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Abstract
Given a complete simple topological graph G, a k-face generated by G is the open bounded region
enclosed by the edges of a non-self-intersecting k-cycle in G. Interestingly, there are complete
simple topological graphs with the property that every odd face it generates contains the origin.
In this paper, we show that every complete n-vertex simple topological graph generates at least
Ω(n1/3) pairwise disjoint 4-faces. As an immediate corollary, every complete simple topological
graph on n vertices drawn in the unit square generates a 4-face with area at most O(n−1/3). Finally,
we investigate a Z2 variant of Heilbronn’s triangle problem for not necessarily simple complete
topological graphs.
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1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are represented by
points and its edges are represented by non-self-intersecting arcs connecting the corresponding
points. The arcs are not allowed to pass through vertices different from their endpoints, and
if two edges share an interior point, then they must properly cross at that point in common.
A topological graph is simple if every pair of its edges intersect at most once, either at a
common endpoint or at a proper crossing point. A topological graph is called plane if there
are no two crossing edges. If the edges are drawn as straight-line segments, then the graph is
said to be geometric. Simple topological graphs have been extensively studied [1, 22, 13, 5, 8],
and are sometimes referred to as simple drawings [8, 2]. In this paper, we study the crossing
pattern of the faces generated by a simple topological graph.

If γ ⊂ R2 is a Jordan curve (i.e. non-self-intersecting closed curve), then by the Jordan
curve theorem, R2 \ γ has two connected components one of which is bounded. For any
Jordan curve γ ⊂ R2, we refer to the bounded open region of R2 \ γ given by the Jordan
curve theorem as the face inside of γ. We refer to the area of γ as the area of the face inside
of γ, which we denote by area(γ).

It is known that every complete simple topological graph G of n vertices contains many
non-self-intersecting k-cycles, for k = (log n)1/4−o(1) (e.g. see [13, 22, 14, 12]). A k-face
generated by G is the face inside of a non-self-intersecting k-cycle in G. For simplicity, we
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Figure 1 The complete twisted graph on 5 vertices.

say that a k-face is in G, if G generates it, and we call it an odd (even) face if k is odd
(even). Let us remark that a k-face in G may contain other vertices and edges from G.
Moreover, notice that if G is simple then every 3-cycle in G must be non-self-intersecting, so
for convenience, we call 3-faces triangles.

Surprisingly, one cannot guarantee two disjoint 3-faces in complete simple topological
graphs. In the next section, we will show that the well-known construction due to Harborth
and Mengerson [7], known as the twisted graph and depicted in Figure 1, shows the following.

▶ Proposition 1. For every n ≥ 1, there exists a complete n-vertex simple topological graph
such that every odd face it generates contains the origin.

See Figure 1. However, the main result in this paper shows that we can guarantee many
pairwise disjoint 4-faces.

▶ Theorem 2. Every n-vertex complete simple topological graph generates at least Ω(n1/3)
pairwise disjoint 4-faces.

We apply the results mentioned above to a topological variant of Heilbronn’s triangle
problem. Over 70 years ago, Heilbronn asked: What is the smallest h(n) such that any
set of n points in the unit square spans a triangle whose area is at most h(n)? A simple
triangulation argument shows that h(n) ≤ O( 1

n ). This was improved several times by Roth
and Schmidt [19, 16, 17, 18, 21], and currently, the best known upper bound is 1

n8/7−o(1)

due to Komlós, Pintz, and Szemerédi [9]. Heilbronn conjectured that h(n) = Θ( 1
n2 ), which

was later disproved by Komlós, Pintz, and Szemerédi [10], who showed that h(n) ≥ Ω( log n
n2 ).

Erdős [4] conjectured that this new bound is asymptotically tight.
Here, we study Heilbronn’s problem for topological graphs. A simple variant of Proposi-

tion 1 shows that one cannot guarantee a small triangle in a complete simple topological
graph drawn in the unit square.
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▶ Proposition 3. For every n ≥ 1 and ε > 0, there exists a complete n-vertex simple
topological graph in the unit square such that every odd face it generates has area at least
1 − ε.

On the other hand, as an immediate corollary to Theorem 2, we have the following.

▶ Corollary 4. Every n-vertex complete simple topological graph drawn in the unit square
generates a 4-face with area at most O( 1

n1/3 ).

In the other direction, a construction due to Lefmann [11] shows that the complete n-vertex
geometric graph can be drawn in the unit square such that every 4-face has area at least
Ω

(
log1/2 n

n3/2

)
. It would be interesting to see if one can improve this bound for simple topological

graphs. Lastly, let us mention that Heilbronn’s triangle problem has been studied for k-gons,
and we refer the interested reader to [11] for more results.

Our paper is organized as follows. In Section 2, we establish Propositions 1 and 3. In
Section 3, we establish a lemma on finding 4-faces in complete simple topological graph.
In Section 4, we use this lemma to prove Theorem 2. Finally in Section 5, we consider
Heilbronn’s triangle problem for (not necessarily simple) topological graphs.

