Realizability Problem for Constraint LTL
Ashwin Bhaskar

Chennai Mathematical Institute, India

M. Praveen
Chennai Mathematical Institute, India
CNRS IRL ReLaX, Chennai, India

—— Abstract

Constraint linear-time temporal logic (CLTL) is an extension of LTL that is interpreted on sequences
of valuations of variables over an infinite domain. The atomic formulas are interpreted as constraints
on the valuations. The atomic formulas can constrain valuations over a range of positions along a
sequence, with the range being bounded by a parameter depending on the formula. The satisfiability
and model checking problems for CLTL have been studied by Demri and D’Souza. We consider
the realizability problem for CLTL. The set of variables is partitioned into two parts, with each
part controlled by a player. Players take turns to choose valuations for their variables, generating a
sequence of valuations. The winning condition is specified by a CLTL formula — the first player wins
if the sequence of valuations satisfies the specified formula. We study the decidability of checking
whether the first player has a winning strategy in the realizability game for a given CLTL formula.
We prove that it is decidable in the case where the domain satisfies the completion property, a
property introduced by Balbiani and Condotta in the context of satisfiability. We prove that it
is undecidable over (Z, <, =), the domain of integers with order and equality. We prove that over
(Z,<,=), it is decidable if the atomic constraints in the formula can only constrain the current
valuations of variables belonging to the second player, but there are no such restrictions for the
variables belonging to the first player. We call this single-sided games.

2012 ACM Subject Classification Theory of computation — Logic and verification; Theory of
computation — Modal and temporal logics; Theory of computation — Verification by model
checking; Theory of computation — Automata over infinite objects; Theory of computation — Tree
languages

Keywords and phrases Realizability, constraint LTL, Strategy trees, Tree automata
Digital Object Identifier 10.4230/LIPIcs. TIME.2022.8
Related Version Full Version: https://arxiv.org/abs/2207.06708

Funding M. Praveen: This author is partially supported by the Infosys foundation.

1 Introduction

Propositional linear temporal logic (LTL) and related automata theoretic models have been
extended in various ways to make it more expressive. Prompt-LTL [18], Constraint LTL [13],
LTL with freeze operators [12], temporal logic of repeating values [11, 24], finite memory
automata [16], data automata [8] are all examples of this. Prompt-LTL is concerned with
bounding wait times for formulas that are intended to become true eventually, while other
extensions are concerned with using variables that range over infinite domains in place of
Boolean propositions used in propositional LTL. Variables ranging over infinite domains are
a natural choice for writing specifications for systems that deal with infinite domains. For
example, constraint LTL has been used for specifications of cloud based elastic systems [6],
where the domain of natural numbers is used to reason about the number of resources that
are being used by cloud based systems.

© Ashwin Bhaskar and M. Praveen;

37 licensed under Creative Commons License CC-BY 4.0
29th International Symposium on Temporal Representation and Reasoning (TIME 2022).
Editors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta; Article No. 8; pp. 8:1-8:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7989-9279
https://doi.org/10.4230/LIPIcs.TIME.2022.8
https://arxiv.org/abs/2207.06708
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Realizability Problem for Constraint LTL

An orthogonal development in formal verification is synthesis, that is concerned with
automatically synthesizing programs from logical specifications. The problem was identified
by Church [10] and one way to solve it is by viewing it as the solution of a two person game.
For specifications written in propositional LTL, the worst case complexity of the realizability
problem is doubly exponential [23]. However, efficient algorithms exist for fragments of LTL.
The algorithms are efficient enough and the fragments are expressive enough to be used in
practice, for example to synthesize robot controllers [17], data buffers and data buses [22].

This paper is in an area that combines both developments mentioned in the above
paragraphs. We consider constraint LTL (CLTL) and partition the set of variables into
two parts, each being owned by a player in a two player game. The players take turns to
choose a valuation for their variables over an infinite domain. The game is played forever
and results in a sequence of valuations. The first player tries to ensure that the resulting
sequence satisfies a specified CLTL formula (which is the winning condition) and the second
player tries to foil this. We study the decidability of checking whether the first player has a
winning strategy, called the realizability problem in the sequel. CLTL is parameterized by
a constraint system, that can have various relations over the infinite domain. The atomic
formulas of CLTL can compare values of variables in different positions along a range of
positions, using the relations present in the constraint system. The range of positions is
bounded and depends on the formula. E.g., an atomic formula can say that the value of = at
a position is less than the value of y in the next position, in the domain of integers or real
numbers with linear order. Decidability of the CLTL realizability problem depends on the
constraint system. It also depends on whether the atomic formulas can compare values at
different positions of the input, as opposed to comparing values of different variables at the
same position of the input. If the former is allowed only for variables belonging to one of the
players, they are called single-sided games. This is illustrated next.

For instance in cloud based elastic systems [6], the number of resources allocated and the
number of virtual machines running are tracked. One desirable property is that if the number
of virtual machines increases, the number of resources allocated also increase. Typically the
number of resources allocated is controlled by the system and the number of virtual machines
is controlled by the environment. Let x be a variable that keeps track of the number of
resources allocated and let y denote the number of virtual machines. Specifying this property
will require comparing the value of x at the current position with the value of = at the next
position. We may also compare the current value of y with its value at the next position, but
this will need both the system and the environment to be able to compare the values of their
variables at different positions. Instead, if we restrict the environment to only decide whether
a new virtual machine request is raised at the current position, the environment need not
compare the value of y with its value at the next position. Hence only system compares the
values of its variables across different positions and thus, the game will be single-sided.

Contributions. We prove that the realizability problem for CLTL is
1. 2EXPTIME-complete for constraint systems that satisfy a so-called completion property,
2. undecidable for integers with linear order and equality and

3. 2EXPTIME-complete for single-sided games on integers with linear order and equality.
The third result above is the main one and is inspired by concepts used in satisfiability [13].
In satisfiability, this technique is based on patterns that repeat in ultimately periodic words.
It requires new insights to make it work in trees that we use to represent strategies here.

A. Bhaskar and M. Praveen

Related works. Two player games on automata models and logics dealing with infinite
domains have been studied before [28, 14]. The techniques involved are similar to those
used here in the sense that instead of reasoning about sequences of values from an infinite
domain, sequences of elements from a finite abstraction are considered. Single-sided games
are considered in [14], like we do here, but for register automata specifications. Their result
subsumes ours, since register automata are more expressive than CLTL. In register automata,
values can be compared even if they occur far apart in the input sequence, but in CLTL,
values can only be compared if they occur within a bounded distance. For this reason, CLTL
can be handled with simpler arguments, resulting in some differences in technical details,
which we will highlight later in this paper. This can potentially speed up procedures in case
the specifications only need CLTL and not the full power of register automata'. Similar
single-sided games are also considered in [25], for an extension of LTL incomparable with
CLTL. There, single-sided games are reduced to energy games [2] to get decidability.
Church Synthesis problem for a restriction of First Order Logic over parametrized
alphabets has been studied in [5]. The parametrized alphabet reflects the number of
processes. Similar to the results in our paper, the synthesis problem in [5] is undecidable
in the general case but turns decidable when the number of processes that are controllable

by the environment is bounded, while the number of system processes remains unbounded.

In [26], a parametrized extension of the Church Synthesis Problem of MSO Logic over (N, <)
is considered. The decidability result in this paper extensively uses the idea of patterns
repeating in ultimately periodic words [26, Proposition 3.4] as is the case in our work too.

2 Preliminaries

Let Z be the set of integers and N be the set of non-negative integers. We denote by [i], the
number ¢ ceiled at k: [i|, =14 if i <k and [i], = k otherwise. If m is any mapping and S is

a subset of the domain of m, we denote by m [S the mapping m restricted to the domain S.

For a sequence of mappings mq - ms - -+, we write my -mo--- [Sformy [S -mo [S---. For
integers ny,n2, we denote by [n1,n2] the set {n € Z | ny <n < na}.

We recall the definitions of constraint systems and constraint LTL (CLTL) from [13]. A
constraint system D is of the form (D, Ry, ..., R,,Z), where D is a non-empty set called the

domain. Each R; is a predicate symbol of arity a;, with Z(R;) C D% being its interpretation.

