SparseRNAFolD: Sparse RNA Pseudoknot-Free
Folding Including Dangles

Mateo Gray &

Department of Biomedical Engineering, University of Alberta, Canada

Sebastian Will &
CNRS/LIX (UMR 7161), Institut Polytechnique de Paris, France

Hosna Jabbari &

Department of Biomedical Engineering, University of Alberta, Canada

—— Abstract

Motivation. Computational RNA secondary structure prediction by free energy minimization
is indispensable for analyzing structural RNAs and their interactions. These methods find the
structure with the minimum free energy (MFE) among exponentially many possible structures and
have a restrictive time and space complexity (O(n?®) time and O(n?) space for pseudoknot-free
structures) for longer RNA sequences. Furthermore, accurate free energy calculations, including
dangles contributions can be difficult and costly to implement, particularly when optimizing for time

and space requirements.

Results. Here we introduce a fast and efficient sparsified MFE pseudoknot-free structure predic-
tion algorithm, SparseRNAFolD, that utilizes an accurate energy model that accounts for dangle
contributions. While the sparsification technique was previously employed to improve the time and
space complexity of a pseudoknot-free structure prediction method with a realistic energy model,
SparseMFEFold, it was not extended to include dangle contributions due to the complexity of
computation. This may come at the cost of prediction accuracy. In this work, we compare three
different sparsified implementations for dangles contributions and provide pros and cons of each
method. As well, we compare our algorithm to LinearFold, a linear time and space algorithm,
where we find that in practice, SparseRNAFolD has lower memory consumption across all lengths of
sequence and a faster time for lengths up to 1000 bases.

Conclusion. Our SparseRNAFolD algorithm is an MFE-based algorithm that guarantees optimality
of result and employs the most general energy model, including dangle contributions. We provide a
basis for applying dangles to sparsified recursion in a pseudoknot-free model that has the ability to
be extended to pseudoknots.

2012 ACM Subject Classification Applied computing — Molecular structural biology

Keywords and phrases RNA, MFE, Secondary Structure Prediction, Dangle, Sparsification, Space
Complexity, Time Complexity

Digital Object Identifier 10.4230/LIPIcs.WABI.2023.19

Related Version Previous Version: https://www.biorxiv.org/content/10.1101/2023.06.05.
543808v1

Supplementary Material Software (SparseRNAFolD’s Algorithm and Detailed Results):
https://github.com/mateogd712/SparseRNAFolD
archived at swh:1:dir:0ecal6668f1ba547f3f24ec55cb10e053df4492e

Author Contributions Statement M.G. and H.J. conceived the experiment(s), M.G. conducted
the experiment(s), M.G. analysed the results. M.G. and H.J. and S.W. wrote and reviewed the
manuscript.
© Mateo Gray, Sebastian Will, and Hosna Jabbari;

oY licensed under Creative Commons License CC-BY 4.0
23rd International Workshop on Algorithms in Bioinformatics (WABI 2023).
Editors: Djamal Belazzougui and Aida Ouangraoua; Article No. 19; pp.19:1-19:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mateo2@ualberta.ca
https://orcid.org/0000-0001-7143-1367
mailto:sebastian.will@polytechnique.edu
https://orcid.org/0000-0002-2376-9205
mailto:jabbari@ualberta.ca
https://orcid.org/0000-0002-7155-2297
https://doi.org/10.4230/LIPIcs.WABI.2023.19
https://www.biorxiv.org/content/10.1101/2023.06.05.543808v1
https://www.biorxiv.org/content/10.1101/2023.06.05.543808v1
https://github.com/mateog4712/SparseRNAFolD
https://github.com/mateog4712/SparseRNAFolD
https://archive.softwareheritage.org/swh:1:dir:0eca16668f1ba547f3f24ec55cb10e053df4492e;origin=https://github.com/mateog4712/SparseRNAFolD;visit=swh:1:snp:5ef4e06720eb75676ac3d30d1b1ff177ad028c1c;anchor=swh:1:rev:dea0b6cd627b97c1c4835d2e96ba18532809a872
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 SparseRNAFolD

AGGGUCA QEOE0
] i i

1 10 20 30 a0

(a) Pseudoknot-free. (b) Pseudoknotted.

Figure 1 An RNA structure is shown with dangles highlighted. (a) In red, we have the dangles
on the bands in the multi-loop. In blue, we have the dangle on the closing bases of the multi-loop.
In gray, we have dangles on the outer end of the RNA. (b) We include purple to show dangles
occurring in a pseudoknot. Dangles in pseudoknots can be handled differently depending on the
program.

1 Introduction

Non-coding RNAs play crucial roles in the cell, such as in transcription [3], translation [3, 16],
splicing [23, 32], catalysis [3, 36] and regulating gene expression [3, 12, 18, 23]. Since RNA’s
function heavily relies on its molecular structure, facilitated by hydrogen bonding both within
and between molecules, predicting and comprehending the structure of RNA is a dynamic
area of research. It is reasonable to assume (without further knowledge) that RNA forms the
structure with the lowest free energy [19, 24]. This is the motivation for algorithms that aim
to predict the RNA minimum free energy (MFE) structure from the pool of exponentially
many structures it can form. Such methods employ a set of energy parameters for various
loop types, called an energy model; to find the free energy of a structure, they add up the
energy of its loops. While prediction accuracy of these methods depends on the quality of
their energy models, these methods are applicable to novel RNAs with unknown families
or functions and for the prediction of the structure of interacting molecules. The large
time and space complexity of MFE-based methods (O(n?®) time and O(n?) space where
n is the length of the RNA), however, restricted their applications to small RNAs. The
sparsification technique was recently utilized in existing MFE-based algorithms to reduce
their time and/or space complexity [34, 29, 22, 2, 4, 35, 15, 14] by removing redundant cases
in the complexity-limiting steps of the dynamic programming algorithms. While the majority
of these methods focused on simple energy models, some expanded sparsification techniques
to more realistic energy models [35, 15, 14]. To the best of our knowledge, no existing method
has yet incorporated dangles energy contributions into a sparsified prediction algorithm.
Dangle energies refer to the free energy contributions of unpaired nucleotides that occur at
the end of a stem-loop structure.

We show in Figure 1 the location of dangles on a pseudoknot-free structure (see Figure 1a)
and a pseudoknotted structure (see Figure 1b). The complexity of dangles in a pseudoknot
further increases as dangles have to be tracked for both bands within the pseudoknot.

Neglecting dangle energies in the prediction of RNA structure stability can lead to
inaccuracies. For instance, a stem-loop structure that includes an unpaired nucleotide at
the end may appear less stable than its actual stability if the dangle energy contribution
is ignored. Conversely, a stem-loop structure with an unpaired nucleotide that interacts
positively with another one may appear more stable than its actual stability if the dangle
energy contribution is not taken into account.

