Maintaining CMSQO, Properties on Dynamic
Structures with Bounded Feedback Vertex Number

Konrad Majewski &

Institute of Informatics, University of Warsaw, Poland

Michat Pilipczuk &

Institute of Informatics, University of Warsaw, Poland

Marek Sokolowski &

Institute of Informatics, University of Warsaw, Poland

—— Abstract

Let ¢ be a sentence of CMSO2 (monadic second-order logic with quantification over edge subsets and
counting modular predicates) over the signature of graphs. We present a dynamic data structure
that for a given graph G that is updated by edge insertions and edge deletions, maintains whether
© is satisfied in G. The data structure is required to correctly report the outcome only when the
feedback vertex number of G does not exceed a fixed constant k, otherwise it reports that the
feedback vertex number is too large. With this assumption, we guarantee amortized update time
Oy 1 (logn).

By combining this result with a classic theorem of Erd6s and Pésa, we give a fully dynamic
data structure that maintains whether a graph contains a packing of k vertex-disjoint cycles with
amortized update time Ox(logn). Our data structure also works in a larger generality of relational
structures over binary signatures.

2012 ACM Subject Classification Theory of computation — Dynamic graph algorithms; Mathematics
of computing — Graph algorithms

Keywords and phrases feedback vertex set, CMSO> formula, data structure, dynamic graphs,
fixed-parameter tractability

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.46

Related Version Full Version: https://arxiv.org/abs/2107.06232 [13]

Funding This work is a part of project BOBR that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 948057).

1 Introduction

We consider data structures for graphs in a fully dynamic model, where the considered graph
can be updated by the following operations: add an edge, remove an edge, add an isolated
vertex, and remove an isolated vertex. Most of the contemporary work on data structures for
graphs focuses on problems that in the static setting are polynomial-time solvable, such as
connectivity or distance computation. In this work we follow a somewhat different direction
and consider parameterized problems. That is, we consider problems that are NP-hard in
the classic sense, even in the static setting, and we would like to design efficient dynamic
data structures for them. The update time guarantees will typically depend on the size of
the graph n and a parameter of interest k, and the goal is obtain as good dependence on n
as possible while allowing exponential (or worse) dependence on k. The idea behind this
approach is that the data structure will perform efficiently on instances where the parameter
k is small, which is exactly the principle assumed in the field of parameterized complexity.

© Konrad Majewski, Michal Pilipczuk, and Marek Sokolowski; L)

37 licensed under Creative Commons License CC-BY 4.0 V"
40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). m I_
Editors: Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté; 4 S1

Article No. 46; pp. 46:1-46:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:konrad.majewski@mimuw.edu.pl
https://orcid.org/0000-0002-3922-7953
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
mailto:marek.sokolowski@mimuw.edu.pl
https://orcid.org/0000-0001-8309-0141
https://doi.org/10.4230/LIPIcs.STACS.2023.46
https://arxiv.org/abs/2107.06232
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2

Maintaining CMSO- Properties on Dynamic Structures

The systematic investigation of such parameterized dynamic data structures was initiated
by Alman et al. [1], though a few earlier results of this kind can be found in the literature,
e.g. [6,7,11]. Alman et al. revisited several techniques in parameterized complexity and
developed their dynamic counterparts, thus giving suitable parameterized dynamic data
structures for a number of classic problems, including VERTEX COVER, HITTING SET,
k-PATH, and FEEDBACK VERTEX SET. The last example is important for our motivation.
Recall that a feedback vertex set in an (undirected) graph G is a subset of vertices that
intersects every cycle in G, and the feedback vertex number of G is the smallest size of a
feedback vertex set in G. The data structure of Alman et al. monitors whether the feedback
vertex number of a dynamic graph G is at most k (and reports a suitable witness, if so) with
amortized update time 2€(*102k) . Jog .

Dvorték et al. [6] and, more recently, Chen et al. [3] studied parameterized dynamic data
structures for another graph parameter treedepth. Formally, the treedepth of a graph G is
the least possible height of an elimination forest G: a rooted forest on the vertex set of G
such that every edge of G connects a vertex with its ancestor. Intuitively, that a graph G
has treedepth d means that G has a tree decomposition whose height is d, rather than width.
Chen et al. [3] proved that in a dynamic graph of treedepth at most d, an optimum-height
elimination forest can be maintained with update time 20(d?) (worst case, under the promise
that the treedepth never exceeds d). This improved upon the earlier result of Dvoiédk et
al. [6], who for the same problem achieved update time f(d) for a non-elementary function f.

As already observed by Dvordk et al. [6], such a data structure can be used not only
to the concrete problem of computing the treedepth, but more generally to maintaining
satisfiability of any property that can be expressed in the Monadic Second-Order logic MSOs.
This logic extends standard First-Order logic FO by allowing quantification over subsets of
vertices and subsets of edges, so it is able to express through constant-size sentences NP-hard
problems such at Hamiltonicity or 3-colorability. More precisely, the following result was
proved by Dvordk et al. [6] (see Chen et al. [3] for lifting the promise of boundedness of
treedepth).

