
Early Detection of Temporal Constraint Violations
Isaac Mackey #

University of California, Santa Barbara, CA, USA

Raghubir Chimni #

University of California, Santa Barbara, CA, USA

Jianwen Su #

University of California, Santa Barbara, CA, USA

Abstract
Software systems rely on events for logging, system coordination, handling unexpected situations,
and more. Monitoring events at runtime can ensure that a business service system complies with
policies, regulations, and business rules. Notably, detecting violations of rules as early as possible
is much desired as it allows the system to reclaim resources from erring service enactments. We
formalize a model for events and a logic-based rule language to specify temporal and data constraints.
The primary goal of this paper is to develop techniques for detecting each rule violation as soon as
it becomes inevitable. We further develop optimization techniques to reduce monitoring overhead.
Finally, we implement a monitoring algorithm and experimentally evaluate it to demonstrate our
approach to early violation detection is beneficial and effective for processing service enactments.

2012 ACM Subject Classification Information systems → Information systems applications

Keywords and phrases temporal constraints, monitoring, events, early violation detection

Digital Object Identifier 10.4230/LIPIcs.TIME.2022.4

1 Introduction

Events are unorchestrated, asynchronous messages about the states of processes and situations
like action and change. Events are a fundamental component in software systems including
workflow systems, cyber-physical systems, IOT devices, decision support systems, etc., and a
focus of research communities (e.g., [20]). These systems use events to i) identify time-critical
exceptional situations that need attention, and ii) choreograph/orchestrate collaborative
systems [5]. This paper studies a technical problem concerning i).

In runtime monitoring [2,12], system policies for exceptional situations, i.e., violations
of constraints, are specified in a formal language and algorithms monitor events from the
system as they occur to detect and report violations. Violations of system policies can be
divided into two categories depending on when the violation is detected: a violation can
be detected once the system is finished executing or it can be reported when the system’s
execution is not yet finished but as soon as the violation becomes inevitable; we call the
latter early (violation) detection.

We investigate the early detection problem in the context of workflow systems, where
events report execution of activities in a workflow. In this setting, constraints are set
by business rules, organization policies, regulations, and service-level agreements (SLAs)
and specify temporal relationships between events in a workflow enactment, with “gap
constraints” [24] to restrict time gaps between events. Constraints can also reference and
compare data values in events. We call the growing set of events in an enactment a “log”. A
naive monitoring approach would (re)evaluate constraints over the entire log with each arrival
of new events, but this is intractable for large logs, so we evaluate constraints incrementally.

This paper makes the following technical contributions:

© Isaac Mackey, Raghubir Chimni, and Jianwen Su;
licensed under Creative Commons License CC-BY 4.0

29th International Symposium on Temporal Representation and Reasoning (TIME 2022).
Editors: Alexander Artikis, Roberto Posenato, and Stefano Tonetta; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:isaac_mackey@ucsb.edu
https://orcid.org/0000-0001-6462-1912
mailto:rchimni@ucsb.edu
https://orcid.org/0000-0002-3744-5631
mailto:su@ucsb.edu
https://orcid.org/0000-0002-4637-1339
https://doi.org/10.4230/LIPIcs.TIME.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Early Detection of Temporal Constraint Violations

A technique for calculating the earliest time a violation is inevitable (the “deadline”),
Algorithms and data structures for incrementally maintaining and detecting violations,
along with batch algorithms for processing incoming events,
Optimization techniques for those algorithms, including expiring useless data and improv-
ing batch processing, and
Experimental findings illustrating the benefits and costs of early violation detection.

This paper is organized as follows. Subsection 1.1 discusses related work. Section 2
motivates the early violation detection problem with an example. Section 3 defines the
technical framework. Section 4 presents the key techniques for computing “deadlines”,
maintaining assignments and relationships between them, and detecting violations. Section 5
presents two optimization techniques. Section 6 presents the findings of an experimental
evaluation. Finally, Section 7 concludes the paper.