2 The complete twisted graph

The complete twisted graph on n vertices is a complete simple topological graph with vertices
labelled 1 to n which we will draw on the horizontal axis from left to right, with the property
that two edges intersect if their indices are nested, i.e., edges (i, j) and (k, ℓ), with i < j,
k < ℓ, intersect if and only if i < k < ℓ < j or k < i < j < ℓ. See Figure 1. The complete
twisted graph was introduced by Harborth and Mengerson [7] as an example of a complete
simple topological graph with no subgraph that is weakly isomorphic1 to the complete convex
geometric graph on five vertices. See also [13, 22] for more applications.

▶ Proposition 5. There exists a common point in the interior of all the odd faces generated
by the complete twisted graph. Moreover, for every ε > 0, the complete twisted graph can be
drawn in the unit square such that every odd face has area at least 1 − ε.

We will need the following claim, which is essentially equivalent to the Jordan curve
theorem for piecewise smooth curves. In what follows, a ray is a straight, semi-infinite arc.

▶ Lemma 6. Let γ be a piecewise smooth Jordan closed curve in R2. Let v⃗ be a direction
such that every line parallel to v⃗ intersects γ in a finite number of points. Then R2 \ γ has
two path-connected components, one bounded and one unbounded. Let p be a point not on
γ. Then p is in the bounded region of R2 \ γ if and only if the ray α emanating from p in
direction v⃗ properly crosses γ in an odd number of points.

By Sard’s lemma (see for instance [6]), given a smooth curve γ, almost every v⃗ satisfies
the assumption, and in the proof below, the directions that satisfy this assumption will be
referred to as generic. A differentiable geometry proof of Lemma 6 in the case of γ smooth
can be found in [6] (see exercise 12 in Chapter 2.5). The proof we give below is an adaptation
of a well-known elementary proof for the case when γ is piecewise linear (polygons), which
can be found in Chapter 5.3 of [3] for instance.

1 Two simple topological graphs G and H are weakly isomorphic if there is an incidence preserving
bijection between G and H such that two edges of G cross if and only if the corresponding edges in H
cross as well.

SoCG 2023
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Figure 2 Parity of proper crossings under a perturbation of the arc, a local picture.

Proof of Lemma 6. Partition γ into a finite number of smooth arcs. If two points p and p′

are connected by a segment that doesn’t intersect γ, and the rays α and α′ have direction v⃗

and emanate from p and p′ respectively, then they satisfy |γ ∩ α|(mod 2) = |γ ∩ α′|(mod 2).
Indeed, as we move α to α′, the only moments where the number of intersections between α

and γ might change is when the tangent of γ is parallel to v⃗, or when we pass a singular
point, in which, the ray locally leaves the two smooth arcs of γ on the same side. In these
cases, the number of proper intersections between α and γ changes by two. Proper crossings
can only appear or disappear in pairs when α is perturbed parallel to itself. See Figure 2.
By a similar argument, changing v⃗ for fixed p does not change the parity of the number of
intersections.

In what follows, we denote by w2(p, γ) the parity of the number of intersections between
γ and any ray α emanating from p in a generic direction. Notice that if p and q are connected
by a piecewise linear arc that avoids γ, by the aforementioned argument for each straight
segment of the arc, we obtain w2(p, γ) = w2(q, γ).

Consider for every pair of points p and q in the same path-connected component of R2 \ γ,
two rays αp and αq that emanate in the generic direction v⃗ from p and q respectively. Then
modify αp and αq by stopping each ray just before the first proper crossing it has with γ. We
then extend αp to a piecewise linear arc by following γ very closely without ever intersecting
γ. Since γ is piecewise smooth, if p and q are in the same path-connected component, then
the extension of αp can be chosen so that it eventually reaches the end point of the segment
αq. This is a piecewise linear arc connecting p and q that avoids γ. Furthermore, two points
that lie near γ and on opposite sides γ, have different parity so we can conclude that the
two path-connected components of R2 \ γ can be identified with the two possible values of
w2(., γ). Finally, observe that for any point p sufficiently far from γ there exists a ray that
doesn’t intersect γ, hence w2(p, γ) = 0, and we can conclude that a point is in the bounded
component of R2 \ γ if and only if w2(p, γ) = 1. ◀

Proof of Proposition 5. Consider the complete n-vertex twisted graph such vertex vi is
placed at (i, 0). See Figure 1. Let p = (n + 1, 0) and consider a ray emanating out of p that
passes just above the vertices. This ray intersects each edge of the twisted drawing exactly
once. Hence, for any non-self intersecting odd cycle γ in G, w2(p, γ) = 1. By Lemma 6, p

lies in the face of γ. To upgrade this drawing so that each odd face has large area, we can
apply a homeomorphism ϕ to the plane such that the drawing lies in the unit square, all
the vertices cluster around the origin, and each face that contains ϕ(p) has area at least
1 − ε. ◀

3 Finding a 4-face inside a large face

In this section, we establish several lemmas that will be used in the proof of Theorem 2.
First, let us clarify some terminology. Given a planar graph H drawn in the plane with no
crossing edges, the components of the complement of H are called the faces of H. Let G

be a complete simple topological graph and let T be a triangle in G. We let V (T ) denote
the set of vertices of the 3-cycle in G that generates T . We say that T is incident to vertex
v ∈ V (G), if v ∈ V (T ). We say that triangle T is empty, if there is no vertex from G that
lies in T . We will repeatedly use the following lemma due to Ruiz-Vargas (see also [5]).
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▶ Lemma 7 ([20]). Let G be a complete simple topological graph and H be a connected plane
subgraph of G with at least two vertices. Let v be a vertex of G that is not in H, and let F

be the face of H that contains v. Then there exist two edges of G emanating out of v to the
boundary of F such that their interior lies complete inside of F .

