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Abstract

Designing coresets – small-space sketches of the data preserving cost of the solutions within (1 ± ϵ)-
approximate factor – is an important research direction in the study of center-based k-clustering
problems, such as k-means or k-median. Feldman and Langberg [STOC’11] have shown that for
k-clustering of n points in general metrics, it is possible to obtain coresets whose size depends
logarithmically in n. Moreover, such a dependency in n is inevitable in general metrics. A significant
amount of recent work in the area is devoted to obtaining coresests whose sizes are independent of n

for special metrics, like d-dimensional Euclidean space [Huang, Vishnoi, STOC’20], doubling metrics
[Huang, Jiang, Li, Wu, FOCS’18], metrics of graphs of bounded treewidth [Baker, Braverman,
Huang, Jiang, Krauthgamer, Wu, ICML’20], or graphs excluding a fixed minor [Braverman, Jiang,
Krauthgamer, Wu, SODA’21].

In this paper, we provide the first constructions of coresets whose size does not depend on n for
k-clustering in the metrics induced by geometric intersection graphs. For example, we obtain k log2 k

ϵO(1)

size coresets for k-clustering in Euclidean-weighted unit-disk graphs (UDGs) and unit-square graphs
(USGs). These constructions follow from a general theorem that identifies two canonical properties
of a graph metric sufficient for obtaining coresets whose size is independent of n. The proof of
our theorem builds on the recent work of Cohen-Addad, Saulpic, and Schwiegelshohn [STOC ’21],
which ensures small-sized coresets conditioned on the existence of an interesting set of centers, called
centroid set. The main technical contribution of our work is the proof of the existence of such a
small-sized centroid set for graphs that satisfy the two canonical properties. Loosely speaking, the
metrics of geometric intersection graphs are “similar” to the Euclidean metrics for points that are
close, and to the shortest path metrics of planar graphs for points that are far apart. The main
technical challenge in constructing centroid sets of small sizes is in combining these two very different
metrics.

The new coreset construction helps to design the first (1 + ϵ)-approximation for center-based
clustering problems in UDGs and USGs, that is fixed-parameter tractable in k and ϵ (FPT-AS).
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10:2 Coresets for Clustering in Geometric Intersection Graphs

1 Introduction

Clustering is one of the most important data analysis techniques where the goal is to partition
a dataset into a number of groups such that each group contains similar set of data points.
The notion of similarity is captured by a distance function between the data points, and the
goal of retrieving the best natural clustering of the data points is achieved by minimizing a
proxy cost function. In this work, we study the popular (k, z)-clustering problem.

(k, z)-clustering. Given a set of points P in a metric space (Ω, d) and two positive integers
k and z, find a set C of k points (or centers) in Ω that minimizes the following cost function:

cost(C) =
∑
p∈P

cost(p, C)

where cost(p, C) = (d(p, C))z and d(p, C) = minc∈C d(p, c).
Two widely studied clustering problems, k-means, and k-median clustering, are special

versions of (k, z)-clustering with z = 2 and z = 1, respectively. A popular way of dealing
with large data for the purpose of the analysis is to apply a data reduction scheme as a
preprocessing step. In the context of clustering, one such way of preprocessing the data is to
construct an object known as coresets.

Coresets. Informally, an ϵ-coreset for (k, z)-clustering is a small-sized summary of the data
that approximately (within (1 ± ϵ) factor) preserves the cost of clustering with respect to any
set of k centers (we will often shorten “ϵ-coreset” to simply “coreset”). Thus, any solution set
of centers computed for the coreset points can be readily used as a solution for the original
dataset. A formal definition follows.

▶ Definition 1 (ϵ-Coreset). A coreset for (k, z)-clustering problem on a set P of points in a
metric space (Ω, d) is a weighted subset Y of Ω with weights ω : Y → R+ such that for any
set S ⊆ Ω with |S| = k,∣∣∣∣∣∣

∑
p∈P

cost(p, S) −
∑
p∈Y

ω(p)cost(p, S)

∣∣∣∣∣∣ ≤ ϵ ·
∑
p∈P

cost(p, S).

Feldman and Langberg [19] showed that for n points in any general metric, a coreset
of size O(ϵ−2zk log k log n) can be constructed in time Õ(nk), where Õ() notation hides a
poly-logarithmic factor. Also, it is known that the dependency on log n in the above bound
cannot be avoided [3, 17]. However, for several special metrics, it is possible to construct
coresets whose size does not depend on the data size. There has been a large pool of work
for Euclidean spaces, culminating in a bound of O(k · (log k)O(1) · 2O(z log z)ϵ−2 · min{ϵ−z, k})
[17], which is independent of the data size and dimension of the space. Similarly, coresets of
size independent of n are also obtained in other specialized settings such as doubling metrics
[27], shortest-path metrics in the graphs of bounded-treewidth [3], and graphs excluding a
fixed minor [8]. A recent result by Cohen-Addad et al. [17] gives a unified framework that
encompasses all these results. We note that, since the number of distinct (weighted) points
in coresets is usually much smaller (and sometimes independent of) n, they naturally find
applications in non-sequential settings such as streaming [26, 13].