Let V be a set of variables, partitioned into the sets V¢, V? of look-ahead and future-blind
variables. A look-ahead term is of the form X'y, where y is a look-ahead variable, i > 0
and X is a symbol intended to denote “next”. For k > 0, we denote by T[k] the set of all
look-ahead terms of the form X'y, where i € [0, k] and y is a look-ahead variable. A constraint
¢ is of the form R(t,...,t,), where R is a predicate symbol of arity n and ¢y,...,t, are all
future-blind variables or they are all look-ahead terms. The syntax of CLTL is given by the
following grammar, where c is a constraint as defined above.

pu=cl|=g|oVve|Xeo|oUs
The semantics of CLTL is defined over sequences o (also called concrete models in the

following); for every ¢ > 0, o(¢): V — D is a mapping of the variables. Given, x1,...,2, €
Ve and iy,...,in, € N, the i*" position of a concrete model o satisfies the constraint

1 This does need a detailed study, which we defer to future work.

8:3

TIME 2022

8:4

Realizability Problem for Constraint LTL

R(X%zy,...,Xa,) (written as o,i E R(X"xq,...,X"x,)) if (o(i +i1)(21),...,000 +
in)(2n)) € Z(R). If the constraint is of the form R(zy,...,z,) where x1,...,2, € V®, then
0,0 = R(x1,...,2y) if (0(i)(21),...,0(i)(x,)) € Z(R). The semantics is extended to the
rest of the syntax similar to the usual propositional LTL. We use the standard abbreviations
F¢ (resp. G¢) to mean that ¢ is true at some position (resp. all positions) in the future. The
X-length of a look-ahead term X'y is i. We say that a formula is of X-length k if it uses
look-ahead terms of X-length at most k. The constraint system (Z, <,=) (resp. (N, <,=))
has the domain Z (resp. N) and <, = are interpreted as the usual linear order and equality
relations. The formula G(z < Xy) will be true in the first position of a concrete model if
in all positions, the value of = is less than the value of y in the next position. Recall the
example of cloud based elastic systems described in the introduction. Variable x denoted
the number of resources allocated and it was possible to compare its values across different
positions, hence making it a look-ahead variable. Whereas, under the restrictions on the
environment, the value of the variable y was not allowed to be compared with the values of
variables at other positions. This makes y a future-blind variable.

We adapt the concept of realizability games [23] to CLTL. There are two players system
and environment. The set of variables V is partitioned into two parts SV, EV owned
by system, environment, respectively. The environment begins by choosing a mapping
emg: EV — D, to which system responds by choosing a mapping smqg: SV — D. This first
round results in the mapping emgy & smg. This notation is used to define the function such
that emg @ smo(x) = emg(x) if x € EV and emo @ smo(x) = smo(x) if z € SV. In the next
round, the two players chose mappings emq, sm;. Both players continue to play forever and
the play results in a concrete model o = (emo @ smg)(emq @ smq) - - -. The winning condition
is specified by a CLTL formula ¢. System wins this play of the game if 0,0 = ¢.

Let M (resp. EM,SM) be the set of all mappings of the form V' — D (resp. EV — D,
SV — D). For a concrete model o and 7 > 0, let o | ¢ denote the prefix of o of length 4 (for
i1 =0, o | ¢ is the empty sequence €). An environment strategy is a function et: M* — EM
and a system strategy is a function st: M* - EM — SM. We say that the environment
plays according to the strategy et if the resulting model o = (emqg @ smg)(emy @ smy) -+ -
is such that em; = et(o | ¢) for all i« > 0. System plays according to the strategy st if the
resulting model o = (emg @ smg)(emy ® smy)--- is such that sm; = st(o | i - em;) for all
1 > 0. We say that st is a winning strategy for system if she wins all plays of the game
played according to st, irrespective of the strategy used by environment. For example, let
us consider a CLTL game with V =V = {z,y}, EV = {z}, SV = {y}, over the constraint
system (Z, <,=) with winning condition G((y > Xy) A =((X?%z > y) A (X?z < Xy))). For
system to win, the sequence of valuations for y should form a descending chain, and at any
position, the value of x should be outside the interval defined by the previous two values of y.
System has a winning strategy in this game: it can choose y to be —i in the i*" round and
the environment cannot choose its x to be strictly between the previous two values of y in
any round. System does not have a winning strategy in the same game when it is considered
over (N, <, =), as there is no infinite descending sequence of natural numbers. System does
not have a winning strategy over dense domains, since environment can choose the third
value of = to be strictly between the first two values of y, violating the winning condition.
Given a CLTL formula ¢, the realizability problem is to check whether system has a
winning strategy in the CLTL game whose winning condition is ¢.

We now state an important result.

» Theorem 1. The realizability problem for CLTL over (Z,<,=) and (N, <, =) is undecidable.

A. Bhaskar and M. Praveen

This can be proved by a reduction from the repeated control state reachability problem for
2-counter machines, which is known to be undecidable [3]. The main idea of the reduction is
that one of the players simulates the counter machine and the other player catches mistakes,
like other similar reductions for games [1]. For a detailed proof of this result, please refer to
the arXiv version of this paper [7].

Some proofs and technical details in the subsequent sections are moved to the appendix
due to space constraints.

3 Symbolic Models

The models of CLTL are infinite sequences over infinite alphabets. Frames, introduced
in [13], abstract them to finite alphabets. We adapt frames to constraint systems of the form
(D, <,=). Conceptually, frames and symbolic models as we will define here are almost the
same as introduced in [13], where the authors used these notions to solve the satisfiability
problem for CLTL. For the purpose of CLTL games, we use slightly different definitions and
notations, as this makes it easier to present game-theoretic arguments. For the rest of the
paper, we shall assume that the set of variables V' is finite. Also, unless mentioned otherwise,
we shall assume that D is Z, N or a domain that satisfies a so-called completion property.

Suppose that the first player owns the variables x, z. The second player owns y and wants
to ensure that * <y A y < z over the domain of integers. It depends on whether the gap
between the values assigned by the first player to x and to z, is large enough for the second
player to push y in between.

» Definition 2 (gap functions). Given a mapping m: V® — D, we associate with it a gap
function gp: V® — N as follows. Arrange V® as xq,x1, ... such that m(zo) < m(z) < ---.
Define the function gp such that gp(xzo) = 0 and gp(x;4+1) = gp(z)+ [m(xi41) — m(z;)] V-1
for all 1 < |V° —1.

The left hand side of the above equation denotes the gap between z; and ;4 according to
the gp function. The right hand side denotes the gap between the same variables according

to the mapping m, ceiled at |[V?| — 1. Since V' is finite, the set of gap functions is also finite.

We use gap functions only for future-blind variables V', only for the domains Z or N. Hence,
the minus sign ’—’ in the definition of gap functions is interpreted as the usual subtraction
over Z or N.

The following definition formalizes how a frame captures information about orders and
gaps for s successive positions.

» Definition 3 (Frames). Given a number s > 1, an s-frame f is a pair (<j, gps), where <j
is a total pre-order® on the set of look-ahead terms T%[s — 1] and gp;: V? x [0,5 — 1] — N is
a function such that for alli € [0,s — 1],)\x.gpf(m,i)3 is a gap function.

In the notation s-frame, s is intended to denote the size of the frame — the number of
successive positions about which information is captured. The current position and the
following (s — 1) positions are considered, for which the look-ahead terms in T%[s — 1] are
needed. We denote by <; and =y the strict order and equivalence relation induced by
<rre<ypyiffe<fyandyLyrandor=pyiff x <y yand y <y .

2 a reflexive and transitive relation such that for all z,y, either z < fyory<sx

3 Note that we could have used a function h;(z) = gpg(x,1) instead of using the lambda notation. But
this introduces a new notation — the function h;, which will not be used anywhere else.

8:5

TIME 2022

8:6

Realizability Problem for Constraint LTL

We will deal with symbolic models that constitute sequences of frames. An s-frame
will capture information about the first s positions of a model. If this is followed by a
(s + 1)-frame, it will capture information about the first (s + 1) positions of the model. Both
frames capture information about the first s positions, so they must be consistent about the
information they have about the shared positions. Similarly, an s-frame meant for positions
i to i + s — 1 may be followed by another s-frame meant for positions i + 1 to i + s. The
two frames must be consistent about the positions i + 1 to ¢ + s — 1 that they share. The
following definition formalizes these requirements.

» Definition 4 (One-step compatibility). For s > 1, an s-frame f and an (s + 1)-frame g, the
pair (f,g) is one-step compatible if the following conditions are true.

For all terms t1,ty € T[s — 1], t1 <y ta iff t1 <, ta.