Dangles, in some form, are implemented in the majority of MFE pseudoknot-free secondary
structure prediction algorithms [9, 8]. RNAFold [9, 11, 21, 6, 17, 41, 7] is an O(n?) time
and O(n?) space algorithm which implements the dangle 0 (“no dangle”), dangle 2 (“always

M. Gray, S. Will, and H. Jabbari

dangle”), and dangle 1 (“exclusive dangle”) model (defined in Section 2.1). It also utilizes a
dangle model that implements coaxial stacking — a type of stacking that gives a bonus to
stacks in the vicinity of each other. LinearFold [8], a sparsified O(n) space heuristic algorithm
has implemented the “no dangle” and “always dangle” model but has not implemented an
“exclusive dangle” model. Fold from the RNAstructure library [27] is an O(n?) time and
O(n?) space algorithm which implements an “exclusive dangle” model with coaxial stacking.
MFold [40, 33, 39] is an O(n?) time and O(n?) space algorithm which has implemented an
“exclusive dangle” model with coaxial stacking.

Handling dangles in pseudoknot prediction algorithms are less developed. Pknots [28], an
O(n®) time and O(n*) space pseudoknot prediction algorithm has implemented an “exclusive
dangle” model that also includes coaxial stacking. Within Pknots, a set of parameters
is defined for non-pseudoknot and pseudoknot dangles. The pseudoknot parameters are
estimated and rely on an estimated weighting parameter. Hotknots [26], a heuristic algorithm,
uses the DP09 parameters, which include pseudoknotted parameters from Dirks and Pierce [5]
and tuned by Andronescu et al. [26]; however, the energies for the pseudoknotted dangles
are the same as those for pseudoknot-free dangles, and there is no weighting parameter.

Contributions. 1In [35], we already discussed the sparsification of RNA secondary structure
prediction by minimizing the energy in the Turner energy model. However, in this former
work, we did not yet consider the energy contributions due to the interactions of base pairs at
helix ends with dangling bases (i.e., “dangling ends”). Here, we identify the correct handling
of dangling end energies in the context of sparsification as a non-trivial problem, characterize
the issues, and present solutions.

For this purpose, we first state precisely how dangle energies are handled by energy
minimization algorithms; to the best of our knowledge, this is elaborated here for the first
time. Consequently, we devise novel MFE prediction algorithms that include dangling energy
contributions and use sparsification techniques to significantly improve the time and space
complexity of MFE prediction.

Like the algorithm in [35], our efficient SparseRNAFolD algorithm keeps the additional
information to a minimum using garbage collection. In total, we study three different possible
implementations and compare their properties, which make them suitable for different
application scenarios. Finally, while we study the case of non-crossing structure prediction,
we discuss extensions to the more complex cases of pseudoknot and RNA-RNA interaction
prediction (such extensions being the main motivation for this work in the first place).

2 Preliminaries: sparsification without dangling ends

We restate the preliminaries and main results from our former work on sparsification of free
energy minimization without dangling ends [35].

We represent an RINA sequence of length n as a sequence S = Sy,...,5, over the
alphabet {A,C,G,U}; S; ; denotes the subsequence S;,...,S;. A base pair of S is an

ordered pair i.j with 1 < < j < n, such that ith and jth bases of S are complementary (i.e.

{Si,5;} is one of {A,U},{C,G}, or {G,U}). A secondary structure R for S is a set of
base pairs with at most one pair per base (i.e. for all i.7, 7.5’ € R: {4,5}N{i, 7'} = 0). Base
pairs of secondary structure R partition the unpaired bases of sequence S into loops [25]
(i.e., hairpin loop, interior loop and multiloop). Hairpin loops have a minimum length of m;
consequently, 7 —i > m for all base pairs i.j of R. Two base pairs i.j and 7.5’ cross each
other iff i <4’ < j < j ori <i<j <j. A secondary structure R is pseudoknot-free if it
does not contain crossing base pairs.

19:3

WABI 2023

19:4

SparseRNAFolD

The unsparsified, original algorithm for energy minimization over pseudoknot-free second-
ary structures was stated by Zuker and Stiegler [41]. It is a dynamic programming algorithm
that, given an RNA sequence S of length n, recursively calculates the minimum free energies
(MFEs) for subsequences S; ; as W (i, j) (stored in a dynamic programming matrix). Finally,
W (1,n) is the optimal free energy. We state this algorithm in a sparsification-friendly form
following [35]. As usual, the algorithm is described by a set of recursion equations (for a
minimum hairpin loop size of m and a maximum interior loop size of M). For 1 <1i < j <n,
1< J—m

W (i, j) = min{ W?(4,), V(i, j) } (1)

WP(i,j) = min{ W(i,j — 1),ir<1}€i£1j Wi,k —1)+W(k,j)} (2)

V(i j) = min{H(i,j); | min - Z(ijip.q) +V(p,q); WM?(i+1,j-1)+a} (3)
p—itj—q—2<M

WM(Zvj) :mln{WMp(Z’])’V(Zaj)+b} (4)

WMP(i,5) = min{ WM (i +1,5) 4+ ¢, WM (i,§ — 1) + ¢, WM?(i,) } (5)

WM?(i,j) = min WM (i,k — 1) + WM(k, j). (6)

i<k<j
Here, a, b, ¢ are multi-loop initialization penalty, branch penalty, and unpaired penalty in
a multi-loop, respectively. Z(i, j;p, q) refers to an interior loop between base pairs i.j and
p-q. The initialization cases are W (i,4) = 0; V(i,j) = WM (i,5) = oo for all j —¢ < m and
WM? = oo for all j —i < 2m + 3.

In these recursions, all function values (like W (i, 7) or W?(i,5)) denote minimum free
energies over certain classes of structures of subsequences S; ;. The classical Zuker/Stiegler
matrices W, V and WM are defined as: W yields the MFEs over general structures; V', over
closed structures, which contain the base pair i.j; WM, over structures that are part of a
multi-loop and contain at least one base pair.

Since sparsification is based on the idea that certain optimal structures can be decomposed
into two optimal parts, while others (namely closed structures) are non-decomposable, we
single out the partitioning cases and introduce additional function symbols WP, WMP and
WM?2.

Sparsification without dangling ends. This allows us to cleanly explain the key idea of
sparsification and consequently formalize it: to minimize over the energies of general structures
in W (i,j) — note that there is another minimization inside of multi-loops that is handled
analogously — the algorithm considers all closed structures V' (i, j) and all others WP (i, j).
Optimal structures in the latter class can be decomposed into two optimal structures of
some prefix S; ;1 and suffix Sy ; of the subsequence. Classically, the minimum is therefore
obtained by minimizing over all ways to split the subsequence. Sparsification saves time and
space since it is sufficient to consider only the splits where the optimum of the suffix Sy, ;
is not further decomposable (formally, where W (k, j) < WP(k, j)). Briefly (for more detail,
see [35] or [34]), this is sufficient since otherwise there is a k' to optimally split the suffix
further into Sy —1 and Sk ;. The split of S; ; at k cannot be better than the split at &’
and therefore does not have to be considered in the minimization; thus, it can be restricted
to a set of candidates. This is argued by the triangle inequality for W (which directly
follows from the definition of W as minimum):

W(i,5) <W(i,k—1)+Wi(k,j) forall1 <i<k<j<n.

M. Gray, S. Will, and H. Jabbari

Consequently, sparsification improves the computation of WP, WMP and WM?2. The
corresponding sparsified version are

—

WP(i,5) = min{ W(i,j — 1); min Wi,k —=1)+V(k,j)}

[k,j] is candidate,k>1

WM (i, 5) = min{ WM (i, j — 1) + ¢; min e (k—14)+ V(k,j); WM2(i,4)}

[k,7] is candidate,k>1

WM?2(i, §) = min{ WM?2(i,j — 1) + ¢; min WM (i k — 1)+ V(k,)}

[k,j] is candidate,k>1
where candidates [k, j] correspond to the not optimally decomposable subsequences Sy, ;
(in either situation: general structures or structures inside of multi-loops), i.e. [i,j] is a

candidate iff V(i,7) < Wp(i,j) or V(i,j)+b< Wp(i,j).