Let us remark that all known results about small coresets in graph metrics strongly exploit
the sparse nature of graphs such as bounded treewidth [3] or excluding a fixed minor [8].
There is a very good reason for that. In a complete graph, by setting suitable weights on the
edges one can represent any general metric. Thus if a graph family contains large cliques,
clustering in such graphs is as difficult as in general metrics.
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In this work, we are interested in coreset construction for edge-weighted geometric
intersection graphs with shortest-path metric. A geometric intersection graph of a set of
geometric objects contains a vertex for each object and an edge corresponding to each pair
of objects that have non-empty intersection. (We note that for our purpose of designing
algorithms, we do not explicitly need the objects or their geometric representation. It is
sufficient to work with the graph representation as long as the edge-weights are given.) In
particular, geometric intersection graphs are a widely studied model for ad-hoc communication
and wireless sensor networks [38, 4, 34, 37, 31]. Notably, clustering is a common topology
management method in such networks. Grouping nodes are used as subroutines for executing
various tasks in a distributed manner and for resource management, see the survey [39] for
an overview of different clustering methods for wireless sensor networks.

Our work is motivated by the following question: “Is it possible to exploit the properties
of geometric intersection graphs for obtaining coresets whose size does not depend on the data
size?” In general, the answer to this question is no. This is because geometric intersection
graphs can contain large cliques. Even for objects as simple as unit squares, the corresponding
intersection graph could be a clique, and, as we already noted, by setting suitable weights
on the edges of the clique, one can represent any metric. Hence constructing coresets
in geometric intersection graphs with arbitrary edge weights is as difficult as in general
metrics. Thus, we need to restrict edge weights in some manner in order to obtain non-trivial
coresets for geometric intersection graphs. As an illustrative example, let us take a look at
Euclidean-weighted UDGs, a well-studied class of geometric intersection graphs.

Euclidean-weighted unit-disk graph metric. A unit-disk graph (UDG) is defined in the
following way – there is a configuration of closed disks of radii 1 in the plane and a one-to-one
correspondence between the vertices and the centers of the disks such that there is an edge
between two vertices if and only if the disks having the two corresponding centers intersect.
The weight of an edge is equal to the Euclidean distance between the two corresponding
centers. Euclidean-weighted UDGs have been well-studied in computational geometry [10, 24].
Apart from practical motivation, UDGs are interesting from theoretical perspectives as well.
On the one hand, being embedded on the plane they resemble planar graphs when “zoomed
out”, but could contain large cliques locally. On the other hand, the metric induced by them
is an amalgamation of geometric and graphic settings, as it is locally Euclidean but globally
a graph metric. Due to the latter property, UDG metric can be used for fine-tuned clustering,
as with pure Euclidean distances one can only retrieve clusters induced by convex partitions
of the space (see Figure 1).

1.1 Our Results
We now formalize our intuition about the “hybrid” nature about the Euclidean weighted
UDGs, by identifying two canonical geometric properties of a graph G that are sufficient
for constructing small-sized coresets. For better exposition, we fix a few notations. For
any subgraph H of G, we denote its set of vertices and set of edges by V (H) and E(H),
respectively. For vertex set V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′.
For a subgraph H of G, and u, v ∈ V (H), let πH(u, v) denote a shortest path between u

and v (according to the edge-weights in G restricted to H) that uses the edges of H, and
let dH(u, v) denote the weight of πH(u, v), i.e., the sum of the weights of the edges along
πH(u, v). For any path π in a graph, let |π| denote the number of edges on π. Note that dH

is the so-called shortest path metric on H. Finally, for any pair of points p, q ∈ R2, let |pq|
denote the euclidean (i.e., ℓ2-norm) distance between p and q.

SoCG 2023
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Figure 1 (Left.) A point set in 2D. (Middle.) 2-means clustering with Euclidean distances.
Centers are shown by crosses. Points of two clusters are shown by disks (red) and squares (blue).
(Right.) 2-means clustering on UDG – due to the 3

√
2 diagonal path distance, all the blue points

(squares) are closer to the upper center.

Canonical geometric properties.
(1) Locally Euclidean: There exist (not necessarily distinct) constants c1, c2, c3, c4 ≥ 0, such

that the following holds. G has an embedding λ : V (G) → R2 in the plane such that the
vertices of G are mapped to points in the plane, with the following two properties.
1. For any two u, v ∈ V (G), if |λ(u)λ(v)| ≤ c1 then uv ∈ E(G), and for any u′, v′ ∈ V (G),

if |λ(u′)λ(v′)| > c2, then u′v′ ̸∈ E(G).
2. For any u, v ∈ V (G) such that uv ∈ E(G), let w(uv) denote the weight of the edge

uv. Then, the edge uv is a shortest path between u and v in G.
Furthermore, c3 · |λ(u)λ(v)| ≤ w(uv) ≤ c4 · |λ(u)λ(v)|.