If the plane subgraph H ⊂ G in Lemma 7 contains a single edge incident to vertex v, then
by deleting this edge and applying Lemma 7 to v and the remaining plane subgraph, we
obtain the following.

▶ Lemma 8. Let G be a complete simple topological graph and H be a connected plane
subgraph of G with at least two vertices. Let v be a vertex of H with degree one, and let F be
the face of H whose boundary contains v. Then there exist an edge of G emanating out of v

to the boundary of F such that its interior lies complete inside of F .

We will also need the following lemma, which is a simple consequence of Lemma 7.

▶ Lemma 9. Let G be a complete simple topological graph on four vertices, and let T be a
triangle in G with a vertex v ∈ V (G) inside of it. Then G generates a 4-face that lies inside
of the triangle T .

Lastly, we will need following key lemma, which can be considered as a generalization of
Lemma 9. Given a plane graph H and a face F in H, the size of F , denoted by |F |, is the
total length of the closed walk(s) in H bounding the face F . Given two vertices u, v along
the boundary of F , the distance between u and v is the length of the shortest walk from u

to v along the boundary of F .

▶ Lemma 10. Let k ≥ 5 and G be a complete simple topological graph and H be a connected
plane subgraph of G with minimum degree two. Let F be a face of H such that |F | = k and
F contains at least 6(k − 4) vertices of G in its interior. Then G generates a 4-face that lies
inside of F .

Proof. We proceed by induction on k, the size of F . For the base case k = 5, since H has
minimum degree two, the boundary of F must be a simple 5-cycle. Let v1, . . . , v5 be the
vertices along the boundary of F appearing in clockwise order. Let u1, . . . , u6 be the vertices
of G in the interior of F . By applying Lemma 7 to ui and the plane graph H, we obtain
two edges emanating out of ui to the boundary of F , whose interior lies completely inside of
F . If the endpoints of these edges have distance more than one along the boundary of F ,
then we have generated a 4-face inside of F and we are done. Therefore, we can assume that
for each ui, the two edges emanating out of it obtained from Lemma 7 have endpoints at
distance one (consecutive) along the boundary of F .

Since |F | = 5, by the pigeonhole principle, there are two vertices, say u1 and u2, such
that the two edges emanating out of u1 and u2 obtained from Lemma 7 go to the same two
consecutive vertices, say v1, v2. If these 4 edges are non-crossing, then we obtain a triangle
with a vertex inside of it. See Figure 3a. By Lemma 9, we obtain a 4-face inside of F and
we are done. Therefore, without loss of generality, we can assume that edges u2v1 and u1v2
cross.

Let H ′ = H ∪ {u1v1, u1v2, u2v2}, and let F ′ be the face such that u2 lies on the boundary
of F ′. See Figure 3b. Since u2 has degree one in H ′, we apply Lemma 8 to u2 and H ′ to
obtain an edge u2vi emanating out of u2 to the boundary of F ′, whose interior lies in F ′.

If vi = v3, then we obtain a 4-face inside of F by following the sequence of vertices
(v3, u2, v1, v2) in G. If vi = v4, then we obtain a 4-face inside of F by following the sequence
vertices (v4, u2, v2, v3) in G. If vi = v5, then we obtain the 4-face inside of F by following
sequence vertices (v5, v1, v2, u2) in G. Finally, if vi = u1, then by following the sequence
vertices (u2, u1, v1, v2) in G, we obtain a 4-face inside of F .

SoCG 2023
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(b) Plane subgraph H ′.

Figure 3 Finding a 4-face inside a 5-face.
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(b) Plane subgraph H ′.

Figure 4 Finding a 4-face inside a face of size k.

For the inductive step, assume that the statement holds for all k′ < k. Let F be a face
of H such that |F | = k, and let (v1, v2, . . . , vk, v1) be the closed walk(s) along the entire
boundary of F . Set t = 6(k − 4), and let u1, . . . , ut be vertices of G that lie in the interior of
F . For each ui, we apply Lemma 7, with respect to H, to obtain two edges emanating out of
ui to the boundary of F , such that their interior lies inside of F . The proof now falls into
the following cases.

Case 1. Suppose there is a ui such that the two edges emanating out of ui obtained from
Lemma 7 have endpoints at distance two along the boundary of F . Then we have created a
4-face inside of F and we are done.