Time and space complexity of sparsified energy minimization. Will and Jabbari showed
that following the above algorithm, W (1,n) can be calculated in O(n? 4+ nZ) time, where
Z is the total number of candidates. While the MFE structure in the Zuker and Stiegler
algorithm can be trivially reconstructed following a traceback procedure, this is not the case
if sparsification is used for improving time and space as in the SparseMFEFold algorithm
(and our novel algorithms). To improve the space complexity, sparsification avoids storing
all entries of the energy matrix. The idea is to store the candidates and as few additional
matrix entries as possible. A specific challenge is posed by the decomposition of interior

loops (the single most significant major complication over base pair maximization, see [2]).

For this reason, Will and Jabbari introduced trace arrows for cases, where the trace cannot
be recomputed efficiently during the traceback procedure; they discussed several space
optimization techniques, such as avoiding trace arrows by rewriting the MFE recursions,
and removing trace arrows as soon as they become obsolete. Due to such techniques,
SparseMFEFold requires only linear space in addition to the space for candidates and trace
arrows; its space complexity is best described as O(n +T + Z), where T is the maximum
number of trace arrows.

2.1 Dangles

Recall that sparsification was discussed before (e.g., in SparseMFEFold) only for the simplest
and least accurate variant of the Turner model, namely the one without dangling end
contributions. Before we improve this situation, let’s look in more detail at dangling ends
and different common ways to handle them. Specifically, we discuss different dangle models
“no dangle” (model 0), “exclusive dangle” (model 1), and “always dangle” (model 2) as
implemented by RNAfold of the Vienna RNA package (and available via respective command
line options -d0, -d1, and -d2).

Dangling end contributions occur only at the ends of stems (either in multiloops or
externally) due to stacking interaction between the closing base pair of the stem and one
or both immediately adjacent unpaired bases. In contrast, dangling end terms are not
considered within (interior loops of) stems by the energy model.

We present modified DP recursions in order to reflect precisely where and how dangling
ends are taken into account. Therefore, in preparation, let’s replace V' in the Equations (1)
and (4) of the free energy minimization recursions of Section 2 by a new function V4. The
dangle models differ in the exact definition of V4.

W (i, §) = min{ W?(i, j), V4(i, j) } (1)
WM (i, j) = min{ WMP(i,), V4(i,j) + b} (4)

19:5

WABI 2023

19:6

SparseRNAFolD

Note that in the energy model, dangling ends can also occur at the inner ends of helices
that close a multi-loop. These dangles can be handled directly in the recurrence of V (4, j);
specifically, in the subcase where i.j closes a multi-loop.

No dangles. In the simplest model “no dangle”, dangling ends are ignored. We achieve
this by defining

Vi, j) =V (i, j) (no dangle)

While easy to implement, it is clearly wrong to ignore dangling end contributions, and this
has a significant negative effect on the prediction accuracy compared to the other dangle
models [30, 38, 37].

Always dangle. A second relatively simple way is to apply a 53’ dangle energy at both ends
of a stem (both 5’ and 3’ ends), assuming that stem ends always dangle with their adjacent
bases. As a strong simplification, in this model, one disregards whether the bases are paired
and/or dangle with a different stem (either case would actually make them unavailable for
dangling).

This dangle model allows the dangling ends to have a thermodynamic influence while
keeping the model easy to implement as neither the conflicting adjacent nucleotides nor the
energies of single dangle have to be tracked; it only requires knowledge of the bases on the 3’
and 5’ sides of a base pair. Formally, we implement V9 as

V4(i,) := V (i,) + dangles, (i, 5) (always dangle)

Moreover, we add the appropriate dangle contribution when closing a multi-loop in Eq. (3)
in the last case of the V-recurrence of Eq. (3). The term WM?(i+1,j — 1) +a is rewritten to

WM?(i 41,5 — 1) 4+ a + danglesz (i 4+ 1,5 — 1) (always dangle, ML closing)

Exclusive dangling. The most complex but general secondary structure dangle model,
“exclusive dangle” considers both single and double unpaired nucleotides adjacent to a stem.
Furthermore, the model does not allow shared dangling ends i.e. no base can be used
simultaneously in two dangles (in other words, adjacent unpaired bases dangle ezclusively
with a single stem end). As the restriction requires tracking of unpaired bases, V (i, j) places
the possible unpaired bases at ¢ and j and looks at the adjacent V energies. As this requires
knowledge of energies adjacent to the current bases being looked at, this inherently causes
difficulty in sparsification.

V(i,j)

V(i +1,7) + dangles(¢)

V(i,j — 1) + dangles(5)
V(i+1,j—1)+ dangles5(3, j)

V4(i,j) := min (exclusive dangle)

Moreover, we consider dangles at the closing of a multi-loop. In this model, the case
WM?(i + 1,5 — 1) 4+ a in the minimization of Eq. (3) is replaced by (the minimum of) four
different cases:

WM?(i+1,57—1)+a

WM?(i + 2,7 — 1) + a + dangle, (i)
WM?(i+ 1,7 — 2) + a + dangle;(j)
WM?(i + 2,7 — 2) + a + dangleg; (i,)

(exclusive dangle, ML closing)

M. Gray, S. Will, and H. Jabbari

2.2 Space-efficient sparsification with exclusive dangles is non-trivial

We approach our main motivation for this work, which is to study and solve the issues of
sparsification in the exclusive dangle model (dangle model 1). Let’s thus start by applying
the idea of sparsification (Section 2) straightforwardly to the Recursion (2) (where W and
V4 are defined for exclusive dangles).

We quickly come up with the equation:

WP(i, j) = min{ W (i, j — 1); i Wik —1) + Vi(k,j
(4,7) = min{ W (i, j)’Um] . (i,)+ VE(k,5))

but we would still have to define ed-candidate (exclusive dangle candidate) to make this work.

We could define: [i,j] is an ed-candidate iff V4(i, j) < Wp(i, J) , where the correctness of
sparsification holds to a sparsification-typical triangle inequality argument (Section 2).

Expanding V¢ shows that this is not the only possible path to sparsifying the recursion.

We could consider

Wi(i,j—1)

+V(i,j)

+ V(i+1,7) + dangle; ()

+ V(i,j — 1) + dangle; (j)

Min 5 is ed53-candidate,k>i W (i, k — 1) + V(i + 1,5 — 1) + dangleg4(4, 5)

Min(] is edo-candidate, k>4 (Z k— 1)
I//V\p(i»j) = min ¢ ming ;| is eds-candidate,k>i W (4, k — 1)
[)
[1

min k,j] is ed3-candidate,k>1 (l k—1

with different sets of candidates for all four cases. However, storing all these candidate sets
(recall that there is even a second recursion that needs to be sparsified) is easily prone to
compromising any space benefits due to sparsification in practice.

The transfer of the techniques from [35] brings even more problems, since due to such
definitions, candidates [i,j] do not necessarily correspond to subsequences that have closed
optimal structures. Will and Jabbari strongly exploited this fact for their strong space
savings.