(2) Planar Spanner: For any induced subgraph G′ = G[V ′] with V ′ ⊆ V (G), there exists a
planar α-spanner H ′ = (V ′, E(H ′)) for some fixed α ≥ 1, i.e., (i) H ′ is a subgraph of G′

(and hence of G) – E(H ′) ⊆ E(G′), and (ii) for any u, v ∈ V ′, dG′(u, v) ≤ dH′(u, v) ≤
α · dG′(u, v).

Our main result is the following theorem.

▶ Theorem 2 (Informal). Consider the metric space (V, dG) induced by any graph G satisfying
the two canonical geometric properties (1) and (2), and a set P ⊆ V (G). Then there exists
a polynomial time algorithm that constructs a coreset for (k, z)-clustering on P of size
O(ϵ−βk log2 k), where β = O(z log z).

Theorem 2 is a handy tool to construct coresets for several interesting geometric intersection
graphs coupled with suitable metrics. First, let us observe that our initial example, namely,
a metric induced by a Euclidean-weighted UDG G satisfies the two canonical properties.
Consider an embedding of G in R2. Note that there is an edge between any two points
iff the Euclidean distance between the two points is at most 2, and the weight of such an
edge is exactly the euclidean distance. Thus, G is Locally Euclidean with c1 = c2 = 2, and
c3 = c4 = 1. Furthermore, due to a result of Li, Calinescu, and Wan [36], any Euclidean-
weighted UDG admits a constant-stretch planar spanner. Thus, G also satisfies the Planar
Spanner property. Therefore, due to Theorem 2, we can obtain O(ϵ−βk log2 k)-size coresets
for (k, z)-clustering on Euclidean-weighted UDGs. In the following, we discuss further
applications of our framework.
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ℓ∞-weighted unit-square graph metric. Unit-square graphs (USGs) are similar to UDGs
except they are defined as intersection graphs of (axis-parallel) unit squares instead of unit
disks 1. Indeed, these two graph classes are distinct. For example, the K1,5 claw can be
realized by a UDG, but not by any USG. (See Figure 2.) Since a unit square is a “unit ball”
in ℓ∞-norm, it is more natural to consider ℓ∞ weights on the edges. It is not too difficult to
see that the Locally Euclidean property holds for ℓ∞-weighted USGs – we give a formal proof
in the full version given in the appendix. On the other hand, in order to establish the second
property, we have to prove the existence of a constant-stretch planar spanner for USGs. To
the best of our knowledge this result was previously not known and is of independent interest.
We give a proof of this result in the full version. Thus, ℓ∞ weighted USGs also satisfy the
two properties required to apply Theorem 2 in order to obtain a small-sized coreset.

Figure 2 A set of disks realizing K1,5 (left) and a set of squares realizing K1,4 (right). A pair of
intersecting unit squares must contain a corner of each other, and so the central square can intersect
with at most four other unit squares that are pairwise disjoint.

Other extensions. In R2, all ℓp distances (1 ≤ p ≤ ∞) are within a
√

2 factor from each
other. Thus, our arguments can be easily extended to any ℓp weights on UDGs/USGs for any
1 ≤ p ≤ ∞ without any changes on the bounds (a formal argument can be found in the full
version). Lastly, we consider shortest-path metrics in unweighted (i.e., hop-distance) unit-disk
graphs of bounded degree. Notably, these graphs satisfy the Planar Spanner property due
to a result by [7], but not the Locally Euclidean property. Nevertheless, we can modify
our approach to construct a small-sized coreset for such metrics. To summarize, we obtain
coresets for (k, z)-clustering with size independent of n for the following graph metrics.

ℓp-distance weighted UDGs for any 1 ≤ p ≤ ∞,
ℓp-distance weighted USGs for any 1 ≤ p ≤ ∞,
Bounded-degree unweighted UDGs.

FPT Approximation Schemes. As a corollary to Theorem 2, we obtain (1 + ϵ)-
approximations for (k, z)-clustering in geometric intersection graphs that are fixed-parameter
tractable (FPT) in k and ϵ. Note that such a (1 + ϵ)-approximation was not known before
even for UDGs, as it does not follow from previously known bound on coreset sizes. Prior
to our work, the best known bound for coresets on UDGs – as in general metrics – was
O(k log n · ϵ− max(2,z)) [18]. Even though a coreset reduces the number of distinct points

1 Although it might seem unnatural at first, it is convenient to define a unit square as a square of sidelength
2. This is analogous to a unit disk being a disk of diameter 2. In either case, the class of USGs remains
unaffected by scaling.

SoCG 2023
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(or clients) to be clustered, the number of potential centers (or facilities) still remains the
same, i.e., n. Hence, a coreset does not directly help us enumerate all possible sets of k

centers from which we could pick the best set. An alternative way to enumerate these
sets of centers is to enumerate all possible partitions (or clusterings) of the coreset points.
Note that each clustering of coreset points corresponds to a clustering of the original points,
and the cost of clustering is preserved to within a (1 ± ϵ) factor. With our coreset bound
of O(ϵ−βk log2 k), the number of distinct clusterings is only kO(ϵ−βk log2 k). Overall the
algorithm takes kO(ϵ−βk log2 k)nO(1) time.