Case 2. Suppose there is a vertex ui such that the two edges emanating out of ui obtained
from Lemma 7 have endpoints at distance at least 3. Then these two edges emanating out
of ui partition F into two parts, Fs and Fr, such that |Fs| = s, |Fr| = r, 5 ≤ s, r ≤ k − 1
and s + r = k + 4. By the pigeonhole principle, G has at least 6(s − 4) vertices inside of Fs

or 6(r − 4) vertices inside Fr. Indeed, otherwise the total number of vertices inside of F

(including vertex ui) is at most

6(s − 4) − 1 + 6(r − 4) − 1 + 1 = 6(k − 4) − 1,

contradiction. Hence, we can apply induction to Fs or Fr to obtain a 4-face inside of F and
we are done.

Case 3. Assume for each ui, the two edges emanating out of ui obtained from Lemma 7
have endpoints that have distance one along the boundary of F (consecutive vertices along
F ). Since t = 6(k − 4) > k, by the pigeonhole principle, there are two vertices, say u1 and u2,
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such that the two edges emanating out of u1 and u2 obtained from Lemma 7 go to the same
two vertices, say v1, v2. If these four edges are noncrossing, then we have a triangle with a
vertex inside. By Lemma 9, we obtain a 4-face inside of F and we are done. See Figure 4a.
Therefore, without loss of generality, we can assume that edges u1v2 an u2v1 cross.

Let H ′ = H ∪ {u1v1, u1v2, u2v2}, which implies that u2 has degree one in H ′. Let F ′ be
the face that contains u2 on its boundary. See Figure 4b. We apply Lemma 8 to u2 and the
plane graph H ′, to obtain an edge u2vi whose interior lies inside of F ′ and vi lies on the
boundary of F ′. If vi = v3, then we obtain a 4-face inside of F by following the sequence of
vertices (u2, v1, v2, v3) in G. If vi = u1, then we obtain a 4-face inside of F by following the
sequence of vertices (u2, u1, v1, v2) in G. If vi = vk, then again, we obtain a 4-face inside of
F by following the sequence of vertices (u2, vk, v1, v2) in G.

Finally, if vi ̸= vk, u1, v3, then at least one of u2v2 ∪ u2vi or u2v1 ∪ u2vi partitions F into
two parts, Fs and Fr, such that |Fs| = s, |Fr| = r, where 5 ≤ s, r ≤ k − 1 and s + r = k + 4.
By following the arguments in Case 2, we can apply induction on Fs or Fr to obtain a 4-face
inside of F . This completes the proof. ◀

4 Pairwise disjoint 4-faces in simple drawings

In this section, we prove Theorem 2. Roughly speaking, we follow the arguments of Fulek
and Ruiz-Vargas [5] by constructing a large planar subgraph H ⊂ G using Lemma 7. Then,
by combining the pigeonhole principle with Dilworth’s theorem, H will contain either
1. a planar K2,t for t large, or
2. many nested triangles, or
3. many interior disjoint triangles.
Here, large and many means Ω(n 1

3 ). In the first case, it is easy to find many pairwise disjoint
4-faces. In the second case, we use Lemma 10 to find them. In the last case however, the
set of interior disjoint triangles may not give rise to many pairwise disjoint 4-faces, as it is
possible that the triangles are empty. In order to rectify this, we carefully construct our
planar subgraph H using Lemma 11 below. We now flesh out the details of the proof.

Proof of Theorem 2. Let G = (V, E) be a complete n-vertex simple topological graph. We
can assume that n ≥ 40 since otherwise the statement is trivial. Notice that the edges of G

divide the plane into several cells (regions), one of which is unbounded. We can assume that
there is a vertex v0 ∈ V such that v0 lies on the boundary of the unbounded cell. Indeed,
otherwise we can project G onto a sphere, then choose an arbitrary vertex v0 and then project
G back to the plane such that v0 lies on the boundary of the unbounded cell. Moreover, the
new drawing is isomorphic to the original one as topological graphs.

Consider the topological edges emanating out from v0 in clockwise order, and label
their endpoints v1, . . . , vn−1. For convenience, we write vi ≺ vj if i < j. Given subsets
U, W ⊂ {v1, . . . , vn−1}, we write U ≺ W if u ≺ w for all u ∈ U and w ∈ W . We start by
partitioning our vertex set

P : V (G) = V0 ∪ V1 ∪ · · · ∪ V⌊ n−1
5 ⌋,

such that for j < ⌊ n−1
5 ⌋, we have

Vj = {v5j+1, v5j+2, v5j+3, v5j+4, v5j+5},

and
∣∣∣V⌊ n−1

5 ⌋

∣∣∣ ≤ 5. Let H ⊂ G be a plane subgraph of G, and let T, T ′ be two triangles
in H that are incident to v0. We say that T and T ′ are adjacent if V (T ) = {v0, vi, vj}

SoCG 2023
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and V (T ′) = {v0, vj , vk} such that vi ≺ vj ≺ vk, and the edges v0vi, v0vj , v0vk appear
consecutively in clockwise order among the edges emanating out of v0 in H (not in G). See
Figures 6c and 7a for an example.