For all j € [0,s — 1] and all variables x € V?, gp(w,j) = gpy(z, 7).
For s > 2 and s-frames f, g, the pair (f,g) is one-step compatible if:

For all terms t1,ty € T%[s — 2], Xt1 <5 Xto iff t1 <, t2 and

for all j € [0,s — 2] and all variables x € V?, gpp(w,j+1) = gp,(x,])-

Fix a number k£ > 0 and consider formulas of X-length k. A symbolic model is a sequence
p of frames such that for all i > 0, p(i) is an [i + 1], ,-frame and (p(i), p(i + 1)) is one-step
compatible. CLTL formulas can be interpreted on symbolic models, using symbolic semantics
= as explained next. To check if the i*! position of p symbolically satisfies the atomic
constraint ¢; < to (where t1,ts are look-ahead terms), we check whether t; < t5 according
to the i*" frame p(7). In formal notation, this is written as p,i =, t; < to if t; <p(i) ta-
For future-blind variables x,y, p,i s ® < y if gp,;)(2,0) < gp,;)(y,0). The symbolic
satisfaction relation =, is extended to all CLTL formulas of X-length & by induction on the
structure of the formula, as done for propositional LTL. To check whether p,i =4 t1 < to
in this symbolic semantics, we only need to check p(i), the i*" frame in p, unlike the CLTL
semantics, where we may need to check other positions also. In this sense, the symbolic
semantics lets us treat CLTL formulas as if they were formulas in propositional LTL and
employ techniques that have been developed for propositional LTL. But to complete that
task, we need a way to go back and forth between symbolic and concrete models.

Given a concrete model o, we associate with it a symbolic model p(o) as follows. Imagine
we are looking at the concrete model through a narrow aperture that only allows us to view
k + 1 positions of the concrete model, and we can slide the aperture to view different portions.
The i** frame of u(o) will capture information about the portion of the concrete model
visible when the right tip of the aperture is at position i of the concrete model (so the left
tip will be at ¢ — [4],). Formally, the total pre-order of the i*" frame is the one induced by
the valuations along the positions i — [4], to 4 of the concrete model. For every j € [0, [i],],
the function Ax.gp f(x, j) of the i'! frame is the gap function associated with the mapping
o(i— [il, +5) V"

For every concrete model, there is an associated symbolic model, but the converse is not
true. E.g., if every frame in a symbolic model requires Xx < z, the corresponding concrete
model needs to have an infinite descending chain, which is not possible in the constraint
system (N, <,=). We say that a symbolic model p admits a concrete model if there exists a
concrete model o such that p = u(o).

» Lemma 5 ([13, Lemma 3.1]). Let ¢ be a CLTL formula of X-length k. Let o be a concrete
model and p = u(c). Then 0,0 = ¢ iff p, k =5 .

A. Bhaskar and M. Praveen

4 Decidability Over Domains Satisfying the Completion Property

In this section, we prove that the CLTL realizability problem is decidable if the domain
satisfies a so called completion property. Let C be a set of constraints over a constraint system
D. We call C satisfiable if there is a valuation satisfying all the constraints in C'. For a subset
U C V of variables, C' | U is the subset of C consisting of those constraints that only use
terms built with variables in U. A partial valuation v’ is a valuation for the terms occurring
in C' | U. We say D has the completion property if for every satisfiable set of constraints
C and every subset U C V, every partial valuation v’ satisfying C' | U can be extended to
a valuation v satisfying C'. An example of a constraint system which does not satisfy the
completion property is (Z, <,=), since for the set of constraints C = {z < y,z < z,z < y}
over the set of variables V' = {x,y, z}, the partial valuation v: — 0,y — 1 satisfies the
constraints in C' involving and y, but cannot be extended to a valuation which satisfies the
constraints < z and z < y in C. The constraint systems (Q, <,=) and (R, <, =) satisfy the
completion property. Also, one can easily see that for every infinite domain D, the constraint
system (D, =) always satisfies the completion property.

It is known that CLTL satisfiability is decidable for constraint systems that satisfy the
completion property [13, 4]. The completion property of a constraint system is closely related
to the denseness of the underlying domain. A constraint system satisfies the completion
property if and only if the underlying domain is dense and open [13, Lemma 5.3].

Consider an example of a controller system that controls the temperature of water in a
water tank. Let x be a variable that denotes the temperature of the water. The controller
may be required to guarantee, for instance, that 20 < x < 100. In principle, the temperature
of water can be any real number. Hence x comes from a dense domain. So the domain over
which properties of such a system are specified satisfies the completion property (refer to [27]
for a detailed explanation of such a controller). In contrast, consider cloud-based elastic
systems [6], which we briefly described in the introduction. It is clear that both—the number
of resources allocated and the number of virtual machines running are natural numbers. As
the domain of natural numbers is not dense, we can conclude that constraint systems used
to model these cloud-based elastic systems do not satisfy the completion property.

Now we prove that for constraint systems of the form (D, <, =) that satisfy the completion
property, the CLTL realizability problem is decidable. This holds even when both players
have look-ahead variables, so we don’t need to treat future-blind variables separately. Hence,
we set V? to be empty and ignore gap functions in frames.

We reduce CLTL games to parity games on finite graphs, which are known to be decidable
(see, e.g., [19]). In a CLTL game, environment chooses a valuation for EV, which we track
in our finite graph by storing the positions of the new values relative to the values chosen in
the previous rounds. We do this with partial frames, which we define next.

» Definition 6 (Partial frames and compatibility). For s > 1, a partial s-frame pf is a
total pre-order <, on the set of terms T[s — 2] U{X* 'y | y € EV}. Fors > 0, an
s-frame f and an (s + 1)-partial frame pf, the pair (f,pf) is one step compatible if for all
t1,to € T%s — 1], t1 <j to iff t1 <pp to. For s > 2, an s-frame f and an s-partial frame pf,
the pair (f, pf) is one-step compatible if for all t1,ty € T[s — 2], Xt1 <y Xto iff t1 <pf to.
For s > 2, an s-partial frame pf and an s-frame f, (pf, f) is one step compatible if for all
ti,ta € Ts — 2l U{X*ly |y € EV}, t; <pf to iff t1 <y ta.

In the set of terms T%[s —2]U{X* !y | y € EV} used in partial frames, the terms in the first
set represent values chosen in the previous rounds and the terms in the second set represent
values chosen by environment for EV in the current round.

8:7

TIME 2022

8:8

Realizability Problem for Constraint LTL

Note that a partial s-frame is a total pre-order on the set of terms T¢%[s — 2] U {X* "1y |
y € EV} and an s-frame is a total pre-order on the set of terms T%[s — 1]. Let pf
be an s-partial frame and let f be an s-frame such that (pf, f) is one-step compatible.
Suppose C, = {tl = to | t1 =y tz} @] {tl < 2 | t1 <r tz} and Cy = {tl = 1o | t1 =pf
ta} U{t1 < ta | t1 <pf ta}. Clearly, C5 is a subset of C; skipping all those constraints
that contain system variables corresponding to the s position. If a finite sequence of
mappings (emy @ smq)...(ems_1 G smg_1)em, satisfies the pre-order <, then it satisfies the
constraints in C5. Since the constraint system satisfies the completion property, there must
exist a system mapping sm; for the system variables at position s such that the sequence of
mappings (em; @ smq)...(ems @ smy) satisfies the constraints in Cy and hence, also satisfies
the pre-order <. Thus, we have the following proposition:

» Proposition 7. Given s > 1, suppose (emy @ smy)...(em; @ sm;)em is a sequence of
mappings, where emy,...,em;,em € EM, smy,...,sm; € SM, pf is the s-partial frame
induced by em and the previous (s — 1) mappings in the sequence, and f is an s-frame
such that (pf, f) is one-step compatible (where i > s). If the constraint system satisfies the
completion property, then em can be extended to a mapping em @& sm such that f is the
s-frame associated with em @ sm and the previous (s — 1) mappings in the sequence.

We know that any LTL formula ¢ can be converted to an equivalent non-deterministic Biichi
automaton with an exponential number of states in the size of ¢ in EXPTIME [30]. Now,
every non-deterministic Biichi automaton B with n states can be converted to a deterministic
parity automaton [15, Chapter 1] with number of states exponential in n and number of
colours polynomial in n [21, Theorem 3.10]. Using these results, it is easy to see that given a
CLTL formula ¢, we can construct a deterministic parity automaton A4 with set of states @
and with number of colours d, accepting the set of all sequences of frames that symbolically
satisfy ¢, such that |@Q] is double exponential in the size of ¢ and d is exponential in the size
of ¢. Now we design parity games to simulate CLTL games.

