
The Tail-Recursive Fragment of Timed Recursive
CTL
Florian Bruse #

School of Electrical Engineering and Computer Science, Universität Kassel, Germany

Martin Lange #

School of Electrical Engineering and Computer Science, Universität Kassel, Germany

Etienne Lozes #

Laboratoire d’Informatique, Signaux et Systèmes de Sophia-Antipolis,
Université Côte d’Azur, France

Abstract
Timed Recursive CTL (TRCTL) was recently proposed as a merger of two extensions of the well-
known branching-time logic CTL: Timed CTL on one hand is interpreted over real-time systems
like timed automata, and Recursive CTL (RecCTL) on the other hand obtains high expressiveness
through the introduction of a recursion operator. Model checking for the resulting logic is known to
be 2-EXPTIME-complete.

The aim of this paper is to investigate the possibility to obtain a fragment of lower complexity
without losing too much expressive power. It is obtained by a syntactic property called “tail-
recursiveness” that restricts the way that recursive formulas can be built. This restriction is known
to decrease the complexity of model checking by half an exponential in the untimed setting. We
show that this also works in the real-time world: model checking for the tail-recursive fragment of
TRCTL is EXPSPACE-complete. The upper bound is obtained by a standard untiming construction
via region graphs, and rests on the known complexity of tail-recursive fragments of higher-order
modal logics. The lower bound is established by a reduction from a suitable tiling problem.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics; Theory of
computation → Program specifications

Keywords and phrases formal specification, temporal logic, real-time systems

Digital Object Identifier 10.4230/LIPIcs.TIME.2022.5

1 Introduction

Models of systems that incorporate real-time aspects play an important role in the specification
and verification of the behaviour of embedded systems. Correct functioning of such systems
often depends on the satisfaction of constraints that involve concrete times like “the wing flaps
are adjusted within 5msec of a change in vertical angle reported by the gyrometer sensor.”

Timed automata [3] are a standard model for the abstraction of the behaviour of real-time
systems which has been studied well, including ways to extend their expressiveness, cf. [4, 7].
The desired behaviour of such dynamic systems is typically specified using temporal logics
that formalise statements about the evolution of such a system’s behaviour in time. For
example, the above property in a formal syntax yields a formula like AG(chng → AF≤5adj).

This formula belongs to the real-time temporal logic known as Timed Computation
Tree Logic (TCTL) [2]. It extends the well-known simple branching-time temporal logic
CTL – essentially a language to formalise nested reachability queries – with the ability to
make assertions about the duration of time that passes along the runs of the system. The
model checking problem for TCTL (over systems specified as timed automata) is PSPACE-
complete [2], i.e. more difficult than the polynomial-time model checking for CTL (over finite

© Florian Bruse, Martin Lange, and Etienne Lozes;
licensed under Creative Commons License CC-BY 4.0

29th International Symposium on Temporal Representation and Reasoning (TIME 2022).
Editors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:florian.bruse@uni-kassel.de
mailto:martin.lange@uni-kassel.de
mailto:etienne.lozes@univ-cotedazur.fr
https://doi.org/10.4230/LIPIcs.TIME.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The Tail-Recursive Fragment of Timed Recursive CTL

transition systems) [15]. Its expressive power in terms of structural properties is limited:
similar to CTL, properties specifiable in TCTL are nested reachability queries expressed by a
combination of a universal or existential quantification over an execution path and a simple
temporal property of the form “something happens eventually / always / until something
else happens”.

For many verification tasks, such limited expressiveness far below regularity (i.e. definable
in MSO) is sufficient. Yet in practice, for example when systems are composed of parallel and
interacting components, additional expressiveness raised to full regularity may be needed [23].
In other situations, even full regularity is not enough as there is no formula of a temporal logic
of regular expressiveness that e.g. describes the lack of underflows in FIFO or LIFO buffers
of unbounded size [21]. One may argue that in practice, a buffer is always bounded but
this makes the correctness property depend on the implementation. It should be clear that
correctness properties should be formalisable independently of the system that is supposed
to satisfy them, for otherwise formal verification could easily be achieved in general.

In order to extend the applicability of formal verification for real-time systems in situations
where correctness is a structurally more complex property than what fits into TCTL, we
have recently proposed Timed Recursive CTL (TRCTL) [12] which merges two extensions
of CTL: the aforementioned one by real-time aspects that lifts CTL to TCTL is combined
by an extension to properties that are specifiable using recursive property transformers
(in the form of first-order functions1). This is taken from the untimed world where logics
of high expressiveness have been studied for the same reasons as laid out here [18]. The
high expressiveness comes at a price, both in terms of computational complexity as well
as pragmatics. The syntax of logics like HFL [24] is based on the modal µ-calculus and a
typed λ-calculus, and is therefore fairly inaccessible to non-experts and thus not usable at
the forefront in system design and verification. Recursive CTL (RecCTL) has therefore been
proposed to allow for a reasonable extension of expressive power beyond regularity whilst
retaining as much intuitive syntax from CTL as possible.

The model checking problem for TRCTL over timed automata is 2EXPTIME-complete [12].
This may seem odd because that of TCTL is “only” PSPACE-complete, and the extension
facilitated by recursive predicates (as least fixpoints of first-order functions) should raise the
complexity intuitively by one exponential and result in EXPSPACE-completeness. However,
the recursion operator lifts the restriction to a fixed system of nested reachability queries
built into CTL’s syntax. Hence, said recursion operator not only introduces predicates with
unbounded recursion in the world of first-order functions, but also for ordinary predicates
in temporal formulas. Thus, adding the recursion operator implicitly turns the base logic
from TCTL into a timed variant of the modal µ-calculus. Such temporal logics which can
express unbounded recursion – here in the form of least and greatest fixpoints of predicates –
typically have model checking complexities that are complete for time classes.

The timed µ-calculus does not feature as prominently in the literature as its untimed
counterpart, the modal µ-calculus [17], probably due to the combination of real-time operators
and explicit fixpoint operators which may be unsellable to an ordinary user in formal
verification. There are also syntactic variants in the literature that could be covered by the
generic term timed µ-calculus [2, 16]. Going further into this is beyond the scope of this
paper; we simply note that “the” timed µ-calculus (obtained from TRCTL as the restriction
without first-order elements) has an EXPTIME-complete model checking problem [1] and
can therefore be seen as a fragment of TRCTL of lower complexity, yet a regular one.

1 See the formal definition of the syntax in Sect. 2.2 for an explanation of what “first-order” means here.

F. Bruse, M. Lange, and E. Lozes 5:3

In this paper we investigate the question after the existence of a fragment of TRCTL whose
expressiveness remains reasonably beyond regularity and whose model checking complexity
is genuinely lower than that of full TRCTL (up to the current knowledge in complexity
theory). We employ a syntactic restriction called tail-recursiveness which limits the ways
that recursive properties can be defined. In untimed logics, tail-recursiveness leads to lower
complexity [13], and it is characteristic of space rather than time complexity. The result
in this paper therefore fits into what can be expected from previous work on timed and
non-regular specification languages: the model checking problem for tail-recursive TRCTL
is “only” EXPSPACE-complete, i.e. exactly one exponential worse than that of its untimed
counterpart. The upper bound is established making use of the well-known region-graph
abstraction [3]. The lower bound is established by a reduction from a suitable tiling problem.

