develop
proof skills that are easier to transfer to paper than using the native Lean tactics. Of course
they do not exhaust the list of tactics provided by our library. In particular there are tactics
that allow to prove things by case disjunctions, using contraposition or proof by contradiction,
or using the axiom of choice.

3.2 Assisted modes
The above examples can all be typed in the editor (typically VSCode to avoid teaching at the
same time how to use Lean and a powerful editor such as vim or emacs). Lean then answers
by updating the proof state and displaying error messages if needed. But mastering a lot of
syntax is challenging, even if only one proof style is taught (for instance only the nameless
variant that do not use assumption names). So Verbose Lean offers two levels of assistance.

The fist level is the help tactic that can be used inside the proof. For instance, if the
current target is (f ◦ u) converges to f x0 as at the beginning of our first example then
the help tactic displays:

Help
· The goal starts with the application of a definition.

One can make it explicit with:
Let′s prove that ∀ ε > 0, ∃ N, ∀ n ≥ N, |(f ◦ u) n - f x0| ≤ ε

· The goal starts with “∀ ε > 0”
Hence a direct proof starts with:
Fix ε > 0

The above has two help messages and two suggestions. Clicking on a suggestion replaces the
help tactic with the suggestion.

In the same example, there is a local assumption named hu saying that u converges to
x0. The answer to help hu is

Help
· This assumption starts with the application of a definition.

One can make it explicit with:
We reformulate hu as ∀ ε > 0, ∃ N, ∀ n ≥ N, |u n - x0| ≤ ε

· The assumption hu starts with “∀ ε > 0, ∃ N, . . .”
One can use it with:
By hu applied to ε0 using hε0 we get N such that

(hN : ∀ n ≥ N, |u n - x0| ≤ ε0)
where ε0 is a real number and hε0 is a proof of the fact that ε0 > 0
The names N and hN can be chosen freely among available names.

Using this tactic with students suggests it already does a lot to tame the syntactic
complexity of our controlled natural language. One could fear that students will constantly
use it instead of analysing the goal or assumptions themselves, but this was not observed.

ITP 2024
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Especially in situations where there is not much time allocated to the use of a proof
assistant, one can use a more assisted mode where proofs can be assembled at least partly
through clicking. In this interaction mode, students click on expressions in the tactic state
and get tactics suggestions in return. This subsumes the help tactic: when clicking on the
full target or on a full assumption, the suggestions that are given are the same that appear
in the help command (assuming the default configuration is used). But one can also click on
multiple assumptions, or on sub-expressions inside the target or inside an assumption.

For instance the example that proved sequential continuity from continuity can be done
entirely by clicking. Clicking on the full goal suggests the first two lines of the proof. Then
one needs to specialize the continuity assumption to the positive ε that was just introduced.
This is done by clicking on the assumption and then clicking on ε. With this selection in the
tactic state, one gets the following suggestions:

· By hf applied to ε using that ε > 0 we get δ such that (δ_pos : δ > 0)
(hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε)

· By hf applied to ε / 2 using that ε / 2 > 0 we get δ such that (δ_pos : δ
> 0) (hδ : ∀ (x : R), |x - x0| ≤ δ ⇒ |f x - f x0| ≤ ε / 2)

Those two suggestions have the same shape but use either ε or ε/2 since specializing
to half a given number is a very common move in elementary analysis and the default
configuration is biased towards this kind of mathematics.

In the above example, the library does not check that it will be able to automatically
prove the positivity side condition that appears after using that. This lets students judge
the different suggestions.

4 Using the library as a teacher

4.1 Basic configuration
In this section we explain various mechanisms used for configuration which do not require
programming expertise from teachers (of course a lot more is possible with programming).
The goal is not to document every configuration possibility – since this is not a manual –
but to show the configuration mechanisms that we use. We also show how this configuration
depends on specific pedagogical goals, students expertise and time constraints.