» Theorem 1 ([3,6]). Given an MSO2 sentence ¢ over the signature of graphs and d € N,
one can construct a dynamic data structure that maintains whether a given dynamic graph G
satisfies ¢. The data structure is obliged to report a correct answer only when the treedepth
of G does not exceed d, and otherwise it reports Treedepth too large. The updates work in
amortized time f(p,d) for a computable function f, under the assumption that one is given
access to a dictionary on the edges of G with constant-time operations.

The proof of Theorem 1 is based on the following idea. If a graph G is supplied with an
elimination forest of bounded depth, then, by the finite-state properties of MSOs, whether ¢
is satisfied in G can be decided using a suitable bottom-up dynamic programming algorithm.
Then it is shown that when G is updated by edge insertions and removals, one is able to
maintain not only an optimum-height elimination forest F' of G, but also a run of this
dynamic programming algorithm on F'. This blueprint brings the classic work on algorithmic
meta-theorems in parameterized complexity to the setting of dynamic data structures, by
showing that dynamic maintenance of a suitable decomposition is a first step to maintaining
all properties that can be efficiently computed using this decomposition.

Notably, Chen et al. [3] apply this principle to two specific problems of interest: detection
of k-paths and (> k)-cycles in undirected graphs. Using known connections between these
objects and treedepth, they gave dynamic data structures for the detection problems that
have update time 20(**) for k-paths (assuming a dictionary on edges) and 2°*") . logn for
(= k)-cycles.

K. Majewski, M. Pilipczuk, and M. Sokotowski

One of the main questions left open by the work of Dvorék et al. [6] and by Chen et
al. [3] is whether in a dynamic graph of treewidth at most k it is possible to maintain a tree
decomposition of width at most f(k) with polylogarithmic update time. Note here that the
setting of tree decompositions is the natural context in which MSO, on graphs is considered,
due to Courcelle’s Theorem [4], while the treedepth of a graph is always an upper bound on
its treewidth. Thus, the works of Dvordk et al. [6] and of Chen et al. [3] can be regarded as
partial progress towards resolving this question, where a weaker (larger) parameter treedepth
is considered.

Our contribution. We approach the question presented above from another direction, by
considering feedback vertex number — another parameter that upper bounds the treewidth.
As mentioned, Alman et al. [1] have shown that there is a dynamic data structure that
monitors whether the feedback vertex number is at most k with update time 20 108k) . 1og .
We extend this result by showing that in fact, every MSQOs-expressible property can be
efficiently maintained in graphs of bounded feedback vertex number. Here is our main result.

» Theorem 2. Given a sentence @ of CMSQOqy over the signature of graphs and k € N, one
can construct a data structure that maintains whether a given dynamic graph G satisfies ¢.
The data structure is obliged to report a correct answer only if the feedback vertex number of
G is at most k, otherwise it reports Feedback vertex number too large. The graph is initially
empty and the amortized update time is f(p, k) -logn, for some computable function f.

Here, CMSOs is an extension of MSO5 by modular counting predicates; this extends the
generality slightly. Similarly as noted by Chen et al. [3], the appearance of the logn factor
in the update time seems necessary: a data structure like the one in Theorem 2 could be
easily used for connectivity queries in dynamic forests, for which there is an Q(logn) lower
bound in the cell-probe model [15].

We prove Theorem 2 in a larger generality of relational structures over binary signatures,
for a formal statement we refer the reader to the full version of the paper (Theorem 4.1). More
precisely, we consider relational structures over signatures consisting of relation symbols of
arity at most 2 that can be updated by adding and removing tuples from the relations, and by
adding and removing isolated elements of the universe. In this language, graphs correspond
to structures over a signature consisting of one binary relation signifying adjacency. As
feedback vertex number we consider the feedback vertex number of the Gaifman graph of the
structure. Generalization to relational structures is not just a mere extension of Theorem 2,
it is actually a formulation that appears naturally in the inductive strategy that is employed
in the proof.

As for this proof, we heavily rely on the approach used by Alman et al. [1] for monitoring
the feedback vertex number. This approach is based on applying two types of simplifying
operations, in alternation and a bounded number of times:

contraction of subtrees in the graph; and

removal of high-degree vertices.

We prove that in both cases, while performing the simplification it is possible to remember a
bounded piece of information about each of the simplified parts, thus effectively enriching
the whole data structure with information from which the satisfaction of ¢ can be inferred.
Notably, for the contracted subtrees, this piece of information is the CMSOs-type of appro-
priately high rank. To maintain these types in the dynamic setting, we use the top trees
data structure of Alstrup et al. [2]. All in all, while our data structure is based on the same
combinatorics of the feedback vertex number, it is by no means a straightforward lift of

46:3

STACS 2023

46:4

Maintaining CMSO- Properties on Dynamic Structures

the work of Alman et al. [1]: enriching the data structure with information about types
requires several new ideas and insights, both on the algorithmic and on the logical side of
the reasoning. A more extensive discussion can be found in Section 2.