In what follows, we will construct a plane subgraph H ⊂ G so that, at each step, we use
Lemma 7 to add at least one edge within the vertex set {v1, . . . , vn−1}. The goal at each step
is to add an edge without creating any empty triangles incident to v0. If we are forced to
create such an empty triangle, we then create another triangle incident to v0 that is adjacent
to it, so that we obtain a 4-face. We now give the details of this process.

▶ Lemma 11. For each i ∈ {0, 1, . . . , ⌊n/12⌋}, there is a plane subgraph Hi ⊂ G such that
V (Hi) = V (G) and Hi satisfies the following properties.
1. Hi has at least i edges with both endpoints in the vertex set {v1, . . . , vn−1}.
2. The number of parts Vj ∈ P with the property that each vertex in Vj has degree one in Hi

is at least ⌊(n − 1)/5⌋ − 2i.
3. If the vertex set {v0, vk, vℓ} induces an empty triangle T in Hi, then both vertices vk, vℓ

must lie in the same part Vj ∈ P and ℓ = k + 1. Moreover, given that such an empty
triangle T exists, there must be another triangle T ′ adjacent to T in Hi, such that
V (T ′) = {v0, vt, vt′} and vt, vt′ ∈ Vj.

4. If the edge v0vt is not in Hi, then vt is an isolated vertex in Hi.

Proof. We start by setting H0 as the plane subgraph of G consisting of all edges emanating
out of v0. Clearly, H0 satisfies the properties above. For i < n/12, having obtained Hi with
the properties described above, we obtain Hi+1 as follows.

Fix a part Vj ∈ P such that each vertex in Vj has degree one in Hi and |Vj | = 5. For
simplicity, set ui = v5j+i, for i ∈ {1, . . . , 5}, which implies Vj = {u1, u2, u3, u4, u5}. Since⌊

n − 1
5

⌋
− 2i ≥ n − 1

5 − n

6 > 1,

such a part Vj ∈ P exists. Clearly, all vertices in Vj lie on the boundary of a face F in the
plane graph Hi. We then apply Lemma 8 to the plane graph Hi and the vertex u3, and
obtain edge u3vk, whose interior lies within F and vk is on the boundary of F . We now
consider the following cases.

Case 1. Suppose vk ̸= u2, u4. See Figure 5a. We then set Hi+1 = Hi ∪ {u3vk}. Clearly,
Hi+1 does not contain two crossing edges. Moreover, the number of edges in Hi+1 within the
vertex set {v1, . . . , vn−1} is at least i + 1. Also, the only vertices that no longer have degree
one in Hi+1 are u3 and vk. Hence, the number of parts Vℓ ∈ P with the property that all
vertices in Vℓ have degree one in Hi+1 is at least⌊

n − 5
2

⌋
− 2i − 2 =

⌊
n − 5

2

⌋
− 2(i + 1).

Since vk ̸= u2, u4, no empty triangles incident to v0 were created. Also, no edge emanating
out of v0 was deleted from Hi. Thus, Hi+1 satisfies the conditions described above.

Case 2. Suppose vk = u2 or vk = u4. Without loss of generality, we can assume vk = u4,
since otherwise a symmetric argument would follow. If there is a vertex of G inside the
triangle T = {v0, u3, u4}, then we set Hi+1 = Hi ∪ {u3u4}. By the same arguments as above,
Hi+1 satisfies the properties described above.
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(b) vk = u4.

Figure 5 Cases 1 and 2 in Lemma 11.

Hence, we can assume that the triangle T , where V (T ) = {v0, u3, u4}, is empty in G. Set
H ′ = Hi ∪ {u3u4}, and let F ′ be the face in H ′ whose boundary contains u2. See Figure 5b.
We apply Lemma 8 to H ′ and u2 and obtain another edge u2vℓ whose interior lies inside F ′.
If vℓ = u3, then we set Hi+1 = Hi ∪ {u3u4, u2u3}, which implies that the empty triangle T is
adjacent to triangle T ′, where V (T ′) = {v0, u2, u3}. Clearly, Hi+1 has at least i + 2 > i + 1
edges within the vertex set {v1, . . . , vn−1}. The number of parts Vℓ ∈ P with the property
that all vertices in Vℓ have degree one in Hi+1 is at least⌊

n − 5
2

⌋
− 2i − 1 >

⌊
n − 5

2

⌋
− 2(i + 1).

If vℓ ̸= u1, u3, then edge u2vℓ does not create any empty triangles incident to v0 and
we set Hi+1 = Hi ∪ {u2vℓ}. By the same argument as above, Hi+1 satisfies the desired
properties.

Finally, let us consider the case that vℓ = u1. If the triangle T ′ is not empty, where
V (T ′) = {v0, u1, u2}, we set Hi+1 = Hi ∪ {u1u2} and we are done by the arguments above.
Therefore, we can assume that the triangle T ′ is also empty.