The first decision to make is how much automation, if any, is desired when implicitly
using lemmas. As explained in the previous section, there are two kinds of such lemmas,
depending on whether they split a given fact or the current goal. For instance lemmas in
the second category can be configured using configureGoalSplitingLemmas Iff.intro
Subset.antisymm. Listing a lot of lemmas in these commands could become very tedious.
So we allow defining lemmas lists and referring to them in the configuration commands. We
also pre-define some lists. Defining a list named MyList which contains the pre-defined list
LogicIntros and the lemma proving set equality from double inclusion is done using

AnonymousGoalSplittingLemmasList MyList := LogicIntros Subset.antisymm

Those commands and all configuration commands are meant to be “hidden” in the teacher
file. When changes are needed in the middle of an exercise file, one can use a macro. For in-
stance macro "switchConf" : command => ‵(configureGoalSplittingLemmas x) would
allow to simply write switchConf between two exercises to avoid a long distracting line.
Note that teachers will probably want to tell students about the list of anonymous lemmas,
at least informally, in order to avoid creating confusion about what needs to be justified.
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Tactics can also have configuration flags. For instance, say the goal is ¬ ∃ x:Q, x^2 = 2.
By default, starting the proof with Assume for contradiction H : ∃ x : Q, x^2 = 2
will lead to the error message: “The goal is a negation, there is no point in proving it by
contradiction. You can directly assume ∃ x : Q, x^2 = 2”. Teachers who fully embrace
the confusion between a direct proof of a negation and a proof by contradiction, or simply
need to focus on other topics, can use allowProvingNegationsByContradiction.

The next thing to configure is the assisted modes (help tactic and suggestion widget).
First there are commands to disable those modes for teachers who want students to write
everything by hand (in an exam setting, one can simply delete the relevant file for extra
safety). Assuming they are enabled, many aspects are configurable. Each help message comes
from a function, and one can configure the available functions using the same kind of lists
as with anonymous lemmas. For instance, in a basic course which progressively introduces
different kinds of reasoning, one can disable messages suggesting a proof by contradiction in
the beginning. One can also modify existing help functions with no programming knowledge
by copy-pasting and editing only the text.

If the current lecture focuses on students knowing definitions then one can completely
disable the help that unfolds definitions. One can also control in detail which definitions
participate in unfolding suggestions. This has to be an opt-in mechanism to avoid having
suggestions unfolding fundamental definitions such as the definition of real numbers or even
the definition of addition of natural numbers. For instance the teacher file could contain:
configureUnfoldableDefs continuous seq_limit assuming the teacher library defined
continuous and seq_limit.

The suggestion widget is also fully configurable. Really changing its behavior requires
programming. But an easy tweak is to change how to produce data from the selection. We
saw that selecting a real number ε and a universally quantified assumption h does not only
propose to specialize h to ε but also to ε/2. The configuration for this can look like:

dataProvider mkSelf a := a
dataProvider mkHalf a := a/2
dataProvider mkMin a b := min a b
dataProvider mkMax a b := max a b
DataProviderList CommonProviders := mkSelf mkMin mkMax

configureDataProviders {
R : [CommmonProviders, mkHalf],
N : [CommmonProviders] }

In addition to a declaration list CommonProviders analogous to the one we use for
anonymous lemmas, there are two new kinds of micro–DSLs (domain specific languages)
here. First we define four “functions” with the dataProvider command which features no
type information at all. Those are purely syntactic objects. They only participate in creating
the widget suggestions on the syntactic level. Writing meaningless functions there would
of course create trouble when accepting suggestions. Finally there is a JSON-like syntax in
the configureDataProviders that registers data providers for different types. The goal of
those DSL is to allow configuring this even for teachers who basically know nothing about
Lean, maybe not even enough to write a function that can perform an algebraic operation
either on natural numbers or on reals.