The paper is organised as follows. In Sect. 2 we recall preliminaries on timed automata and
TRCTL. In Sect. 3 we introduce tail-recursiveness, define the fragment under consideration
here and argue why it can be model checked in exponential space. In Sect 4 we present the
more elaborate lower bound construction. Sect. 5 contains some remarks on further work.

2 Preliminaries

2.1 Timed Automata
Timed Transition Systems. A timed labelled transition system (TLTS) over a finite set
Prop of atomic propositions (and a single, anonymous2 action) is a T = (S,−→, s0, λ) s.t.

S is a set of states containing a designated starting state s0,
−→ ⊆ S × S ∪ S × R≥0 × S is the transition relation, consisting of two kinds:

discrete transitions of the form s−→ t for s, t ∈ S, and
delay transitions of the form s

d−→ t for s, t ∈ S and d ∈ R≥0, satisfying s 0−→ t iff s = t

for any s, t ∈ S, and

∀d, d1, d2 ∈ R≥0,∀s, t ∈ S : d = d1+d2 and s d−→ t ⇔ ∃u ∈ S s.t. s d1−−→u and u
d2−−→ t ,

λ : S → 2Prop labels each state with the set of atomic propositions that hold true in it.

The extended transition relations d=⇒, d ∈ R≥0, are obtained by padding discrete transitions
with delays:

s
d=⇒ t iff ∃d1, d2 ∈ R≥0, s′, t′ ∈ S s.t. s d1−−→ s′, s′ −→ t′, t′

d2−−→ t and d = d1 + d2

A trace is a sequence π = s0
d0=⇒ s1

d1=⇒ . . .

An (untimed) labeled transition system (LTS) is a TLTS over an empty delay transition
relation. It is finite if the set of its states is finite.

Clock Constraints. Let X = {x, y, . . .} be a set of R≥0-valued variables called clocks. By
CC (X) we denote the set of clock constraints over X which are conjunctive formulas of
the form ⊤ or x ⊕ c for x ∈ X , c ∈ N and ⊕ ∈ {≤, <,≥, >,=}. We write x ∈ [c, c′] for
x ≥ c ∧ x ≤ c′, and similarly for open interval bounds.

A clock evaluation is an η : X → R≥0. A clock constraint φ is interpreted in a clock
evaluation η in the obvious way:

2 CTL-based logics are usually oblivious to action labels, whence we restrict ourselves to a single action.

TIME 2022

5:4 The Tail-Recursive Fragment of Timed Recursive CTL

η |= ⊤ holds for any η,
η |= φ1 ∧ φ2 if η |= φ1 and η |= φ2,
η |= x ⊕ c if η(x) ⊕ c for ⊕ ∈ {≤, <,≥, >,=}.

Given a clock evaluation η, d ∈ R≥0 and a set R ⊆ X , we write η+d for the clock evaluation
that is defined by (η+d)(x) = η(x) + d for any x ∈ X , and η|R for the clock evaluation that
is defined by η|R(x) = 0 for x ∈ R and η|R(x) = η(x) otherwise.

Timed Automata. Again, since the CTL-based logics considered here are oblivious of action
names, we introduce timed automata (TA) over a single anonymous action. Such a TA over
Prop is an A = (L,X , ℓ0, ι, δ, λ) where

L is a finite set of so-called locations containing a designated initial location ℓ0 ∈ L,
X is a finite set of clocks,
ι : L → CC (X) assigns a clock constraint, called invariant, to each location,
δ ⊆ L × CC (X) × 2X × L is a finite set of transitions. We write ℓ g,R−−−→ ℓ′ instead of
(ℓ, g, R, ℓ′) ∈ δ. In such a transition, g is called the guard, and R ⊆ X are the reset clocks
of this transition,
λ : L → 2Prop labels each location with the set of atomic propositions that hold true in it.

The index m(A) of A is the largest constant occurring in its invariants or guards. Its size is

|A| = |δ| · (2 · (logL) + |X | + logm(A)) + |L| · 2 · (log |X | + logm(A)) + |L| · |Prop|.

Note that the size is only logarithmic in the value of constants used in clock constraints as
they can be represented in binary notation for instance.

TA are models of state-based real-time systems. The semantics, resp. behaviour of a TA
A = (L,X , ℓ0, ι, δ, λ) is given by a TLTS TA over the time domain R≥0 as follows.

The state set is S = {(ℓ, η) | ℓ ∈ L, η ∈ (X → R≥0) such that η |= ι(ℓ)}, consisting of
pairs of locations and clock evaluations that satisfy the location’s invariant.
The initial state is s0 = (ℓ0, η0) where η0(x) = 0 for all x ∈ X .
Delay transitions retain the location and (possibly) advance the value of clocks in a state:
for any (ℓ, η) ∈ S and d ∈ R≥0 we have (ℓ, η) d−→(ℓ, η+d) if η+d′ |= ι(ℓ) for all d′ ≤ d.
Discrete transitions possibly change the location and reset clocks: for any (ℓ, η) ∈ S,
ℓ′ ∈ L and R ⊆ X we have (ℓ, η) −→(ℓ′, η|R) if there is g ∈ CC (X) such that (ℓ, g, R, ℓ′) ∈ δ

and η |= g as well as η|R |= ι(ℓ′).
The propositional label of a state is that of its underlying location: λ(ℓ, η) = λ(ℓ).
Clock constraints hold in a state if they hold for its clocks: (ℓ, η) |= χ iff η |= χ.

In other words, a TA finitely represents a TLTS. However, not every TLTS is finitely
representable. For a detailed introduction to timed automata we refer to the literature [3, 6].
Henceforth, we will only consider TLTS that arise from a TA. Consequently, we can always
assume that the interpretation of clock constraints like x ≤ 4 in a TLTS is well-defined.

The Region Abstraction. There is a well-known abstraction of a TLTS TA into a finite LTS
known as the region graph RA [3], used in decidability proofs for decision problems on TA.

In the following we only consider TLTS TA that arise from some TA A = (L,X , ℓ0, ι, δ, λ).
The region abstraction is a mapping of such R≥0-TLTS into finite LTS. It is based on an
equivalence relation ≃m, for m ∈ N, on clock evaluations defined as follows.