Let H ′′ = (Hi ∪ {u1u2}) \ {u3}. Let F ′′ be the face whose boundary contains u4 in H ′′.
See Figure 6a. We apply Lemma 8 to H ′′ and the vertex u4 to obtain edge u4vt whose
interior lies inside F ′′. We now examine Hi ∪ {u1u2, u3u4, u4vt}. The proof now falls into
the following cases.

Case 2.a. Suppose edge u4vt crosses edge v0u3. If vt = u5, then {v0, u4, u5} induces a
non-empty triangle in G, so we set Hi+1 = Hi ∪{u4u5}\{v0v3}. Then u3 is an isolated vertex
in Hi+1 and we did not create any empty triangles incident to v0, and we are done. See Figure
6b. If vt = u2, then we set Hi+1 = Hi ∪ {u1u2, u2u4} \ {v0u3}. Then the empty triangle on
{v0, u1, u2} is adjacent to the triangle on {v0, u2, u4} in Hi+1, u3 is an isolated vertex, and
we are done. See Figure 6c. Otherwise, if vt ̸= u2, u5, we set Hi+1 = (Hi ∪ {u4vt}) \ {v0u3}.
Then u3 is an isolated vertex, we do not create any empty triangles incident to v0, and we
are done. See Figure 6d.

Case 2.b. Suppose edges v0u3 and u4vt do not cross. If vt = u5, then we set Hi+1 =
Hi ∪ {u3u4, u4u5}, and the empty triangle on the vertex set {v0, u3, u4} is adjacent to
the triangle on {v0, u4, u5}, and we are done. See Figure 7a. If vt ̸= u5, then we set
Hi+1 = Hi ∪ {u4vt}. Since we do not create any empty triangles incident to v0, we are done.
See Figure 7b. This completes the proof of the statement. ◀
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u2 u4

F’’

(a) vℓ = u1, plane graph H ′′.
0v

1u
u3 u5

u2 u4

F’’

(b) vt = u5, v0v3 crosses u4u5.

0v

1u
u3 u5

u2 u4

F’’

(c) vt = u2

0v

1u
u3 u5

u2 u4

vt

F’’

(d) vt ̸= u2, u5

Figure 6 Cases 2.a in Lemma 11. Edge u4vt crosses v0v3.

0v

1u
u3 u5

u2 u4

F’

(a) vt = u5

0v

1u
u3 u5

u2 u4

F’

vt

(b) vt ̸= u5

Figure 7 Case 2.b in Lemma 11. Edge u4vt does not cross v0v3.

Set H = H⌊n/12⌋. We now will use the plane graph H and the vertices of G to find many
pairwise disjoint 4-faces. If there is a vertex vj ∈ {v1, . . . , vn−1} with degree at least n1/3

in H, then together with v0, we have a plane drawing of K2,⌊n1/3⌋. Indeed, recall that in
H, every vertex is either connected to v0, or an isolated vertex. This gives rise to Ω(n1/3)
pairwise disjoint 4-faces and we are done.

Hence, we can assume that every vertex vi ∈ {v1, . . . , vn−1} has degree at most n1/3.
Since there are at least n/12 edges induced on the vertex set {v1, . . . , vn−1} in the plane
graph H, there is a plane matching M on {v1, . . . , vn−1} of size at least n2/3/16. Notice
that there is a natural partial ordering ≺∗ on M . Given two edges vivj , vkvℓ ∈ M , we write
vkvℓ ≺∗ vivj if vi ≺ vk ≺ vℓ ≺ vj . By Dilworth’s theorem, M contains either a chain or
antichain of length at least n1/3/4 with respect to the partial ordering ≺∗. The proof now
falls into two cases.

Case 1. Suppose we have an antichain M ′ of size n1/3/4. Let

M ′ = {vℓ1vr1 , vℓ2vr2 , . . . , vℓtvrt},

where t = n1/3/4 and ℓi < ri for all i. Since H is a plane drawing, and every non-isolated
vertex is connected to v0, we have

{vℓ1 , vr1} ≺ {vℓ2 , vr2} ≺ · · · ≺ {vℓt
, vrt

}.
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See Figure 8a. If at least half of the edges in M ′ give rise to a non-empty triangle incident to
v0, then we apply Lemma 9 to each such triangle to obtain Ω(n1/3) pairwise disjoint 4-faces.
Hence, we can assume at least half of these triangles are empty. By construction of H, each
such empty triangle has another triangle adjacent to it. Since the three edges emanating out
of v0 of two adjacent triangles must be consecutive in H (by definition), this corresponds to
Ω(n1/3) pairwise disjoint 4-faces. See Figure 8b.

0v

vl1
vr1 vl2 vr2

vlt vrt

...

(a) Anti-chain of size t.

vr2
vlt

0v

vl1 vr1
vl2

vrt

...

(b) Disjoint 4-faces.
0v

vr2vl2 vrt
vlt

vl1
vr1...

(c) Chain of length t

Figure 8 Large antichain and chain.