All the configuration options mentioned so far are specific to the Verbose library, but of
course they come on top of the usual Lean configuration. A lot of the flexibility offered by
Lean out of the box is very relevant to the kind of teaching targeted by our library.

ITP 2024
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This includes the whole parsing and elaboration pipelines. For instance Verbose Lean
overwrites the notation for implication to use the double arrow symbol that is normally
used in mathematics instead of a single arrow. The examples in this paper also use an infix
notation for continuity and limits as in u tendsto x.

Overriding notation is not only about having a nice output. It also help mitigating
unwanted side-effects of using type theory. For instance say we want to use the sequence
of real numbers n 7→ 1/(n + 1). Using its default configuration, Mathlib may need help
to understand that 1/(n + 1) is a real number and not a natural number. The correct
interpretation can be enforced using a type ascription such as 1/(n + 1 : R). But this is
distracting for students in the provided code, and failing to use such ascription in their own
code can lead to inscrutable error messages. In this case it is much easier to override the
meaning of the division symbol to always mean division or real numbers. One can also use
a custom notation for function abstraction specialized to sequences of real numbers. For
instance one can ensure seq n 7→ . . . gets expanded to fun n : N 7→ (. . . : R).

Note there is no way to completely avoid type ambiguities in the input without type
ascriptions. We have seen students feeling the need to state as an intermediate fact something
like 0 < 1. Here there is no way Lean can guess whether this is meant as an inequality of
real numbers or of natural numbers. And there is no way students can be aware of this issue
without discussing the subtle status of the “inclusion” of N into R. Lean will interpret the
above statement as an inequality of natural numbers and our tactics will happily prove it.
But then using this intermediate fact will fail if the intended meaning was an inequality of
real numbers. Note that Lean has an option, namely pp.numeralTypes, to always decorate
literal numbers such as 0 or 1 when it displays them. This helps making the above problem
easier to spot, but it does not fix the input issue and does not avoid discussing the subtlety.

4.2 Translating to a new language
The English language can be a huge barrier for undergraduate students. One can also
imagine teachers who want to use a dialect of English. Verbose Lean comes with an English
version and a French version. Adding a new language can be done by imitation without any
knowledge of Lean programming. The process is to copy the English folder of the Verbose
library and replace English words. In case of doubt, comparing the French and English
versions can show the required modifications. For instance we see4 in the English version:

declare_syntax_cat maybeApplied
syntax term : maybeApplied
syntax term "applied to " term : maybeApplied
syntax term "applied to " term " using " term : maybeApplied
syntax term "applied to " term " using that " term : maybeApplied

def maybeAppliedToTerm : TSyntax ‵maybeApplied → MetaM (TSyntax ‵term)
| ‵(maybeApplied| $e:term) => pure e
| ‵(maybeApplied| $e:term applied to $x:term) => ‵($e $x)
| ‵(maybeApplied| $e:term applied to $x:term using $y) => ‵($e $x $y)
| ‵(maybeApplied| $e:term applied to $x:term using that $y) =>

‵($e $x (strongAssumption% $y))
| _ => pure default

elab "We" " conclude by " e:maybeApplied : tactic => do
concludeTac (← maybeAppliedToTerm e)

4 The actual code has some more cases that were removed here for conciseness.
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We will comment more on this code in the next section. Our point here is that we see a lot
of mysterious things but understanding them is not required to write the French version:

declare_syntax_cat maybeAppliedFR
syntax term : maybeAppliedFR
syntax term "appliqué à " term : maybeAppliedFR
syntax term "appliqué à " term " en utilisant " term : maybeAppliedFR
syntax term "appliqué à " term " en utilisant que " term : maybeAppliedFR

def maybeAppliedFRToTerm : TSyntax ‵maybeAppliedFR → MetaM Term
| ‵(maybeAppliedFR| $e:term) => pure e
| ‵(maybeAppliedFR| $e:term appliqué à $x:term) => ‵($e $x)
| ‵(maybeAppliedFR| $e:term appliqué à $x:term en utilisant $y) => ‵($e $x $

y)
| ‵(maybeAppliedFR| $e:term appliqué à $x:term en utilisant que $y) =>

‵($e $x (strongAssumption% $y))
| _ => pure default

elab "On" " conclut par " e:maybeAppliedFR : tactic => do
concludeTac (← maybeAppliedFRToTerm e)