» Definition 8. Let ¢ be the CLTL formula defining the winning condition for a CLTL
game and k be its X-length. Let F denote the set of all s-frames for s € [0,k]. Let
Ay be a deterministic parity automaton accepting the set of all sequences of frames that
symbolically satisfy ¢, with Q) being the set of states, qr € @ being the initial state and d being
the number of colours. We define a parity game with environment vertices Vo = {(f,qr) |
fis an s-frame, 0 < s < k}U{(f,q) | f is a (k+1)-frame,q € Q}. The set of system vertices
is Vo ={(f,qr,pf) | f is an s-frame, 0 < s < k, pf is an (s + 1)-partial frame} U{(f,q, pf) |
fis a (k+1)-frame, pf is a (k + 1)-partial frame}. There is an edge from (f,q) to (f,q, pf)
if (f,pf) is one-step compatible, f is an s-frame for some s and pf is a partial [s + 1] (k+1)"
frame. There is an edge from (f,qr,pf) to (g,qr) if (pf,g) is one step compatible and g
is an s-frame for s € [1,k]. There is an edge from (f,q, pf) to (9,4") if (pf,g) is one-step
compatible, g is a (k4 1)-frame and Ay goes from q to ¢’ on reading g. Vertices (f,q) and
(f,q, pf) get the same colour as q in the parity automaton Ay. The initial vertex is (L, qr),
where 1 is the trivial 0-frame.

The edges of the parity game above are from Vs to V. or vice-versa. They are designed such
that gy is the only state used for the first k rounds, where the frames will be of size at most
k (this is because for the system to win in a play of the parity game generating a frame
sequence p, we only require that the sequence p[k, co) symbolically satisfy ¢, according to
Lemma 5). For the first (k + 1) frame, an edge from a system vertex of the form (f, gz, pf)

A. Bhaskar and M. Praveen

to an environment vertex of the form (g,¢’) is taken and from then on, we track the state of
the parity automaton as it reads the sequence of frames contained in the sequence of vertices
that are chosen by the players in the game.

» Lemma 9. For a CLTL game over a constraint system satisfying the completion property
with winning condition given by a formula ¢, system has a winning strategy iff she has a
positional winning strategy in the parity game given in Definition 8.

Proof idea. For every play in the CLTL game, there is a corresponding play in the parity
game, but the converse is not true in general, since only the order of terms are tracked in
the parity game and not the actual values. For constraint systems satisfying the completion
property, Proposition 7 implies that there exist valuations corresponding to all possible
orderings of terms, so the converse is also true. <

» Theorem 10. The CLTL realizability problem over constraint systems that satisfy the
completion property is 2EXPTIME-complete.

Proof. From Lemma 9, this is effectively equivalent to checking the existence of a winning
strategy for system in a game. Now, checking if system has a winning strategy in the parity
game (constructed using A,) can be achieved in O(n'°8?) time where n is the number of
states in the game graph [9]. Now, by our construction, n = |Q| x |F|. We know, |F| is the
number of total pre-orders on V', for which 2(kIVD? ig a crude upper bound. This means that
|F| is exponential in the size of ¢ and hence, overall we get a 2EXPTIME upper bound for
our realizability problem. We also know that the realizability problem for LTL is complete for
2EXPTIME [23]. Thus, the CLTL realizability problem over constraint systems satisfying
the completion property is also 2EXPTIME-complete. |

We know that a positional winning strategy in the parity game for a player, if it exists, can
be implemented by a deterministic finite state transducer. Since D satisfies the completion
property, consider a resource-bounded Turing machine M, which can, given an environment
mapping em as described in Proposition 7, extend it to a mapping em @ sm such that the
order f imposed by the em & sm and the previous s — 1 mappings over the set of all terms
extends the order pf imposed by em and the previous s — 1 mappings. Now, for implementing
the winning strategy for a player in a CLTL game, we use the deterministic finite state
transducer corresponding to the parity game given in Definition 8. For every input of a
partial frame pf by environment in a round, the transducer returns a frame f for system
that extends pf. The transducer along with the machine M implements the winning strategy
for system in a given CLTL game, if it exists.

Note that as we saw above, the constraint systems (N, =) and (Z,=) (with just equality
and no linear order) also satisfy the completion property. So, it follows that the CLTL
realizability problem over these constraint systems is also decidable.

5 Decidability of single-sided CLTL games over (Z, <, =)

We consider games where environment has only future-blind variables, while the system

has both future-blind and look-ahead variables. We call this single-sided CLTL games.

So, in a single-sided game, EV = EV® and SV = SV’ U SV Given a CLTL formula
¢, the single-sided realizability problem is to check whether system has a winning
strategy in the single-sided CLTL game whose winning condition is ¢. We only consider the
constraint system (Z, <,=) and show that the single-sided realizability problem is decidable
over (Z,<,=). We do this in two stages. In the first stage, we reduce it to the problem

8:9

TIME 2022

8:10

Realizability Problem for Constraint LTL

of checking the non-emptiness of a set of trees satisfying certain properties. These trees
represent system strategies. In the second stage, we show that non-emptiness can be checked
using tree automata techniques.

Let G be the set of gap functions associated with mappings of the form EV® — Z. For
s > 1, an s-frame g and a function gp € G, the pair (gp,g) is gap compatible if for all
z,y € EVY, gp(z) — gp(y) = gpy(x,5 —1) — gp,(y, s — 1). Intuitively, the gaps that frame g
imposes between E V? variables in its last position are the same as the gaps imposed by gp.
We now have the following proposition (refer to the arXiv version of the paper for the proof).

» Proposition 11 (gap compatibility). For s > 1, an s-frame g and a function gp € G,
suppose the pair (gp, g) is gap compatible. If gp is the gap function associated with a mapping
em: EV® = Z, it can be extended to a mapping em @ sm: V® — 7 such that)\:r.gpg(ac7 s—1)
s the gap function associated with em & sm.

Let ¢ be the CLTL formula defining the winning condition of a single-sided CLTL game
and let k£ be its X-length. Let F be the set of all s-frames for s € [0,k]. For technical
convenience, we let F include the trivial O-frame L = (<, gp,), where <, is the trivial
total pre-order on the empty set and gp, is the trivial function on the empty domain.

» Definition 12 (Winning strategy trees). A strategy tree is a function T: G* — F such
that for every node n € G*, T'(n) is a [|n[l,,-frame and for every gp € G, (T'(n),T(n - gp))
is one-step compatible and (gp,T(n - gp)) is gap compatible. A function L is said to be a
labeling function if for every node n € G*, L(n): V — Z is a mapping of the variables in
V. For an infinite path m in T, let T(x) (resp. L(w)) denote the infinite sequence of frames
(resp. mappings) labeling the nodes in 7, except the root node €. A winning strategy tree is a
pair (T, L) such that T is a strategy tree and L is a labelling function satisfying the condition
that for every infinite path w, T(n) = p(L(7)) and T(7),k =5 ¢.

The last condition above means that T'() is the symbolic model associated with the concrete
model L(7) and that it symbolically satisfies the formula ¢.

Two concrete models may have the same symbolic model associated with them, if they
differ only slightly, as explained next. Two concrete models o1, 09 are said to coincide on V¢
if 01(i) | V@ = 09(i) | V@ for all i > 0. They are said to coincide on V® up to gap functions
if for every i > 0, the same gap function is associated with oy (i) | V® and o5(i) [V. The
following result follows directly from definitions.

» Proposition 13 (similar concrete models have the same symbolic model). If two concrete
models coincide on V® and they coincide on V' up to gap functions, then they have the same
symbolic model associated with them.

The following result accomplishes the first stage of the decidability proof, reducing the
existence of winning strategies to non-emptiness of a set of trees. A detailed proof of this
result can be found on the arXiv version of the paper with the same title.

» Lemma 14 (strategy to tree). System has a winning strategy in the single-sided CLTL
game with wining condition ¢ iff there exists a winning strategy tree.

