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Abstract

The task of finding an extension to a given partial drawing of a graph while adhering to constraints on
the representation has been extensively studied in the literature, with well-known results providing
efficient algorithms for fundamental representations such as planar and beyond-planar topological
drawings. In this paper, we consider the extension problem for bend-minimal orthogonal drawings
of planar graphs, which is among the most fundamental geometric graph drawing representations.
While the problem was known to be NP-hard, it is natural to consider the case where only a small
part of the graph is still to be drawn. Here, we establish the fixed-parameter tractability of the
problem when parameterized by the size of the missing subgraph. Our algorithm is based on
multiple novel ingredients which intertwine geometric and combinatorial arguments. These include
the identification of a new graph representation of bend-equivalent regions for vertex placement in
the plane, establishing a bound on the treewidth of this auxiliary graph, and a global point-grid that
allows us to discretize the possible placement of bends and vertices into locally bounded subgrids for
each of the above regions.
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1 Introduction

Extending partial drawings of graphs while preserving certain desirable properties such as
planarity is an algorithmic problem that received considerable attention in the last decade
in graph theory, graph drawing, and computational geometry. Drawing extension problems
are motivated, for instance, by visualizing networks, in which certain subgraphs represent
important motifs that require a specific drawing, or by visualizing dynamic networks, in
which new edges and vertices must be integrated in an existing, stable drawing. Generally
speaking, we are given a graph G and a (typically connected) subgraph H of G with a
drawing Γ(H), which is called a partial drawing of G. The drawing Γ(H) typically satisfies
certain topological or geometric properties, e.g., planarity, upward planarity, or 1-planarity,
and the goal of the corresponding extension problem is to extend Γ(H) to a drawing Γ(G) of
the whole graph G (if possible) by inserting the missing vertices and edges into Γ(H) while
maintaining the required drawing properties.

A fundamental result in this line of research is the work of Angelini et al. [1], who showed
that for planar graphs with a given partial planar drawing, the extension problem can be
solved in linear time, thus matching the time complexity of unconstrained planarity testing.
In fact, there is also a corresponding combinatorial characterization of planar graphs with
extensible partial planar drawings via forbidden substructures [25]. In contrast to the above
results, which consider topological graph embeddings, the planar drawing extension problem
is NP-hard in its geometric variant, where one has to decide if a partial planar straight-line
drawing Γ(H) can be extended to a planar straight-line drawing of G [30].

In this paper, we study the geometric drawing extension problem arising in the context
of one of the most fundamental graph drawing styles: orthogonal drawings [12, 16, 19, 29]. In
a planar orthogonal drawing, edges are represented as polylines comprised of (one or more)
horizontal and vertical segments with as few overall bends as possible, where edges are not
allowed to intersect except at common endpoints. Orthogonal drawings find applications in
various domains from VLSI and printed circuit board (PCB) design, to schematic network
visualizations, e.g., UML diagrams in software engineering, argument maps, or flow charts.

Given the above, a key optimization goal in orthogonal drawings is bend minimization.
This task is known to be NP-hard [22] when optimizing over all possible combinatorial
embeddings of a given graph, but can be solved in polynomial time for a fixed combinatorial
embedding using the network flow model of Tamassia [31]. Interestingly, the complexity of
the bend minimization problem without a fixed embedding depends on the vertex degrees,
which in the classical case of vertices being represented as points is naturally bounded by
4. If, however, the maximum vertex degree is 3, then there is a polynomial-time algorithm
for bend minimization [4], and this result has recently been improved to linear time [15];
more generally, the problem is fixed-parameter tractable (FPT) in the number of degree-4
vertices [14]. In addition, it has been recently shown that the bend minimization problem is
in XP (slice-wise polynomial) parameterized by the treewidth of the input graph [13].

Despite the general popularity of planar orthogonal graph drawings, the corresponding
extension problem has only been considered recently [2]. While the authors of that paper
showed that the existence of a planar orthogonal extension can be decided in linear time,
the orthogonal bend-minimal drawing extension problem in general is easily seen to be
NP-complete as it generalizes the case in which the pre-drawn part of the graph is empty [22].
Our paper addresses the parameterized complexity of the bend-minimal extension problem for
planar orthogonal graph drawings under the most natural parameterization of the problem,
which is the size of the subgraph that is still missing from the drawing. This parameter can
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be assumed to be small in many applications, e.g., when extending drawings of dynamic
graphs with few added edges and vertices, and has been used broadly in the study of previous
topological drawing extension problems (see, e.g., [17, 18]).

Contributions. In this paper, we establish the fixed-parameter tractability of the Bend-
Minimal Orthogonal Extension (BMOE) problem when parameterized by the size κ

of the missing subgraph (see the formal problem statement in Section 2). A general difficulty
we had to overcome on our way to obtain our fixed-parameter algorithm is the fact that while
there have been numerous recent advances in the parameterized study of drawing extension
problems [18,21,23], the specific drawing styles considered in those papers were primarily
topological in nature, while for bend minimization the geometry of the instance is crucial. In
order to overcome this difficulty, we develop a new set of tools summarized below.