▶ Corollary 3. For each of the metrics listed in the above, there exists a (1+ϵ)-approximation
for (k, z)-clustering with z ≥ 1 that runs in time 2O(ϵ−βk log3 k)nO(1), where β = O(z log z).

1.2 General overview of the methods
Our coreset construction is based on a recent work due to Cohen-Addad, Saulpic, and
Schwiegelshohn [18], which gives a framework for constructing coresets in various settings.The
essence of the framework is that it translates the problem of coreset construction to showing
the existence of an interesting set of centers or centroid set. In particular, consider any set S
of k centers and any subset X ⊆ P of points that are sufficiently close to S compared to
an existing solution A. Then a subset C ⊆ Ω is a centroid set for P if it contains centers
that well-approximates S, i.e., there exists S̃ ⊆ C, such that for every p ∈ X, it holds that
|cost(p, S) − cost(p, S̃)| ≤ ϵ(cost(p, S) + cost(p, A)). The framework informally states that if
there is a centroid set C, then a coreset can be constructed whose size depends logarithmically
on |C|. Such a dependency arises in their randomized construction in order to prove a union
bound over all possible interesting solutions, which can be at most |C|k. By showing the
existence of small-sized centroid sets, they obtain improved coreset size bounds for a wide
range of spaces.

We use the framework of Cohen-Addad et al. for our coreset construction. Our main
technical result shows if for a graph G with metric dG, the two canonical geometric properties
are satisfied, then there exists a small-sized centroid set for G. This is the most challenging part
of the proof and it requires a novel combination of tools and techniques from computational
geometry. As soon as we establish the existence of the centroid set, the construction of
coresets follows the steps of [18]. For the sake of exposition, let us consider a concrete
example of Euclidean-weighted UDGs.

Consider any cluster of points with cluster center s. The points that are nearby (i.e.,
within distance 2) s behave simply as points in the Euclidean case. But, a point p that
is far away from s can have a shortest path distance which may be much larger than the
actual Euclidean distance between p and s, see Figure 1. We first show that it is possible
to conceptually separate out these two cases – but one has to be careful, as a cluster can
potentially contain both types of points. Notably, none of the previous works had to deal with
such a hybrid metric. To handle the set of nearby points, we exploit the Locally Euclidean
property. In particular, by overlaying a grid of appropriately small sidelength, and selecting
one representative point from each cell of the grid, we can compute a centroid set that
preserves the distances from the nearby points.

In the other case, a shortest path between a point p and a center s consists of more than
one edge, and we need to deal with a graphical metric. This case is much more interesting.
All other works establishing small-sized centroid sets in certain graph metrics exploit the fact
that certain graph classes admit small or well-behaved separators. For example, bounded
treewidth graph admit separators bounded by treewidth; whereas graphs excluding a fixed
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minor admit shortest path separators. However, UDGs may contain arbitrarily large cliques,
and therefore do not admit such separators in general. Thus, we reach a technical bottleneck.
Note that this is the first work of its kind that handles such a dense graph. To overcome this
challenge, we use the other canonical property. Instead of directly working with the UDG,
we consider its planar spanner, where distances are preserved up to a constant factor. The
existence of such a spanner is guaranteed by the second canonical property, Planar Spanner.
As planar graphs have shortest path separators, now we can apply the existing techniques.
However, if we were to entirely rely on the spanner, some of the distances may be scaled up
by a constant (> 2) factor in the spanner, and thus it would not be possible to ensure the
(1 ± ϵ)-factor bound required to construct a coreset.

Thus, we use the spanner as a supporting graph in the following way. First, we recursively
decompose the original UDG by making use of the shortest path separators admitted by
the planar spanner. We note that although planar graph decomposition has been used in
coreset literature, using such a guided scheme to obtain a decomposition of a much more
general graph is novel. Then, we use this recursive decomposition of the UDG, along with the
shortest path separators used to find this decomposition, in order to construct the centroid
set. In this construction, we use the spanner in a restricted manner, and use it such that
error incurred by the use of the spanner is upper bounded by α times the weight of at most
one edge along a shortest path from a point p to its corresponding (approximate) center.
However, observe that if such a shortest path consists of a single edge, then even this error is
too large. To resolve this issue, we rely on the planar spanner, only if the shortest path is
“long enough”, i.e., contains Ω(z/ϵ) edges. In this case, Locally Euclidean property implies
that for such a “long path”, the length of the path and the number of edges on the path are
within a constant factor from each other. This implies that the error introduced by rerouting
a single edge using the spanner is at most ϵ times the length of the path, i.e., negligible.

Finally, if a shortest path between a point and a center consists of O(z/ϵ) edges, then we
can use a modified version of the grid-cell argument to obtain a small-sized centroid set.