F. Bruse, M. Lange, and E. Lozes 5:5

η ≃m η′ iff for all x ∈ X : η(x) > m and η′(x) > m

or ⌊η(x)⌋ = ⌊η′(x)⌋ and frac(η(x)) = 0 ⇔ frac(η′(x)) = 0
and for all y ∈ X with η(y) ≤ m and η′(y) ≤ m :

frac(η(x)) ≤ frac(η(y)) ⇔ frac(η′(x)) ≤ frac(η′(y))

Here, frac(r) denotes the fractional part of a real number. It is easy to see that ≃m is
indeed an equivalence relation for any m. It is lifted to states of the TLTS TA in the most
straight-forward way: (ℓ, η) ≃m (ℓ′, η′) iff ℓ = ℓ′ and η ≃m η′.

We write [η]m for the equivalence class of η under ≃m and likewise for [(ℓ, η)]m. When
m is clear from the context we may also drop it and simply write [η], resp. [(ℓ, η)].

Note that ≃m is a bisimulation on the state space of TA w.r.t. the labelling and discrete
and delay transitions: if (ℓ, η) ≃m (ℓ′, η′) then we have λ([(ℓ, η)]) = λ([(ℓ′, η′)]) and for
every ℓ′′, η′′: [(ℓ, η)] −→[(ℓ′′, η′′)] iff [(ℓ′, η′)] −→[(ℓ′′, η′′)]. This is what makes it usable for an
abstraction of the uncountable state space of TA into a finite discrete state space as follows.

The region graph RA of the TA A is the LTS (S,−→, s0, λ) obtained as the quotient of
TA under ≃m with m := m(A), together with an additional collapse of delay transitions for
different delays into a single “some-delay” value τ . Its components are as follows.

S = {[(ℓ, η)]m | ℓ ∈ L, η ∈ (X → R≥0), η |= ι(ℓ)}, and s0 = [(ℓ0, η0)]m.
Discrete transitions from one state to another are obtained by possibly delaying, then
performing a discrete transition, then possibly delaying again afterwards. We have

[(ℓ, η)]m −→[(ℓ′, η′)]m if there are d, d′ ∈ R≥0, η̂, η̂′ s.t. (ℓ, η) d1−−→(ℓ, η̂) −→(ℓ′, η̂′) d2−−→(ℓ′, η′)

for any ℓ, ℓ′ ∈ L, η, η′ ∈ X → R≥0.
The propositional labelling is given as λ([(ℓ, η)]m) = λ(ℓ, η) = λ(ℓ).

▶ Proposition 1 ([3]). Let A be a TA over n clocks with ℓ locations and of index m. Then
RA is an (untimed) LTS of size ℓ · 2O(n(log n+log m)), i.e. exponential in |A|, and there is a
path s0

d0=⇒ s1
d1=⇒ . . . in TA iff there is a path [s0] −→[s1] −→ . . . in RA.

2.2 Timed Recursive Computation-Tree Logic
TRCTL incorporates the two extensions from CTL to TCTL introducing real-time and to
RecCTL introducing recursive predicates.

Syntax. Let Prop be a set of atomic propositions. Let V1 = {x, y, . . .} be a set of propos-
itional variables and V2 = {F , . . .} be a set of so-called recursion variables. Formulas of
TRCTL are given by the following grammar.

φ ::= q | x | χ | ¬φ | φ ∨ φ | φ ∧ φ | E(φ UJ φ) | A(φ UJ φ) | Φ(φ, . . . , φ)
Φ ::= F | rec F(x1, . . . , xk). φ

where q ∈ Prop, J denotes an interval in R≥0 with rational bounds, χ is a clock constraint,
and x, xi, yi ∈ V1, F ∈ V2.

The (sub-)formulas derived from φ are called propositional, those derived from Φ are called
first-order. We allow further Boolean operators like tt, ff, →, etc. and temporal operators like
EF, EG, AF, AG, etc. through their standard abbreviations. We also avoid parentheses through
the standard precedence rules and remove empty tuples, i.e. we write rec F .φ instead of
(rec F().φ)(). We also consider rec F .φ as a propositional rather than a first-order formula,
because it results from the application of a first-order formula to zero arguments.

TIME 2022

5:6 The Tail-Recursive Fragment of Timed Recursive CTL

The grammar above allows non-well-formed formulas to be constructed, too. These need
to be excluded using a stronger mechanism than context-free grammars. We refer to [12] for
a formal definition of a (simple but tedious) typing system for well-formedness and introduce
this notion intuitively instead: a well-formed formula obeys the following two restrictions.

The numbers of formal parameters and arguments coincide, i.e. in a formula of the form
(rec F(x1, . . . , xn).φ)(ψ1, . . . , ψm) we must have n = m. However, arguments can also
be passed to a first-order formula of the form F where the parameters are not visible.
We assume that each recursion variable is bound by the recursion operator at most once,
whence, we can associate with each (bound) F an arity given by the number of parameters
in its definition. This must then also match the number of arguments passed to it.
The recursion operator is explained semantically via least fixpoints in function lattices.
For this to be well-defined, each recursive call must occur positively in its defining body.
Violations occur, e.g., in F().¬F or in rec F .(rec G(x).¬x)(F) where both recursion
variables F and G appear to be used positively only, resp. not at all. Hence, a simple
criterion like occurrence under an even number of negation symbols does not capture
well-definedness as negative occurrences can be hidden in function applications.

Semantics. Formulas of TRCTL are interpreted over timed transition systems T =
(S,−→, s0, λ) (as arising from TA for example). A propositional formula φ denotes a set of
states JφKT ⊆ S, while a first-order formula with k formal parameters denotes a function
JΦKT : (2S)k → 2S that maps k sets of such states to a set of states. The semantics is given
inductively, which is why environments α are needed in order to explain the meaning of
free variables. Formally, α maps propositional variables x to sets of states and first-order
variables F to functions as stated above. The semantics is then defined via

JqKT
α := {s | q ∈ λ(s)} JxKT

α := α(x) JχKT
α = {s | s |= χ}

J¬φKT
α := S \ JφKT

α Jφ ∨ φKT
α := JφKT

α ∪ JψKT
α Jφ ∧ φKT

α := JφKT
α ∩ JψKT

α

and

JE(φ UJ φ)KT
α := {s | there is a path π = s, . . . s.t. T , π |=α φ UJ ψ}

JA(φ UJ φ)KT
α := {s | for all paths π = s, . . . we have T , π |=α φ UJ ψ}

JΦ(φ1, . . . , φn)KT
α := JΦKT

α (Jφ1KT
α , . . . , JφnKT

α)
JFKT

α := α(F)

Jrec F(x1, . . . , xn). φKT
α :=

l
{f : (2S)n → 2S | for all T1, . . . , Tn ⊆ S we have

JφKT
α[F7→f,x1 7→T1,...xn 7→Tn] ⊆ f(T1, . . . , Tn)}

where (
d

i∈I fi)(T1, . . . , Tn) :=
⋂

i∈I fi(T1, . . . , Tn) and the satisfaction of a U-property by
a non-Zeno path π = s0

d0=⇒ s1
d1=⇒ s2

d2=⇒ . . . in the TLTS is given as follows. We have
π |=α φ UJ ψ iff

∃i ≥ 0,∃d ∈ [0, di],∃s′ s.t. si
d=⇒ s′ and (

i∑
h=0

di) + d ∈ J and s′ ∈ JψKT
α and

∀j < i,∀d′ ∈ [0, dj],∀s′ s.t. sj
d′

=⇒ s′ we have s′ ∈ Jφ ∨ ψKT
α and

∀d′ ∈ [0, d),∀s′ s.t. si
d′

=⇒ s′ we have s′ ∈ Jφ ∨ ψKT
α .