In Section 3, we make the first and simplest step towards fixed-parameter tractability
of BMOE by applying an initial branching step to simplify the problem. This step allows
us to reduce our target problem to Bend-Minimal Orthogonal Extension on a Face
(F-BMOE), where the missing edges and vertices are drawn only in a marked face f and we
have some additional information about how the edges are geometrically connected.

Next, in Section 4, we focus on solving an instance of F-BMOE. We show that certain
parts of the marked face f are irrelevant and can be pruned away, and also use an involved
argument to reduce the case of f being the outer face to the case of f being an inner face.

Once that is done, we enter the centerpiece of our approach in Section 5, where the aim
is to obtain a suitable discretization of our instance. To this end, we split the face f into
so-called sectors, which group together points that have the same “bend distances” to all of
the connecting points on the boundary of f . Furthermore, we construct a sector-grid – a
point-set such that each sector contains a bounded number of points from this set, and every
bend-minimal extension can be modified to only use points from this set for all vertices and
bends. While this latter result would make it easy to handle each individual sector by brute
force, the issue is that the number of sectors can be very large, hindering tractability.

To deal with this obstacle, we capture the connections between sectors via a sector graph
whose vertices are precisely the sectors and edges represent geometric adjacencies between
sectors. Crucially, in Section 6 we show that the sector graph has treewidth bounded by a
function of κ. This is non-trivial and relies on the previous application of the pruning step in
Section 4. Having obtained this bound on the treewidth, the last step simply combines the
already constructed sector grid with dynamic programming to solve F-BMOE (and hence
also BMOE). It is perhaps worth pointing out the interesting contrast between the use of
treewidth here as an implicit structural property of the sector graph – a crucial tool in our
fixed-parameter algorithm – with the previously considered use of treewidth directly on the
input graph – which is not known to lead to fixed-parameter tractability [13].

Related work. Several variants of drawing extension problems have been studied over the
years. For instance, Chambers et al. [10] studied the problem of drawing a planar graph
using straight-line edges with a prescribed convex polygon as the outer face, and proposed
a method that produces drawings with polynomial area. Mchedlidze et al. [28] provide a
characterization (which can be tested in linear time) to determine whether given a planar
straight-line convex drawing of a biconnected subgraph G′ of a planar graph G with a fixed
planar embedding, this drawing can be extended to a planar straight-line drawing of G.
Recently, Eiben et al. studied the problem of extending 1-planar drawings. While the
problem was known to be NP-complete, they showed [18] that the problem is FPT when
parameterized by the edge deletion distance. Later, in [17], they showed that the 1-planar
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Figure 1 An orthogonal drawing of (a) a graph G and (b) a subgraph H of G.

extension is polynomial-time solvable when the number of vertices and edges to be added
to the partial drawing is bounded. Hamm and Hliněný also studied the parameterized
complexity of the extension problem in the setting of crossing minimization [23].

Other types of extension problems have also been investigated, e.g., Da Lozzo et al. [27]
studied the upward planarity extension problem, and showed that this is NP-complete even
for very restricted settings. Brückner and Rutter [9] showed that the partial level planarity
problem is NP-complete again in severely restricted settings. For non-planar graph drawings,
it is even NP-hard to determine whether a single edge can be inserted into a simple partial
drawing of the remaining graph, i.e., a drawing in which any two edges intersect in at most
one point [3]. Extension problems have been investigated also for other types of graph
representations, in particular for intersection representations such as circular arc graphs [20]
or circle graphs [8]. In the context of bend-minimal planar orthogonal drawing extension,
Angelini et al. showed that the problem remains NP-hard even when a planar embedding of
the whole graph is provided in the input [2].

2 Preliminaries and Basic Tools

We assume familiarity with basic concepts in parameterized complexity theory, notably fixed-
parameter tractability and treewidth [11], and with standard graph drawing terminology.
Recall that a planar drawing Γ(G) is orthogonal if each edge is a polyline consisting of
horizontal and vertical segments. A bend in a polygonal chain representing an edge in Γ(G)
is a point shared by two consecutive segments of the chain. For instance, Figure 1a shows an
orthogonal drawing of a graph G in which edge ax has three bends.

Problem Statement. Let G be a planar graph and H be a connected subgraph of G. We
call the complement X = V (G) \ V (H) the missing vertex set of G, and EX = E(G) \E(H)
the missing edge set. Let Γ(H) be a planar orthogonal drawing of H. A planar orthogonal
drawing Γ(G) extends Γ(H) if its restriction to the vertices and edges of H coincides with
Γ(H). Moreover, Γ(G) is a β-extension of Γ(H) if it extends Γ(H) and the total number of
bends along the edges of EX is at most β, for some β ∈ N. For example, Figure 1a shows a
7-extension Γ(G) of the drawing Γ(H) in Figure 1b, with the missing vertices drawn in red.