1.1 Related Work
To identify when a violation is first inevitable, we distinguish between potential violations,
which may or may not remain a violation in the future, and permanent violations, which are
violations in all possible futures. This distinction is formalized for monitoring LTL formulas
in [4], which notes that knowing if a trace satisfies or violates a constraint can be refined
by knowing if the satisfaction or violation is permanent. [18] shows that this distinction
can be monitored for propositional constraints in the Declare language using an encoding
of violation status, i.e., potential or permanent, in states of automata derived from the
constraint language. [22] uses a similar classification of violations (potential violations are
called pending violations). The status of a violation is represented by a fluent in event
calculus (EC) and changes to violations’ status are encoded as EC axioms that initialize and
change fluents. We distinguish potential and permanent violations based on satisfiability
checking for partial initializations of constraint variables. Partial initialization is not a new
technique (e.g., [3, 9]), though [9] does not monitor events with data and neither attempts
early violation detection. Our work is more similar to that of [17], where satisfiability checking
determines if constraints in MP-Declare (a variant of Declare that supports conditions on
data and time) are permanently violated, however we provide an algorithm that calculates
deadlines, rather than offloading the calculation to a solver.

Specifying conditions on data carried by events, such as matching the user opening an order
to the user charged payment, is an important functionality of monitoring constraints [14].
[21] adds data conditions to Declare and the conditions are incorporated into the EC
formalization [22]. Another approach to include data is found in [7, 8], which monitor
FO-LTL and Declare constraints, resp., using automata whose states are augmented with
data stores, and potential and permanent violations are distinguished in the same manner
as [18], but these works assume a fixed, finite domain for data values. Incremental view
maintenance for Datalog offers relevant incremental algorithms. [11] maintains non-recursive
views but does not have any time or inequality constraints; our language allows timestamps
and gap constraints. [23] maintains recursive views; our language assumes a fixed set of
atomic events, which does not allow recursion.

[14] also argues that quantitative time constraints are important for compliance specific-
ation. LTL, Declare, and their metric extensions [3, 17,21,22] can require the gap between
a pair of event timestamps to fall in an interval. Our language gives each event atom
in a constraint a time variable, thus allowing an unbounded number of gap (in)equalities

I. Mackey, R. Chimni, and J. Su 4:3

and constant offsets between any and all pairs of event timestamps. It is unknown if our
constraints can be translated into LTL, though for a subset of our language, specifically
dataless, “singly-linked” rules, [15, 16] provide a translation.

Controllability is another approach to manage temporal constraints in workflow enact-
ments. [6] and [13] feature propagation of upper and lower bound constraints similar to our
deadline calculation approach, but does not allow comparison of data values in events. [10]
applies explicit time variables to the controllability problem for modular process models.
Enforcing controllability is a design-time solution, however; we make no assumptions about
the control structure of a service in order to afford managers and users maximum flexibility.

2 An Opportunity for Early Violation Detection

We illustrate the problem of detecting violations of business rules for workflows and motivate
an approach based on reasoning about constraints. We sketch an example workflow from
an Infrastructure-as-a-Service (IaaS) provider. Then, we explain how the constraints on the
workflow are evaluated to determine the earliest time violations are permanent.

Consider an IaaS provider that offers high-performance cloud computing rentals. The
service is managed by a workflow with the following activities: the user Requests a machine
through an account and the provider grants Approval to the user. Then, the user Reserves a
machine for their account, makes a Payment with their account and Launches the machine.
The completion of each activity generates an event; events for the same rental instance form
an enactment. Each event has a timestamp, an enactment identifier, and may have additional
data, e.g., a user. We view a set of events as a relational database. Fig. 1 shows a database
S9 at time 9, with eight events from two enactments with ids π1 and π2 . For example, the
first row of the Request table indicates a Request event with enactment id π1 from user Alice
with account a3 at time 1.

Request
ID user account ts

π1 Alice a3 1
π1 Alice a4 3
π2 Bob b6 7

Approval
ID user ts

π1 Alice 6

Reserve
ID user account ts

π1 Alice a4 8
π1 Alice a3 9

Payment
ID user account ts

π1 Alice a3 8
π1 Alice a4 9

Launch
ID user account ts

Figure 1 Database S9 with events from two enactments π1 and π2.