F. Bruse, M. Lange, and E. Lozes 5:7

This may seem odd at first glance but it is in fact standard to interpret an Until operator in
this way in the real-time setting, cf. [16, 6]. The sum on the right-hand side is simply used
to express the reaching of some state in the future by delay steps along multiple transitions,
hence the time that passes up to this step is being added up. The other possibly unintuitive
feature is the seemingly weak assertion on s′ (under the universal quantification) to satisfy φ
or ψ, where one may assume it to have to satisfy φ. First note that allowing such “earlier”
moments to also satisfy ψ instead of φ is not harmful to the intuitive meaning of φ U ψ:
if ψ holds at some point but also earlier as well, then it still holds at some point. In a
discrete-time setting there is always a first moment at which ψ holds, and it suffices when all
moments before that satisfy φ. However, in the real-time setting there may not be a first
moment for ψ to hold. So it is in fact necessary to allow these earlier moments to also satisfy
the Until’s right argument. This ensures, for example, that a formula like E(x=0 U x>0) is
satisfiable. Note that, after a moment satisfying x = 0, there is no first moment satisfying
x > 0, but intuitively the formula should be satisfiable.

For a closed formula φ and arbitrary s ∈ S we write T , s |= φ if s ∈ JφKT for arbitrary
s ∈ S, and also T |= φ if T , s0 |= φ.

Examples. TRCTL is able to express structurally complex properties of real-time systems.
We give two examples which show how the recursion operator can be used to create combin-
ations of temporal formulas that could not be expressed in logics of regular expressiveness
only.

▶ Example 2. Consider a TLTS over propositions including {r, g} which signal the request
of a resource respectively the granting of such a request. The TRCTL formula(

rec F(x, y).(x → y) ∧ F(EF≤2x, EF≤3y)
)
(r, g)

then states “whenever a request is issued after at most 2n time units, then a grant is issued
after at most 3n time units (for the same n)”. To see that this is indeed expressed by
the formula one only needs three principles: (i) unfolding of recursive definitions and (ii)
replacement of parameter variables by arguments, and (iii) the temporal simplification rule
EF≤cEF≤dψ ≡ EF≤c+dψ. To keep the calculation short we identify F with rec F(x, y).(x →
y) ∧ F(EF≤2x, EF≤3y). Then we have

F(r, g) ≡ (r → g) ∧ F(EF≤2r, EF≤3g)
≡ (r → g) ∧ (EF≤2r → EF≤3g) ∧ F(EF≤2EF≤2r, EF≤3EF≤3g)
≡ (r → g) ∧ (EF≤2r → EF≤3g) ∧ F(EF≤4r, EF≤6g)
≡ (r → g) ∧ (EF≤2r → EF≤3g) ∧ (EF≤4r → EF≤6g) ∧ F(EF≤6r, EF≤9g)

≡ · · · ≡
∧

n≥0
EF≤2nr → EF≤3ng.

▶ Example 3. Take a timed system in which a scheduler governs the execution of two
different processes. We assume that proposition pi, i ∈ {1, 2} holds whenever process i is
active, that at any moment exactly one of them holds, and that the execution of a process
takes between 1 and 2 time units. A possible trace of such a system w.r.t. only the two
propositions p1 and p2 in real time is represented by the bottom line in this picture:

TIME 2022

5:8 The Tail-Recursive Fragment of Timed Recursive CTL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
observation:

p1 p2 p1 p2 p1 p2

schedule 2:
schedule 1:

The trace divides the real line into intervals during which either of the two propositions
in question holds. Clearly, from this trace we can derive that the scheduler finished an
execution of process 1 and started an execution of process 2 at time point 3.5 for example.
Only the switches from one process to another are visible. The finishing of process i and
subsequent rescheduling of it cannot be inferred from these propositions alone. All that
is known, for example, is that between time moments 0 and 3.5, there must have been at
least 2 and at most 3 executions of process 1. Thus, such a trace can result from several
different schedulings; two of these are depicted here on top. In schedule 1, three instances of
process 1 have been completed before time point 3.5, in schedule 2 only two of them have
been run, etc.

Now suppose that there is an additional constraint stating that at any moment, process 2
may never have been scheduled more often than process 1. Note that schedule 1 satisfies this
property but schedule 2 does not since, at time point 9.9, only three instances of process 1
have been completed but already four instances of process 2 are done.

The TRCTL formula

¬
((

rec F(x).E(p2 U≥1 x) ∨ E(p1 U≤2 F(F(x)))
)
(tt)

)
guarantees the absence of such faulty schedulings. It states that it is not possible to find
a path and its division into intervals of length at least 1, resp. at most 2, depending on
whether p1 or p2 holds at the moment, such that at some point the number of p2-intervals
has exceeded the number of p1-intervals seen so far.

To understand how this is expressed it is probably best to remember that the context-free
grammar F → b | aFF generates all (minimal) words w s.t. |w|b > |w|a but |v|b ≤ |v|a for
any prefix v of w. Note how the formula above follows exactly this structure. By unfolding
the recursion and replacing arguments successively, F(tt) can be seen to be equivalent to a
disjunction of nested EU-formulas like

E(p1 U≤2 E(p1 U≤2 E(p2 U≥1 E(p1 U≤2 E(p2 U≥1 E(p2 U≥1 E(p2 U≥1 tt)))))))

which is satisfied by the trace presented above as schedule 2 shows. Each such disjunct
demands one more occurrence of p2- than p1-intervals.

3 The Tail-Recursive Fragment of Timed Recursive CTL

3.1 The Syntactical Restriction
In functional programming, a definition of a recursive function is tail recursive if the return
value of a function is the return value of a recursive call without alterations. Tail-recursive
functions are often more efficient to evaluate since one does not need to remember intermediate
variable bindings. This concept also yields improved efficiency in the evaluation of formulas
defined via fixpoints, cf. e.g. [13, 9]. For this, it is crucial that the interplay between the
fixpoints and the recursive definitions is not too complex.