Applications. Similarly as in the work of Chen et al. [3], we observe that Theorem 2 can
be used to obtain dynamic data structures for specific parameterized problems through a
win/win approach. Consider the cycle packing number of a graph G: the maximum number
of vertex-disjoint cycles that can be found in G. A classic theorem of Erdés and Pésa [9]
states that there exists a universal constant ¢ such that if the feedback vertex number of a
graph G is larger than c- plogp, then the cycle packing number of G is at least p. We can
use this result to establish the following.

» Theorem 3. For a given p € N one can construct a dynamic data structure that for a
dynamic graph G (initially empty) maintains whether the cycle packing number of G is at
least p. The amortized update time is f(p) -logn, for a computable function f.

Proof. For a given p, it is straightforward to write a CMSO; sentence ¢, that holds in
a graph G if and only if G contains p vertex-disjoint cycles. Then we may use the data
structure of Theorem 2 for ¢, and k = c-plog p, where c is the constant given by the theorem
of Erdds and Pésa [9]. Note that if this data structure reports that Feedback vertex number
too large, then the cycle packing number is at least p, so this outcome can be reported. =

The same principle can be applied to other problems related to cycle packings and
feedback vertex sets, e.g. CONNECTED FEEDBACK VERTEX SET, INDEPENDENT FEEDBACK
VERTEX SET, and TREE DELETION SET. We discuss these applications in the full version of
the paper (Section 7).

Organization. Due to space constraints, in this extended abstract we present only an
overview of our approach with the intention of explaining the main conceptual points without
going into technical details. Complete proofs can be found in the full version of this work,
which is attached as the appendix.

2 Overview

In this section we present an overview of the proof of Theorem 2. We deliberately keep the
description high-level in order to convey the main ideas. In particular, we focus on the graph
setting and delegate the notation-heavy aspects of relational structures to the full exposition.

Let G be the given dynamic graph. We focus on the model where we have a promise that
the feedback vertex number of G is at most k£ at all times. If we are able to construct a data
structure in this promise model, then it is easy to lift this to the full model described in
Theorem 2 using the standard technique of postponing invariant-breaking insertions. This
technique was also used by Chen et al. [3] and dates back to the work of Eppstein et al. [§].

Colored graphs. We will be working with edge- and vertex-colored graphs. That is, if 3 is
a finite set of colors (a palette), then a X-colored graph is a graph where every vertex and
edge is assigned a color from Y. In our case, all the palettes will be of size bounded by
functions of k and the given formula ¢, but throughout the reasoning we will use different
(and rapidly growing) palettes. For readers familiar with relational structures, in general
we work with relational structures over binary signatures (involving symbols of arity 0, 1, 2),
which are essentially colored graphs supplied with flags.

K. Majewski, M. Pilipczuk, and M. Sokotowski

Thus, we assume that the maintained dynamic graph G is also a X-colored graph for
some initial palette ¥. When G is updated by a vertex or edge insertion, we assume that the
color of the new feature is provided with the update.

Monadic Second-Order Logic. Logic MSO, is Monadic Second-Order Logic with quantifica-
tion over vertex subsets and edge subsets. This is a standard logic considered in parameterized
complexity in connection with treewidth and Courcelle’s Theorem. We refer to [5, Section 7.4]
for a thorough introduction, and explain here only the main features. There are four types of
variables: individual vertex/edge variables that evaluate to single vertices/edges, and monadic
vertex/edge variables that evaluate to vertex/edge subsets. These can be quantified both
existentially and universally. One can check equality of vertices/edges, incidence between
an edge and a vertex, and membership of a vertex/edge to a vertex/edge subset. In case of
colored graphs, one can also check colors of vertices/edges using unary predicates. Negation
and all boolean connectives are allowed.

Note that in Theorem 2 we consider logic CMSQOs, which is an extension of the above by
modular counting predicates that can be applied to monadic variables. For simplicity, we
ignore this extension for the purpose of this overview.

Types. The key technical ingredient in our reasoning are types, which is a standard tool in
model theory. We refer to the work of Grohe [10] for a more thorough introduction. Let G be
a Y-colored graph and g be a nonnegative integer. With GG we can associate its rank-q type
tp?(G), which is a finite piece of data that contains all information about the satisfaction of
MSO, sentences of quantifier rank at most ¢ in G (i.e., with quantifier nesting bounded by
q). More precisely:

For every choice of ¢ and ¥ there is a finite set Types?® containing all possible rank-¢

types of S-colored graphs. The size of Types?> depends only on ¢ and X.

For every MSO, sentence 9 of quantifier rank at most ¢, the type tp?(G) uniquely

determines whether ¢ holds in G.

In addition to the above, we also need an understanding that types are compositional
under gluing of graphs along small boundaries. For this, we work with the notion of a
boundaried graph, which is a graph G together with a specified subset of vertices G, called
the boundary. Typically, these boundaries will be of constant size. We extend the notion of a
type to boundaried graphs, where the rank-q type tp?(G) of a boundaried graph G contains
information not only about all rank-¢ MSOs sentences satisfied in G, but also about all such
sentences that in addition can use the vertices of dG as parameters (one can also think that
vertices of OG are given through free variables). Again, for every finite set D, there is a finite
set of possible types Types?*(D) of boundaried S-colored graphs with boundary D, and the
size of Types?* (D) depends only on ¢, ¥, and |D|.