Even considering our definition of an ed-candidate, we still run into the challenge of to
tracing back to the corresponding base pair. With just the dangle energy, this poses issues
as an ed-candidate can be one of four cases.

» Lemma 1. In the exclusive dangle model, storing only the energy of each ed-candidate is
not sufficient to correctly trace back from the candidate.

Proof. Concretely, for the loop-based Turner 2004 energy model [20]) with exclusive dangles,
consider the following RNA sequence S of length 12 with its MFE structure:

UGGGAAAACCCC
GO

In the calculation of W (1,12), the recurrences unfold to W (1,12) = W(1,1) + V4(2,12) =
W(1,1)+V(2,11) + dangle5(12) = - - - = —2.9 kcal/mol, i.e. it is optimal to assume dangling
of base pair (2,11) to the right.

In a non time- and space-sparsified algorithm, recomputing V4 from V adjacent energies
would be trivial. However, due to space sparsification, the values of V' are generally unavailable
in the trace-back phase. In the constructed example, recomputation would require us to
know V(2,12), V(2,11), V(3,12), and V(3,11). Thus, under the assumption of the lemma,
the optimal dangling cannot be efficiently recomputed for a candidate like [2,12]. <

19:7

WABI 2023

19:8

SparseRNAFolD

In our preceding work SparseMFEFold [35], trace arrows were introduced to trace back
to non-candidate values necessary to the structure within the interior loop case: Vi-cand(j 5).
Trace arrows that point to candidates are not stored as they can be avoided by minimizing
over candidates as seen in Equation 7.
vibend(i gy = min_ - Z(i,jip,q) + V(p,q)- (7)
1<p<qg<y
p—it+j—q—2<M
[p, q] is candidate
Consequently, finding the inner base pair of a loop through a candidate relies on the energy
saved being V' (p, q). However, as shown in Eq. (exclusive dangle, ML closing), the dangle
energy could be V(p, q), V(p+1,q), V(p,q—1), or V(p+1,q—1). Replacing the stored energy
within a candidate with V9 may conflict with the interior loop calculation. Recomputation
of the V values required for V; would negate the sparsification benefit. In summary, there is
no easy or direct way to save the V energy required for the interior loop as well as the V4
energy required for a multi-loop or external loop within the current candidate structure.

» Lemma 2. The minimization over inner base pairs in the recursion of V' cannot be
restricted to candidates in the same way as in SparseMFEFold.

Proof. Again consider the loop-based Turner 2004 energy model. There is a sequence S and
1 <i < j <n,such that V4(p,q) < V(p,q), but there is no way to trace back to p and q
from ¢ and j, namely, consider the RNA sequence S of length 19 with its MFE structure:

GGGAGGGAAAACCCCACCC
G CCCa ...))).)))

The optimal recursion case of V'(3,17) forms the interior loop closed by 3.17 with inner base
pair 5.15, because V' (5,15) = —2.4 kcal/mol and V(3,17) = Z(3,17;5,15) + V(5,15) = —1.5
kcal /mol.

The space optimization of SparseMFEFold removes trace arrows to candidates since the
trace-back to candidates can be reconstructed based on candidate energies (compare Eq. (7).

In the way of SparseMFEFold, we would not store a trace arrow pointing to 5.15 from
[3,17], since [5,15] is a candidate. However, without a trace arrow, we would not reconstruct
the correct trace. This happens, since the optimal structure in the subsequence 5..15
GGGAAAACCCC would be (((....))). due to the 3’ dangle (V4(5,15) = —2.9 kcal/mol).
Consequently, tracing back the optimal path from V4(5,15) wrongly introduces a base pair
at 5.14. <

3 SparseRNAFolD

SparseRNAFolD combines the power of sparsification and a general energy model including
dangle energies to achieve a fast and highly accurate RNA pseudoknot-free secondary structure
prediction. To this end, we started with the sparsified dynamic programming recurrences of
SparseMFEFold (which implements the “no dangles” model), rewriting and revising them to
accommodate various dangle energies.

3.1 “always dangle” model

Recall that “always dangle” model considers both the 5’ and 3’ ends of a branch of a multi-
loop or external loop for dangle contributions. The addition of this model is trivial, with no
change necessary to the recurrences of the SparseMFEFold. Note that, as mentioned earlier,
this model ignores overlapping cases and may overcount the contributions of dangles.

M. Gray, S. Will, and H. Jabbari

3.2 “exclusive dangle” model

As mentioned in Section 2.2, accounting for the “exclusive dangle” model is non-trivial when
dealing with candidates, as ed-candidates do not hold enough information to identify the
direction of dangles. To alleviate this problem, we provide three different strategies, as
described below. Each strategy has its pros and cons and should be selected based on the
application.

In order to handle the changes for exclusive dangles, we extend the candidate data
structure. A candidate base pair, [i, j] as implemented in SparseMFEFold, holds i, the start
position, and the energy V (i,) as a tuple (¢,V (7,5)) and is stored at the jth index of the
candidate list. Our extensions to candidate structures involves including the energy values
for W and WM in the candidate tuples as (i, V (4, 5), W(i,5), WM (i, j)). The modification
reflects the need to store more information about the dangles positions and directions.

Strategy 1: Trace Arrow implementation. As the first strategy to trace an ed-candidate to
its position, we used modified trace arrows. We refer to this strategy as SparseRNN AFolD-
Trace.

Recall that in SparseMFEFold, a trace arrow structures were introduced to identify
energy matrix entries that are necessary for calculating the energy of internal loops but
are not kept as candidates. Here, we define ed-trace-arrows to hold information about
dangle positions to aid with the traceback procedure from ed-candidates. In particular, in
the sparse fold reconstruction procedure of SparseRNAFolD, an ed-trace-arrow is checked for
a chosen ed-candidate within W, WM, and WM2 to adjust the energy and position of the
base pair as required. The drawback of this strategy comes from the innate inefficiencies of
the trace arrows, meaning an increase in space usage. Recall that within SparseMFEFold,
we used strategies such as garbage collection and trace arrow avoidance to save space. These
strategies are not, however, possible for SparseRNAFolD-Trace, as an ed-candidate cannot
be excluded from the optimal MFE path, and an ed-trace-arrow is therefore required for
every ed-candidate.

Bit encoding. Within the second and third strategies, as explained next, we employed bit
encoding and bit decoding to store the information about the dangle within the energy values
to reduce space usage. Currently, energy values are stored as 32-bits int data type. We note
that the maximum expected bit usage for the energy value of an RNA sequence of up to
20000 bases is about 13 bits. We employed a bit shift to store the dangle type in the first
two bits of the V entries, referred to as Ve,., and represented in eq. 8.

Vene = (V < 2) | dangle (8)

Bit decoding technique was used to retrieve the energy value and type/direction of dangle
contributions. Bit decoding was done in two steps. Shifting the encoded energy, Ve, two
bits forward gave back the energy, V (see eq. 9).