F. Bruse, M. Lange, and E. Lozes 5:9

∅ ⊢tr p ∅ ⊢tr x ∅ ⊢tr χ {F} ⊢tr F
∅ ⊢tr φ

∅ ⊢tr ¬φ
V ⊢tr φ1 V ′ ⊢tr φ2

V ∪ V ′ ⊢tr φ1 ∨ φ2

∅ ⊢tr φ1 V ⊢tr φ2

V ⊢tr φ1 ∧ φ2

∅ ⊢tr φ1 V ⊢tr φ2

V ⊢tr E(φ1 UJ φ2)
∅ ⊢tr φ1 ∅ ⊢tr φ2

∅ ⊢tr A(φ1 UJ φ2)

V ⊢tr Φ ∅ ⊢tr φ1 · · · ∅ ⊢tr φn

V ⊢tr Φ(φ1, . . . , φn)
V ⊢tr φ

V \ {F} ⊢tr rec F(x1, . . . , xm).φ

Figure 1 Derivation rules for establishing tail-recursiveness. The sets V and V ′ denote the set of
free fixpoint variables of the formula in question.

In our setting this means that recursion variables cannot appear in an operand setting,
which is the equivalent to the above stipulation that the return value of a function is the return
value of the recursive call, emphwithout alterations. Moreover, we also can have (almost) no
branching introduced by boolean alternation, so at most one subformula of a formula of the
form φ1 ∧ φ2 can have free recursion variables. If this is satisfied, the formula without free
variables can be evaluated first in a suitable model-checking procedure (cf. [13]) until the
recursion resumes in the other subformula. Note that U-formulas introduce hidden branching
through their definition. The reason for this stipulation is that nondeterminism and universal
nondeterminism introduce branching in the flow of a program if both branches contain
recursive calls. However, it is well-known that space complexity classes from PSPACE
and upwards admit free nondeterminism via Savitch’s Theorem [20], hence one kind of
nondeterminism can be mixed with recursive calls. Boolean alternation, however, can not be
mixed with recursion without breaking this property. Since we make use of Savitch’s Theorem
to relax the requirements on disjunctions, we restrict boolean alternation. Also, this means
that we have to restrict the use of negation, which would turn nondeterministic branching
into universal branching. The above considerations are condensed into the derivation system
in Fig. 1, giving the following definition:

▶ Definition 4. A TRCTL formula φ is called tail recursive if the statement V ⊢tr φ for
some, potentially empty, set of recursion variables V can be derived in the derivation system
given in Fig. 1. We write trTRCTL for the fragment of all tail-recursive formulas.

The derivation system in Fig. 1 is to be understood as follows: The set V in front of the
⊢ simply collects the set of free recursion variables of the subformula in question. For
example, the subformula p has no free recursion variables, since it is a proposition, and
neither does the subformula x, since x is not a recursion variable. The system also enforces
the above stipulations: a formula directly under a negation can have no free recursion
variables, but note that something like ¬F . p ∨ E(q UJ F) is permitted. Disjunctions can
contain free recursion variables on both sides, while conjunctions, including those introduced
by U formulas, may contain free variables only on one side of the conjunction. The reason
for this is that the subformula that is closed w.r.t. recursion can be evaluated first in a
non-recursive fashion, and then recursion can proceed in a tail-recursive fashion on the other
side. Hence, rec F .E(z < 3 U F) is tail-recursive, but rec F(x).F(p) ∧ F(x ∨ z ≤ 2) is not
since it contains the recursion variable F on both sides of the conjunction.

TIME 2022

5:10 The Tail-Recursive Fragment of Timed Recursive CTL

Finally, applications may not contain subformulas with free recursion variables on the
operand side. Hence, rec F(x).x ∧ F(F(E(z ≤ 3) U x)) is not tail recursive, and neither is
the formula constructed in Ex. 3. However, the one from Ex. 2 is tail recursive.

3.2 Model Checking in Exponential Space

Tail recursiveness can be applied to the untimed logic RecCTL resulting in the fragment
trRecCTL. Using the untiming construction we can then reduce the model checking problem
for trTRCTL over TA to that of trRecCTL (over an exponentially larger LTS) whose
complexity is not difficult to estimate.

▶ Theorem 5. Model checking trRecCTL is in PSPACE.

Proof. The model checking problem for (untimed, non-tail-recursive) RecCTL is known to
be EXPTIME-complete [11]. The argument for the upper bound uses a conceptually simple
polynomial translation into HFL1, the first-order fragment of Higher-Order Fixpoint Logic
whose model checking problem is known to be EXPTIME-complete [5]. The translation
from RecCTL to HFL1, when applied to a tail-recursive formula, also produces a formula of
tail-recursive HFL1. The model checking problem for this is known to be easier, namely only
PSPACE-complete [13], which establishes the claim. ◀

We now lift this to an upper bound for trTRCTL via standard constructions.

▶ Theorem 6. The trTRCTL model checking problem over TA is decidable in EXPSPACE.

Proof. Let φ ∈ trTRCTL and A be a TA not using the clock z. We construct an LTS Rφ
Az

by extending the original region graph RA for A to make clock values visible to the formula.
For each state [(ℓ, η)] and each c ≤ m(φ), add the proposition pz⊕c to λ([(ℓ, η)]) if
η |= z ⊕ c for ⊕ ∈ {≤, <,≥, >,=}.
For each state [(ℓ, η)] introduce a new state s[(ℓ,η)] with the sole label {rz}, and add
transitions [(ℓ, η)] −→ s[(ℓ,η)] −→[(ℓ, η|{z})].

The formula φz results from φ by replacing each subformula of the form
χ by pχ,
E(ψ1 U[c,d] ψ2) by EX(rz ∧ EXE((¬rz ∧ ψ1) U (¬rz ∧ pz∈[c,d] ∧ ψ2))),
A(ψ1 U[c,d] ψ2) by EX(rz ∧ EXA((¬rz → ψ1) U (¬rz → pz∈[c,d] ∧ ψ2))).

For open intervals on one side, the p-propositions are amended accordingly to pz>c etc.
We observe that φz is a formula of (untimed) tail-recursive RecCTL that is constructible

in time O(|φ|), and Rφ
Az is an (untimed) LTS of size at most (singly) exponential in |A| and

m(φ) and also constructible in such time. It is then standard to show, by induction on the
structure of φ, that TA |= φ iff Rφ

Az |= φz. This establishes an exponential reduction from
trTRCTL model checking to trRecCTL model checking and, thus, an EXPSPACE bound on
the former due to Thm. 5. ◀

4 An Exponential Space Lower Bound for Model Checking

The aim of this section is to provide a lower bound on model checking trTRCTL, matching
the exponential-space upper bound in Thm. 6. For this, we first introduce the exponential
corridor tiling problem ExpTiling, known to be EXPSPACE-complete.

F. Bruse, M. Lange, and E. Lozes 5:11

4.1 Exponential Space Complexity
A tiling system is a W = (T,H, V, tI , tF) s.t. T is a finite set of tile types, H,V ⊆ T × T are
two binary relations on T called horizontal, resp. vertical matching relation, and t0 and tfin
are two designated so-called initial and final tiles.