The provider checks each enactment against specified business rules; these may measure
service availability, quality, etc. For example, we use a few rules, including: when a user’s
Request is approved within 7 days and the machine is Reserved within 7 days of Approval by
the same account as the request, the user should make a Payment for the machine through
that account within 3 days of Approval and Launch it within 7 days of Reserve and 4 days of
Payment. In this rule, events generated by either the provider or the user may lead to rule
violation. We write this rule as φ → ψ where φ is the rule body and ψ is the rule head:

Request(u, a)@x,Approval(u)@y, x⩽y⩽x+7,Reserve(u, a)@z, y⩽z⩽ y+7
→ Payment(u, a)@w, Launch(u, a)@v, y⩽w⩽y+3, z⩽v⩽z+7, v⩽w + 4

The core idea of detecting a violation is checking whether each body assignment for the
body variables u, a, x, y, z satisfying φ has a matching head assignment for the head variables
u, a, w, v satisfying ψ. In order to detect violations incrementally, we build assignments that
satisfy the rule’s subformulas. Fig. 2(a) lists the partial and complete assignments for φ

TIME 2022

4:4 Early Detection of Temporal Constraint Violations

Aid ID u a x y z

µ1 π1 Alice a3 1 - -
µ2 π1 Alice a4 3 - -
µ3 π1 Alice - - 6 -
µ4 π1 Alice a3 1 6 - µ1 + µ3
µ5 π1 Alice a4 3 6 - µ2 + µ3
µ6 π2 Bob b6 7 - -
µ7 π1 Alice a4 - - 8
µ8 π1 Alice a4 3 - 8 µ2 + µ7
µ9 π1 Alice a4 - 6 8 µ3 + µ7
µ10 π1 Alice a4 3 6 8 µ2 + µ9
µ11 π1 Alice a3 - - 9
µ12 π1 Alice a3 1 - 9 µ1 + µ11
µ13 π1 Alice a3 - 6 9 µ3 + µ11
µ14 π1 Alice a3 1 6 9 µ4 + µ12

Aid ID u a x y z

µ15 π1 Alice - - 10 -
µ16 π1 Alice a4 3 10 - µ2 + µ15

µ17 π2 Bob - - 10 -
µ18 π2 Bob b6 7 10 - µ6 + µ17

(b) New body assignments added at time 10.

(a) All body assignments at time 9.

Figure 2 Assignments for the rule body φ and events S9 , events S9 ∪{e1, e2}.

and S9 . For example, assignment µ1 is generated by the first row (event) of the Request table.
Assignment µ3 is generated by the first row of the Approval table, and is combined with µ1 to
form µ4. Then, µ10 and µ14 makes φ true.

Suppose two events happen at time 10, e1:Approval(π1, [Alice], 10), e2:Approval(π2, [Bob], 10).
Event e1 generates a partial assignment µ15 , which combines with µ2 into µ16 . Event e2
yields new assignments µ17 and µ18 . Fig. 2(b) lists four assignments generated by e1 and e2.

ψ has six variables u, a, y, z, w, v, but Payment and Launch events only supply values for
the four “event variables” u, a, w, v. We consider assignments for ψ in the same manner as for
φ but ignoring y and z. The Payment events at times 8, 9 (Fig. 1) create partial assignments
β1: [π1 ,Alice, a3, 8, -] and β2: [π1 ,Alice, a4, 9, -].

One interesting problem is to determine when to report rule violations. In Fig. 3, three
events create a potential violation µ10 . It is natural to report this violation when the END of
enactment π1 arrives, after which no more events for π1 will arrive; if µ10 is not extended
by a head assignment by that time, it represents a permanent violation. We aim to detect
violations as soon as they become permanent, which may be well before the END event. Given
the rule’s constraints y⩽w⩽y+3 and z⩽v⩽z+7, and µ10(y) = 6 and µ10(z) = 8, the violation
is known to be permanent at time 9 because no Payment event arrives with a timestamp for
w to extend µ10 . Note also that 9 is the earliest time we can be certain this is a violation.

9 15x=3 y=6 z=8

ID u a x y z
µ10 π1 Alice a4 3 6 8

y⩽w⩽9 (=y + 3)

z⩽v⩽15 (=z + 7)

min(9,15)=9 is the latest time
to extend µ10, the earliest time
µ10 can be permanent

Request(Alice, a4)@3 Approval(Alice)@6 Reserve(Alice, a4)@8

Figure 3 Deadline for extending potential violation µ10.