We note that this is simply an intuitive overview of the challenges faced in each of the
three cases. The actual construction of the centroid set, and the analysis of the error incurred
in each of the cases is fairly convoluted. While replacing a center s ∈ S by another one s̃ ∈ C,
we need to ensure that for a point p having s as its closest center, dG(p, s̃) is neither too
large nor too small compared to dG(p, s), since we want to bound the error in the absolute
difference. In addition, we have to be extremely careful while combining the three centroid
(sub)sets constructed for each of the cases, and ensure that a good replacement s̃ found for
a center s in one of the cases does not adversely distort the error for a point that is being
handled in another case.

Related work. Here we give an overview of the literature on coresets. For a more exhaustive
list, we refer to [18, 28]. Coreset construction was popularized by an initial set of works that
obtained small-sized coresets in low-dimensional Euclidean spaces [26, 25, 22]. Chen [13]
obtained the first coreset for Euclidean spaces with polynomial dependence on the dimension
and the first coreset in general metrics, where the size is O(k2ϵ−2 log2 n) for k-median.
Subsequently, the dependence on the dimension has been further improved [33, 20]. Finally,
such dependence was removed in [21, 40]. See also [5, 18, 28, 8, 17] for recent improvements.

Both k-median and k-means admit polynomial-time O(1)-approximations in general
metrics [11, 12, 29, 35, 9, 1]. Moreover, algorithms with improved approximation guarantees
can be obtained that is FPT in k and ϵ [15]. Naturally, the problems have also been studied
in specialized metrics. Polynomial-time approximation schemes (PTASes) are known for
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Euclidean k-median [2] and k-means [16, 23]. See [14, 32] for other improvements. Similar to
geometric clustering, clustering in graphic setting is also widely studied. PTASes are known
for excluded-minor graphs [16, 8].

Also, FPT approximation schemes are known for graphs of bounded-treewidth [3] and
graphs of bounded highway dimension [6, 8].

2 Coresets for Geometric Graphs

To set up the stage, we need the following definition of centroid set from [18].

▶ Definition (Centroid Set). Consider any metric space (Ω, d), a set of clients P ⊆ Ω, and
two positive integers k and z. Let ϵ > 0 be a precision parameter. Given a set of centers A, a
set C is an A-approximate centroid set for (k, z)-clustering on P that satisfies the following
property.

For every set of k centers S ⊆ Ω, there exists S̃ ⊆ C, such that for every p ∈ P that
satisfies cost(p, S) ≤

( 10z
ϵ

)z · cost(p, A) or cost(p, S̃) ≤
( 10z

ϵ

)z · cost(p, A), it holds that

|cost(p, S) − cost(p, S̃)| ≤ ϵ

z log(z/ϵ) (cost(p, S) + cost(p, A)).

Informally, a centroid set C is a collection of candidate centers, potentially much smaller
than Ω, such that the k centers in S can be replaced by k centers in S̃ ⊆ C without changing
the cost of points by a large amount, that are much closer to S or S̃ compared to A w.r.t.
d. Cohen-Addad et al. [17] proved that one can obtain coresets whose size depends only
logarithmically on the size of any such centroid set. More formally, they prove the following.

▶ Proposition 4 ([18]). Consider any metric space (Ω, d), a set of points P ⊆ Ω with n

distinct points, and two positive integers k and z. Let ϵ > 0 be a precision parameter. Suppose
A be a given constant-factor approximation for (k, z)-clustering on P .

Suppose there exists an A-approximate centroid set for (k, z)-clustering on P . Then there
exists a polynomial time algorithm that constructs with probability at least 1 − δ a coreset of
size

O
(

2O(z log z) · log4(1/ϵ)
min{ϵ2, ϵz}

(k log |C| + log log(1/ϵ) + log(1/δ))
)

with positive weights for (k, z)-clustering on P .

First, note that the above coreset framework requires only existence of such a centroid
set. It is not necessary to explicitly compute it. Indeed, such a centroid set is only used to
bound the size of computed coresets in their analysis. The main contribution of our work is
to obtain small-sized centroid sets for geometric graph metrics that satisfy the two canonical
geometric properties. In particular, we prove the following theorem.

▶ Theorem 5 (Centroid Set Theorem). Consider the metric space (V, dG) induced by any
graph G = (V, E) satisfying the Locally Euclidean and Planar Spanner properties defined
before. Also consider a set of points X ⊆ V and two positive integers k and z ≥ 1. Let ϵ > 0
be the precision parameter. Additionally, suppose A be a solution for (k, z)-clustering on
X. Then there exists an A-approximate centroid set C for (k, z)-clustering on X of size
exp(O(log2 |X| + z16ϵ−8(log(z/ϵ))8 log |X|)).

We give an overview of the proof of Theorem 5 in the following section, and defer a formal
proof to the Section 3 of the full version. Then, by combining Proposition 4 and arguments
from [8], with some minor changes due to our different bound on coreset-size, we obtain the
following theorem. A formal proof can be found in Section 2 of the full version.
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▶ Theorem 6. Consider the metric space (V, dG) induced by any graph G = (V, E) satisfying
Locally Euclidean and Planar Spanner properties, a set P ⊆ V with n distinct points,
and two positive integers k and z ≥ 1. Then there exists a polynomial time algorithm
that constructs with probability at least 1 − δ a coreset for (k, z)-clustering on P of size
O(ϵ−O(z log z)k log2 k log3(1/δ)), where z is a constant, and δ < 1/4.