A C ⊆ N × N is called closed, if for all (i, j) ∈ C we have:
if i > 0 then (i− 1, j) ∈ C, and
if j > 0 then (i, j − 1) ∈ C.

A (valid) W-tiling of such a closed subspace (for the tiling system W above) is a τ : C → T

that satisfies the following properties.
τ(0, 0) = tI ,
for all (i+ 1, j) ∈ C we have (τ(i, j), τ(i+ 1, j)) ∈ H,
for all (i, j + 1) ∈ C we have (τ(i, j), τ(i, j + 1)) ∈ V , and
there are i, j s.t. τ(i, j) = tF .

The exponential corridor tiling problem (ExpTiling) is the following.

given: a tiling system system W = (T, H, V, tI , tF) and a number n encoded unarily
decide: is there an m and a valid W-tiling τ of the space [2n] × [m]?

In this case, we simply also say that there is a valid W-tiling on the 2n-corridor.
Note that |T |2n is an upper bound on the minimal m witnessing the existence of a

W-tiling. Also, we can always assume that tfin is placed in the final row m− 1, as any closed
subspace of a correctly tiled space which includes tfin can also be given a valid W-tiling.

Intuitively, the problem ExpTiling asks for the existence of a run of a nondeterministic,
exponential-space bounded Turing Machine such that the configurations are abstractly
represented as rows of tiles of width 2n. The vertical matching relation in the tiling assures
that each following configuration, resp. row, matches the one below according to a finite set
of rules (which can be used to model the local rewriting behaviour of a Turing Machine).
The horizontal matching relation is needed in order to assure that local transformations in a
Turing Machine configuration only happen in a single place, namely where the tape head
is located. A more detailed exposition and explanation of the connection between Turing
Machine runs and tilings can be found in [14, Sect. 11.1].

▶ Proposition 7 ([22]). The problem ExpTiling is EXPSPACE-complete.

We remark that ExpTiling is also EXPSPACE-hard when n is given in binary coding
but the upper bound would not hold anymore. Moreover, the reduction to model checking
trTRCTL presented below relies on the ability to write down clock constraints like x ≤ 2n − 1
in polynomial time using binary encoding. This would be rather difficult for n encoded
binarily.

4.2 The Reduction
Given a tiling system W = (T,H, V, tI , tF) with designated initial and final tiles tI , tF ∈ T ,
and a number n ∈ N encoded unarily, we construct – in time polynomial in |W| and n – a
timed automaton AW with some location t0, and a trTRCTL formula φW,n s.t.

TW , [(t0, x 7→ 0)] |= φW,n iff there is a valid W-tiling on the 2n-corridor

where TW is the TLTS associated with the timed automaton AW . The single clock x involved
in this construction is never used in the TA’s transitions or locations. Instead it only occurs
in φW,n in order to state that something happens along runs during the first 2n − 1 units.

TIME 2022

5:12 The Tail-Recursive Fragment of Timed Recursive CTL

In order to keep φW,n tail-recursive, we cannot mimic the reduction from a similar problem
showing 2-EXPTIME-hardness of model checking the full logic TRCTL. In that reduction,
the constructed formula employs a recursion subformula rec F(s, t). . . . with two parameters
s and t that encode, respectively, the indices of the coordinates of a tile. But then we would
have to state that the tile located at (s, t) matches its right neighbour horizontally and its
neighbour above vertically which leads to a body of the recursion formula, roughly containing
something like F(s′, t) ∧ F(s, t′) which renders the entire formula non-tail-recursive.

Instead, the trick is to construct φW,n such that it uses unary recursion formulas of the
form rec F(r) with a single propositional variable r only, interpreted as a set of states of
TW , encoding an entire row of a possible W-tiling. For this we simply let AW consist of |T |
many locations, arranged in a full clique such that, at any moment in time, a transition from
any t to any t′ (including t itself) is possible. We assume that T = {t0, . . . , tk−1} for some
k ∈ N, as we will need a total order on T later on. We also use T as atomic propositions and
let each location t satisfy the proposition t uniquely. Invariants or guards are not needed.
Hence, a run through TW can freely traverse through the locations in T and change between
them at any moment in time.

The crucial intuition for this reduction is the following: a valid W-tiling of the [2n] × [m]-
corridor exists for some m ≥ 1, iff there is a sequence R0, . . . , Rm−1 of rows, i.e. W-tilings of
the [2n] × [1]-corridor each, such that vertical matching is guaranteed between them. I.e. if
Ri = ti,0, . . . , ti,2n−1 and Ri+1 = ti+1,0, . . . , ti+1,2n−1 then (ti,j , ti+1,j) ∈ V for all j ∈ [2n].
Within each row, the horizontal matching relation needs to be obeyed of course.

The existence of such a sequence can be expressed by a recursion formula that, intuitively,
takes an initial row and, for as long as the current row is not final, generates vertically
matching successor rows and continues the search with one of them. For this we need to
encode such rows as formulas. Propositional formulas are interpreted as sets of states in TW ,
i.e. objects of the form [(t, x 7→ v)], since the locations are just the tiles from T and the only
clock that is used here is x. This gives rise to a canonical representation of such a row ri

as the set containing exactly the pairs (tij
, j) for j = 0, . . . , 2n − 1. For simplicity we write

(t, x) instead of [(t, x 7→ x)]. In the following, x will implicitly be understood as a value of
clock x. Moreover, we will write J·Kα for J·Kα

TW
.

▶ Definition 8. A propositional formula ψ is said to be a (representation of) a row candidate
(under α) if there are ti0 , . . . , ti2n−1 ∈ T s.t. JψKα = {(ti0 , 0), (ti1 , 1), . . . , (ti2n−1 , 2n − 1)}.

A row is such a row candidate that additionally satisfies: (tij
, tij+1) ∈ H for all j ∈ [2n−1].

Let first := t0 ∧ EF∗
=1(x = 2n−1) where EF∗

=1ψ := rec G.ψ ∨ EF=1G expresses that some
state satisfying ψ can be reached in an integer interval of time. It is satisfied by a state (t, x) iff
t = t0 and x ∈ [2n]. The second conjunct ensures that x must be an integer value. Hence, any
state in the set defined by first must combine these two properties. Since exactly the states
(t0, 0), . . . , (t0, 2n− − 1), satisfy both properties, first defines the set {(t0, 0), . . . , (t0, 2n − 1)}
or, likewise, it represents the row candidate t0, . . . , t0.

A row is a row candidate in which adjacent tiles match w.r.t. H. This is also easy to
express:

row(r) := AG≤2n−1
(
r →

∧
(t,t′)̸∈H

t → AG=1(r → ¬t′)
)

Here we use that AW forms a clique and uses no clocks. Hence, any state (t′, x′) of TW is
reachable from any state (t, x) for as long as x ≤ x′.