Fig. 4 shows a Payment event at time 9 that creates the partial assignment β2.
The main focus of this paper is to calculate these earliest times, which we call “deadlines”,

and use them in a monitoring algorithm.

I. Mackey, R. Chimni, and J. Su 4:5

13 15z=8 w=9

ID u a w z

β2 π1 Alice a4 9 −
v⩽13 (=w + 4)

z⩽v⩽15 (=z + 7)

min(13,15)=13 is the latest
time to extend µ10 ▷◁ β2,
β2 updates the earliest time
µ10 can be permanent

Payment(Alice, a4)@9

Figure 4 Deadline for extending β2 as match for µ10.

3 Rules and the Detection Problem

In this section, we present key notions needed for technical development, including “activities”
in workflows, “events” of activities, “enactments”, “batches”, and “rules”.

Activities are atomic units of work in a workflow. Each activity has a name and a set of
data attributes. An activity’s execution yields an event, which carries values for the data
attributes and a timestamp. We use identifiers I (or simply id’s), for (workflow) enactments;
each event has an identifier from the workflow instance that generated it. We assume a
countably infinite set of timestamps T with a discrete total order and addition of constants.
For technical development, we use natural numbers for timestamps. We also assume a
countably infinite set of (data) values D = {a, b, c, ..., a1, ...} with equality.

▶ Definition. An event of an activity A(c1, ...,cn) is a named tuple A(ξ, ν, τ) where ξ is an
id from I, ν : {c1, ...,cn} → D is a mapping from A’s attributes to data values, and τ is a
timestamp from T.

An instance of a workflow is a finite set η of events called an enactment, such that (i) each
event has the same enactment id, (ii) η has exactly one special START event that marks its
beginning and of workflow enactments and at most one END event that marks its completion,
(iii) the timestamp of the START event is less than that of all other events in η, and (iv) the
timestamp of the END event, if it occurs, is greater than that of all other events in η. The
rows in Fig. 1 with the same id form an enactment (the START/END events are not shown).

This paper focuses on monitoring enactments as they are updated by new events. Con-
straints to be monitored are specified as “rules”. In the following, we define and illustrate
the notions of a “batch” (new events arriving) and a rule.

▶ Definition. A batch for an enactment η is a finite set ∆ of events such that (i) all events
in ∆ have the same timestamp, denoted as ts∆, greater than the timestamps of all events in
η, (ii) for each event e in ∆, the id of e is the id of η, (iii) ∆ has a START event or η has a
START event, but not both, and (vi) if an END event is in η, no events are in ∆.

Fig. 1 shows events from two enactments of the workflow in the IaaS example. Suppose
that at time 10 exactly two events happened, e1:Approval(π1, [Alice], 10) and e2:Approval(π2,

[Bob], 10). Then {e1} is a batch for π1, {e2} a batch for π2.
We describe a language for specifying rules, starting with atomic formulas. An event

atom is an expression “A(v1, ..., vn)@x” where A(c1, ...,cn) is an activity, v1, ..., vn, x are
variables, where x is a time variable. A gap atom is an expression “x±ϵ θ y” where x, y are
time variables, ϵ (the gap) is a timestamp in T, and θ∈ {<,⩽,⩾, >,=} is an equality or
inequality predicate. We denote the variables in a set of gap atoms φ as var(φ).

▶ Definition. A rule is an expression “φ→ψ” where the body φ and the head ψ are finite
sets of event and gap atoms such that each variable in a gap atom in φ occurs in an event
atom in φ and each variable in a gap atom in ψ occurs in an event atom in φ∪ψ.

TIME 2022

4:6 Early Detection of Temporal Constraint Violations

Rule satisfaction is defined as follows: An assignment is a mapping from variables to values
in D∪T. Time variables take values from T; we use N as timestamps for technical development.
All other variables take values from D. An assignment is complete if it is a total mapping
for the variables in a given set of atoms, partial otherwise. An assignment β extends an
assignment α if α ⊆ β. An enactment η satisfies an event atom A(v1, ..., vn)@x for the activity
A(c1, ...,cn) with a complete assignment µ if A(η.id, {c1 7→ µ(v1), . . . ,cn 7→ µ(vn)}, µ(x))
is an event in η. An assignment satisfies a gap atom with the obvious interpretation.