3 Overview of the Proof of Centroid Set Theorem

In this section, we give an overview of our main result, namely, the existence of a small-sized
centroid set. A formal proof can be found in the full version.

Recall that we are given G = (V, E), a connected, undirected, and edge-weighted graph
on n vertices. Moreover, G satisfies the two canonical geometric properties, namely Locally
Euclidean, and Planar Spanner.

As (V, dG) is our metric space, we use the terms points and vertices interchangeably.
X ⊆ V is the given set of points. We are also given A, a solution for (k, z)-clustering
on X. We prove that there exists an A-approximate centroid set of size exp(O(log2 |X| +
z16ϵ−8(log(z/ϵ))8 log |X|)) for (k, z)-clustering on X, which satisfies the following property.

For every set of k centers S ⊆ V , there exists S̃ ⊆ C, such that for every p ∈ X that
satisfies cost(p, S) ≤

( 10z
ϵ

)z · cost(p, A) or cost(p, S̃) ≤
( 10z

ϵ

)z · cost(p, A), it holds
that

|cost(p, S) − cost(p, S̃)| ≤ ϵ

z log(z/ϵ) (cost(p, S) + cost(p, A)).

Now we proceed to an overview of the proof of the theorem. This proof can be divided
into three steps.
1. Construction of a centroid set C of a small size.
2. Given a solution S ∈ V k, finding for each center s ∈ S, a replacement center ρ(s) ∈ C, to

construct S̃ ∈ Ck.
3. Showing that S̃ approximates S, i.e., it satisfies the property specified above.
Given the hybrid nature of the metric, each of these three steps is subdivided into multiple
cases. Recall that, due to the first canonical property, points in V that are close to each
other behave as in the Euclidean case. To take care of the case of points nearby to their
closest centers, we add a set of points Cnet to our centroid set. The case of far away points is
further divided into two subcases. In the first subcase, we deal with the points whose shortest
paths to closest centers are short or O(z/ϵ) hops away. To take care of this subcase, we add
a set of points Csupport to our centroid set. The last subcase concerns long paths, and here
we make use of the planar spanner property. In particular, we construct the centroid points
in this case based on a recursive decomposition of the graph guided by underlying planar
spanners of the decomposed subgraphs. This subcase resembles the centroid set construction
in excluded-minor graph metrics from [17, 8]. In this informal overview, it will be convenient
to consider each of these three cases separately, and discuss steps 1-3 in each case (overview
of step 1 in each case hints at why the size of centroid set is bounded, but a formal proof is
given in the full version).

Nearby points case.
Construction of Cnet. Let p1, p2, . . . , pn′ be the points of X such that dG(p, A) < 1 for all

p = pi, where 1 ≤ i ≤ n′. Let Bi = B(pi, (10z/ϵ) · dG(pi, A)) be the Euclidean ball
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centered at pi having radius (10z/ϵ) · dG(pi, A). For each 1 ≤ i ≤ n′, compute an
(ϵ3/z3) · dG(pi, A)-net of the disk Bi that is a subset of V and add that to Cnet. That is,
this net picks at most one point of V from each gridcell of length β = (ϵ3/z3) · dG(pi, A)
that intersects with the disk Bi. Note that the distance between any two points that
belong to the same cell is O(β). In particular, the Locally Euclidean nature of G helps
us define this net.

Finding a replacement center. For a center s ∈ S, let Xs ⊆ X denote the set of points that
have s as their closest center in S. If there exists a pi ∈ Xs with dG(p, A) < 1, then we
argue that s belongs to the ball Bi as defined above. It follows that we added a point s̃

to Cnet, such that dG(s, s̃) = O( ϵ3

z3 dG(pi, A)). We pick s̃ as the replacement for s, i.e.,
ρ(s) = s̃, and add it to S̃.

Error analysis. Using triangle inequality, it follows that for any p ∈ Xs, |dG(p, s)−dG(p, s̃)| =
O( ϵ3

z3 dG(pi, A)). If there are multiple choices for pi, a careful choice ensures that this
error is upper bounded by ϵ/z · (dG(p, s) + dG(p, A)).

Short-path case.
Construction of Csupport. For each point p ∈ X, we consider a disk D(p, r) of radius r =

Θ(z/ϵ) around p. Finally, we consider the union of the area covered by all such disks. We
subdivide this area into small gridcells of sidelength O(ϵ2/z2), and select one representative
point from each grid cell, and add it to the set Csupport. 2

Finding a replacement center. For a center s ∈ S, suppose we were not able to find a
replacement using the previous case. Then, if s̃ from the same cell as s of sidelength
O(ϵ2/z2) was added to Csupport, then we set ρ(s) = s̃, and add it to S̃.