Our problem of interest is defined as follows.
Bend-Minimal Orthogonal Extension (BMOE)
Input: (G, H, Γ(H)), integer β

Problem: Is there a β-extension Γ(G) of Γ(H)?

We remark that BMOE is known to be NP-hard even when restricted to the case where
β = 0 and V (H) = ∅ [22]. Also, unless specified otherwise, in the rest of the paper we only
consider orthogonal drawings which are planar. Our parameter of interest is the number of
vertices and edges missing from H, i.e., κ = |V (G) \ V (H)|+ |E(G) \ E(H)|.
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` σ

Figure 2 Two shape-equivalent orthogonal drawings such that the one on the right is obtained
from the one on the left by applying a (σ, ℓ)-strip removal operation.

B
s ε

Figure 3 Two shape-equivalent orthogonal drawings such that the one on the right is obtained
from the one on the left by applying Lemma 2 with the v-selection B.

Basic Tools. We introduce a set of redrawing operations that will be used as basic tools in
several proofs. It is worth noting that similar operations as the ones introduced here, which
are based on shortening or prolonging sets of parallel edges in orthogonal drawings, are well
known (see, e.g., [6]). However, in our specific setting we have parts of the drawing that are
given and cannot be modified, and handling this requires additional care in our arguments.

A feature point of an orthogonal drawing is a point representing either a vertex or a bend
of an edge. An edge-segment of an orthogonal drawing is a segment that belongs to a polyline
representing an edge. Two orthogonal drawings Γ(G) and Γ′(G) of a planar graph G are
shape-equivalent if one can be obtained from the other by only shortening or lengthening some
edge-segments. Figure 2 shows an example of two shape-equivalent drawings; in particular,
the one on the right can be obtained from the one on the left by suitably shortening the
blue (thicker) edge-segments. (We note that in the literature on orthogonal drawings, this is
equivalent to saying that Γ(G) and Γ′(G) have the same shape but two different metrics.)

Let Γ(G) be an orthogonal drawing of a graph G. Let ℓ be a horizontal (vertical) line
that contains no feature points of Γ(G) but intersects a set S of vertical (horizontal) edge-
segments. Let l be the shortest distance between the endpoints of the segments in S and ℓ.
For any 0 < σ < l, a (σ, ℓ)-strip removal operation consists of decreasing the y-coordinates
(x-coordinates) of all feature points above (to the right of) ℓ by σ. Analogously, for any σ > 0,
a (σ, ℓ)-strip addition operation consists of increasing the y-coordinates (x-coordinates) of all
feature points above (to the right of) ℓ by σ. See Figure 2 for an illustration of a (σ, ℓ)-strip
removal operation. The following property readily follows.

▶ Property 1. Let Γ(G) and Γ′(G) be two orthogonal drawings such that Γ′(G) is obtained
from Γ(G) by applying a (σ, ℓ)-strip removal or addition operation. Then Γ(G) and Γ′(G)
are shape-equivalent.

Let B be a rectangle that intersects Γ(G) such that only one side s of B is crossed by
edges of G. We call B a v-selection if s is vertical or a h-selection otherwise. Also, the
subdrawing of Γ(G) inside B is called the B-selected drawing; see Figure 3 for an illustration
of a v-selection and of the next lemma (whose proof easily follows from Property 1).

SoCG 2023
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▶ Lemma 2. Let Γ(G) be an orthogonal drawing and let B be a v-selection (h-selection) of
Γ(G). For any ϵ > 0, there is a drawing Γ′(G) that is shape-equivalent to Γ(G) and such
that the B-selected drawing has width (height) at most ϵ and height (width) equal as in Γ(G).

3 Initial Branching

In this section, we make the first step towards the fixed-parameter tractability of BMOE by
applying an initial branching step to simplify the problem – notably, this will allow us to
focus on only extending the drawing inside a single face of H, and to assume that H is an
induced subgraph of G.

We begin by introducing some additional notation that will be useful throughout the
paper. Let ⟨(G, H, Γ(H)), β⟩ be an instance of BMOE. A vertex w ∈ V (H) is called an
anchor if it is incident to an edge in the missing edge set EX . For a missing edge vw ∈ EX

incident to a vertex v ∈ V (H), we will use “ports” to specify a direction that vw could
potentially use to reach v in an extension of Γ(H); we denote these directions as d which
is an element from {↓ (north), ↑ (south), ← (east), → (west)}. Formally, a port candidate
for vw ∈ EX and v ∈ V (H) is a pair (v, d). A port-function is an ordered set of port
candidates which contains precisely one port candidate for each vw ∈ EX , v ∈ V (H), ordered
lexicographically by v and then by w.