V = Vipe > 2 9)

The dangle type is found in the first two bits; no dangle is represented with a “00” in bits; a
5’ dangle with a “017; a 3’ dangle with a “10”; and a 53’ dangle with a “11”. The dangle type
is decoded using a bit-wise AND with “11” to only keep the first two bits of the encoded
energy, as represented in Eq. 10.

dangle = Vg, && 11 (10)

19:9

WABI 2023

19:10

SparseRNAFolD

Strategy 2: Bit encoding with candidate extension. As the second strategy, we used bit
encoding within the W and WM entries of the ed-candidate data structure. We refer to this
strategy as SparseRNAFolD-standard. This implementation of bit encoding was utilized
in W and WM entries, as other loop types do not deal with dangles.

Strategy 3: Bit encoding with altered candidate. As the third strategy, we further
optimize for space by reducing the candidate size. To reduce candidate size, we stored energy
values in ed-candidates in W and WM as V9 minus the dangle energy. We refer to this
strategy as SparseRNAFolD-Triplet. This strategy allows for the correct identification of
dangle types regardless of energy parameters used. Note that currently, in the Turner 2004
energy model, the parameter values for 53’ dangle for an external loop and multi-loop are
the same. These values may be further estimated and revised in future energy models. The
extra calculations to retrieve the V¢ value ensure the accuracy of the result in the event of
such a change.

3.3 Compared methods

To evaluate the performance of our SparseRNAFolD, we compared it to two of the best-
performing methods for prediction of pseudoknot-free RNA secondary structure, namely
RNAFold [9] and LinearFold [8].

3.3.1 RNAFold

RNAFold is part of the Vienna RNA package [9]. As discussed in Section 2.1, RNAfold is an
O(n?) time and O(n?) space algorithm. It takes an RNA sequence as input and provides the
MFE structure as output. RNAFold is well-maintained and highly optimized and is used here
as a benchmark for a fast implementation of the Zuker and Steigler-type MFE algorithm.

3.3.2 LinearFold

LinearFold [8] is a pseudoknot-free RNA secondary structure prediction algorithm that uses
heuristic techniques to run in linear time and space. As the main goal of sparsification is to
speed up the time and space complexity of MFE prediction, we set out to investigate how
our SparseRNAFolD compares in practice to LinearFold with better asymptotic complexities.

Linearfold employs two techniques to reduce its time and space complexity to O(n),
namely beam pruning and k-best parsing. Both methods aim to prune the structure
path to optimal cases only. Beam pruning works by only keeping a predetermined number
(specified by the beam width, b) of the optimal states. Within LinearFold, best sets are kept
for each possible loop type as defined in the Zuker algorithm: hairpin, multi-loop fragments,
and internal loop. Through beam pruning, time complexity is reduced to O(nb?) and the
space to O(nb) where b is the beam width. K-best parsing further reduces the time to
O(nblog(b)). We note that due to the heuristic nature of the LinearFold algorithm, it does
not guarantee finding the MFE structure for a given RNA sequence.

4 Experimental Design

We implemented SparseRNAFolD in C++. All experiments were performed using an Azure
virtual machine. The virtual machine contained 8 vCPUs with 128 GiB of memory.

M. Gray, S. Will, and H. Jabbari

4.1 Dataset

We used the original dataset from SparseMFEFold [35]. This dataset is comprised of 3704
sequences in 6 different families selected from the RNAstrand V2.0 database [1]. The smallest
sequence is 8 nucleotides long, while the largest is 4381 nucleotides long.

4.2 Energy Model

We used the energy parameters of the Turner 2004 energy model [20, 31], as implemented in
the ViennaRNA package [9].

4.3 Accuracy Measures

The number of true positives (TP) is defined as the number of correctly predicted base
pairings within the structure. The number of false positives (FP), similarly, is the number of
predicted base pairs that do not exist in the reference structure. Any base missed in the
prediction that corresponds to a pairing in the reference structure is a false negative (FN).

We evaluate the performance of algorithms based on three measures: sensitivity, positive
predictive value (PPV), and their harmonic mean (F-measure).

TP
itivity = —————— 11
Sensitivity TPLEN (11)
TP
PPV = ——— 12
v TP+ FP (12)
Fo = 2 - PPV - Sensitivity (13)

PPV + Sensitivity

4.4 Proof of concept with RNAFold

As a proof of concept for the correct implementation of dangle energy models (i.e., “always
dangle” and “exclusive dangle”), we assessed SparseRNAFolD against RNAFold. As the
MFE structure may not be unique, we restricted our assessment to the MFE value obtained
by each method. We found that the MFE predicted by SparseRNAFolD and RNAFold was
the same. Details of the results can be found in our repository.

5 Results

We measured runtime using user time and memory using the maximum resident set size.

5.1 Alternative Models

We start by comparing the three different implementations of SparseRNAFolD.
SparseRNAFolD-standard was found to be in the middle in terms of memory and time. The
effect of additional trace arrows in SparseRNAFolD-Trace had a 27% increase in memory
usage on the largest sequence compared to SparseRNAFolD-Standard. However, the in-
crease in computation from the bit encoding only resulted in a 5% increase in time on
the largest sequence. We find a similar effect when comparing SparseRNAFolD-standard
and SparseRNAFolD-Triplet. The altered triplet structure reduced the memory by 9% but
increased the time by 10% due to extra computation. These are highlighted in Figure 2.

19:11

WABI 2023

19:12 SparseRNAFolD

=
S
o |
w

=z o |

o o~

£

=R .
© ?"°‘
S 7 ﬁi\}?:& !
~ | s —— SparseRNAFolD-Standard (2.2)
© —— SparseRNAFolD-Trace (2.2)
- | —— SparseRNAFolD-Triplet (2.2)
° T T T

500 1000 2000
Length
(a) Memory vs Length. (b) Time vs Length.

Figure 2 We plot the results of the three versions of SparseRNAFolD when given RNA sequence
only as input against each other and an “exclusive dangle” model based on the dataset. (a) Memory
Usage (maximum resident set size in KB) versus length (log-log plot) over all benchmark instances.
The solid line shows an asymptotic fit (c1 + ¢2n®) for sequence length n, constants cl, ¢2, and
exponent x for the fit. We ignored all values < 1000. (b) Run-time (s) versus length (log-log plot)
over all benchmark instances. For each tool in both plots, we report (in parenthesis) the exponent x
that we estimated from the benchmark results; it describes the observed complexity as ©(n”).

5.2 Comparison with Linearfold and RNAFold

When comparing SparseRNAFolD-Standard with LinearFold and RNAFold, we look at the
“always dangle” model, as LinearFold does not implement the “exclusive dangle” model.

We first compared the three algorithms by their predictive accuracy (F-measure). For
comparison, we selected all sequences from our dataset whose structure was available on
RNAstrand. We further constrained it to sequences that contained hairpins greater than
3 and no pseudoknots. This resulted in 986 sequences. We found that SparseRNAFolD-
Standard had a marginally better, but not significant, average F-measure of 0.6394 compared
to 0.6391 of LinearFold. As described in section 4.4, RNAFold and SparseRNAFold-standard
are identitcal in predictive accuracy.