Error analysis. If a shortest path πG(p, s) is short, i.e., contains at most ℓ edges, where
ℓ = Θ(z/ϵ), then due to the Locally Euclidean property, s belongs to the disk D(p, r).
It follows that we select some s̃ in Csupport such that dG(s, s̃) = O(ϵ2/z2). Again, using
triangle inequality, it follows that for any p ∈ Xs, it holds that |dG(p, s) − dG(p, s̃)| =
O(ϵ2/z2) ≤ O(ϵ2/z2) · dG(p, A). Here, the second inequality follows since for any point
p ∈ Xs, dG(p, A) > 1; otherwise the previous case would apply. Note that in this
simplified argument, precision value of ϵ/z would also suffice; however, in the actual
analysis we need the more granular value of ϵ2/z2 to ensure that the choices made in
nearby points and short path cases do not affect each other.

Long-path case. This is the most involved case out of the three, and it is here that we rely
on the planar spanner property. Before going into the details, let us first note the following
property. For any s ∈ S whose replacement has not been found in the previous two cases, it
holds that for every p ∈ X, |π(p, s)| > ℓ. That is, the hop-distance of s from every point in
X is strictly larger than ℓ. This observation will be crucial in the subsequent error analysis.
Construction of Clandmark. Here, we first use the Planar Spanner property to obtain a

recursive decomposition of the graph represented by a tree T (see Figure 3 for an
illustration). Each node of T corresponds to a subset of vertices of G (called region). By
slightly abusing the notation, we equate a node i with its corresponding region Ri ⊆ V (G).
The decomposition ensures that the union of all children regions of Ri is equal to Ri.
This decomposition is obtained as follows. The root region R1 is equal to V (G). Now,
consider a region Ri, and the corresponding induced subgraph Gi = G[Ri]. Due to Planar

2 In the actual construction, we define a support graph to define the set Csupport. But, at a high level, the
construction follows the overview given here.
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Ri

Figure 3 Decomposition of a region Ri into multiple children. Inside Ri, we show the induced
subgraph Gi = G[Ri] (which is not planar) and the corresponding planar spanner Hi. The edges of
Hi are shown in red, and the edges in E(Gi) \ E(Hi) are in black. The two shortest-path separators
of Hi are shown in blue, which form a balanced separator Pi for the vertices of X (shown as light
blue squares). Then, we add a child for every connected component of H \ V (Pi) (children regions
inside solid ellipses). We also have children corresponding to paths in Pi (dashed ellipses). One of
the paths is broken into two pieces due to a vertex in X.

Spanner property, Gi admits a constant stretch planar spanner Hi. We then use the
following well-known result.
▶ Proposition 7 ([10, 30]). Given an edge-weighted planar graph H ′, with non-negative
weights on vertices, there exists a collection of shortest paths P = {P1, P2, . . . , , Pb} with
b = O(1), such that the set of vertices of every connected component in H \

⋃
P i∈P V (Pi)

has weight at most half of that of V (H ′).
We define the weight of a vertex in Hi as 1 if it belongs to X, and 0 otherwise. Then,
by applying Proposition 7, we obtain a collection of shortest paths Pi in Hi such that
each connected component of Hi \ V (Pi) contains at most a constant fraction of vertices
of X. Now we add children to Ri in the tree T , as follows: there is one child of Ri for
a subset of Ri corresponding to (1) each connected component in Hi \ V (Pi), and (2)
each shortest path P i,j ∈ Pi (if a path P i,j contains vertices of X, then we break it at
each such vertex and add the pieces as multiple children). We recursively subdivide the
current Ri into multiple children in this manner as long as |Ri ∩ X| ≥ 2. Thus the height
of the tree is O(log |X|).
Now, consider a leaf node corresponding to a region Rt, and the corresponding root-leaf
path Π = (R1, R2, . . . , Rt), where R1 is the root region. For each region Ri along the path,
we have a set of O(1) shortest paths that are separators for the corresponding spanner Hi

of Gi = G[Ri]. Thus, in total we have a collection of O(log |X|) paths corresponding to a
region Rt. Now, we select a set of vertices on each of these paths that are at evenly spaced
distances, and add these vertices to a set L of landmarks. We also add the vertices in
Rt ∩ X to the landmark set L. It can be shown that the overall size of L is Oϵ,z(log |X|).
Now, for every vertex s ∈ Rt, we look at the distance vector obtained by looking at
distances of s from each landmark in L, and discretize each distance entry by rounding it.
Thus, we can partition Rt into a bounded number of equivalence classes based on the
discretized distance vectors to L. For each leaf Rt, and each equivalence class of Rt, we
add one representative point in Clandmark. 3

3 In the actual construction, we consider different spacings along each path P i,j , which results in multiple
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π(p, s)s

s̃ pxRi

Figure 4 Using landmarks to reroute paths. Here, we show a root-leaf path in T , such that
each region along the path contains s and its replacement s̃. This s̃ is chosen such that distances
of s and s̃ has same discretized distances w.r.t. all landmarks in L (shown as red squares), which
are spaced evenly along the shortest path separators (shown in blue). Suppose Ri is the lowest
region containing s and a point p, which means that a separator path in Pi separates them. We
reroute a single edge (shown in orange) on the shortest path π(p, s) via a landmark x (rerouted path
shown in red) using the edges of Hi, to obtain an approximate shortest path π̃(p, s). Since s and
s̃ have approximately the same distance to x (dashed black paths), we can use this to show that
dG(p, s) ≈ dG(p, s̃).