An enactment η satisfies a set of atoms ϕ with a complete assignment µ if η satisfies every
atom in ϕ with µ. An enactment η satisfies a rule r:φ→ψ if for every complete assignment
µ such that η satisfies φ with µ, there is a complete assignment β that extends µ such that
η satisfies ψ with β.

▶ Example 1. As shown in Fig. 3, the assignment µ10 satisfies φ. Then, to satisfy the
rule w.r.t. µ10, there must be an assignment extending µ that satisfies ψ; i.e., two events
Payment(π1, [Alice, a4], t1) and Launch(π1, [Alice, a4], t2) with 6⩽t1⩽6+3=9, 8⩽t2⩽8+7=15, and
t2⩽t1+4 must happen.

An assignment µ is a potential violation of a rule r:φ→ψ in an enactment η if η satisfies
φ with µ and there is no assignment β that extends µ such that η satisfies ψ with β. A
(permanent) violation µ of a rule r:φ→ψ is a potential violation where for every sequence of
batches of future events ∆1, ...,∆n (where ∆i is a batch for η ∪ (∪j<i∆j) for each 1⩽i⩽n),
µ is a violation of r in η ∪ (∪n

i=1∆i). In the next section, we develop algorithms to identify
when violations become permanent.

4 Techniques for Early Violation Detection

In this section, we develop key techniques for early violation detection. First, we define the
concept of a “deadline” and present an algorithm to calculate deadlines. Next, we define
data structures to store variable assignments and algorithms to create new assignments from
arriving events. Finally, we detail how violations are detected. A monitoring algorithm using
these techniques was implemented and experimentally evaluated in Sec. 6.

We aim to detect permanent violations as early as possible. Since an enactment is
an accumulation of events with increasing timestamps, it may be that a complete body
assignment derived from the current enactment can only be extended at or before a specific
future time called a deadline. We now formulate the notion of a deadline.

▶ Definition. Let Θ be a set of gap atoms over variables x1, ..., xn and µ a (partial) assignment
for variables xi’s. We use defµ for the variables µ assigns a value; µ(Θ) the gap atoms
obtained by replacing each variable x∈ defµ with µ(x), and max(µ) = max{µ(x) |x ∈ defµ}.
A timestamp τ ∈N is the deadline for Θ, x1, ..., xn, µ if (1) τ⩾max(µ), and (2) either µ(Θ)
is unsatisfiable and τ= max(µ) or conditions (i) and (ii) both hold: (i) for each complete
extension µ′ of µ such that µ′(x)>τ for each x /∈ defµ, µ′(Θ) is false, and (ii) there is a
complete extension µ′′ of µ such that µ′′(Θ) is true.

▶ Example 2. In the running example in Section 2, µ10 is created at time 8, where µ10(x)=3,
µ10(y)=6, and µ10(z)=8. As shown in Fig. 3, applying µ10 to the head atoms yields upper
bounds w⩽ 9 (=y+3) and v⩽ 15 (=z+7). From these bounds, it is clear that extensions of
µ10 must have a Payment event whose time variable w is no later than time 9. Thus, the time
9 is a “deadline” for µ10 : the latest time µ10 can be extended w.r.t. w, and the earliest time
µ10 could be recognized as a permanent violation. Fortunately, a Payment event happened

I. Mackey, R. Chimni, and J. Su 4:7

Algorithm 1 Deadline(Θ, x1, ..., xn, µ).