We can now formalize the target problem that we will obtain from BMOE via our
exhaustive branching, which will be the focus of our considerations in Sections 4-6.
Bend-Minimal Orthogonal Extension on a Face (F-BMOE)
Input: A planar graph Gf ; an induced subgraph Hf of Gf with k = |Xf |, where
Xf = V (Gf ) \ V (Hf ); a drawing Γ(Hf ) of Hf consisting of a single inner face f ; a
port-function P.
Task: Compute the minimum β for which a β-extension of Γ(Hf ) exists and such that
(1) missing edges and vertices are only drawn in the face f and (2) each edge vx ∈ EX

where v ∈ V (H) connects to x via its port candidate defined by P, or determine that
no such extension exists.

For the Turing reduction formalized in the next lemma, it will be useful to recall the
definition of BMOE and κ from Section 2.

▶ Lemma 3. There is an algorithm that solves an instance I of BMOE in time 3O(κ)·T (|I|, k),
where T (a, b) is the time required to solve an instance of F-BMOE with instance size a and
parameter value b.

Proof Sketch. We exhaustively branch over all possible faces in which a missing vertex can
be drawn, as well as over possible ports that will be used by each edge incident to an anchor
in H. Also, additional care is needed with each missing edge with both endpoints in H in
order to make H an induced subgraph of G. For this, we branch to determine whether the
edge will be drawn as a straight-line segment (in which case we simply add it to H), or
whether it will have at least one bend (in which case we subdivide it, mark the newly created
vertex as missing, and remember that the total number of bends will decrease by 1). ◀

We note that the marked face f can be either the single inner face of Γ(Hf ) or the outer face.
On a different note, while BMOE was stated as a decision problem for complexity-theoretic
purposes, the output for F-BMOE is either an integer or “No”. Two instances of F-BMOE
are said to be equivalent if their outputs are the same. Note that checking whether an
instance of F-BMOE admits some β-extension can be done in polynomial time by using the
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algorithm in [2]. The pre-drawn graph given as input to the algorithm in [2] will be Γ(Hf )
with a slight modification: if a vertex v makes an angle larger than π

2 in the non-marked face
g of Γ(Hf ), then we add dummy vertices and connect them to v until all angles around v in
g are π

2 . This guarantees that a solution only draws missing vertices inside the marked face f

(and not in g). Hence, we will assume to be dealing with instances where such an extension
exists, and the task is to identify the minimum value of β. We will call a β-extension
minimizing the value of β a solution.

4 Preprocessing

We can now focus on solving an instance of F-BMOE with only a single marked face f being
of interest. The aim of this section is to make the first two steps that will allow us to solve
F-BMOE. This includes pruning out certain parts of the face which are provably irrelevant,
and reducing the case of f being the outer face to the case of f being an inner face.

4.1 Pruning
Let Γ(G) be an orthogonal drawing of a graph G and let f be a face of Γ(G). A reflex corner
p of f is a feature point that makes an angle larger than π inside f . Also, if p is an anchor,
then it is called an essential reflex corner. A projection ℓ of a reflex corner p is a horizontal
or vertical line-segment in the interior of f that starts at p and ends at its first intersection
with the boundary of f . Figure 4 (left) shows two projections ℓ1 and ℓ2 of a reflex corner p.

Observe that each projection ℓ of a reflex corner p divides the face f into two connected
regions, which are themselves orthogonal polygons. If p is not essential and one of the two
regions contains no reflex corners of its own (notice that inside this region, p needs no longer
be a reflex corner) and no anchors, we call the region redundant. Our aim will be to show
that such regions can be safely removed from the instance. More formally, recall that ℓ

intersects the boundary of f in p on one side and in an element e that is either a vertex
u or a point q on an edge of H on the other side of f . The pruning operation at ℓ for a
redundant region ι works as follows. (1) If both p and e are vertices (which are therefore
vertically or horizontally aligned) we add the edge pu into H, whose representation in Γ(H)
is ℓ. (2) If p is a vertex and e is an edge, we modify H by replacing q with a dummy vertex
vq that subdivides e and by adding the edge pvq (whose representation in Γ(H) is ℓ). (3)
If p is part of an edge e′ and e is also an edge, we modify H by replacing p and q with
two dummy vertices vp and vq that subdivide e′ and e and by adding the edge vpvq (whose
representation in Γ(H) is ℓ). We finally remove the boundary of ι from H and Γ(H), except
for the edge-segment ℓ and its end-vertices. The proof of the next lemma easily follows by
suitably using v-/h-selections, see also Figure 5 for an illustration.

▶ Lemma 4. Let I = ⟨Gf , Hf , Γ(Hf ), f,P⟩ be an instance of F-TBOE. Let ℓ be a projection
of some non-essential reflex corner in f , which gives rise to a redundant region ι. Then
pruning ι at ℓ results in an instance Iι that is equivalent to I.

We can show that exhaustively applying Lemma 4 results in an instance with the following
property: each projection of each non-essential reflex corner in f splits f into two faces, each
of which has at least one port on its boundary. We call such instances clean; see Figure 4.