Proof idea. If environment chooses a mapping em: EV® — Z in the CLTL game, the
corresponding choice in the tree T is to go to the child gp, the gap function associated with
em. System responds with the mapping L(gp) | SV for the look-ahead variables. For the
future-blind variables SV’ system chooses a mapping that ensures compatibility with the

A. Bhaskar and M. Praveen

frame T'(gp). This will ensure that system’s response and L coincide on V' and coincide
on VP up to gap functions, so Proposition 13 ensures that both have the same symbolic
model. The symbolic model symbolically satisfies ¢ by definition of wining strategy trees
and Lemma 5 implies that the concrete model satisfies ¢. <

Given a tree G* — F, a tree automaton over finite alphabets can check whether it is
a strategy tree or not, by allowing transitions only between one-step and gap compatible
frames. However, to check whether it is a winning strategy tree, we need to check whether
there exists a labeling function L, which is harder. One way to check the existence of such a
labeling function is to start labeling at the root and inductively extend to children. Suppose
there are two variables x, y at some node and we have to label them with integers. There may
be many variables in other nodes whose labels should be strictly between those of x,y in the
current node. So our labels for z,y in the current node should leave a gap large enough to
accommodate others that are supposed to be in between. Next we introduce some orderings
we use to formalize this.

A node variable in a strategy tree T is a pair (1, z) where 1 is a node and x € V% is a
look-ahead variable. The tree induces an order on node variables as follows. Suppose 7 is a
node, T'(n) is an s-frame for some s and 7, is an ancestor of 1 such that the difference in
height h = |n| — |n.| between the descendant and ancestor is at most s — 1. For look-ahead
variables x,y € V¢, recall that the term X! represents the variable x in the last position of
the frame T'(n), and X*~ 1~y represents the variable y at h positions before the last one. We
say (1, 2) Er (10, y) (vesp. (na,y) Er (n,2)) if X7 o <pey X571y (vesp. X571y <r,
X*71z). In other words, for the variables and positions captured in the frame T(n), Cr
is same as the total pre-order <p,). We define (n,2) Cr (1a,y) (resp. (n4,y) Cr (1,7))

if (n,2) Cr (1a,y) and (na,y) L7 (0,7) (vesp. (1a,y) Cr (n,2) and (9, 2) L7 (14,y)). We

define C% to be the reflexive transitive closure of C7 and C7- to be the transitive closure of Ty

Note that C% and C7F can compare node variables that are in different branches of the tree
also, though they are not total orders. We write (11, z) C% (72,y) (resp, (71,2) CF (12,9))
equivalently as (12,y) 2% (n1,2) (resp. (n1,2) 33 (12,9)). By definition, (1, z) T (12, v)

(vesp.(n2,y) T (m,2)) if (n1,2) CF (2, y) and (n2,y) E7 (1, 2) (vesp. (n2,y) T (m,)
and (m1,2) Z% (n2,y)). CT is irreflexive and transitive.

» Definition 15 (Bounded chain strategy trees). Suppose T is a strategy tree, n,n’ are two
nodes and z,y € V® are look-ahead variables such that (n,z) C4 (n',y). A chain between
(n,z) and (1',y) is a sequence (n1,71)(n2,x2) -+ (N,) such that (n,z) CF (n1,21) T
(N2, 2) °F -+ TF (e, 2) TF (1, y). We say r is the length of the chain. The strategy tree
T is said to have bounded chains if for any two node variables (n,x) and (n',y), there is a
bound N such that any chain between (n,x) and (n',y) is of length at most N.

» Lemma 16. A strategy tree T has a labeling function L such that (T, L) is a winning
strategy tree iff T has bounded chains.

The above lemma characterizes those strategy trees that are winning strategy trees. This
is the main technical difference between CLTL games and games with register automata
specifications [28, 14]. Since register automata can compare values that are arbitrarily far
apart, the corresponding characterization of symbolic structures that have associated concrete
structures is more involved compared to Lemma 16 above.

Detecting unbounded chains is still difficult for tree automata — to find longer chains,
we may have to examine longer paths. This difficulty can be overcome if we can show that
longer chains can be obtained by repeatedly joining shorter ones. We now introduce some

8:11

TIME 2022

8:12

Realizability Problem for Constraint LTL

notation and results to formalize this. For a node n and an ancestor 7,, T'(14,7) is the
sequence of frames T'(n,) - --T(n) labeling the path from 7, to 7. A node 7, is said to occur
within the influence of (74,n) if 71 occurs between 7, and n or n; is an ancestor of 7, and
[na| — || < s—1, where s is the size of the frame T'(n,). The following result follows directly
from definitions.

» Proposition 17 (ldentical paths induce identical orders). Suppose nodes n,n' and their
ancestors 1,1, respectively are such that T'(ne,n) = T(n,,n'). Suppose n1,1ns occur within
the influence of (N, n) and 0}, 1% occur within the influence of (n),,n') such that |n| — |m| =
'] — |n1] and |n| — |n2|l = 0’| — |h|. For any look-ahead variables z,y, (m,x) °F (n2,y)

(resp. (m,x) Er (n2,9)) iff (m, =) C7 (12,9) (vesp. (m, @) Cr (1,9))-

For a node 7, the subtree T), rooted at 7 is such that for all o', T,,(n/) = T(n- 7). A tree
T is called regular if the set {7}, | n € G*} is finite, i.e., there are only finitely many subtrees
up to isomorphism. Two nodes 7,7’ are said to be isomorphic if T;, = T;y.

» Lemma 18 (Pumping chains in regular trees). Suppose T is a regular tree. Then T
has unbounded chains iff there exists an infinite path containing two infinite sequences

(7717 SC), (7727 :L’), (773’ $) ... and (nlla y)a (7’/23 y)v (néa y) ... such that Ni+1 (resp. 7’2+1) is a
descendant of n; (resp. n}) for all i > 1 and satisfy one of the following conditions.

(m,z) CF (nx) Crq (z2)Cf-- (puz) 37 (pe,x) 35 (ns,x) 35 -
&~ &~ &~
lﬂﬂ E E or] Ll
(n,y) IF (my,y) Ip (n5,y) 37 - (my) Cp () CF (m5,y) Cp -

Proof idea. We can choose a chain that is long enough to contain two isomorphic nodes.
The path between them can be repeated infinitely. Proposition 17 will imply that this infinite
path contains an infinite chain as required. |

Lemma 18 says that if a regular tree has unbounded chains, it will have an infinite
path containing an infinite chain. The infinite sequence of the first (resp. second) kind
given in Lemma 18 is called an infinite forward (resp. backward) chain. Now we design
a tree automaton A, whose language L£(Ay) is an approximation of the set 7 = {T |
3L, (T, L) is a winning strategy tree} such that £(Ay4) is non-empty iff 7 is. Hence, the
single-sided CLTL realizability problem is equivalent to checking the non-emptiness of £(Ag).
The tree automaton A, is the intersection of three automata AS™, Aj)ymb and A" all of
which read |G|-ary trees labeled with letters from F. The automaton Af;r accepts the set of
all strategy trees, Azymb accepts the set of all trees each of whose paths symbolically satisfies
the formula ¢ and Aé)hai“ accepts the set of all trees that do not have any infinite forward or
backward chains. Construction of these automata are explained in detail in Appendix B.

» Lemma 19. The system player has a winning strategy in the single-sided CLTL(Z,<,=)
game with winning condition ¢ iff L(Ag) is non-empty.

Proof. Suppose there is a winning strategy for the system player in single-sided CLTL(Z, <
,=) game with winning condition ¢. By Lemma 14, there exists a winning strategy tree,
say (T, L). Since, T is a strategy tree, T € L(A%*"). We know that every branch of T' must
symbolically satisfy ¢ and hence, T’ € £(.Azymb). Further, since T has the labelling function
L, Lemma 16 implies that T has bounded chains and thus, it cannot have any infinite forward
or backward chains. So T € L(A). Thus, T € L(A,).

Conversely, suppose Ay accepts a tree T. It is known that if the language of a tree
automaton is non-empty, it contains a regular tree [20, Corollary 8.20]. Although this result

A. Bhaskar and M. Praveen

holds for tree automata that read infinite binary trees as inputs, the proofs can be suitably
modified to work for tree automata that read |G|-ary trees. Hence we can conclude that
Ay must accept a regular tree 7”. Since, T” € L(Ay), every branch of 7" must symbolically
satisfy ¢, T’ must be a strategy tree and it cannot have any infinite forward or backward
chains. Thus, by Lemma 18, 7’ must have bounded chains and hence by Lemma 16, 7" must
have a labelling function L’ such that (77, L') is a winning strategy tree. Hence, by Lemma 14
the system player has a winning strategy in the single-sided CLTL(Z, <,=) game. <

Note that £(Ag) is not equal to the set 7 = {7 | 3L, (T, L) is a winning strategy tree}
in general. As seen in the above proof, we can only guarantee that the regular trees in £(A,)
are in 7. The non-regular trees in £(A,;) need not be in 7.