Now, on boundaried graphs there are two natural operations. First, if G is a boundaried
graph and u € G, then one can forget v in G. This yields a boundaried graph forget(G, u)

obtained from G by removing u from the boundary (otherwise the graph remains intact).

Second, if G and H are two boundaried graphs and £ is a partial bijection between G and
OH, then the join G ®¢ H is the boundaried graph obtained from the disjoint union of G
and H by identifying vertices that correspond to each other in £; the new boundary is the
union of the old boundaries (with identification applied).
With these notions in place, the compositionality of types can be phrased as follows:
Given tp?(G) and u € OG, one can uniquely determine tp?(forget(G, u)).
Given tp?(G) and tp?(H) and a partial bijection £ between the boundaries of G and H,
one can uniquely determine tp?(G ®¢ H).
The determination described above is effective, that is, can be computed by an algorithm.

46:5

STACS 2023

46:6

Maintaining CMSO- Properties on Dynamic Structures

Top trees. We now move to the next key technical ingredient: the top trees data structure of
Alstrup et al. [2]. Top trees work over a dynamic forest F, which is updated by edge insertions
and deletions (subject to the promise that no update breaks acyclicity) and insertions and
deletions of isolated vertices. For each connected component 7' of F' one maintains a top
tree A, which is a hierarchical decomposition of T" into clusters. Each cluster S is a subtree
of T with at least one edge that is assigned a boundary 95 C V(.S) of size at most 2 with
the following property: every vertex of S that has a neighbor outside of S belongs to 0S.
Formally, the top tree Ar is a binary tree whose nodes are assigned clusters in T so that:

the root of Ar is assigned the cluster (T, 9T'), where 9T is a choice of at most two vertices

in T,

the leaves of Ap are assigned single-edge clusters;

for every internal node z of Ar, the edge sets of clusters in the children of x form a

partition of the edge set of the cluster at x.
Note that the last property implies that the cluster at x, treated as a boundaried graph,
can be obtained from the two clusters at the children of z by applying the join operation,
possibly followed by forgetting a subset of the boundary. We will then say that the cluster
at x is obtained by joining the two clusters at its children.

Figure 1 An example top tree Ar. Clusters correspond to light gray ovals. Boundary vertices
in each cluster are marked dark gray. Note that in this example, A7 has two external boundary
vertices. However, it may have fewer (zero or one) such vertices.

In [2], Alstrup et al. showed how to maintain, for a dynamic forest F', a forest of top trees
{Ar: T is a component of F'} so that each tree Ar has depth O(logn) and every operation
is performed in worst-case time O(logn). Moreover, they showed that the top trees data

K. Majewski, M. Pilipczuk, and M. Sokotowski

structure can be robustly enriched with various kinds of auxiliary information about clusters,
provided this information can be efficiently composed upon joining clusters. More precisely,
suppose that with each cluster C' we can associate a piece of information Z(C') so that
Z(C) can be computed in constant time when C has one edge; and
if C' is obtained by joining two clusters Cy and Cs, then from Z(C;) and Z(C5) one can
compute Z(C) in constant time.
Then, as shown in [2], with each cluster C one can store the corresponding piece of information
Z(C), and still perform updates in time O(logn).
In our applications, we work with top trees over dynamic Y-colored forests, where with
each cluster C' we store information on its type:

for a suitably chosen p € N. Here, for technical reasons we need to be careful about the
colors: the type tp?(C) takes into account the colors of all the edges of C' and all the vertices
of C except the vertices of OC (formally, we consider the type of C with colors stripped
from boundary vertices). The rationale behind this choice is that a single vertex u can
participate in the boundary of multiple clusters, hence in the dynamic setting we cannot
afford to update the type of each of them upon updating the color of u. Rather, every cluster
C stores its type with the colors on 9C stripped, and if we wish to compute the type of C
with these colors included, it suffices to look up those colors and update the stripped type
(using compositionality).

Brushing these technical details aside, after choosing the definitions right, the composi-
tionality of types explained before perfectly fits the properties required from an enrichment
of top trees. This means that with each cluster C' we can store tp?(C') while guaranteeing
worst-case update time O, s(logn). We remark that the combination of top trees and MSO,
types appears to be a novel contribution of this work; we hope that it can be reused in
the future.

So if F' is a dynamic X-colored forest and p is a parameter, then for each tree T in F'
we can maintain a top tree Ar whose root is supplied with the type tp?(T"). Knowing the
multiset of rank-p types of trees in F', we can use standard compositionality and idempotence
of types to compute the type tp?(F'), from which in turn one can infer which rank-p sentences
are satisfied in F'. By taking p to be the quantifier rank of a given sentence ¢, we obtain:

» Theorem 4. Let X be a finite palette and ¢ be an MSOq sentence over X-colored graphs.
Then there is a dynamic data structure that for a dynamic X-colored forest F' maintains
whether ¢ holds in F. The worst-case update time is O, 5, (logn).