▶ Lemma 5. There is a polynomial-time algorithm that takes as input an arbitrary instance
of F-TBOE and outputs an equivalent instance which is clean.

Given Lemma 5, we will hereinafter assume that our instances of F-TBOE are clean.

SoCG 2023
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p `1

`2

Figure 4 Left: A reflex corner p and its projections ℓ1 and ℓ2. Middle: A face (striped) with all
its non-essential reflex corners and projections (anchor vertices have a gray filling while non-anchors
are solid). Right: The corresponding clean instance (dummy vertices are drawn as small squares).

`ι

3ε

`ι

ε 2ε

Figure 5 Illustration for the proof of Lemma 4.

4.2 Outer Face
Given an instance of F-BMOE where the marked face f is the outer face of Γ(Hf ), let us begin
by constructing a rectangle that bounds Γ(Hf ) and will serve as a “frame” for any solution.

▶ Observation 6. Let I be an instance of F-BMOE and let R be a rectangle that contains
Γ(Hf ) in its interior. Then I admits a solution that lies in the interior of R.

Based on Observation 6, we shall assume that any instance I is modified such that the
outer face of Γ(Hf ) is a rectangle R containing no anchors (e.g., with four dummy vertices
at its corners connected in a cycle). Notice that, while this ensures that f is no longer the
outer face, f now contains a hole (that is, Hf is not connected anymore). The aim for the
rest of this section is to remove this hole by connecting it to the boundary of R.

To do so, let us consider an arbitrary horizontal or vertical line-segment ζ that connects
the boundary of R with an edge-segment in the drawing Γ(Hf ) and intersects no other
edge-segment of Γ(Hf ). Observe that, w.l.o.g., we can assume that each edge-segment in a
solution Γ(Gf ) only intersects ζ in single points (and not in a line-segment); otherwise, one
may shift ζ by a sufficiently small ϵ to avoid such intersections. Roughly speaking, our aim
will be to show that the instance I can be “cut open” along ζ to construct an equivalent
instance where the boundary of the polygon includes R, and to branch in order to determine
how the edges in a hypothetical solution cross through ζ. However, to do so we need to
ensure that there is a solution, in which the number of such crossings through ζ is bounded.

Let us consider the drawing of a missing edge e ∈ EX in Γ(Gf ). The intersection points of
e with ζ partition the drawing of e into polylines eζ

1, eζ
2, . . . , eζ

q , where each pair of consecutive
polylines eζ

i and eζ
i+1 touch ζ at a point, which we denote by zi (i = 1, . . . , q − 1). We

distinguish two cases depending on the structure of these polylines. A polyline eζ
j , 1 < j < q,

is called a ζ-handle if the unique region of the plane enclosed by eζ
j and ζ does not contain

Γ(Hf ); otherwise the polyline is called a ζ-spiral. See Figure 6 for an illustration.
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R ζ
eζjzj−1

zj

R ζ
eζjzj−1

zj

Figure 6 Illustration of ζ-handles (left) and ζ-spirals (right).

▶ Lemma 7. Assume I and ζ are fixed as above. Then I admits a solution such that no
missing edge contains a ζ-handle.

Proof Sketch. By planarity, the polyline e∗ representing any ζ-handle is not crossed by any
edge (except possibly at common endpoints). Consider the subdrawing Γζ of Γ(Gf ) formed
by all vertices and edge-segments in the interior of the unique region of the plane enclosed
by e∗ and ζ. At high-level, we scale-down Γζ and then define suitably h-/v-selections such
that the transformed version of Γζ can be moved to the other side of ζ without introducing
crossings. At this point we can redraw e∗ such that it does not cross ζ anymore and its
number of bends is not increased. ◀

Next we deal with ζ-spirals: while they cannot be completely avoided, we show that one
can bound the number of ζ-spirals for each edge by a function of the parameter k.

▶ Lemma 8. Assume I and ζ are fixed as above. Then I admits a solution with no ζ-handles
and at most 4k(k + 1) ζ-spirals.

Proof Sketch. The first part of the statement follows by Lemma 7. The second part can
be proved by observing that pairs of consecutive ζ-spirals of the same edge can be shortcut
and merged together into a single ζ-spiral if they do not enclose any vertex. On the other
hand a vertex blocking this operation must be a missing vertex, and hence we have at most
k consecutive blocked pairs for each of the at most 4k missing edges. ◀

With Lemma 8, we obtain that there exists a solution where the total number of edge-
segments crossing through ζ is at most 4k(k + 1). We can use this to branch on which edges
cross through ζ and use this to make a “bridge” connecting R to the hole in f , thus resulting
in an equivalent instance where f is modified to become an inner face with no holes.

▶ Lemma 9. There is an algorithm that takes as input an instance I of F-BMOE where f is
the outer face and solves it in time 2O(k2 log k) ·Q(|I|, k), where Q(a, b) is the time to solve an
instance of F-BMOE with instance size a and parameter value b such that f is the inner face.