We then assessed their time and space usage. To increase the size of our dataset for this
testing, we included a dinucleotide shifted version of our dataset in our test data. We then
constrained the size of sequences to those > 400. The maximum time and memory used
by Linearfold on this dataset were 3.34 seconds and 118,848 KB. The maximum time and
memory used by RNAFold were 22.26 seconds and 109136 KB. In contrast, the maximum
time and memory spent by SparseMFEFold were 10.86 seconds and 13,000 KB, respectively.
This is illustrated in Figures 3b and 3a. The results show that SparseRNAFolD-Standard uses
far less memory on even the largest pseudoknot-free sequences in our dataset. Note that the
maximum resident set size is nine times lower than that of LinearFold and eight times lower
than that of RNAFold. RNAFold’s time remains consistent with SparseRNAFolD-Standard
until longer sequences where it fell behind. LinearFold, whose time complexity is O(nblog(b)),
where n is the length of the sequence and b is the beam width, did perform faster than
SparseRNAFolD-Standard as the length of the sequence increased. However, we did find
that SparseRNAFolD-Standard outperformed LinearFold in practice for sequences of up to
about 1000 nucleotides.

M. Gray, S. Will, and H. Jabbari

=
S -
N
<
(=
3 o |
0 wn
o
£ 3 ’_.-“'.' z 9
2 % s A
2 Ve : £ 9
= 1 0o 2
ﬂ,weu'o | oo it
8 R MV e ﬂ@.& .
T -| oo more’ '.’* ;ﬁ
0 —— SparseRNAFoID (1.7) N —— SparseRNAFoID (2.1)
o —— LinearFold (1.3) ° —— LinearFold (1.3)
< | —— RNAFold (2) =g —— RNAFold (2.2)
& T T T T T T
500 1000 2000 500 1000 2000
Length Length
(a) Memory vs Length. (b) Time vs Length.

Figure 3 We plot the results of SparseRNAFolD-Standard against two state of the art algorithms:
RNAFold and LinearFold when given RNA sequence only as input against each other and an “always
dangle” model on our dataset and the dinucleotide shuffled version of our dataset. (a) Memory Usage
(maximum resident set size in KB) versus length (log-log plot) over all benchmark instances. The
solid line shows an asymptotic fit (c1 4+ ¢2n®) for sequence length n, constants cl,c2, and exponent
x for the fit. We ignored all values < 1000. (b) Run-time (s) versus length (log-log plot) over all
benchmark instances. For each tool in both plots, we report (in parenthesis) the exponent x that we
estimated from the benchmark results; it describes the observed complexity as ©(n”).

Table 1 We tabulate the results of the comparison between RNAFold and SparseRNAFolD-
Standard when given only sequences with length > 2500 from our dataset as input and using the
“exclusive dangle” model. We looked at time (s) and memory (maximum resident set size in KB) for
the minimum, median and maximum length sequence within the constrained dataset.

Run-time (s) Memory: resident set size (KB)
RNAfold | SparseRNAFolD || RNAfold | SparseRNAFoID
Minimum 5.04 5.36 40148 8832
Median 7.28 7.86 51284 12592
Maximum 22.08 19.94 109040 16836

5.2.1 Highlighting RNAFold

To highlight the difference in space between RNAFold and SparseRNAFolD-Standard, we
selected 81 sequences from our dataset with size greater than or equal to 2500. The sequence
with the maximum length in the set was 4381 nucleotides long. As seen in Table 1, while
SparseRNAFolD-Standard’s runtime is comparable to RNAfold’s, its memory consumption
is about five times lower.

5.3 Candidate Comparison

In order to illustrate the effectiveness of candidates in terms of memory consumption, we
plotted the relationship between the number of candidates and trace arrows, against the
quadratic space, using the dataset that includes dinucleotide shifted elements. To emphasize
the upper limit of candidate usage when executing SparseRNAFolD-Standard, we employ
the “exclusive dangle” model.

19:13

WABI 2023

19:14

SparseRNAFolD

Figure 4 We plot the results of the number of candidates and trace arrows compared to quadratic
space. “Quadratic” shows the count within an nxn matrix as it would be given quadratic space. In
contrast, “Candidates” and “Trace arrows” show the contrasting number for the same length.

For a more meaningful comparison, we juxtapose the counts of candidates and trace arrows
with the count obtained from a single quadratic matrix. It is important to note that the
majority of algorithms employing quadratic space make use of multiple quadratic matrices.
Considering this aspect, we discovered that, on average, the disparity in count between the
number of candidates and trace arrows with quadratic space was approximately a factor of
100. Figure 4 highlights that the increase in candidates is consistent with the increase in
length.

5.4 Folding with Hard Constraints

As partial information on structure has become more available and is extensively used
for better prediction of possibly pseudoknotted structures [13, 10], we further extend our
evaluation of the SparseRNAFolD versions to cases where we are folding with a hard
constraint [17] in addition to the RNA sequence.

To do so, for each sequence, a pseudoknot-free input structure was generated. The
structure was generated by taking two random indices at a time from the sequence. If the
two bases could pair, were at least 3 bases apart, and did not form a pseudoknot with
the other base pairs, the base pair was added to the input structure. In order to avoid
overpopulating the input structure, the number of base pairs in an input structure was
capped at 0.5 x logy(length). This resulted in an average of 3-7 base pairs per sequence.
There was a noticeable decrease in time and space when an input structure was provided
in addition to an RNA sequence. Between RNA sequence only as input and sequence as
well as an input structure, SparseRNAFolD saw a 67% decrease in time and a 40% decrease
in memory. As the input structure reduced the number of candidates for a sequence, the
difference in memory was less apparent between the models. SparseRNAFolD-standard had
a 6% increase in time from SparseRNAFolD-Trace but a 15% decrease in memory on the
largest sequence. From SparseRNAFolD-standard to SparseRNAFolD-Triplet, there was
an 8% decrease in memory but a 13% increase in time. Note that even when reducing the
number of candidates, the increase in time from Standard to Triplet was greater by 3%. This
can be seen in Figure 5.

M. Gray, S. Will, and H. Jabbari

1.00
|

0
g g
L o
wn °
o -
S | cm—
—— SparseRNAFolD-Standard (2.3)
- —— SparseRNAFolD-Trace (2.3)
S e —— SparseRNAFolD-Triplet (2.3)
° T T T
500 1000 2000
Length
(a) Memory vs Length with a hard constraint. (b) Time vs Length with a hard constraint.

Figure 5 We plot the results of the three versions of SparseRNAFolD when given an RNA
sequence, an “exclusive dangle” model, and a random pseudoknot-free structure as input against
each other based on our dataset. (a) Memory usage (maximum resident set size in KB) versus length
(log-log plot) over all benchmark instances. The solid line shows an asymptotic fit (c1 + ¢2n®) for
sequence length n, constants cl,c2, and exponent x for the fit. We ignored all values < 1000. (b)
Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots,
we report (in parenthesis) the exponent x that we estimated from the benchmark results; it describes
the observed complexity as ©(n”).

6 Conclusions

In this work, we introduced SparseRNAFolD, a sparsified MFE RNA secondary prediction
algorithm that incorporates dangles contribution to the energy calculation of a sparsified
method. We showed that while “no dangle” and “always dangle” models were easy to
incorporate into the existing algorithms, “exclusive dangle” introduces non-trivial challenges
that need calculated changes to the sparsified recursions to alleviate. We identified three
strategies to implement dangle contributions: SparseRNAFolD-Trace which utilizes additional
trace arrows; SparseRNAFolD-standard, which incorporates bit encoding as well as extension
to the definition of candidate structures; and SparseRNAFolD-Triplet, which, similar to the
SparseRNAFolD-standard, utilizes bit encoding but modifies candidate energy calculation
in anticipation of possible change in parameters in the future. Comparing these three
versions on a large dataset, we concluded that the SparseRNAFolD-Triplet implementation
is the most efficient in terms of memory, and SparseRNAFolD-Trace is the most efficient
in terms of time. These two versions showcase how space and time trade-offs can improve
performance for a specific application. The SparseRNAFolD-standard version provides a
middle ground for improvement in both time and space and has been chosen as the standard
implementation of our algorithm. While guaranteeing the MFE structure and matching the
energy of RNAFold, our SparseRNAFolID is on par with LinearFold on memory usage and
run time for sequences up to about 1000 bases. This provides a promising starting point to
bring dangles contributions to pseudoknotted MFE structure prediction methods in which
memory usage is the prohibitive factor [14].