Note that the statement of Theorem 4 matches (the colored version of) the statement
of Theorem 2 for k = 0. Curiously, we are not aware of this result existing already in the
literature, despite the naturality of the problem. We remark that maintaining MSO queries
over dynamic forests has been considered in the databases literature, see [14] and references
therein, however under a different (and somewhat orthogonal) set of allowed updates.

The data structure of Alman et al. [1]. Our goal now is to lift Theorem 4 to the case
of k > 0. For this we rely on the approach of Alman et al. [1] for monitoring the feedback
vertex number, which is based on a sparsity-based strategy that is standard in parameterized
complexity, see e.g. [5, Section 3.3].

The approach is based on two lemmas. The first one concerns the situation when the graph
contains a vertex u of degree at most 2. In this case, it is safe to dissolve u: either remove it,
in case it has degree 0 or 1, or replace it with a new edge connecting its neighbors, in case it

46:7

STACS 2023

46:8

Maintaining CMSO- Properties on Dynamic Structures

has degree 2. Note that dissolving a degree-2 vertex naturally can create a multigraph. This
creates technical issues both in [1] and in this work, but we shall largely ignore them for the
purpose of this overview. Formally, we have the following.

» Lemma 5 (folklore). Dissolving a vertex of degree at most 2 in a multigraph does not
change the feedback vertex number.

The second lemma concerns the situation when the graph has minimum degree at least 3.
Then a sparsity-based argument shows that every feedback vertex set of size at most k
intersects the set of O(k) vertices with highest degrees.

» Lemma 6 (Lemma 3.3 in [5]). Let G be a multigraph with minimum degree 3 and let B
be the set of 3k vertices with highest degrees in G. Then every feedback vertex set of size at
most k in G intersects B.

Lemmas 5 and 6 can be used to obtain an fpt algorithm for FEEDBACK VERTEX SET
with running time (3k)¥ - (n 4+ m) (see [5, Theorem 3.5]): apply the reduction of Lemma 5
exhaustively, and then branch on which of the 3k vertices with highest degrees should be
included in the solution. This results in a recursion tree of total size at most (3k)".

The data structure of Alman et al. [1] is based on dynamization of the branching algorithm
presented above. There are two main challenges:

dynamic maintenance of the sequence of dissolutions given by Lemma 5; and

dynamic maintenance of the set of high degree vertices.

For the first issue, it is explanatory to imagine performing the dissolutions not one by
one iteratively, but all at once. It is not hard to see that the result of applying Lemma 5
exhaustively is that the input multigraph G gets contracted to a multigraph Contract(G) in
the following way: the edge set of G into disjoint trees, and each of them either disappears
or is contracted into a single edge in Contract(G); see Figure 2 for a visualization. (There
may be some corner cases connected to loops in Contract(G) that result from contracting
not trees, but unicyclic graphs; we ignore this issue in this overview.) We call the elements
of this partition ferns, and the corresponding decomposition of G into ferns is called the fern
decomposition of G. Importantly, the order of performing the contractions has no effect on
the outcome, yielding always the same fern decomposition of G.

With each fern of S we can associate its boundary 95, which is the set of vertices of S
incident to edges that lie outside of S. It is not hard to see that this boundary will always
be of size 0, 1, or 2. The ferns that correspond to edges in Contract(G) are the ferns with
boundary of size 2 (each such fern gets contracted to an edge connecting the two vertices of
the boundary) and non-tree ferns with boundary of size 1 (each such fern gets contracted to
a loop at the unique vertex of the boundary).

The idea of Alman et al. is to maintain the ferns in the fern decomposition using link-cut
trees. It is shown that each update in G affects the fern decomposition only slightly, in the
sense that it can be updated using a constant number of operations on link-cut trees. In this
way, the fern decomposition and the graph Contract(G) can be maintained with worst-case
O(logn) time per update in G. This resolves the first challenge.

For the second challenge, Alman et al. observe that if in Lemma 6 one increases the
number of highest degree vertices included in B from 3k to 12k, then the set remains “valid”
— in the sense of satisfying the conclusion of the lemma — even after O(m/k) updates are
applied to the graph. Here, m denotes the number of edges of the graph on which Lemma 6
is applied, which is Contract(G) in our case. This means that it remains correct to perform a
recomputation of the set B only every ©(m/k) updates. Since such a recomputation takes
time O(m), the amortized update time is O(k).

K. Majewski, M. Pilipczuk, and M. Sokotowski

Figure 2 Left: A graph G together with its fern decomposition. Different ferns are depicted with

different colors; these should not be confused with the coloring of edges of G with colors from X.

Right: The multigraph Contract(G) obtained by contracting each fern. Note that in the construction
of Contract?(G) described in the discussion of the Contraction Lemma, we would not have parallel
edges or loops. Instead, each pack of parallel edges would be replaced by a single one, colored with
the joint type of the whole pack. Similarly, loops on a vertex would be removed and their joint type
would be stored in the color of the vertex.

Once Contract(G) and B C V(Contract(G)) are known, Lemma 6 asserts that if the
feedback vertex number of G is at most k, there exists a vertex b € B whose deletion
decreases the feedback vertex number. Therefore, the idea of Alman et al. is to construct
a recursive copy of the data structure for each b € B: the copy maintains the graph
Contract(G) — b and uses parameter k — 1 instead of k. Note that when B gets recomputed,
all these data structures are reset, but thanks to amortization we have time to do it.