5 Some implementation mechanisms

The previous sections have been all about the pedagogical choices of the library, about how
they can be tweaked by teachers and how students can use them. We now switch gears and
turn to the question of the Lean mechanisms that allow all this. Many of those mechanisms
are specific to Lean 4, the new family of versions of Lean that was officially released for the
first time in September 2023 and puts flexibility of use in the center [5].

The flexibility of Lean as a proof assistant rests on two main pillars. The first one is that
Lean is also a programming language and that almost all of Lean is implemented in Lean.
This allows in particular to override a lot of what Lean is doing, even pretty deep down, but
we don’t really use that directly. However we certainly use Lean as a programming language
here, so we need a very quick introduction to that.

Lean is a pure functional programming language. So, fundamentally, it never does
anything but defining and applying functions. However Lean makes extensive use of the
monad pattern together with an extremely sophisticated notation system that can make it
look a lot like imperative programming, but without the bad surprises [15]. An important
inspiration is Haskell here. For our purposes, one can think of a monad M as a programming
environment with a well specified state that can be read or written during program execution,
a well specified way it can fail or not, and a well specified way of interacting or not with the
outside world (such interactions could include reading files or printing things for instance).
For any type α, the type M α is the type of programs that can do all this and return an
element of type α (when they don’t throw an exception if M includes the exception throwing
capability). Running such a program requires providing an initial state and actually also
return the new state if the state includes writable parts.

An important example is the CoreM monad defined by Lean itself. It allows to describe
and run programs that have read and write access to all definitions in scope, read only access
to options, can fail by throwing certain kinds of exceptions, and can interact with the outside
world (of course it has a more precise definition, we only give the flavor here).
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On top of this CoreM monad sits the MetaM monad which mainly adds read and write
access to the meta-variable context. A meta-variable is a place-holder that can be used
in particular in a partially constructed proof. For instance at the very beginning of an
interactive proof of a lemma, the full proof is a single meta-variable. By itself a meta-variable
only stores a unique identifier. The meta-variable context is a data structure holding in
particular for each meta-variable its expected type (that would be the conclusion of the
lemma in our example) and its local context (that would be the assumptions of the lemma).
On top of MetaM sits the TacticM monad which describes tactics, with additional access to
all the relevant goals.

The second pillar of flexibility is the existence of typed concrete syntax objects as first
class citizens [14, 13]. Here an important source of inspiration is the family of LISP languages,
especially modern incarnations such as Racket. This is crucial for us. First it is crucial to our
translation system that the syntax of tactics is clearly separated from their implementation.
It also allows the assisted modes to provide suggestions that are guaranteed to be syntactically
correct, because they produce syntax objects that are then printed as strings. This is seen in
the snippets above that use syntax quotations such as ‵(maybeApplied| $e:term). Syntax
objects can also be turned into other syntax objects, either by macros such as the one showed
in Section 4 or by functions in the library.

We will now explain part of the implementation of: By hu applied to δ using that
δ > 0 we get N such that Hu : ∀ n ≥ N, |u n - x0| ≤ δ that we saw earlier. The
place where the corresponding syntax is hooked to the tactic implementation is

elab "By " e:maybeApplied " we get " news:newStuff : tactic =>
do obtainTac (← maybeAppliedToTerm e) (newStuffToArray news)

The elab command is a shortcut that allows to define a syntax in the first line and immediately
assign it some meaning in the second line. On the first line we see two literal strings and two
variables e and news. Those variables hold syntax objects with some syntax categories that
are defined in Verbose Lean. They are based in the crucial syntax category term which is
used for syntax representing Lean expressions. The (simplified) definition of maybeApplied
representing functions that may be applied to arguments, and then a function turning such
syntax objects into terms syntax objects have been seen in the first code snippet in Section 4.2.
The first line of that snippet registers our syntax category and the next four lines describe
four ways to build a syntax object in this syntax category. Those four ways are very simple
and combine terms and literal words.