Input: A set of gap atoms Θ over time variables x1, ..., xn and an assignment µ
Output: A timestamp τ

1: if If µ(Θ) is unsatisfiable then return τ := max(µ);
/∗ max(µ) is the largest timestamp µ assigns to x1, ..., xn∗/

2: Rewrite each atom in µ(Θ) in the form u± k⩽ v;
/∗ u, v either a time variable or in N, k∈Z ∗/

3: Let UpperBd be a map from x1, ..., xn to {∞};
4: for each u± k⩽ v in µ(Θ) with v ∈N and u∈ {x1, ..., xn} do
5: UpperBd(u) := v∓ k ;
6: for |Θ| iterations do
7: for each gap atom u± k⩽ v in µ(Θ) do
8: if UpperBd(v) is finite and UpperBd(u) ± k >UpperBd(v)⩾ 0 then
9: UpperBd(u) := UpperBd(v) ∓ k ;

10: return τ := min{UpperBd(xi) | 1⩽i⩽n}

at time 9, which satisfies w⩽ 9. However, v remains unresolved and thus the subsequent
deadline to extend µ10 is the latest time to observe a value for v: v⩽ 13 (=w+4) and v⩽ 15
(=z+7), so the deadline to extend µ10 is changed to 13.

We compute deadlines with function Deadline (Alg. 1). Deadline determines for each xi

the least τi such that µ(Θ) →xi⩽τi, and the deadline τ is the least of τi’s. First, if µ(Θ)
is unsatisfiable, µ is a violation at the time of its creation, i.e., at its largest timestamp.
Otherwise, an array UpperBd is initialized with constants (Lines 3-5), then tightened with
the initial bounds and the gap atoms in Θ: a gap atom u± k⩽ v indicates UpperBd(v) ∓ k

is an upper bound for u. For each gap atom u± k⩽ v for which UpperBd(v) is defined, we
update UpperBd(u) as max(UpperBd(v) ∓ k,UpperBd(u)) (Lines 7-9).

The Deadline function (Alg. 1) can compute deadlines for complete body assignments and
for complete body assignments with matching partial head assignments. For a complete
body assignment µ and a partial head assignment β, we compute the latest time µ∪β can
be extended. This time is, in fact, the earliest time µ becomes a permanent violation. In
the following lemma, we state a property of deadlines for a complete body assignment and
partial head assignment.

▶ Lemma 3. Let r:φ→ψ be a rule, φg, ψg the gap atoms in φ,ψ (resp.), µ a com-
plete body assignment such that µ(φg) is true, β an incomplete head assignment extend-
ing µ such that β(µ(ψg)) is satisfiable, and U the variables in ψg undefined by β. Let
τ = Deadline(ψg, var(φg∪ψg), µ∪β). The following hold:
1. If τ ∈N, then there is a complete head assignment β′ extending µ∪β such that

min(β′(U))⩽ τ and β′(ψg) is true,
2. If τ ∈N, then for all complete head assignments β′ extending µ∪β such that min(β′(U))>τ ,

β′(ψg) is false, and
3. If τ = ∞, then for all timestamps n in N, there is a complete head assignment β′ extending

µ∪β such that max(β′(U))>n and β′(ψg) is true.

A sketch of the proof is given in Appendix A. The key idea is that for the combined
assignment µ∪β and atoms ψ, either for some time variable z and timestamp τ , µ(β(ψ))∧(z ⩾
τ ′) is unsatisfiable (so τ is a deadline) or no such time variable z and timestamp τ exists (there
is no deadline). Lemma 3 is applied in the following way: for a complete body assignment µ,
we try to extend µ with each partial head assignment β when it is created. For each pair µ
and β, we calculate a deadline using µ, β, and the rule head. According to Lemma 3, the
output of Deadline is the time after which β cannot extend µ.

TIME 2022

4:8 Early Detection of Temporal Constraint Violations

The discussions in Section 2 also suggest maintaining partial and complete assignments
for variables. We define three tables bar for body assignments, har for head assignments,
and extr (extensions) to track pairings of body and head assignments. bar and har consist
of the following columns: (i) one column for the assignment identifier (Aid) from I, (ii) one
column for the enactment identifier (id) from I, (iii) one column in bar for each variable in
φ and one column in har for each event variable in ψ (resp.) (a variable in the head ψ is
an event variable if it occurs in an event atom in ψ.) to hold a value from D or T, and (iv)
one column for gap atoms in φ and ψ (resp.) simplified with the assigned values as possible.
Additionally, bar has one more column (v) match? indicating with yes or no the presence or
absence, resp., of a complete head assignment extending the complete body assignment. For
convenience, we refer to rows in these two tables as assignments. extr has three columns: (i)
one column for a body Aid from bar, (ii) one column for a head Aid from har that extends
the row’s body assignment, and (iii) one column for the deadline, calculated using the row’s
assignments and the head gap atoms as inputs for Deadline.