Finding a replacement center. Consider a center s ∈ S, and suppose it belongs to a leaf
region Rt. By construction, we added a point s̃ ∈ Rt to Clandmark, such that s̃ and s have
same discretized distance vector w.r.t. all landmarks in L. We set ρ(s) = s̃, and add it to
S̃.

Error analysis. Now consider a point p ∈ Xs. If p ∈ Rt, then p ∈ L. Therefore, s and s̃ have
same discretized distances w.r.t. p. This ensures that dG(p, s) and dG(p, s̃) are within the
required error bound.

Otherwise, p ̸∈ Rt. This means that during the decomposition process, s and p must
have been separated when we split a region Ri ∈ Π into its multiple children. If Gi = G[Ri]
were planar, then we could conclude that the shortest path π(p, s) must intersect some

collections of landmarks for each path. We then consider all possible choices of spacings for each of the
O(log |X|) paths P i,j , which results in multiple landmark sets corresponding to each set of choices. For
each landmark set thus obtained, we then define the equivalence classes of Rt in the manner described
above, and add one representative of each class to the set Clandmark. However, for the current overview,
let us continue with this simplified (although inaccurate) construction.
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shortest-path separator P i,j ∈ Pi. Unfortunately, in our case, Gi is not planar, and P i,j

is not a separator for Gi, but for its planar spanner Hi. Here we recall the property that
the hop-length of the shortest path |π(p, s)| is strictly larger than ℓ, i.e., is Ω(z/ϵ), which
implies that the weight of a single edge is negligible as compared to the total length of the
path. Then, we show that it is possible to reroute a single edge of the path π(p, s) using
the spanner Hi (which results in a constant factor increase in the distance, but only for a
single edge) to obtain an approximately shortest path π̃(p, s). Furthermore, π̃(p, s) intersects
a separator path P i,j , and the intersecting vertex x is a landmark. This is the most intricate
part of the argument, since we have to argue about shortest paths in G, Gi and Hi. Once
we construct π̃(p, s), we can use a subpath of π̃(p, s) to go from p to x, and then use the fact
that dG(s, x) ≈ dG(s̃, x), since x is a landmark, and s and s̃ have same discretized distances
w.r.t. x. Thus, we can show that dG(p, s) and dG(p, s̃) are within the required bound. See
Figure 4 for an illustration.

Note that the novelty of our work compared to previous works (Braverman et al. [8] and
Cohen-Addad et al. [17]) lies in the ability of utilizing an underlying planar spanner instead
of the original graph and still achieve a similar error bound sufficient for the analysis.

4 Conclusion

We obtain the first coresets for k-clustering problems whose size is independent of n, on a
variety of geometric graph metrics, such as weighted intersection graphs of unit disks and
squares. A UDG (or a USG) can contain arbitrarily large cliques, i.e., they can be (locally)
dense. Therefore, to the best of our knowledge, ours is the first small-sized (i.e., independent
of n) coreset construction for a shortest-path metric on a dense family of graphs. Due to the
inherently “hybrid” nature of such metrics, our coreset construction has to carefully navigate
the locally-Euclidean and globally-sparse nature of the metric.

We believe the contribution of our work is also conceptual, in that we “abstract out” the
geometric properties of such metrics that are sufficient to obtain small-sized coresets via the
versatile framework of Cohen-Addad et al. [18]. These structural properties are also satisfied
by ℓp-norm weighted UDGs and USGs. Furthermore, by suitably modifying the construction,
we can also handle hop metrics (i.e., unweighted edges) induced by UDGs of bounded degree.
Thus, we obtain small-sized coresets, and thus FPT-approximation schemes, for k-clustering
problems for all of these graph families. In order to obtain the result on USGs, we prove that
these graphs admit a 3-stretch planar spanner, a result that may be of independent interest.

The most natural question is to find more graph families that satisfy the geometric
properties (or some suitable modifications thereof) identified in this work. Disk graphs in
R2 and Unit Ball Graphs in Rd (for constant d ≥ 3) are two orthogonal generalizations of
UDGs, and thus may be the most obvious candidates. However, these graphs are not known
to admit a constant stretch planar spanner. As an intermediate step, it might be interesting
to consider “unit disk graphs” that are embeddded on a surface Σ of bounded genus. Here,
it might be more natural to require that such a graph admit constant stretch spanner that is
also embeddable on Σ (which is a relaxation of planarity). It might be possible to extend
our framework with this relaxed setting, also yielding smaller coresets for such geometric
intersection graph families, which we leave as an interesting open question.
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