F. Bruse, M. Lange, and E. Lozes 5:13

▶ Lemma 9. Let α be an interpretation mapping the propositional variable r to a row
candidate α(r). Then (t0, 0) ∈ Jrow(r)Kα iff α(r) is in fact a row.

There is no reason other than notational canonicity to choose t0 as the location in which
row(r) is being evaluated. The statement also holds for any other location. What is important
for the following arguments is that it is evaluated in a state with clock value 0. In a state
(t, x) with x > 0 one simply cannot access all the tiles contained in a row candidate because
time only moves forward and states (t′, x′) with x′ < x are not reachable from (t, x).

The next construction is more involved. Ultimately, we want to enumerate all possible
row candidates in order to choose a next row in the iterative process described above. There
is a standard way of getting from one row candidate to a canonical next one. Starting with
the row candidate represented by first, we obtain the next one by incrementing a number
represented in base-|T | coding, making use of the total order on T given by the indices which
makes a row candidate ti0 , . . . , ti2n−1 as a base-|T | number with 2n many digits. However,
here we assume that the least significant digit is on the right, i.e. it is the one indexed 2n − 1.
The reason for this is that the value of a digit in an incremented number depends on the
values of the digits of lesser significance. In trTRCTL and a TA with no clock resets we can
only access the future, yet not the past. Letting earlier time moments represent digits of
higher significance allows for a simpler encoding of a base-|T | increment operation. Given
any row candidate Ri = ti,0, . . . , ti,2n−1, the next one Ri+1 is obtained using the well-known
mechanism of incrementing a number represented in base |T |:

ti+1,j =


t0 , if ti,h = tk−1 for all h = j, . . . , 2n − 1,
tm+1 , if ti,j = tm,m < k − 1 and ti,h = tk−1 for all h = j + 1, . . . , 2n − 1,
ti,j , if there is h > j s.t. ti,h ̸= tk−1.

This can straightforwardly be formalised as follows.

next(r) :=
(
t0 ∧ AG∗

=1(r → tk−1)
)

∨
(k−2∨

m=0
tm+1 ∧ EF=0(r ∧ tm)

)
∨

(k−1∨
m=0

tm ∧ EF=0(r ∧ tm)
)

∧ EF+
=1(r ∧ ¬tk−1)

where EF+
=1ψ := EF=1EF∗

=1ψ and AG∗
=1ψ := ¬EF∗

=1¬ψ.

▶ Lemma 10. Define a sequence of sets of states in TW as follows: R0 := JfirstK, Ri+1 :=
Jnext(r)K[r 7→Ri].
a) Ri is a row candidate for all i ≥ 0.
b) Let m := |T |2n . The sets R0, . . . , Rm−1 are pairwise different. Consequently, the sequence

R0, R1, . . . constitutes an enumeration of all possible row candidates for the given W.

Using this we can facilitate a search for a row (satisfying some formula ψ(r)) by enu-
merating all row candidates in a recursive iteration and terminating it when a proper row r

satisfying ψ(r) has been found.

∃rowr.ψ(r) :=
(

rec G(r).row(r) ∧ (ψ(r) ∨ G(next(r)))
)

(first)

▶ Lemma 11. Let ψ(r) be a formula. We have (t0, 0) ∈ J∃rowr.ψ(r)K iff there is a (represent-
ation of a) row R such that (t0, 0) ∈ Jψ(r)K[r 7→R], i.e. that satisfies ψ. Moreover, ∃rowr.ψ(r)
is tail-recursive if ψ(r) is so.

TIME 2022

5:14 The Tail-Recursive Fragment of Timed Recursive CTL

A valid W-tiling is comprised of a sequence of rows, starting with an initial one and
ending in a final one. The initial one is such that its first tile, i.e. in position 0, is tI ; a final
row is one that contains the final tile tF . Both are easily specified as follows.

init(r) := AG=0(r → tI) final(r) := EF∗
=1(r ∧ tF)

▶ Lemma 12. Let R be a (representation of a) row.
a) (t0, 0) ∈ Jinit(r)K[r 7→R] iff (tI , 0) ∈ R, i.e. R starts with the initial tile.
b) (t0, 0) ∈ Jfinal(r)K[r 7→R] iff there is i ∈ [2n − 1] s.t. (tF , i) ∈ R, i.e. R contains the final

tile.

We now construct the overall formula φW,n such that, procedurally thinking, it facilitates
a search through the space of rows in order to decide the existence of a valid W-tiling. It
starts with some initial row, generates successors (which need to match vertically in all
positions of these rows), until a final row has been found. All that is needed at this point is
a formula that takes two rows r, r′ and decides whether r′ can be placed above r in a valid
W-tiling, i.e. in any position the tile in t vertically matches the one in t′ in this position.

match(r, r′) := AG∗
=1

(∧
(t,t′)̸∈V

r ∧ t → AG=0(r′ → ¬t′)
)

Note that the right part of the implication in this formula asserts that, if a state (ℓ, η) is
contained in r, then any state (ℓ′, η), i.e. one with the same clock value, is such that the
locations ℓ and ℓ′ are tiles matching vertically.

▶ Lemma 13. Let R = tR0 , . . . , t
R
2n−1 and R′ = tR

′

0 , . . . , tR
′

2n−1 be two rows. We have
(t0, 0) ∈ Jmatch(r, r′)K[r 7→R,r′ 7→R′] iff (tRi , tR

′

i) ∈ V for all i ∈ [2n], i.e. R′ matches vertically
onto R.

We can then put this all together as follows.

φW,n := ∃rowr0.init(r0) ∧
((

rec F(r).final(r) ∨ ∃rowr′.match(r, r′) ∧ F(r′)
)
(r0)

)
(1)

▶ Theorem 14. The model checking problem for trTRCTL over TA is EXPSPACE-hard.

Proof. By reduction from ExpTiling. From given W = (T,H, V, tI , tF) and unary n ∈ N we
construct AW and φW,n as described above. It is not hard to see that this can be done in
time polynomial in |W | and n, as the clock constraints of the form x = 2n − 1 etc. can be
written in binary. This is where unary encoding of the parameter n in ExpTiling is needed.

Moreover, φW,n is easily seen to be tail recursive as each first-order fixpoint variable –
the F that is visible in (1) and the two G’s that are implicitly present in the definition of
the operator ∃row – only occurs once in its corresponding body. Note that other variables,
like those occurring in the macros EF∗

=1 etc., are propositional only. They also occur tail
recursively only but this is indeed not required for falling into the fragment trTRCTL.