Our results showcase the substantial difference in the number of candidates when compared
to quadratic space. This provides an illuminating perspective on the space improvement
achieved through sparsification.

19:15

WABI 2023

19:16

SparseRNAFolD

We further assessed the effect of hard structural constraints on the performance of
SparseRNAFolD, presenting significant improvements both in terms of time and space. We
believe the significant improvement in time and space due to the limitation of search space by
hard structural constraints can have a more pronounced impact on sparsified pseudoknotted
MFE prediction, which is our ultimate goal.

Finally, memory consumption becomes a bottleneck for the prediction of MFE structure
for long RNA sequences or MFE pseudoknotted structure prediction. Utilizing the power
of computational servers, such restrictions have been somewhat alleviated. Sparsification
provides improvements in both time and space requirements and can be used to bring
computations back to personal computers, providing equal access to the existing technology.
In addition, improvements in memory usage can improve use cases for computing clusters, as
the amount of memory assigned to a computing node is also limited.

—— References

1 M Andronescu, V Bereg, H H. Hoos, and A Condon. RNA STRAND: The RNA secondary
structure and statistical analysis database. BMC Bioinformatics, 9(1):340+, August 2008.
doi:10.1186/1471-2105-9-340.

2 R Backofen, D Tsur, S Zakov, and M Ziv-Ukelson. Sparse RNA folding: Time and space
efficient algorithms. Journal of Discrete Algorithms, 9:12-31, March 2011. doi:10.1016/j.
jda.2010.09.001.

3 J A. Cruz and E Westhof. The dynamic landscapes of RNA architecture. Cell, 136:604-609,
February 2009. doi:10.1016/j.cell.2009.02.003.

4 S Dimitrieva and P Bucher. Practicality and time complexity of a sparsified RNA folding

algorithm. Journal of Bioinformatics and Computational Biology, 10, April 2012. doi:
10.1142/50219720012410077.

5 R M. Dirks and N A. Pierce. A partition function algorithm for nucleic acid secondary
structure including pseudoknots. Journal of Computational Chemistry, 24:1664-1677, August
2003. doi:10.1002/jcc.10296.

6 A F. Bompfiinewerer et al. Variations on RNA folding and alignment: lessons from
Benasque. Journal of Mathematical Biology, 56:129-144, January 2008. doi:10.1007/
s00285-007-0107-5.

7 I L. Hofacker et al. Fast folding and comparison of RNA secondary structures. Monatshefte
fiir Chemie / Chemical Monthly, 125:167—188, February 1994. doi:10.1007/BF00818163.

8 L Huang et al. Linearfold: linear-time approximate RNA folding by 5’-to-3’ dynamic
programming and beam search. Bioinformatics, 35:1295-1304, July 2019. doi:10.1093/
bioinformatics/btz375.

9 R Lorenz et al. ViennaRNA package 2.0. Algorithms for Molecular Biology, 6, November 2011.
doi:10.1186/1748-7188-6-26.

10 M Gray, S Chester, and H Jabbari. KnotAli: informed energy minimization through
the use of evolutionary information. BMC Bioinformatics, 23, May 2022. doi:10.1186/
s12859-022-04673-3.

11 IL. Hofacker and P F. Stadler. Memory efficient folding algorithms for circular RNA secondary
structures. Bioinformatics, 22:1172-1176, May 2006. doi:10.1093/bioinformatics/bt1023.

12 CE. Holt and S L. Bullock. Subcellular mRNA localization in animal cells and why it matters.
Science, 326:1212-1216, September 2013. doi:10.1126/science.1176488.

13 H Jabbari and A Condon. A fast and robust iterative algorithm for prediction of RNA
pseudoknotted secondary structures. BMC' Bioinformatics, 15, May 2014. doi:10.1186/
1471-2105-15-147.

14 H Jabbari, I Wark, C Montemagno, and S Will. Knotty: efficient and accurate prediction
of complex RNA pseudoknot structures. Bioinformatics, 34:3849-3856, November 2018.
doi:10.1093/bioinformatics/bty420.

https://doi.org/10.1186/1471-2105-9-340
https://doi.org/10.1016/j.jda.2010.09.001
https://doi.org/10.1016/j.jda.2010.09.001
https://doi.org/10.1016/j.cell.2009.02.003
https://doi.org/10.1142/S0219720012410077
https://doi.org/10.1142/S0219720012410077
https://doi.org/10.1002/jcc.10296
https://doi.org/10.1007/s00285-007-0107-5
https://doi.org/10.1007/s00285-007-0107-5
https://doi.org/10.1007/BF00818163
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1186/1748-7188-6-26
https://doi.org/10.1186/s12859-022-04673-3
https://doi.org/10.1186/s12859-022-04673-3
https://doi.org/10.1093/bioinformatics/btl023
https://doi.org/10.1126/science.1176488
https://doi.org/10.1186/1471-2105-15-147
https://doi.org/10.1186/1471-2105-15-147
https://doi.org/10.1093/bioinformatics/bty420

M. Gray, S. Will, and H. Jabbari

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

H Jabbari, I Wark, C Mothentemagno, and S Will. Sparsification enables predicting kissing
hairpin pseudoknot structures of long RNAs in practice. In 17th International Workshop on
Algorithms in Bioinformatics (WABI 2017), volume 88 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 12:1-12:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.WABI.2017.12.

M Kozak. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene,
361:13-37, November 2005. doi:10.1016/j.gene.2005.06.037.

R Lorenz, I L. Hofacker, and P F. Stadler. RNA folding with hard and soft constraints.
Algorithms for Molecular Biology, 11, April 2016. doi:10.1186/s13015-016-0070-z.

K C. Martin and A Ephrussi. mRNA localization: Gene expression in the spatial dimension.
Cell, 136:719-730, February 2009. doi:10.1016/j.cell.2009.01.044.

D H. Mathews and D H. Turner. Prediction of RNA secondary structure by free energy
minimization. Current Opinion in Structural Biology, 16(3):270-278, June 2006. doi:10.1016/
j.sbi.2006.05.010.

D H. Matthews, M D. Disney, J L. Childs, S J. Schroeder, M Zuker, and D H. Turner.
Incorporating chemical modification constraints into a dynamic programming algorithm for
prediction of RNA secondary structure. Proceeding of the National Academy of Science of the
USA, 101:7287-7292, May 2004. doi:10.1073/pnas.0401799101.