Case 2. Suppose we have a chain M ′ ⊂ M of size n1/3/4. Hence,

M ′ = {vℓ1vr1 , vℓ2vr2 , . . . , vℓtvrt},

where t = n1/3/4 and we have

vℓtvrt ≺∗ · · · ≺∗ vℓ2vr2 ≺∗ vℓ1vr1 .

See Figure 8c. Set M ′′ ⊂ M ′ such that M ′′ = {vℓ7j
vr7j

}j . Hence, |M ′′| ≥ Ω(n1/3). Let us
consider edges vℓ7vr7 and vℓ14vr14 from M ′′, and the region F enclosed by the six edges.

vℓ7vr7 , vℓ14vr14 , v0vℓ7 , v0vℓ14 , v0vr7 , v0vr14 .

See Figure 9. Let H ′ be the plane subgraph on the vertex set {v0, vℓ14 , vr14 , vr7 , vℓ7} and the
six edges listed above. By construction of M ′′, we know that there are at least 12 vertices
of V (G) inside F . Since |F | = 6, we can apply Lemma 10 to find a 4-face inside of F . By
repeating this argument for each consecutive pair of edges in the matching M ′′ with respect
to the partial order ≺∗, we obtain Ω(n1/3) pairwise disjoint 4-faces. ◀

0v

vl7
vl vr14

F

vr7

14

Figure 9 Face F of size 6.
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5 Z2-cycles in topological graphs

Now we pass to a variant of Heilbronn’s triangle problem for not necessarily simple topological
graphs. Specifically, if γ is piecewise smooth closed curve with transverse self intersections,
then one can consider Lemma 6, from Section 2, as a definition of the Z2-inside of γ. That
is, p is in the interior of γ if any arc with one endpoint at p and the other outside a large
disk containing γ, intersects γ an odd number of times at proper crossings.

Does every complete topological graph drawn inside the unit square contain a cycle
whose Z2-inside has small area? More generally, we will consider this question for the group
of Z2-cycles instead of graph cycles. The result of this section is a negative answer to
this question. Using a simple probabilistic construction, we show that there are complete
topological graphs in the unit square in which every cycle has constant area.

5.1 Chain complexes
Let us recall the basic objects of cellular homology, refer to [15] for a gentle introduction.
If X is a cell complex, for each i, the group of i-th chain group, denoted by Ci(X,Z2) is
the group of formal linear combinations of the i-dimensional cells. An element of Ci(X,Z2)
has the form

∑
σ∈Fi(X) aσσ, where σ is an element of Fi, the set of i-dimensional cells, and

aσ is an element of Z2, the field with two elements. The boundary operator is a linear
map ∂Ci(X,Z2) → Ci−1(X,Z2), which can be succinctly described using a pair of basis,
one for Ci(X,Z2) and one for Ci−1(X,Z2) which have an element for each cell, then the
boundary map of a cell σ is the linear combinations of the (i − 1)-cells that are incident to σ.
The kernel of the boundary operator is the group of cycles Zi(X,Z2) and its image is the
group of boundaries Bi−1(X,Z2), the quotient group Zi(X,Z2)/Bi(X,Z2) is the i-th cellular
homology group Hi(X,Z2). In the following we will use that a two dimensional disk has
trivial homology. This is the case because homology is invariant under homotopy equivalences
and a disk can be contracted to a point which can be modeled with a cell complex that has
no higher dimensional cells.

Consider Kn as a simplicial complex, in other words, F1(Kn) is the set of edges and
F0(Kn) is the set of vertices of the complete graph.

In this case the boundary ∂ : C1(Kn,Z2) → C0(Kn,Z2) is defined as follows: if e = (i, j)
is an edge, then the chain 1e is mapped to ∂(e) = 1i + 1j. The kernel of ∂ is the group
of 1-cycles of Kn, Z1(Kn) := ker ∂. Elements in Z1(Kn) can be identified with (possibly
disjoint) graphs in which every vertex has even degree.

Let us consider the planar graph induced by G by introducing a vertex at every intersection
between two edges, and let Ĝ be the cell decomposition of the smallest closed topological
disk that contains G. More precisely, every intersection between edges of G is a vertex of
Ĝ (including the vertices of G). Two consecutive intersections along an edge of G share an
edge in Ĝ. The regions of R2 \ G are the 2 dimensional cells of Ĝ. Consider the chain groups
Ci(Ĝ,Z2), and observe that for i = 0, 1 there exists linear maps fi : Ci(Kn,Z2) → Ci(Ĝ,Z2).
For example, for a given edge e ∈ E(Kn), f1(e) is the linear combination of the edges in Ĝ

that support the arc representing e, and similarly, for the vertices.
It is not hard to see that this chain map induces a well defined map between cycle groups,

f1 : Z1(Kn) → Z1(Ĝ). Now, since the homology group H1(Ĝ,Z2) is trivial, for any cycle
z ∈ Z1(Ĝ) there exists a 2 chain c ∈ C2(Ĝ,Z2) such that ∂(c) = z. On the other hand, if
some other chain c′ ≠ c satisfied ∂c′ = z, then ∂(c + c′) = 0, hence c + c′ would be a two
dimensional cycle, but since there are no 3 dimensional faces, this would imply that the
homology group H2(Ĝ,Z2) ̸= 0, which is absurd. So there exists a unique chain c such that
∂c = z, and the interior of its support corresponds to the set of points {p ∈ R2 : w2(p, z) = 1}.
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Figure 10 A possible edge in the construction of proposition 12 before re-scaling and perturbing.