All in all, once one unravels the recursion, the whole construction is a tree of data
structures of depth k£ and branching 12k, which is maintained with amortized update time
20(klogk) . 1ogn. The graph has feedback vertex number at most k if and only if this tree
contains at least one leaf with an empty graph.

Our data structure. We now describe the high-level idea of our data structure.

Lemmas 5 and 6 can be used not only to design an fpt algorithm for FEEDBACK VERTEX
SET, but also an approximation algorithm. Consider the following procedure: apply the
reduction of Lemma 5 exhaustively, then greedily take all the 3k vertices with highest degrees
to the constructed feedback vertex set, and iterate these two steps in alternation until the
graph becomes empty. Lemma 6 guarantees that provided the feedback vertex number was
at most k in the first place, the iteration terminates after at most k steps; the 3k? selected
vertices form a feedback vertex set. We note that this application of Lemmas 5 and 6 for
feedback vertex set approximation is not new, for instance it was recently used by Kammer
and Sajenko [12] in the context of space-efficient kernelization.

Our data structure follows the design outlined above. That is, instead of a tree of data
structures, we maintain a sequence of 2k + 2 data structures, respectively for multigraphs

Go, Hy,G1, Hy,...,Gy, Hy.

These multigraphs essentially satisfy the following:

Go = G;
H; = Contract(G;) for i =0,1,...,k; and
Giy1=G; — B; for i =0,1,...,k — 1, where B; is a set that satisfies the conclusion of

Lemma 6 for G;.

46:9

STACS 2023

46:10

Maintaining CMSO- Properties on Dynamic Structures

Note that these invariants imply that provided the feedback vertex number of G is at most k,
the feedback vertex number of G; and of H; is at most k — ¢ for each i € {0,1,...,k},
implying that Gy is a forest and Hy is the empty graph.

The precise definitions of Contract(-) and of deleting vertices used in the sequence above
will be specified later. More precisely, graphs G, Hy, . .., Gy, Hj, will be colored with palettes
Y0, To,..., Xk, Ik in order, where ¥y = . These palettes will grow (quite rapidly) in sizes,
but each will be always of size bounded in terms of k, 3, and ¢ — the quantifier rank of the
fixed sentence ¢ whose satisfaction we monitor. The idea is that when obtaining H; from G;
by contracting ferns, we use colors from I'; to store information about the contracted ferns
on edges and vertices of H;. Similarly, when removing vertices of B; from H; to obtain G;1,
we use colors from ¥, on vertices of G;41 to store information about the adjacencies of
the removed vertices. These steps are encompassed by two key technical statements — the
Contraction Lemma and the Downgrade Lemma — which we explain below.

Contraction Lemma. We explain the Contraction Lemma for the construction of H := Hy
from G = Gp; the construction for ¢ > 0 is the same. Recall that eventually we are interested
in monitoring whether the given sentence ¢ is satisfied in G. For this, it is sufficient to monitor
the type tp?(G), where ¢ is the quantifier rank of . Consider the following construction:
Pick some large p € N.
Consider the fern decomposition F of G and let K := {95: S € F}. For every D € K,
let Rp be the join of all the ferns with boundary D, and with colors stripped from the
vertices of D. Note that Rp is a boundaried graph with boundary D.
For every D € K with |D| = 2, contract Rp to a single edge with color tp?(Rp) connecting
the two vertices of D.
For every D € K with |D| = 1, contract Rp onto the single vertex d of D, and make d of
color tp?(Rp).
Remove Ry, if present, and remember tp?(Ry) through flags?®.
The obtained colored graph is named Contract?(G). Note that Contract?(G) is a I'’-
colored graph, where I'? is a palette consisting of all rank-p types of X-colored graphs
with a boundary of size at most 2.
Thus, every fern S in G is essentially disposed of, but a finite piece of information (the rank-p
type) about S is being remembered in Contract”(G) on the boundary of S. The intuition
is that if p is large enough, these pieces of information are enough to infer the rank-q type
of G. This intuition is confirmed by the following Replacement Lemma.

» Lemma 7 (Replacement Lemma, informal statement). For any given ¢ € N and X, there
exists p € N large enough so that for any X-colored graph G, the type tp?(Contract?(G))
uniquely determines the type tp?(G).

The proof of the Replacement Lemma uses Ehrenfeucht-Fraisse games. It is conceptually
rather standard, but technically quite involved. We note that the obtained constant p is
essentially the number of rank-q types of YX-colored graphs, which is approximately a tower
of exponentials of height ¢ applied to |¥|. Since Replacement Lemma is used k times in the
construction, this incurs a huge explosion in the parameter dependence in our data structure.

Replacement Lemma shows that in order to monitor the type tp?(G) in the dynamic
setting, it suffices to maintain the graph H := Contract”(G) and the type tp?(H). Maintaining
H dynamically is the responsibility of the Contraction Lemma.