J S. McCaskill. The equilibrium partition function and base pair binding probabilities for RNA
secondary structure. Biopolymers, 29:1105-1119, June 1990. doi:10.1002/bip.360290621.
M Mohl, R Salari, S Will, R Backofen, and S Sahinalp. Sparsification of RNA structure
prediction including pseudoknots. Algorithms for Molecular Biology, 5, December 2010.
doi:10.1186/1748-7188-5-39.

S A. Mortimer, M A. Kidwell, and J A. Doudna. Insights into RNA structure and function from
genome-wide studies. Nature Reviews Genetics, 15:469-479, May 2014. doi:10.1038/nrg3681.
J Nowakowski and I Tinoco. RNA structure and stability. Seminars in Virology, 8(3):153-165,
1997. doi:10.1006/smvy.1997.0118.

B Rastegari and A Condon. Parsing nucleic acid pseudoknotted secondary structure: Algorithm

and applications. Journal of Computational Biology, 14, March 2007. doi:10.1089/cmb.2006.

0108.

J Ren, B Rastegari, A Condon, and H H. Hoos. HotKnots: Heuristic prediction of RNA
secondary structures including pseudoknots. RNA, 11:1494-1504, October 2005. doi:10.1261/
rna.7284905.

J S. Reuter and D H. Matthews. RNAstructure: software for RNA secondary structure
prediction and analysis. Proceeding of the National Academy of Science of the USA, 11, March
2010. doi:10.1186/1471-2105-11-129.

E Rivas and S R. Eddy. A dynamic programming algorithm for RNA structure prediction
including pseudoknots. Journal of Molecular Biology, 285:2053—2068, February 1999. doi:
10.1006/ jmbi.1998.2436.

R Salari, M Mohl, S Will, S Sahinalp, and R Backofen. Time and space efficient RNA-RNA
interaction prediction via sparse folding. In Lecture Notes in Computer Science, volume
6044, pages 473-490. Research in Computational Molecular Biology, 2010. doi:10.1007/
978-3-642-12683-3_31.

N Sugimoto, R kierzek, and D H. Turner. Sequence dependence for the energetics of dangling
ends and terminal base pairs in ribonucleic acid. Biochemisty, 19:4554—4558, July 1987.
do0i:10.1021/bi00388a058.

D H. Turner and D H. Matthews. NNDB: the nearest neighbor parameter database for
predicting stability of nucleic acid secondary structure. Nucleic Acids Research, 38:D280-D282,
October 2009. doi:10.1093/nar/gkp892.

M B. Warf and J A. Berglund. Role of RNA structure in regulating pre-mRNA splicing.

Trends Biochem Sci., 35:169-178, March 2010. doi:10.1016/j.tibs.2009.10.004.
A Waugh, P Gendron, R Altman, J W. Brown, D Case, D Gautheret, S C. Harvey, N Leontis,
J Westbrook, E Westhof, M Zuker, and F Major. RNAML: A standard syntax for exchanging
RNA information. RNA, 8:707-717, June 2002. doi:10.1017/s1355838202028017.

19:17

WABI 2023

https://doi.org/10.4230/LIPIcs.WABI.2017.12
https://doi.org/10.1016/j.gene.2005.06.037
https://doi.org/10.1186/s13015-016-0070-z
https://doi.org/10.1016/j.cell.2009.01.044
https://doi.org/10.1016/j.sbi.2006.05.010
https://doi.org/10.1016/j.sbi.2006.05.010
https://doi.org/10.1073/pnas.0401799101
https://doi.org/10.1002/bip.360290621
https://doi.org/10.1186/1748-7188-5-39
https://doi.org/10.1038/nrg3681
https://doi.org/10.1006/smvy.1997.0118
https://doi.org/10.1089/cmb.2006.0108
https://doi.org/10.1089/cmb.2006.0108
https://doi.org/10.1261/rna.7284905
https://doi.org/10.1261/rna.7284905
https://doi.org/10.1186/1471-2105-11-129
https://doi.org/10.1006/jmbi.1998.2436
https://doi.org/10.1006/jmbi.1998.2436
https://doi.org/10.1007/978-3-642-12683-3_31
https://doi.org/10.1007/978-3-642-12683-3_31
https://doi.org/10.1021/bi00388a058
https://doi.org/10.1093/nar/gkp892
https://doi.org/10.1016/j.tibs.2009.10.004
https://doi.org/10.1017/s1355838202028017

19:18

SparseRNAFolD

34

35

36

37

38

39

40

41

Y Wexler, C Zilberstein, and M Ziv-Ukelson. A study of accessible motifs and RNA folding
complexity. Journal of Computational Biology, 14:856-872, August 2007. doi:10.1089/cmb.
2007 .RO20.

S Will and H Jabbari. Sparse RNA folding revisited: space-efficient minimum free en-
ergy structure prediction. Algorithms for Molecular Biology, 11, April 2016. doi:10.1186/
513015-016-0071-y.

T J. Wilson and D M. J. Lilley. RNA catalysis—is that it? RNA, 21:534-537, April 2015.
doi:10.1261/rna.049874.115.

J Zuber, B J. Cabral, I McFayden, D M. Mauger, and D H. Matthews. Analysis of RNA nearest
neighbor parameters reveals interdependencies and quantifies the uncertainty in RNA secondary
structure prediction. RNA, 24:1568-1582, November 2018. doi:10.1261/rna.065102.117.

J Zuber, H Sun, X Zhang, I McFayden, and D H. Matthews. A sensitivity analysis of RNA
folding nearest neighbor parameters identifies a subset of free energy parameters with the
greatest impact on RNA secondary structure prediction. Nucleic Acids Research, 45:6168-6176,
June 2017. doi:10.1093/nar/gkx170.

M Zuker. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids
Research, 31:3406-3415, July 2003. doi:10.1093/nar/gkg595.

M Zuker and A B. Jacobson. Using reliability information to annotate RNA secondary
structures. RNA, 4:669-679, June 1998. doi:10.1017/s1355838298980116.

M Zuker and P Stiegler. Optimal computer folding of large RNA sequences using ther-
modynamic and auxiliary information. Nucleic Acids Research, 9:133-148, January 1981.
doi:10.1093/nar/9.1.133.

https://doi.org/10.1089/cmb.2007.R020
https://doi.org/10.1089/cmb.2007.R020
https://doi.org/10.1186/s13015-016-0071-y
https://doi.org/10.1186/s13015-016-0071-y
https://doi.org/10.1261/rna.049874.115
https://doi.org/10.1261/rna.065102.117
https://doi.org/10.1093/nar/gkx170
https://doi.org/10.1093/nar/gkg595
https://doi.org/10.1017/s1355838298980116
https://doi.org/10.1093/nar/9.1.133

	1 Introduction
	2 Preliminaries: sparsification without dangling ends
	2.1 Dangles
	2.2 Space-efficient sparsification with exclusive dangles is non-trivial

	3 SparseRNAFolD
	3.1 ``always dangle'' model
	3.2 ``exclusive dangle'' model
	3.3 Compared methods
	3.3.1 RNAFold
	3.3.2 LinearFold

	4 Experimental Design
	4.1 Dataset
	4.2 Energy Model
	4.3 Accuracy Measures
	4.4 Proof of concept with RNAFold

	5 Results
	5.1 Alternative Models
	5.2 Comparison with Linearfold and RNAFold
	5.2.1 Highlighting RNAFold

	5.3 Candidate Comparison
	5.4 Folding with Hard Constraints

	6 Conclusions