Proof Sketch. We can assume that f is an inner face bounded by a rectangle R and containing
a segment ζ defined as above. By Lemma 8, it is not restrictive to consider solutions such
that each missing edge drawn in f contains no ζ-handles and at most 4k(k + 1) ζ-spirals.
That is, we shall consider solutions in which ζ is crossed at most 4k(k + 1) times. The first
task here is to branch over which missing edges will cross ζ (possibly multiple times) and in
which order. The second task is to show that the precise position of these crossings along
ζ is not important, because a hypothetical solution can always be redrawn so to use the
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given crossing points without increasing the number of bends. Once this is done, each such
crossing point can be replaced with a dummy vertex that subdivides ζ and belongs to the
new boundary of f , which now has no holes anymore. To this aim, we can use suitably
defined h-/v-selections and (σ, ℓ)-strip additions. ◀

5 Discretizing the Instances

Our next aim is to define the sector graph and show that it suffices to consider only a bounded
number of possible points in each sector for extending Γ(Hf ). Essentially, this allows us to
combinatorially extract those properties of Γ(Hf ) that are relevant for solving F-BMOE.

5.1 Sectors and the Sector Graph
For a point p ∈ f , the bend distance bd(p, (a, d)) to a port candidate (a, d) is the minimum
integer q such that there exists an orthogonal polyline with q bends connecting p and a in
the interior of f which arrives to a from direction d.

▶ Definition 10. Let P = ((a1, d1), . . . , (aq, dq)) be an ordered set of port candidates. For each
point p ∈ f , we define a bend-vector as the tuple vect(p) = (bd(p, (a1, d1)), . . . , bd(p, (aq, dq))).

▶ Definition 11. Given an ordered set of port candidates P, a sector F is a maximal
connected set of points with the same bend-vector w.r.t. P.

When P is not specified explicitly, we will assume it to be the set of port candidates
provided by the considered instance of F-BMOE. The face f is now partitioned into a set
F of sectors. It is worth noting that sectors are connected regions in the face f , they do
not overlap, and they cover the whole interior of f . We further notice that a sector can
be degenerate, it may be a single point or a line-segment, and that pairs of (non-adjacent)
sectors may have the same bend-vectors. At this point, we can define a graph representation
capturing the adjacencies between the sectors in our instance; see Figure 7 for an illustration.

▶ Definition 12. Sectors A and B are adjacent if there exists a point p in A and a direction
d ∈ {↑, ↓,←,→} such that the first point outside of A hit by the ray starting from p in
direction d is in B.

(a1, d1)

(a2, d2)

(a3, d3)

(a1, d1)

(a2, d2)

(a3, d3)

Figure 7 Left: partitioning a face f into a set F of sectors, with three anchors marked using
white circles. Right: the graph representation of F .

Observe that the relationship of being adjacent is symmetric; furthermore, for a specific
direction d we say that sector A is d-adjacent to B if A is adjacent to B for this choice of d.
The sector graph G is the graph whose vertex set is the set of sectors F , and adjacencies of
vertices are defined via the adjacency of sectors.
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It will be useful to establish some basic properties of the sector graph. For instance, it is
not difficult to observe that the sector graph is a connected planar graph. Furthermore, we
can show that the boundary between two sectors is, in a sense, simple. Concerning its size, we
observe that each sector contains at least one intersection point between two projections and
that any such intersection point can be shared by at most nine sectors (four non-degenerate
sectors plus five degenerate sectors). Hence:

▶ Observation 13. The number of vertices in G is upper-bounded by 9x2, where x is the
number of feature points in Γ(HF ).

5.2 The Sector-Grid
A property of sectors that will become important later is that, inside each sector, we only
need a bounded number of positions for the placement of feature points in a hypothetical
solution. In particular, our aim will be to construct a “universal” point-set with the property
that there exists a solution which places feature points only on these points, and where the
intersection of the point-set with each sector is upper-bounded by a function of the parameter.
Before we construct such a universal point-set, we will first need to subdivide sectors into
“subsectors” which have grid-like connections to each other. Crucially, we will show that the
number of subsectors in each sector is upper-bounded by a function of k.

Let us fix a sector S and a direction d ∈ {↑, ↓,←,→}, say w.l.o.g. d =→. Let a reflex
corner be critical if it is incident to at least two distinct sectors, and (S, d)-critical if it
is critical and also can be reached by a ray from some point in S traveling in direction d.
To construct the subsectors of S, let us project all (S, d)-critical reflex corners (for all four
choices of d) into S to obtain a grid, and make each induced grid cell in S a subsector of S.
Observe that for each subsector in each sector S, it holds that its entire boundary in each
direction is either the boundary of f , or touches the boundary of a single other “adjacent”
subsector (which may or may not belong to S).

Crucially, we show that the number of such subsectors obtained from each sector is not
too large. This will be important when using sectors for dynamic programming in Section 6,
since it will allow us to bound the size of the universal point-set in each sector.