5.2 A topological graph without Z2-cycles of small area
▶ Proposition 12. There exists a drawing of the complete graph inside [0, 1]2 such that the
Z2-inside of every Z2-cycle of the complete graph has area at least 1

4 .

We begin describing a random construction. Consider a rectangle of size m × 1, with
corners at {(0, 0), (0, 1), (m, 0), (m, 1)} where m will be a large number with respect to n

that we will define later on. We perform the area analysis for this drawing, but notice that
by applying the linear transformation (x, y) → ( x

m , y), we can transform it back to the unit
square.

We place all the points in general position on a small neighbourhood of the lower corner
(0,0) of the rectangle. The drawing will be random and at the end it will be perturbed by an
arbitrary small amount so that it is in general position. To refer to this small perturbation
we use the word “near” in the description below. Notice that one could perturb each edge so
that it stays piecewise linear or one could smooth each edge, as long as areas of cycles do not
change too much and every intersection is a proper crossing (in the language of differentiable
topology this corresponds to the curves being transverse and in PL topology to general
position).

Each edge will go all the way to near (m, 0) and come back near (0, 0). Choose two
vertices i, j, the edge e = (i, j) will be represented by an arc that begins at the vertex i and
is a concatenation of almost vertical and almost horizontal arcs. More precisely, for each
k ∈ {0, 1, 2, . . . m − 1} assume that we have constructed a path αij(k) that begins at i (near
(0, 0)) and ends at (k, Yk) with Yk ∈ {0, 1}, let Yk+1 be a Bernoulli random variable with
probability 1

2 , and extend the arc αij(k) by concatenating it with the segment {(k + t, yk) :
t ∈ [0, 1]} if Yk+1 = Yk, and by the concatenation of the segments {(k, t) : t ∈ [0, 1]} followed
by {(k + t, Yk+1) : t ∈ [0, 1]} if Yk+1 ̸= Yk.

When we reach x = m, if y = 1, we concatenate it to (m, 0). In both cases y = 0, 1, we
end the arc by concatenating all the way back to the vertex j near (0, 0) with a long near
horizontal arc close to the x-axis. Finally, we perturb what we have constructed a very small
amount so that the intersections between any two such edges is a finite set of points where
they cross properly, and we re-scale the x-axis so that the whole picture is contained in the
unit square.

Proof of Proposition 12. We work with the rectangle and make some observations about the
re-scaling and perturbing at the end of the proof. Using the random construction described
above, to compute the expected area of a cycle z, consider a point p in the interior of the
rectangle, say that p has coordinates (k + 1

2 , 1
2 ), and consider the horizontal segment of

a fixed edge e that joins (k, Yk) with (k + 1, Yk+1). The vertical ray emanating up from
p, intersects this edge with probability 1

2 . Conditioned on all the other edges of a cycle z

containing e, the square {(k, 0), (k, 1), (k + 1, 1), (k + 1, 0)} is Z2-inside z with probability 1
2

and Z2-outside z with probability 1
2 . This implies that the area of every cycle is a sum of m

independent Bernoulli random variables with probability 1
2 , so E[area(z)] ≥ m

2 , and Chernoff
bound yields:

Pr(area(z) <
m

3 ) ≤ e− m
128 .
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There are exactly 2(n−1
2 ) − 1 non-zero elements in Z1(Kn), while the areas of two different

cycles z and z′ that share some edge are dependent random variables, if we let m = 64n2,
the union bound yields

Pr(∃z ∈ Z1(Kn), area(z) <
m

3 ) ≤ 2− n
2

Since this probability is strictly smaller than 1, there exists some drawing such that the
area of every cycle is at least m

3 , which after perturbing and re-scaling by 1
m , corresponds to

all cycles having area at least 1
3 − ϵ, for any given ϵ > 0. ◀

▶ Remark 13. If we only cared about graph cycles, i.e. connected subgraphs of Kn in which
each vertex has degree two, then it is enough to take m = O(n log n).
▶ Remark 14. There is nothing special about 1

4 or about 1
3 , at the cost of making m larger,

we can force all cycles to have area at least 1
2 − ϵ for any ϵ > 0. It is easy to see that for any

complete topological graph there exists z ∈ Z1(G) with area(z) ≤ 1
2 .

In the aforementioned construction, for two fixed edges e, e′, and a fixed integer i, there is a
constant probability that e and e′ cross near the vertical line at {(i, x) : x ∈ R1}, hence the
expected number of crossings is Ω(n6)

▶ Problem 15. For a fixed k, is there a function ϵk(n) with ϵk(n) → 0 when n → ∞, such
that for every drawing of Kn in which every pair of edges intersect at most k times, we can
find a cycle of area at most ϵk(n)?
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