Now we can move to the second line of our elab command that calls the actual tactic.
The do keyword starts a monadic program. Here it is a TacticM Unit program, i.e. a
program in the TacticM monad that returns nothing – its only purpose is to manipulate the
state of this monad. The type of the three involved functions are

obtainTac : TSyntax ‵term → Array MaybeTypedIdent → TacticM Unit
maybeAppliedToTerm : TSyntax ‵maybeApplied → MetaM (TSyntax ‵term)
newStuffToArray : TSyntax ‵newStuff → Array MaybeTypedIdent

We will ignore the third function. Note that the return type of the second one does not match
the type of the first input to the first function. We need a term and not only a program
computing a term in the MetaM monad. Fortunately, a program in this monad can be used in
the TacticM monad which extends it. And the arrow in (← maybeAppliedToTerm e) tells
Lean to run the maybeAppliedToTerm e program and feed the result at this spot.

The definition of the maybeAppliedToTerm function was shown in Section 4.2. It is
of course defined by pattern matching on the four possibilities to create a maybeApplied
syntax object (plus a wild card possibility that is required because the syntax category
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could in principle be extended after the definition of this function). Note that the last
interesting case also uses the strongAssumption\lstinline{(by strongAssumption : $
y) where strongAssumption is one of our tactics. Of course we could have used the expanded
version here but the macro is used in several other places. Hence this example is a library
function turning some syntax objects into other syntax objects using pattern matching and a
macro that also does such a transformation.

The result type is not directly TSyntax ‵term but a program in the MetaM monad. This
is because the quotation mechanism includes hygiene guarantees, a mechanism preventing
accidental name capture and requiring some information from the surrounding context.

Note that one could inline this function into the obtainTac function. But this would
make the latter into a language dependent function. As we saw in Section 4.2, Verbose Lean
contains a French maybeAppliedFR syntax category and a function to turn syntax objects in
this category into terms. It then uses the exact same obtainTac function from the language
agnostic part of the library. Hopefully this already illustrate how we put to good use the
monadic meta-programming framework of Lean and, crucially, its treatment of syntax objects.
Syntax objects are also used to implement all the little DSLs we saw earlier.

We now want to discuss part of the implementation of obtainTac. Its first task is to
turn the term it got as its first argument into a Lean expression, i.e. an abstract syntax
object whose type Expr is an inductive type whose main constructors correspond to the
fundamental operations of lambda calculus: function application, function abstraction. . .
This process is possible in the TacticM monad which has access to all definitions in scope as
well as to the local context of the proof where this tactic is used.

Then obtainTac first tries to decompose the type of this expression. In our example this
type is ∃ N, ∀ n ≥ N, |u n - x0| ≤ δ which can indeed be decomposed as a witness N
and its property. This job of obtainTac is a trivial wrapper around a standard Lean tactic.

More interestingly, when such a decomposition does not make sense, the tactic will try to
apply an anonymous splitting lemma. We saw already how to configure the lemmas that are
tried. Now we want to discuss how this configuration is stored and updated. We saw that
programs in the CoreM monad have access to existing declarations. More generally they have
access to the so-called environment that stores declarations but also a lot more information.
Lean allows to declare environment extensions storing user information for later use. In the
case at hand, the stored information is simply a list of lists of declaration names. But our
library also uses more interesting extensions for assisted modes.