▶ Lemma 14. For each S, d, there are at most 4k (S, d)-critical reflex corners.

By applying Lemma 14 on all sides of each sector S, we obtain that S is partitioned into
at most (8k)2 subsectors. Observe that we may refine the sector graph constructed earlier by
partitioning sectors into subsectors, with adjacencies between subsectors defined in the same
way as between sectors. Note that by definition, each pair of adjacent subsectors share the
complete side of the boundary that connects them. Hence, we can define a subsector-column
as a set of subsectors which form a path in the subsector graph and span the same vertical
strip in Γ(Hf ), and similarly a subsector-row is a set of subsectors which forms a path in the
subsector graph and span the same horizontal strip in Γ(Hf ).

With the above in mind, we proceed to build the universal point-set. As our first step,
we construct an auxiliary set of points we call a skeleton. Let us now choose an arbitrary
horizontal line-segment for each subsector-row that intersects it, and similarly an arbitrary
vertical line-segment for each subsector-column that intersects it. To construct the skeleton,
for each subsector v, we define the point pv to be the point at the intersection of the two
line-segments intersecting the subsector.

Let subgridsize(k) = 112k3 + 202k2 + 85k. We place a set of subgridsize(k) ×
subgridsize(k) points in a grid-like arrangement into each subsector v, where the points
are centered at pv and the grid underlying these points occupies a square area of ϵ× ϵ for a
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sufficiently small ϵ. In particular, we choose ϵ to be sufficiently small so that a horizontal or
vertical projection of any pair of grid points intersects with the same line-segment of Γ(Hf ).
We call this point-set Sv the subsector-grid of a subsector v; in the degenerate cases where v

is a line-segment or single point, the subsector-grid is a set of points on that segment or just
a single point, respectively.

▶ Lemma 15. There exists a solution such that each feature point not in Γ(Hf ) lies on a
subsector-grid point of some subsector.

Proof Sketch. The proof undergoes several steps. We first argue that if a polyline represent-
ing (part of) an edge drawn inside a sector-column (or analogously inside a sector-row) A
contains a large number of bends, then we can redraw it and obtain an equivalent solution.
This requires similar arguments as in Lemmas 7 and 8 (although in a different setting),
together with new arguments dealing with edges that have a “staircase” shape. The second
step is then to prove that similar redrawing arguments can be adopted to show that there
are not too many disjoint polylines that represent the same edge inside A. The last step is
to show that the feature points of a hypotethical solution that lies in a subsector can always
be mapped to the specific point-set defined by the subsector-grid. ◀

From Lemmas 14, 15 and by setting gridsize(k) = subgridsize(k)2 · (8k)2, we obtain:

▶ Corollary 16. Given an instance I of F-BMOE we can construct a point-set (called a
sector grid) in time O(|I|) with the following properties: (1) I admits a solution whose
feature points all lie on the sector grid, and (2) each sector contains at most gridsize(k)
points of the sector grid.

6 Exploiting the Treewidth of Sector Graphs

In this section, we complete the proof of our fixed-parameter tractability result by first
showing that the sector graphs in fact have treewidth bounded by a function of the parameter
k, and then by using this fact to design a dynamic programming algorithm solving F-BMOE.

6.1 Sector Graphs Are Tree-Like
We begin by introducing some notation that will be useful in this subsection. Let P =
((a1, d1), . . . , (aq, dq)) be the ordered set of port candidates for the considered face f . Also,
q ≤ 4k, because the degree of the vertices being added is at most 4. For each 1 ≤ i ≤ q, let
Pi = ((a1, d1), . . . , (ai, di)) be a prefix of length i of P. For each 1 ≤ i ≤ q, we denote by
Fi and Gi the set of sectors and the sector graph, respectively, obtained by considering the
bend distances to Pi. Using this terminology, we obtain that the graph Gq is precisely the
sector graph of our initial instance, which we will also simply denote as G. Furthermore, for
a sector F ∈ V (Gt) we denote by U t+1

F the set of sectors in Gt+1 that F is partitioned into
when one additionally considers bend distances to (at+1, dt+1).

▶ Lemma 17. The sector graph G1 is a tree.

Lemma 17 will be used as a base of an inductive argument establishing a bound on the
treewidth of G. See Figure 8 for an example of the sectors for two port candidates. We start
by considering how each sector F ∈ Ft maps to a subset U t+1

F of sectors in Ft+1. Towards
this aim, let us now consider an arbitrary sector F ∈ Ft for some 1 ≤ t ≤ q. We say that a
line-segment δ on the boundary of F is an F -baseline if (1) each point in F can be reached
by a ray starting at and orthogonal to δ, and (2) δ touches F on one side and points in f \F

on the other side. When F is clear from context, we simply use baseline for brevity.
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(a1, d1)

(a2, d2)

(a1, d1)

(a2, d2)

Figure 8 Sectors with respect to (a) the first port; (b) the second port; (c) P2. For a sector of
each color, the segment on the border highlighted with the same color is its baseline; for (c) different
sectors have different colors, and notice that at the intersection of the rays from (a1, d1) and (a2, d2)
there is also a single point sector.