For each enactment η, bar(η) and har(η) store all assignments that can be generated
from η and satisfy φ and ψ (resp.). Specifically, for a rule r:φ→ψ and an enactment η,
bar(η) contains every assignment µ such that for a non-empty subset P of the event atoms
in φ, µ is defined for all variables in P , µ(P) ⊆ η, and η satisfies all atoms in φ having only
variables in P with µ. har(η) is similar, using ψ instead of φ. Fig. 5(a) shows the assignments
inserted into bar table at time 10 (those from Fig. 2(b)) with columns for gap atoms and the
possibility of matching. extr(η) stores each pair of assignments from bar(η) and har(η),
resp., such that the body assignment can be extended by the head assignment only at or
before the row’s deadline.

Aid u a x y z gap atoms match?

µ10 Alice a4 3 6 8 - No

µ11 Alice a3 - - 9 x⩽y⩽x+7, No
y⩽9⩽y+7

µ12 Alice a3 1 - 9 1⩽y⩽8, No
y⩽9⩽y+7

µ13 Alice a3 - 6 9 x⩽6⩽x+7 No

µ14 Alice a3 1 6 9 - No

(a) Some assignments in bar(π1) (Fig.2(a)) at ts = 9.

Aid u a w v gap atoms

β1 Alice a3 8 - v⩽12

β2 Alice a4 9 - v⩽13

β3 Alice a3 - 12 8⩽w

β4 Alice a3 8 10 -
(b) Some assignments in har(π1) (Fig.2(b)) at ts = 10.

Figure 5 Body and Head Table Examples.

body Aid head Aid deadline
µ10 - 9
µ10 β2 13
µ14 - 9
µ14 β1 12
µ14 β3 12
µ14 β4 -

Figure 6 Extensions of µ10 and µ14 in extr(π1) at ts = 13.

We next present an algorithm called Update to create and combine assignments as batches
of events arrive. This algorithm maintains ba and ha incrementally without accessing
enactments directly; Update (Alg. 2) does not take an enactment as input. This is important
since enactments may be very large.

We now outline the behavior of Update. Given atoms Θ (here, the head of a rule), a
batch ∆, and either bar or har for an enactment η, Lines 2-6 generate assignments from
the events in ∆ and Θ, adding them to the table if they are satisfiable (extendible to

I. Mackey, R. Chimni, and J. Su 4:9

Algorithm 2 Update(Θ,∆, T (η)).

Input: A set of atoms Θ, a batch ∆, a table T (η) (T is bar or har for enactment η)
Output: Updated table T (η ∪ ∆) for the new enactment η ∪ ∆
1: Γ := T (η) ;
2: for each event e ∈ ∆ do
3: for each event atom γ in Θ with the same activity as e do
4: Create a (partial) assignment µ from e, γ such that µ(γ) = e ;
5: if µ(Θ) is satisfiable then
6: Add to Γ the row s = ⟨a, e.id, µ(v1), ..., µ(vn),b, (no)⟩,

where a is a fresh assignment identifier, v1, ..., vn are the event variables
in Θ, and b the gap atoms in Θ, evaluated and simplified under µ;

7: while Γ changes do
8: for each pair of unique and consistent rows µ1 and µ2 in T do
9: µ := merge(µ1, µ2) ; /∗ consistent, merge explained in the text ∗/

10: Add to Γ the row: s = ⟨a, µ1.id,max(t1, t2), µ(v1), ..., µ(vn),b, (no)⟩
where a is a fresh assignment identifier and
b is the union of gap atoms in µ1, µ2, evaluated with µ ;

11: output Γ

complete assignments). The while loop in Lines 7-10 searches for pairs of consistent partial
assignments, Two assignments are consistent if they agree on the variables for which they
are both defined, e.g., in Fig. 2 µ1 and µ2 agree on u but not on a. If two assignments are
consistent and satisfy the necessary gap atoms, a new assignment is created with merge,
which combines their variable mappings and gap atoms and recomputes their deadline. For
example, assignment µ5 in Fig. 2 is the merge of µ2 and µ3. The loop only creates assignments
whose data values are pre-existing in Γ or the batch ∆, i.e., it doesn’t introduce new data
values, so the while loop terminates.