The multilingual support for help and suggestions is based on a multilingual function
dispatch framework by Mario Carneiro. Multilingual functions are first registered using the
register_endpoint command. This gives a function that can immediately be used to define
other functions. But running those functions requires implementing the endpoint in the
current language, which is en by default but can be changed using setLang. For instance:

/-- Multilingual hello function. -/
register_endpoint hello : CoreM String

/-- Greeting function refering to our endpoint before any implementation
is defined. -/

def greet (name : String) : CoreM String :=
return (← hello) ++ " " ++ name

#eval greet "Patrick" -- throws error: no implementation of hello found
for language en
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implement_endpoint (lang := en) hello : CoreM String := return "Hello"

implement_endpoint (lang := fr) hello : CoreM String := return "Bonjour"

#eval greet "Patrick" -- returns "Hello Patrick"

setLang fr

#eval greet "Patrick" -- returns "Bonjour Patrick"

Note that above example creates three declarations: hello, hello.en and hello.fr,
but only the first one is explicitly used. The implementations in this example are silly since
they do no perform anything inside the CoreM monad, they simply return a value without
reading or writing any CoreM state. But the hello function itself, which is created by the
register_endpoint command, crucially uses CoreM to fetch the relevant information from
the environment after reading the current language setting.

The way this is achieved illustrates an important point about Lean’s flexibility. Lean
as a proof assistant has very strong soundness guarantees, and the whole proof checking is
handled by its type system. This translates to the default behavior of Lean as a programming
language. We saw that being a pure functional programming language does not prevent
us from accessing state and having side-effects. One simply has to be honest about it by
announcing in which monad we are working. Lean also allows to throw away type safety
as long as we clearly announce it. And of course functions which do that cannot appear in
proofs (they can participate in creating proofs, but can’t appear in the end result).

A very simple version of the trick used in the multilingual framework is implemented
in the example below. The runFunctionOn takes a string and a natural number, searches
the environment for a declaration whose name is that string, then forcefully tells the Lean
type system that this declaration is a function from natural numbers to natural numbers
and applies it to the given number. The result is in CoreM N rather than N since it needs
access to the environment to search for the relevant declaration and it could fail to find it
so it needs to be able to throw errors – this is what happens in the second example below.
But the new piece is the unsafe signpost in front of def. Indeed the declaration could be
found but not with type N → N, bringing us into undefined behavior territory. This is what
happens in the third example below where a function concatenating strings is found.

unsafe def runFunctionOn (function : String) (a : N) : CoreM N := do
let myFun ← evalConst (N → N) (Name.mkSimple function)
return myFun a

def foo (a : N) := 2∗a + 1

#eval runFunctionOn "foo" 1 -- returns 3

#eval runFunctionOn "baz" 1 -- fails with error message: unknown
declaration baz

def bar (a : String) := a ++ a

#eval runFunctionOn "bar" 1 -- crashes Lean

The moral is that programming in Lean allows to do very unsafe things that completely
bypass the guarantees offered by the type system, but this must be clearly flagged and
cannot be used as a proof (explaining how soundness is protected is beyond the scope of this
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discussion). Note that our actual multilingual dispatch is much more careful and checks that
types match before calling functions so that teachers don’t crash Lean when they make a
type mistake in the implementation of a new help message. For performance reasons we
don’t want to perform this check at every function call, so we also use an extension that
keeps track of a list of endpoints and type-checked implementations.

Although we insisted on our use of concrete syntax objects, we also use abstract ones,
with type Expr, in the tactic backends. We even have a custom version VExpr with many
more constructors that are useful when analysing goals and assumptions in assisted modes.
For instance bounded quantifiers have dedicated constructors. We have a function parsing
an Expr into a VExpr, hence factoring out work that many help functions would need to do.
The type of help functions that analyse the goal is MVarId → VExpr → SuggestionM Unit
where MVarId is used to indicate the relevant goal and the SuggestionM monad accumulates
suggestions while providing access to the MetaM monad. Such functions are registered as
part of the configuration by teachers, together with a pattern indicating (coarsely) which
kind of goal they comment on. Calling the help tactic uses a discrimination tree to quickly
locate functions with the relevant pattern and then check whether they are active in the
configuration. This use of discrimination trees is not necessary until someone implements
thousands of help functions, but the infrastructure is provided by Lean so it is free.