Using the previous lemma, we get the following decidability result.

» Theorem 20. The single-sided realizability problem for CLTL over (Z,<,=) is 2EXPTIME
-complete.

Proof. Given a formula ¢, Lemma 19 implies that it is enough to construct the tree automaton
Ay and check it for non-emptiness. From the description of the construction in Appendix B,
we can see that AST, Azymb and A;hai“ can be constructed in 2EXPTIME in the size of ¢.
Thus, the automaton A, can be constructed in 2EXPTIME. Now, checking non-emptiness
of a parity tree automaton is decidable and the upper bound stated in [20, Corollary 8.22 (1)]
implies that the single-sided realizability problem for CLTL over (Z, <, =) is in 2EXPTIME.
Now, the realizability problem for LTL is 2EXPTIME-complete [23] and hence, the single-
sided realizability problem for CLTL over (Z, <, =) must also be 2EXPTIME-complete. <

6 Discussion and Future Work

We have seen in this paper that the CLTL realizability problem is decidable over domains
satisfying completion property and that the single-sided CLTL realizability problem is
decidable over integers with linear order and equality. But both these problems have a high
complexity (both are 2EXPTIME-complete). It would be interesting to see if there are
expressive fragments of CLTL with lower complexity, like the fragments of LTL studied
in [22], which work on practical examples.

We believe that single-sided CLTL games over the domain of natural numbers (N, <, =) are
also decidable. In [13], the authors extend the automata-characterization for the satisfiability
problem for CLTL over the integer domain to the domain of natural numbers. A similar
extension of the tree-automata characterization for the single-sided games over integers to
one for single-sided games over the naturals seems possible, although the details need to be
worked out.

Despite the decidability result that we have for the single-sided CLTL games over integers,
the language of the tree automaton that we construct in this paper is an approximation of
the set of all winning strategy trees. We do not have a machine-theoretic representation for
winning strategies yet, and this is an interesting direction for future exploration.

—— References

1 Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Deciding monotonic games. In
International Workshop on Computer Science Logic, pages 1-14. Springer, 2003.

2 Parosh Aziz Abdulla, Richard Mayr, Arnaud Sangnier, and Jeremy Sproston. Solving parity
games on integer vectors. In International Conference on Concurrency Theory, pages 106—-120.
Springer, 2013.

8:13

TIME 2022

8:14

Realizability Problem for Constraint LTL

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Rajeev Alur and Thomas A Henzinger. A really temporal logic. Journal of the ACM (JACM),
41(1):181-203, 1994.

Philippe Balbiani and Condotta Jean-Francois. Computational complexity of propositional
linear temporal logics based on qualitative spatial or temporal reasoning. In International
Workshop on Frontiers of Combining Systems, pages 162—176. Springer, 2002.

Béatrice Bérard, Benedikt Bollig, Mathieu Lehaut, and Nathalie Sznajder. Parameterized
synthesis for fragments of first-order logic over data words. In FoSSaCS, pages 97-118, 2020.
Marcello M Bersani, Domenico Bianculli, Schahram Dustdar, Alessio Gambi, Carlo Ghezzi,
and Srdan Krsti¢. Towards the formalization of properties of cloud-based elastic systems. In
proceedings of the 6th international workshop on principles of engineering service-oriented and
cloud systems, pages 38-47, 2014.

Ashwin Bhaskar and M. Praveen. Realizability problem for constraint 1tl, 2022. doi:10.
48550/ARXIV.2207.06708.

Mikotaj Bojariczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Transactions on Computational Logic (TOCL),
12(4):1-26, 2011.

Cristian S Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasi-polynomial time. SIAM Journal on Computing, 51(2):STOC17-152,
2020.

Alonzo Church. Logic, arithmetic, and automata. Journal of Symbolic Logic, 29(4), 1964.
Stephane Demri, Deepak D’Souza, and Régis Gascon. Temporal logics of repeating values.
Journal of Logic and Computation, 22, October 2012. doi:10.1093/logcom/exr013.
Stéphane Demri and Ranko Lazié¢. Ltl with the freeze quantifier and register automata. ACM
Trans. Comput. Logic, 10(3), April 2009. doi:10.1145/1507244.1507246.

Stéphane Demri and Deepak D’Souza. An automata-theoretic approach to constraint Itl.
Information and Computation, 205(3):380-415, 2007. doi:10.1016/j.ic.2006.09.006.

Léo Exibard, Emmanuel Filiot, and Ayrat Khalimov. Church synthesis on register automata
over linearly ordered data domains. arXiv preprint arXiv:2004.12141, 2020.

Erich Gradel and Wolfgang Thomas. Automata, logics, and infinite games: a guide to current
research, volume 2500. Springer Science & Business Media, 2002.

Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329-363, 1994.

Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-logic-based reactive
mission and motion planning. IEEE transactions on robotics, 25(6):1370-1381, 20009.

Orna Kupferman, Nir Piterman, and Moshe Vardi. From liveness to promptness. Formal
Methods in System Design, 34, April 2009. doi:10.1007/s10703-009-0067-z.

René Mazala. Infinite Games, pages 23—-38. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002. doi:10.1007/3-540-36387-4_2.

Frank Niefiner. Nondeterministic tree automata. In Automata Logics, and Infinite games,
pages 135—152. Springer, 2002.

Nir Piterman. From nondeterministic biichi and streett automata to deterministic parity
automata. Logical Methods in Computer Science, 3, 2007.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive (1) designs. In International
Workshop on Verification, Model Checking, and Abstract Interpretation, pages 364—380.
Springer, 2006.

Amir Pnueli and Roni Rosner. On the synthesis of an asynchronous reactive module. In
International Colloquium on Automata, Languages, and Programming, pages 652—671. Springer,
1989.

M Praveen, Diego Figueira, and Stephane Demri. Reasoning about data repetitions with
counter systems. Logical Methods in Computer Science, 12, 2016.

M Praveen, Anirban Majumdar, and Diego Figueira. Playing with repetitions in data words
using energy games. Logical Methods in Computer Science, 16, 2020.

https://doi.org/10.48550/ARXIV.2207.06708
https://doi.org/10.48550/ARXIV.2207.06708
https://doi.org/10.1093/logcom/exr013
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1016/j.ic.2006.09.006
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/3-540-36387-4_2

A. Bhaskar and M. Praveen

26 Alexander Rabinovich. Decidable extensions of church’s problem. In International Workshop
on Computer Science Logic, pages 424—439. Springer, 2009.

27 Jean-Francgois Raskin. An introduction to hybrid automata. In Handbook of networked and
embedded control systems, pages 491-517. Springer, 2005.

28 Pierre-Alain Reynier, Emmanuel Filiot, and Léo Exibard. Synthesis of data word transducers.
Logical Methods in Computer Science, 17, 2021.

29 A Prasad Sistla, Moshe Y Vardi, and Pierre Wolper. The complementation problem for biichi
automata with applications to temporal logic. Theoretical Computer Science, 49(2-3):217-237,
1987.

30 Moshe Y Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Symposium on Logic in Computer Science, pages
322-331. IEEE Computer Society, 1986.