1 We assume that a colored graph can be supplied with a bounded number of boolean flags, which thus
can store a bounded amount of additional information. In the general setting of relational structures,
flags are modeled by nullary predicates (predicates of arity 0).

K. Majewski, M. Pilipczuk, and M. Sokotowski

» Lemma 8 (Contraction Lemma, informal statement). For a given p € N and palette 2, there
is a dynamic data structure that for a dynamic graph G, maintains the graph Contract?(G)
under updates in G. The worst-case update time is Op s (logn).

The proof of Lemma 8 follows closely the reasoning of Alman et al. [1]. That is, in the
same way as in [1], every update in G incurs a constant number of changes in the fern
decomposition of G, expressed as splitting or merging of individual ferns. Instead of relying
on link-cut trees as in [1], the ferns are stored using top trees. This is because we enrich the
top trees data structure with the information about rank-p types of clusters, as in Theorem 4,
so that for each fern S we know its rank-p type. This type is needed to determine the color
of the feature (edge/vertex/flag) in H = Contract?(G) to which S contributes.

Executing the plan sketched above requires an extreme care about details. Note for
instance that in the construction of Contract”(G), when defining Rp we explicitly stripped
colors from the boundary vertices. This is for a reason similar to that discussed alongside
Theorem 4: including the information on the colors of D in tp?(Rp) would mean that a
single update to the color of a vertex d would affect the types of all subgraphs Rp with
d € D, and there is potentially an unbounded number of such subgraphs. Further, we
remark that Alman et al. [1] relied on an understanding of the fern decomposition through a
sequence of dissolutions, which makes some arguments inconvenient for generalization to our
setting. We need a firmer grasp on the notion of fern decomposition, hence we introduce a
robust graph-theoretic description that is static — it does not rely on an iterative dissolution
procedure. This robustness helps us greatly in maintaining ferns and their types in the
dynamic setting.

Another noteworthy technical detail is that the operator Contract?(-), as defined above,
does not create parallel edges or loops, and thus we stay within the realm of colored simple

graphs (or, in the general setting, of classic relational structures over binary signatures).

Unfortunately, this simplification cannot be applied throughout the whole proof, as in
Lemma 6 we need to count the degrees with respect to the multigraph Contract(G) as defined
in Alman et al. [1]. For this reason, in the full proof we keep trace of two objects at the
same time: a relational structure A that we are interested in, and a multigraph H which
is a supergraph of the Gaifman graph of A and that represents the structure of earlier
contractions.

Downgrade Lemma. Finally, we are left with the Downgrade Lemma, which is responsible
for the reducing the graph by removing a bounded number of vertices. Formally, we have a
I-colored graph H and a set B of O(k) vertices, and we would like to construct a 3'-colored
graph G’ = Downgrade(H, B) by removing the vertices of B and remembering information
about them on the remaining vertices of H. This construction is executed as follows:
Enumerate the vertices of B as by, ..., by, where £ = |B|.
Construct G’ by removing vertices of B.
For every color ¢ € T and ¢ € {1,...,¢}, add to G’ a flag signifying whether b; has color
cin G.
For every pair i,5 € {1,...,£}, i < j, and every color ¢ € " add to G’ a flag signifying
whether b; and b; are connected in G by an edge of color c.
For every vertex u € V(G) \ B, every ¢ € {1,...,¢}, and every color ¢ € T, refine the
color of u in G’ by adding the information on whether u and b; were connected in G by
an edge of color c.
The obtained graph is the graph G’. Note that G’ is X/-colored, where ¥/ = I' x 2l*T",

46:11

STACS 2023

46:12

Maintaining CMSO- Properties on Dynamic Structures

Thus, the information about vertices of B and edges incident to B is being stored in flags and
colors on vertices of V(G) \ B. We have the following analogue of the Replacement Lemma.

» Lemma 9. For any given p € N, there exists ¢ € N large enough so that for any I'-colored
graph H and a subset B of O(k) vertices, the type tp? (Downgrade(H, B)) uniquely determines
tpP (H).

The proof of Lemma 9 is actually very simple and boils down to a syntactic modification of
formulas. From Lemma 9 it follows that to maintain the type tp?(H), it suffices to maintain a
bounded-size set B satisfying the conclusion of Lemma 6, the graph G’ = Downgrade(H, B),
and its type tpql(G’). This is the respounsibility of the Downgrade Lemma.

» Lemma 10 (Downgrade Lemma, informal statement). For a given p € N and palette T,
there is a dynamic data structure that for a dynamic graph H of feedback vertex number at
most k and with minimum degree 3, maintains a set of vertices B C V(H) with |B| < 12k
and satisfying the conclusion of Lemma 6, and the graph Downgrade(H, B). The amortized
update time is O, r i (logn).

The proof of the Downgrade Lemma is essentially the same as that given for the corre-
sponding step in Alman et al. [1]. We recompute B from scratch every ©(m/k) updates,
because the argument of Alman et al. shows that B remains valid for this long. Recomputing
B implies recomputing Downgrade(H, B) in O 1 x(m) time, so the amortized complexity is
Op.r k(1) (there are additional logarithmic factors from auxiliary data structures).