The last piece of Lean infrastructure that we want to comment on is the framework that
allows us to build the suggestion widget. There are quite a few layers here. Lean implements
the Language Server Protocol (LSP) with many extensions related to the so called info view
which gather the tactic state display, various messages and user-defined widgets. Deep down,
widgets are Javascript modules that export a React component that is displayed by the
VSCode extension, can access information from Lean and modify the current document.
However the ProofWidgets library [9] offers a powerful abstraction that allows us to ignore
Javascript. In particular it features a JSX-like DSL as well as React components written in
Lean and having a Lean interface. As a result, Verbose Lean does not contain a single line of
actual Javascript or HTML. For instance the loop printing the suggestions is:
for ⟨linkText, newCode, range?⟩ in suggs do

let p : MakeEditLinkProps := .ofReplaceRange doc.meta
⟨params.pos, params.pos⟩ (ppAndIndentNewLine curIndent newCode) range?

children := children.push
<li style={json% {"margin-bottom": "1rem"}}>

<MakeEditLink
edit={p.edit} newSelection?={p.newSelection?} title?={p.title?}>

{.text linkText}
</MakeEditLink>

</li>

The li tag is directly turned into an HTML list item, whereas MakeEditLink refers to
a ProofWidgets component. This component is rendered as an HTML link which, upon
getting clicked, edits the proof script. All this is fully type-correct Lean code, with real-time
typechecking and the expected editor support (for instance ctrl-clicking on MakeEditLink
jumps to the relevant declaration).

The tactic state natively allows to select names or sub-expressions in the local context or
the goal. It records this information as an array where each element inhabits an inductive type
Lean.SubExpr.GoalLocation having a constructor for each kind of selection, for instance
a constructor for an element of the local context, one for a sub-expression in the type of
such an element, etc. This layout is not convenient for our purposes so we introduce another
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datatype SelectionInfo which gather the same information by type of selections. We
also have many functions querying this information. Each suggestion provider has type
SelectionInfo → MVarId → WidgetM Unit analogous to the help function type.

6 Related work

Both the dream of using proof assistants for teaching and the work on alternative interfaces
are very common. However most teaching uses focus on computer science, logic or discrete
mathematics, or even on proof assistants for themselves.

One notable exception is the work of Heather Macbeth at Fordham university [8]. However
her course is more focused on computations and less on reasoning, so the need for a controlled
natural language is less pressing. What is common to both contexts is the need for automation
that is adapted to the level of details expected from students. And indeed some of our tactics
rely on tactics developed for Macbeth’s course.

Even more relevant is the comparison with the Coq-Waterproof project [16] that was
developed independently and shares many goals with Verbose Lean. Discussing with its
authors led to several improvements in our work. One thing that we still do not have is a
nice custom text editor to mix rendered comments and interactive exercises. On the other
hand, we do benefit from using a very flexible proof assistant that easily allows syntactic
freedom and interactive interfaces, as explained in this paper. The resulting proof scripts are
closer to paper proofs and the user interaction model is richer.

Also very relevant and interesting is the Diproche system [3, 4]. Its focus on controlled
natural language is even greater than in Verbose Lean. Proofs are sequences of assertions in
a more flexible language. Those assertions are sent to an automated prover that complains if
it cannot justify a step. The main downside is that the proof structure is much less clear.

On the topic of alternative interfaces, there are again many attempts that seem practicable
only for pure logic. For instance this is the case of the Actema project [6] which proposes a
drag and drop interface that is partly a more graphical version of our suggestion widget and
can interface with Coq. However it seems difficult to integrate with computations as in our
squeeze theorem example (which was chosen as the simplest example involving computations).
And it very explicitly targets leaving no written trace at all, hence has a very different goal.