A Details of Section 4

Proof of Lemma 9. (=) Suppose system has a winning strategy st in the CLTL game. We
show that system has a winning strategy in the parity game. Plays in the parity game
are of the form (L,qr)(L,qr, pf1)(f1,q1)(f1, @1, pf2)(f2 q2) -~ (fis @is P ig1) (fi1s Gin) - -
where (f;, pf;11) and (pf; 1, fi+i) are one-step compatible for all i. For any such play =,
let m [4 be (L, qr)(L,qr, pf1)(f1, @) (f1, a1, pf2)(f2,q2) - (fis Gis Df 41)- Let Il = {7 [i |
7 is a play in the parity game,¢ > 0}. We will show the existence of a function st,: II —
Ve x EM x SM satisfying some properties. Such a function can be used as a strategy by
system in the parity game: for a play = [¢, system’s response (fi+1,¢i+1) is given by st,,
ie., stp(m [4) = ((fit1, Git1), emit1, smiq1). For such plays that system plays according
stp, let frames(7 [4) be the symbolic model fifs - - fit1 and let maps(m | 4) be the concrete
model (em1 ® smq)(ema @ sma) -« (emir1 B $Miq1)-

We will show that there is a function st, such that for all plays = that system

plays according to st, and all 4 > 0 , maps(m [¢) is a concrete model resulting
from system playing the CLTL game according to st and frames(w [i) = p(maps(m |
i)). We will define such a function st, by induction on i. We assume this has
been done for ¢ and show how to extend to ¢ + 1. We have 7 [(i + 1) =
(Lyan) (L, ar, pf1)(fr, @) (1 aus pf2) (2, 92) - - (fiy @i PF 1) (fit1s Gir)
(fi+15Gi+1,Pfiyo)- By induction hypothesis, fifz--- fiy1 = p(maps(w | 4)). Since the
constraint system satisfies the completion property and (fi41,pf; o) is one-step compatible,
by Proposition 7, there is a mapping em: EV — D such that the symbolic model induced
by maps(7 [i) - em is fifo - fix1 - pfipo. Let sm: SV — D = st(maps(r | i) - em)
be system’s response in the CLTL game according to st. Let f;;2 be the frame such that
fife- fix1fiva = p(maps(m [4)-(em@sm)). Set st,(m [(i+1)) to be ((fite2, ¢ite), em, sm),
where ¢;12 is the state Ay reaches after reading f; 4o in state g;+1. Now, maps(w | (i + 1))
is a concrete model resulting from system playing the CLTL game according to st and
frames(w | (i + 1)) = p(maps(7 [(i +1))), as required for the inductive construction.

Let 7 be any infinite play in the parity game that system plays according to st,. Then
maps(m) is a concrete model resulting from system playing the CLTL game according to st
and frames(7) = p(maps(7)). Since st is a winning strategy for system, maps(),0 = ¢. We
infer from Lemma 5 that frames(maps(7)), k =5 ¢. Hence, the sequence of states g7, ¢1, g2, - - -
contained in the sequence of vertices that are visited in 7 satisfy the parity condition of
Ag. Hence, 7 itself satisfies the parity condition and hence system wins 7. Hence, st, is a
winning strategy for system in the parity game.

8:15

TIME 2022

8:16

Realizability Problem for Constraint LTL

(<) Suppose st, is a positional strategy for system in the parity game. We will show
that system has a winning strategy st in the CLTL game. We will define st by induction on
the number of rounds played. For the base case, suppose environment starts by choosing a
mapping em;: EV — D. In the parity game, let environment go to the vertex (L, qr, pf;)
in the first round, where pf; is the 1-partial frame associated with em;. Let (f1,q1) =
stp((L, g1, pf1)) be system’s response according to st,. Since (pfy, f1) is one-step compatible
and the constraint system satisfies the completion property, by Proposition 7, em; can
be extended to a mapping em; @ smi: V — D such that f; is the frame associated with
emy @ smy. Set st(emq) to be smy. After ¢ rounds of the CLTL game, suppose (em; @
smq) - - - (em;@®sm;) is the resulting concrete model and let (L, qr)(L, qr, pf1)(f1,q1) - (fi, @)
be the corresponding play in the parity game. Suppose environment chooses em;y; in the
next round. Let pf;.q, fir1,qiy1,8m;y1 be obtained similarly as in the base case. Set
st((emy ® smy)--- (em; ® sm;) - em;y1) to be smyiq.

Suppose (em; & smq)(ema @ sms) -+ - is an infinite play in the CLTL game that system
plays according to st. There is a play (L, qr)(L, qr, pf1)(f1,01)(f1,q1,pf2)(f2,q2) -+ in
the parity game that is winning for system. This satisfies the parity condition, hence A,
accepts the symbolic model fifs---. The symbolic model fifs--- is the one associated
with (em; @ smy)(ema @ smg) -+ by construction of st, so Lemma 5 implies that (em; &
smy)(ema @ smz)---,0 E ¢. Hence, st is a winning strategy for system in the CLTL
game. <

B Details of Section 5

Proof of Lemma 16. (=) Suppose T has a labeling function L such that (7, L) is a winning
strategy tree. Since for every infinite path 7, T'(w) = u(L(x)), L should respect the relation
o, ie., if (n,2) CF (7', y), then L(n)(z) < L(n')(y). Hence, any chain between (1, z) and
(', y) cannot be longer than L(n")(y) — L(n)(z).

(<) Suppose T has bounded chains. We construct a labeling function L such that (T, L)
is a winning strategy tree. At every node 7, we choose mappings for future-blind variables
V? such that the gap function associated with L(n) | V? is 9pr(n)- These choices can be
done independently for every node. For look-ahead variables, we construct L for every node
by induction on depth of the node such that for any node variables (n,), (n,y) such that
(n,z) 4 (', y) and L(n), L(n') have been constructed, L(n')(y) — L(n)(x) is at least as large
as the length of the longest chain between (1, x) and (1',y). For the base case n = ¢, let L(n)
be the trivial mapping on the empty domain.

For the induction step, consider a node 7. Let (n,z0),(n,21),... be the node
variables from 1 and let (n1,y1), (72,42),... be the node variables from all the ancestors
of 7. Arrange them in ascending order according to C7%. In this arrangement, suppose
(M, yi) (1, 25) (0, @j41) - - (0, 1) (Mig1, Yi+1) is a contiguous sequence of node variables from 7
surrounded by ancestor node variables (1;,y;) and (111, ¥i+1). Set L(n)(z;) to be the sum
of L(n;)(y;) and the length of the longest chain between (n;,y;) and (n,z;). Set L(n)(z;+1)
to be the sum of L(n)(z;) and the length of the longest chain between (1, z;) and (1, j4+1).
Continue this way till (n,2;). The value set for L(n)(z;) will be less than L(7;4+1)(Yi+1)
minus the length of the longest chain between L(n)(z;) and (141, yi+1), since by induction
hypothesis, L(n;+1)(vix1) — L(n:)(y;) is large enough to accommodate the longest chain
between (n;,y;) and (7,41, yi+1) (note that any chain between (1, z;) and (1, z;4+1) can be
concatenated with any chain between (n,2z;4+1) and (1, z;4+2) and so on to form a chain
between (7;,y;) and (7,11, ¥y:+1)). This way, all contiguous sequence of node variables from 7
can be mapped satisfactorily. This completes the induction step and hence the proof. <«

A. Bhaskar and M. Praveen

Proof of Lemma 18. (<) We consider the first case; the other case is similar. Since
(mi;®) Er (nj,y) CF (i_1,y) Tp -+ Tp (n,y) for all i > 1, we have (n;,x) CF (01, y)-
Hence, (n1,2) TF (n2,2) TF -+ TF (i, 2) T (), y) for all i > 1, demonstrating that there
are chains of unbounded lengths between (11, x) and (0], y).

(=) We show the existence of a short segment that can be repeated arbitrarily many
times to get the required infinite path. We show that there are node variables along a path
satisfying the following conditions:

(lex) E; (7727I) (771’35) j; (77271‘)
& &
14 G o ai o
(n,y) 7 (m3,9) (n,y) Cr (15,9)

2. the nodes are arranged as 1}, 11,15, 72 in ascending order of depth, |n}| > k,
3. 11,72 are isomorphic, 7, n4 are isomorphic and |n1| — |ni| = |n2| — 94| < k.

The node variables mentioned above are as shown below.

pattern pattern repeats
(nhx) (7727:1:) (T]g,m)
root
(1, y) (n2,y) (73, y)

We first prove that the existence of such nodes is sufficient. Since 71,7y are isomorphic, for
any sequence of frames starting from 7, the same sequence also starts from 7,. Hence there
is a descendant 73 of 72 such that 79,73 are isomorphic and T(nl, n2) = T(ng, n3). The nodes
71, M1, My, M2 occur within the influence of (11, 72) and the nodes 14, 2, N, N3 occur within
the influence of (12, 73). In the first case in the first condition above, (11, x) E;F (n2,x) Cr

(nh,y) Tk (n},y) and Proposition 17 implies that (12, z) IZ} (n3,x) Cr (n5,y) Th (05, y).

This pattern can be repeated arbitrarily many times, proving that there are node variables
as stated in the first case of the lemma. The other case is similar.