δ

α

Figure 9 The segments colored red (blue) are local maxima (minima).

▶ Lemma 18. Each sector in Ft, 1 ≤ t ≤ q, admits at least one baseline.

The existence of a baseline is already quite helpful to obtain the desired bound on the
treewidth, but not yet sufficient on its own. In particular, this implies that each sector has
the shape of a histogram. Next, we show that the bend distances to any “additional port”
cannot differ too much within a sector.

▶ Lemma 19. For every sector F ∈ Ft, t ∈ [1, q − 1], and every pair F1, F2 ∈ U t+1
F ,

|bd(p, (at+1, dt+1))− bd(q, (at+1, dt+1))| ≤ 3 for every pair of points p ∈ F1, q ∈ F2.

With Lemmas 18 and 19, we are ready to proceed to the most difficult part of establishing
our bound on the treewidth of the sector graph. Let us fix some F -baseline δ for a sector
F in the sector graph Gt, 1 ≤ t ≤ q. Consider the polyline α obtained when traversing
F in clockwise fashion from one endpoint of δ to the other, where α does not intersect δ.
We call a line-segment in α a local maximum (minimum) if α makes a right (left) turn
both before and after the line-segment (see Figure 9). Let ξmax(F ) (ξmin(F )) denote the
number of local maxima (local minima) in F ; note that since each sector is a histogram,
ξmax(F ) = ξmin(F ) + 1.

▶ Lemma 20. For every sector F ∈ Ft, 1 ≤ t ≤ q − 1, we have |U t+1
F | ≤ 4 + ξmax(F ) and

max
F ′∈Ut+1

F

ξmax(F ′) ≤ ξmax(F ).

Fmin

Fmin

Figure 10 Cases of relative location of the Fmin sector in F relative to the F -baseline, Lemma 20.
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To obtain the main result of this section (Theorem 22), we will combine Lemma 20 with
the following lemma that bounds the number of local maxima in each sector.

▶ Lemma 21. For each sector F in V (G), ξmax(F ) ≤ 4k.

▶ Theorem 22. Let G be a sector graph of a face f of the drawing Γ(G). Then tw(G) ≤
(4 + 4k)4k.

Proof Sketch. We prove the claim by induction on the number of port candidates for f ,
where the base of an induction exactly follows from the result of Lemma 17. For the inductive
step, we assume that tw(Gt) = O(kt) and our aim will be to show that tw(Gt+1) is O(kt+1).
To do so, we replace each occurrence of a sector v in a bag with all of the sectors in U t+1

F . ◀

6.2 The Final Step

At this point, we have shown that an instance I = ⟨Gf , Hf , Γ(Hf ), f,P⟩ with k = |V (Gf ) \
V (Hf )| of F-BMOE admits a sector graph G of treewidth at most (4 + 4k)4k (Theorem 22),
and that a bend-minimal extension of Γ(Hf ) to an orthogonal planar drawing of Gf can
be assumed to only contain feature points on the sector-grid points as per Corollary 16, of
which there are at most gridsize(k) many per sector. This allows us to proceed to the final
ingredient for our algorithm:

▶ Lemma 23. F-BMOE can be solved in time 2kO(1) · |V (Gf )|.

Proof Sketch. Thanks to Theorem 22, we can use known results to compute a nice tree
decomposition (T, χ) of G of small width. Next we design a dynamic program that runs
along T and at each point stores all possible options of how a hypothetical bend-minimal
extension can intersect the sector-grid points of the sectors in the current bag. ◀

By combining Lemma 23 with Lemma 3 and Observation 13, we conclude:

▶ Corollary 24. BMOE can be solved in time 2κO(1) · n, where n is the number of feature
points of Γ(H).

7 Concluding Remarks

We have established the fixed-parameter tractability of the extension problem for bend-
minimal orthogonal drawings, marking a notable addition to our understanding of drawing
extension problems. What distinguishes this result from some of its predecessors on, e.g.,
extending 1-planar [17], simple k-planar [21] or crossing-minimal [23] drawings, is that
these examples were topological while orthogonal planar drawings are geometric in nature.
We believe this is one of the reasons why it seems impossible to use previously developed
techniques in our setting, a fact which inspired the development of a novel machinery that
we believe will find applications beyond the specific context of the problem studied here.

As an example of this, a minor adjustment of our technique is already sufficient to
also obtain a fixed-parameter algorithm for the problem of extending an orthogonal planar
drawing while preserving a bound δ on the number of bends per edge [5, 7] parameterized by
κ + δ. But the technique could also possibly be applied to more general drawing styles, such
as extending drawings restricted to boundedly many allowed edge slopes [24,26].
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