Also in the same category but explicitly targeting teaching very young university students
is the d∀∃duction project [11]. It features a graphical interface based on selecting sub-
expressions and clicking buttons, with a completely invisible Lean backend. Again there is
no written trace so the transfer of skills to paper is not completely clear.

Edukera [10] is another point and click interface that produces a written text. It is a web
interface based on Coq. Its first main drawback is that teachers cannot write exercises or
configure anything, they simply have access to a fixed set of exercises. In addition, there is
no possibility to directly input text. The interface is only based on clicks and the text is
purely on the output side. Also the development of Edukera stopped in 2018.

As far as we know, none of those very nice projects have multilingual support except for
Edukera. Most of them are only in English, Diproche is only in German and d∀∃duction is
only in French.

7 Conclusion and future work

We end this paper with remarks about the effects of this work on students, on colleagues
and on other proof assistant users, and then with remarks about future work.
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Although some version of this library has been used for five years in University Paris-
Saclay at Orsay, it is still a work in progress, especially since the switch to Lean 4 made it
a lot more flexible. The suggestion widget in particular has not been used with students
yet, and will need refinements and extensions. However the Lean 3 version, including a
help tactic but no widget, has been used a lot. The move from standard Lean tactics to
controlled natural language tactics seemed pretty risky to us, and was tried only because
of our frustration with the difficulty to transfer skills from the computer to paper. But it
has been a lot more effective than what we anticipated, and really seemed to help with the
pedagogical objectives we described in Section 2. One limitation of those experiments, besides
their anecdotal nature, is that we did not try to use this tool with really weak students.

Compared to other reports about the use of proof assistants in mathematics teaching,
it is also worth mentioning that we met almost no resistance from colleagues or students.
The only exceptions came in the early years of this experiment when we used some pure
propositional logic exercises. Our students simply could not see the point of making efforts
to prove tautologies. As a result, they mostly did not try and, more importantly, they lost
faith in the usefulness of rigorous logical reasoning. After we removed those exercises, the
problem was solved. Of course such exercises can be pertinent in other contexts.

One can wonder whether such a tactic library could be used for regular Lean input,
say in Mathlib, the mathematical library of Lean. We do not believe such a use would
be productive. The usual tactics of Lean are more concise and flexible, and learning the
fragment corresponding to what we can do with Verbose Lean is not the most time consuming
task for new users. The main difficulties rather come from switching to a formal mindset,
navigating the library to find relevant definitions and lemmas, and finding the most efficient
encodings of mathematical definitions and statements in Lean’s type theory. The tactic
language described here do not really make these things easier (and was not at all built for
this purpose). More generally, past experiences with programming languages, going at least
as far back as COBOL, suggest that controlled natural languages are not sufficiently efficient
as a general input format. So it seems unlikely that this tactic language would significantly
facilitate access to formalized mathematics for mathematicians. One could still argue that it
could make formalized mathematics more accessible to readers that do not want to learn the
language but still want to access precise definitions, statements and proofs. But we think
that this goal is much more likely to be achieved by translating formalized mathematics to
natural language a posteriori. In particular such a translation can give access to information
that was automatically inferred and to proofs that were automatically generated.

Concerning future work, there are plans to rigorously assess the benefits of using this
library next year with the APPAM5 team which includes specialists in education sciences.
Error reporting is also a never-ending work in progress. Each new interface or piece of
automation requires more care in case of incorrect input, and students always find new ways
to trigger unexpected error messages. On the multi-lingual side, one short-term goal is to
make it easier to create variants of an existing language. Another project is to offer more
exercises that are ready to use or modify for teachers. Existing exercises are not yet all ported
to Lean 4, and new ones should be created in different fields of elementary mathematics.
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