Now we will show the existence of the short segment as claimed above. Since T is regular,
the number of non-isomorphic subtrees of T is finite, say x. Let N = x2|V%|2. We will show
subsequently that there is a chain of the form (n,x1) TF (n1,y1) CF (2,y2) CF -+ Ch
(nN+27yN+2) E;“ (77/7$2) or (7771'1) j; (771791) :I; (772»y2) :I; j; (77N+27yN+2) j;’
(1, x2), where n; is a descendant of both 1 and n’ of depth at least (k + 1) more than
both 7 and 1’ and 7,11 is a descendant of 7; of depth at least (k + 1) more than n; for
all i € [1, N + 1] (we call such chains straight segments). We will only consider the first
case here; the other case is similar. Now (nyi2,yn+2) Th (/,22) and nyio is a deep
descendant of ' with ny,...,7y4+1 (which are themselves at least (k + 1) positions apart
from each other) in between. Recall that C7 is the transitive closure of Ty and Cr holds
only between node variables that are at most k positions apart. Hence, there must be

intermediate node variables between (nny2, yn+2), (7', 22) so that (yie2, ynt+2) Th (7, 22).

For every i € [1, N + 1], there must be some intermediate node variable (7}, ;) such that
i 35 an ancestor of 7, il — [nf] < k and (i, uns2) T (13!) T (7,22). Since
il = Imil < K, either (ni,y:) Tr (mj,9;) or (my;) Er (mi,;y:) (the frame T'(n;) spans
7, also; hence the frame imposes an order between the node variables). If (n},y.) Cr
(mi,yi), then (mi,yi) T7 (Mn+2,yn+2) Cp (0f,y) Er (mi,y:) implies that (n;,y:) C7
(i, i), contradicting the fact that 1 is irreflexive. Hence, (n;,v:) Cr (1}, v.). Consider

the sequence (nla yl)v (nlla yi)a (nQa y2)a (77,2a yé)a R (WN+17 yN-‘rl)v (77§\/'+17 y§v+1)- Since N =
k2|V%|?, there are i,j such that 7; (resp. n}) is isomorphic to 7; (resp. n;), yi = y; and
y; = yj. The node variables (1, v:), (15, i), (i, yi), (1}, y;) satisty the conditions required for

(m,2), (n2,), (N}, y), (nh,y) respectively in our claim about the existence of a short segment.

8:17

TIME 2022

8:18

Realizability Problem for Constraint LTL

Next we will show that there are chains that go arbitrarily deep in a single branch.
Suppose there are chains of unbounded lengths between (11, 21) and (72, z2). All such chains
must pass through the least common ancestor (say 7,) of n1,7m2. For some variable z,,
there must be chains of unbounded lengths between either (1, 1) and (14, z,) or between
(N4, z4) and (n2,22). Say there are unbounded chains between (n1,z1) and (1,,2,); the
other case is similar. There is only one path between 7; and 7),, so there must be chains of
unbounded lengths that go beyond this path and come back. There must be node variables
(m,y1), (1, y2) or (Na,y1), (Na,y2) such that there are chains of unbounded lengths between
them. We will consider (11, y1), (1, y2); the other case is similar. For the chains of unbounded
lengths starting from (11, y1) and ending at (n2,¥2), let n be the highest node (nearest to the
root) visited. There must be (1, 21), (1), 22) such that there are chains of unbounded lengths
between them that only visit descendants of 7. If there is a bound (say B) on how deep the
chains go below 7 and come back, the number of nodes that can be visited is bounded by
the number of node variables that occur in the subtree of height B rooted at 1 (a node can
occur at most once in a chain; otherwise, it will contradict the fact that E? is irreflexive).
Hence, for any bound B, there are chains that go deeper than B and come back.

Next we prove that there is no bound on the number of node variables in a single
path that belong to a chain. For this, first suppose that there is a node n and a chain
goes down one child of 7 starting from (7, z), comes back to 7 via (n,y) and goes down
another child. Then we have (n,z) CF (n,y) or (n,y) CF (n,z) (see the illustration below; if
(n,z) T4 (M, 2') T (M, ') T4 (n,y) in the branch, we have (n,z) CF (n,y) in the main
path by transitivity). Hence, every such node contributes a node variable in a chain.

branching nodes

N

root (n,z) CF (n,y) Cr .
main path
branches

(m,2") Tr (6,y) Cr

So if there is no bound on the number of such branching nodes along a path, then there is no
bound on the number of node variables in a single path that belong to a chain, as required.
Suppose for the sake of contradiction that the number of such branching nodes along any
path is bounded (by say B;) and the number of node variables in a chain along any one
path is also bounded (say by Bz). Then any chain is in a subtree with at most |G|5* leaves
(and hence at most as many paths) and at most Bz node variables along any path, so the
length of such chains is bounded. Hence, either the number of branching nodes along a path
is unbounded or the number of node variables in a chain along a path is unbounded. Both
of these imply that the number of node variables in a chain along a path is unbounded, as
required.

A chain that goes deep down a path may make u-turns (first descend through descendants
and then go to an ascendant or vice-versa) multiple times within the branch. We would like
to prove that there is no bound on the length of chain segments that don’t have u-turns
(these are the straight segments that we need). Suppose for the sake of contradiction that
there is a bound on the length of straight segments. Then there is no bound on the number of
straight segments in a path, since we have already shown that the number of node variables
in a chain along a path is unbounded. There can be only boundedly many distinct straight
segments in a path of bounded depth, so the straight segments go deeper without any bound.

A. Bhaskar and M. Praveen

If there is a straight segment and another one occurs below the first one, the first straight
segment can be extended by appending node variables of the second one, as can be seen in
the illustration below.

first straight segment

root

first segment extended

second straight segment

This contradicts the hypothesis that length of straight segments is bounded. This shows that
there are unboundedly long straight segments, completing the proof. |

B.1 Construction of A,

The automaton .Af;r has set of states F. In state f, it can read the input label f and go
to states f1,..., fig| in its children, provided (f, f;) is one-step compatible and (gp;, f;) is
gap-compatible for all i € [1,|G]|]. All states are accepting in this Biichi automaton. This
automaton just checks that every pair of consecutive frames along every branch of the tree
is one-step compatible and gap-compatible and hence verifies that the tree accepted is a
strategy tree. Now, the size of the set of states of Ajfr is |F|, and the size of the transition

set is |F| x |Z]| x |.7-"\|G| where the input alphabet ¥ = F. Since, G is the set of all gap
functions associated with mappings of the form F vt~ Z, by definition of G its range must
be {0,...,|EV®?} implying |G| < |EVb|(|EVb|2). Also, from the definition of F, we get
|F| < 20VD* 5 ([V2|IV*I*)% where k is the X-length of ¢. Thus, the size of A" is double
exponential in the size of ¢.

The automaton Azymb checks that every path in the input tree is accepted by a Biichi
symb

automaton B 5 , which ensures that the input sequence symbolically satisfies the formula ¢.
Given the Biichi automaton B ymb e first convert it to some deterministic parity automaton

C ;ymb in exponential time in the size of B} Yb and from that, it is easy to construct the parity
tree automaton Azymb with the same size as C (;ymb. The Biichi automaton B~ ™ peeds to
check symbolic satisfiability — whether an atomic formula is satisfied at a position can be
decided by checking just the current frame, just like propositional LTL. Hence the standard

Biichi automaton construction for LTL can be used to construct B (; b EXPTIME (30].
Thus, the parity tree automaton A;ymb can be constructed in 2EXPTIME in the size of ¢.

Next, we describe the construction of the parity tree automaton A;hain. It needs to
check that there are no infinite forward or backward chains in any of the paths. For this we
will first construct a Biichi word automaton that accepts all words not having an infinite
forward or backward chain, convert it into a deterministic parity automaton C(‘;hai“ and then
as before, construct A;hai“ with the same size as C;hai“. This Biichi word automaton can
be constructed by complementing the Biichi automaton B which accepts all words that
contain an infinite forward chain or an infinite backward chain in EXPTIME in the size of

Bebain [99] The construction of such a Biichi automaton Bai" is already described in [13].

The size of Bhi" (as described in [13]) is polynomial in the size of the CLTL formula ¢ and
hence, the size of .A‘é,hai“ is double exponential in the size of ¢.

8:19

TIME 2022

	1 Introduction
	2 Preliminaries
	3 Symbolic Models
	4 Decidability Over Domains Satisfying the Completion Property
	5 Decidability of single-sided CLTL games over Ilinord
	6 Discussion and Future Work
	A Details of Section 4
	B Details of Section 5
	B.1 Construction of Aphi