Endgame. We now have all the pieces to assemble the proof of Theorem 2. Let ¢y be the
quantifier rank of the given sentence ¢ and let Gy = GG be the considered dynamic graph.
By Replacement Lemma, to monitor tp?% (Gp) (from which the satisfaction of ¢ can be
inferred), it suffices to monitor tp?° (Hy), where Hy := Contract”™ (Gy) and py is as provided
by the Replacement Lemma. By Contraction Lemma, we can efficiently maintain Hy under
updates of Gy. By Lemma 9, to monitor tp?°(Hy) it suffices to monitor tp? (G7), where
G1 = Downgrade(Hy, By), and By is a set that satisfies the conclusion of Lemma 6. By
Downgrade Lemma, we can efficiently maintain such a set By and the graph G;. We proceed
further in this way, alternating the usage of the Contraction Lemma and the Downgrade
Lemma. Observe that each application of Downgrade Lemma strictly decrements the feedback
vertex number, so after k steps we end up with an empty graph Hy. The type of this graph
can be directly computed from its flags, and this type can be translated back to infer tp?(G)
by using Replacement Lemma and Lemma 9 alternately.

—— References

1 Josh Alman, Matthias Mnich, and Virginia Vassilevska Williams. Dynamic Parameterized
Problems and Algorithms. ACM Trans. Algorithms, 16(4):45:1-45:46, 2020. doi:10.1145/
3395037.

2 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243-264, 2005.
doi:10.1145/1103963.1103966.

3 Jiehua Chen, Wojciech Czerwinski, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michat Pilipczuk, Manuel Sorge, Bartlomiej Wréblewski,
and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, pages 796-809. SIAM, 2021. doi:10.1137/1.9781611976465.50.

https://doi.org/10.1145/3395037
https://doi.org/10.1145/3395037
https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1137/1.9781611976465.50

K. Majewski, M. Pilipczuk, and M. Sokotowski

10

11

12

13

14

15

Bruno Courcelle. The Monadic Second-Order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput., 85(1):12-75, 1990. doi:10.1016/0890-5401(90)90043-H.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michatl Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
d0i:10.1007/978-3-319-21275-3.

Zdenék Dvorak, Martin Kupec, and Vojtéch Tuma. A dynamic data structure for MSO
properties in graphs with bounded tree-depth. In Proceedings of the 22™ Annual European
Symposium on Algorithms, ESA 201/, volume 8737 of Lecture Notes in Computer Science,
pages 334-345. Springer, 2014. doi:10.1007/978-3-662-44777-2_28.

Zdenék Dvorak and Vojtéch Tuma. A dynamic data structure for counting subgraphs in
sparse graphs. In Proceedings of the 13" International Symposium on Algorithms and Data
Structures, WADS 2013, volume 8037 of Lecture Notes in Computer Science, pages 304—-315.
Springer, 2013. doi:10.1007/978-3-642-40104-6_27.

David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Thomas H. Spencer. Separator based
sparsification. I. Planary testing and minimum spanning trees. J. Comput. Syst. Sci., 52(1):3-27,
1996. doi:10.1006/jcss.1996.0002.

Paul Erdés and Lajos Pésa. On the maximal number of disjoint circuits of a graph. Publ.
Math. Debrecen, 9:3—12, 1962.

Martin Grohe. Logic, graphs, and algorithms. In Joérg Flum, Erich Gradel, and Thomas
Wilke, editors, Logic and Automata: History and Perspectives [in Honor of Wolfgang Thomas],
volume 2 of Texts in Logic and Games, pages 357-422. Amsterdam University Press, 2008.

Yoichi Iwata and Keigo Oka. Fast dynamic graph algorithms for parameterized problems.

In Proceedings of the 14" Scandinavian Symposium and Workshops on Algorithm Theory,
SWAT 2014, volume 8503 of Lecture Notes in Computer Science, pages 241-252. Springer,
2014. doi:10.1007/978-3-319-08404-6_21.

Frank Kammer and Andrej Sajenko. FPT-space graph kernelizations. CoRR, abs/2007.11643,
2020. arXiv:2007.11643.

Konrad Majewski, Michal Pilipczuk, and Marek Sokolowski. Maintaining CMSO9 properties

on dynamic structures with bounded feedback vertex number. CoRR, abs/2107.06232, 2021.

arXiv:2107.06232.

Matthias Niewerth. MSO queries on trees: Enumerating answers under updates using forest
algebras. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2018, pages 769-778. ACM, 2018. doi:10.1145/3209108.3209144.

Mihai Patragcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Proceedings

of the 36™ Annual ACM Symposium on Theory of Computing, STOC 2004, pages 546-553.

ACM, 2004.

46:13

STACS 2023

https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-44777-2_28
https://doi.org/10.1007/978-3-642-40104-6_27
https://doi.org/10.1006/jcss.1996.0002
https://doi.org/10.1007/978-3-319-08404-6_21
http://arxiv.org/abs/2007.11643
http://arxiv.org/abs/2107.06232
https://doi.org/10.1145/3209108.3209144

	1 Introduction
	2 Overview