At last, it remains to argue that the reduction is correct. Indeed, by Lemmas 9–13 we
have TW , (t0, 0) |= φW,n iff there is some m ≥ 1 and a sequence of rows R0, . . . , Rm−1 s.t.
R0 is initial, Rm−1 is final, and Ri+1 matches vertically onto Ri for all i = 0, . . . ,m− 2. In
other words, there is a valid W tiling for the [2n] × [m]-corridor. ◀

F. Bruse, M. Lange, and E. Lozes 5:15

5 Conclusion & Further Work

We have introduced trTRCTL, the tail-recursive fragment of TRCTL, and shown that its
model-checking problem is EXPSPACE-complete. This reinforces the observation made
in [10] that the complexity of TRCTL is dominated by the higher-order effects, since the
lower bounds are achieved using one clock only. Hence, adding real time to RecCTL simply
adds one exponential. Restricting the way recursion works reduces the complexity, while the
number of clocks has no impact beyond the first one. This is notably different for TCTL [19].

We have extablished EXPSPACE hardness for the combined complexity of the trTRCTL
model checking problem. However, we conjecture that the hardness result already holds for
the data complexity.

Given that we now have a sound understanding of the theoretical constraints w.r.t.
TRCTL and its derivatives, further research should be focused on practical applications or
adding expressive power. The first aspect concerns trTRCTL in particular, as the restriction
to tail recursive definitions opens up techniques like local model checking, cf. [9]. The second
aspect may include making even more aspects of clock values visible to the logic, for example
via so-called diagonal constraints. cf. [8].

References
1 L. Aceto and F. Laroussinie. Is your model checker on time? On the complexity of model

checking for timed modal logics. J. Log. Algebraic Methods Program, 52-53:7–51, 2002.
2 R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems. In Proc. 5th

Ann. IEEE Symp. on Logic in Computer Science, LICS’90, pages 414–427. IEEE Computer
Society Press, 1990. doi:10.1109/LICS.1990.113766.

3 R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994. doi:10.1016/0304-3975(94)90010-8.

4 R. Alur and P. Madhusudan. Decision problems for timed automata: A survey. In Formal
Methods for the Design of Real-Time Systems: Revised Lectures of the International School on
Formal Methods for the Design of Computer, Communication, and Software Systems, pages
1–24. Springer, 2004. doi:10.1007/978-3-540-30080-9_1.

5 R. Axelsson, M. Lange, and R. Somla. The complexity of model checking higher-order fixpoint
logic. Log. Meth. in Comp. Sci., 3:1–33, 2007. doi:10.2168/LMCS-3(2:7)2007.

6 C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.
7 P. Bouyer. Timed automata. In Handbook of Automata Theory, pages 1261–1294. European

Mathematical Society Publishing House, 2021. doi:10.4171/Automata-2/12.
8 P. Bouyer, F. Laroussinie, N. Markey, J. Ouaknine, and J. Worrell. Timed temporal logics.

In Models, Algorithms, Logics and Tools - Essays Dedicated to Kim Guldstrand Larsen on
the Occasion of His 60th Birthday, volume 10460 of LNCS, pages 211–230. Springer, 2017.
doi:10.1007/978-3-319-63121-9_11.

9 F. Bruse, J. Kreiker, M. Lange, and M. Sälzer. Local higher-order fixpoint iteration. In Proc.
11th Int. Symp. on Games, Automata, Logics, and Formal Verification, GandALF’20, volume
326 of EPTCS, pages 97–113, 2020. doi:10.4204/EPTCS.326.7.

10 F. Bruse and M. Lange. Model checking timed recursive CTL. Submitted to Inf. and Comp.
11 F. Bruse and M. Lange. Temporal logic with recursion. In Proc. 27th Int. Symp. on Temporal

Representation and Reasoning, TIME’20, volume 178 of LIPIcs, pages 6:1–6:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.TIME.2020.6.

12 F. Bruse and M. Lange. Model checking timed recursive CTL. In Proc. 28th Int. Symp. on
Temporal Representation and Reasoning, TIME’21, volume 206 of LIPIcs, pages 12:1–12:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

TIME 2022

https://doi.org/10.1109/LICS.1990.113766
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1007/978-3-540-30080-9_1
https://doi.org/10.2168/LMCS-3(2:7)2007
https://doi.org/10.4171/Automata-2/12
https://doi.org/10.1007/978-3-319-63121-9_11
https://doi.org/10.4204/EPTCS.326.7
https://doi.org/10.4230/LIPIcs.TIME.2020.6

5:16 The Tail-Recursive Fragment of Timed Recursive CTL

13 F. Bruse, M. Lange, and E. Lozes. Space-efficient fragments of higher-order fixpoint logic.
In M. Hague and I. Potapov, editors, Proc. 11th Int. Workshop on Reachability Problems,
2017, London, UK, volume 10506 of LNCS, pages 26–41. Springer, 2017. doi:10.1007/
978-3-319-67089-8_3.

14 S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2016. doi:10.1017/
CBO9781139236119.

15 E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthes-
ize synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.
doi:10.1016/0167-6423(83)90017-5.

16 T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111(2):193–244, 1994.

17 D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983. doi:10.1016/
0304-3975(82)90125-6.

18 M. Lange. Specifying program properties using modal fixpoint logics: A survey of results. In
Proc. 8th Indian Conf. on Logic and Its Applications, ICLA’19, volume 11600 of LNCS, pages
42–51. Springer, 2019.

19 F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one or
two clocks. In Proc. 15th Int. Conf. on Concurrency Theory, CONCUR’04, volume 3170 of
LNCS, pages 387–401. Springer, 2004. doi:10.1007/978-3-540-28644-8_25.

20 W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177–192, 1970.

21 A. P. Sistla, E. M. Clarke, N. Francez, and A. R. Meyer. Can message buffers be axiomatized
in linear temporal logic? Information and Control, 63(1/2):88–112, 1984.

22 P. van Emde Boas. The convenience of tilings. In Complexity, Logic, and Recursion Theory,
volume 187 of Lecture notes in pure and applied mathematics, pages 331–363. Marcel Dekker,
Inc., 1997.

23 M. Y. Vardi. From Church and Prior to PSL. In 25 Years of Model Checking - History,
Achievements, Perspectives, volume 5000 of LNCS, pages 150–171. Springer, 2008.

24 M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic. In Proc.
15th Int. Conf. on Concurrency Theory, CONCUR’04, volume 3170 of LNCS, pages 512–528.
Springer, 2004. doi:10.1007/978-3-540-28644-8_33.

https://doi.org/10.1007/978-3-319-67089-8_3
https://doi.org/10.1007/978-3-319-67089-8_3
https://doi.org/10.1017/CBO9781139236119
https://doi.org/10.1017/CBO9781139236119
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/978-3-540-28644-8_25
https://doi.org/10.1007/978-3-540-28644-8_33

	1 Introduction
	2 Preliminaries
	2.1 Timed Automata
	2.2 Timed Recursive Computation-Tree Logic

	3 The Tail-Recursive Fragment of Timed Recursive CTL
	3.1 The Syntactical Restriction
	3.2 Model Checking in Exponential Space

	4 An Exponential Space Lower Bound for Model Checking
	4.1 Exponential Space Complexity
	4.2 The Reduction

	5 Conclusion & Further Work