▶ Example 4. For the enactment and rule in Section 2, consider the enactment’s event
Request(π1, [Alice, a3], 1) and the rule’s atom Request(useru, account a)@x. The mapping
[id 7→π1, u 7→ Alice, v 7→ a3, x 7→ 1] maps the atom to this event; the assignment corres-
ponding to this mapping is added to bar as µ1 in Fig. 2(a). For the same example
in Section 2 and Fig. 2(a), assignments µ2 : [π1,Alice, a4, 3, -, -, {3⩽y⩽10, y⩽z⩽y+7}] and
µ3 : [π1,Alice, -, -, 6, -, {x⩽6⩽x+7, 6⩽z⩽13}] are in bar(π1) at ts = 9 and agree on u. Their
combination merge(µ2, µ3) satisfies x⩽ 6⩽x+7 and 3⩽y⩽10, so a row corresponding to
merge(µ2, µ3) is added to bar as µ5.

The following lemma states that Update refreshes the body and head tables by adding
the partial and complete assignments with values from ∆ as expected.

▶ Lemma 5. Let r:φ→ψ be a rule, η an enactment, and ∆ a batch for η.
Update(φ,∆,bar(η)) (or Update(ψ,∆,har(η))) computes bar(η ∪ ∆) (resp. har(η ∪ ∆)).

A sketch of the proof is given in Appendix A. The key idea is that for an assignment
in bar(η ∪ ∆), some data values may come from events in η so they will be in bar(η) and
some may come from events in ∆, in which case they will be introduced in Line 4 of Alg. 2
and merged with other assignments in the loop of Line 7 of Alg. 2. The proof is similar for
har(η ∪ ∆).

The ext table pairs complete body assignments with partial and complete head assign-
ments along with a deadline. When a batch arrives, Update-E (Alg. 3) adds new complete
body assignments to ext (Lines 2-3), and then adds pairs using head assignments (Lines
4-8), computing a deadline for each pair (Line 8). Line 9 checks if there is a match between
complete body and head assignments, and updates ba if so.

TIME 2022

4:10 Early Detection of Temporal Constraint Violations

Algorithm 3 Update-E(∆, extr(η),bar(η∪∆),har(η∪∆)).

Input: A batch ∆, un-updated table extr(η),
updated tables bar(η∪∆) and har(η∪∆) for an enactment η

Output: Updated table extr(η ∪ ∆)
1: Γ := extr(η) ;
2: for each complete body assignment µ in bar(η∪∆) do
3: if max(µ) = ts∆ then Add ⟨µ, -,Deadline(ψ, var(ψ), µ)⟩ to Γ ;
4: for each assignment γ in har(η∪∆) do
5: if max(γ) = ts∆ then
6: for each row ⟨µ, β, d⟩ in Γ do
7: if γ extends µ∪β and γ(µ(ψ)) is satisfiable then
8: Add ⟨µ, γ,Deadline(ψ, var(ψ), µ ∪ γ)⟩ to Γ ;
9: if γ is complete then Update bar(η∪∆) to indicate µ has a match ;

10: output Γ ; /∗ = extr(η ∪ ∆) ∗/

For all complete body assignments, ext stores each head assignment that extends it and
indicates the latest time the pair can be further extended. The following lemma characterizes
the conditions and time whereby a violation can be detected using ext.

▶ Lemma 6. Let η be an enactment with no END event, r a rule, τ a timestamp, and µ a
complete body assignment for r. Then, µ is a permanent violation of r in η at τ iff µ occurs
in extr(η) but no rows in extr(η) pairs µ with a complete head assignment, and each row
in extr(η) with µ has a deadline no greater than τ .

A sketch of the proof is given in Appendix A. The key idea is that by Lemma 3, the largest
deadline τ for µ and a partial match β in extr(η) represent the time beyond which any
assignment extending β derived from a future event will have a timestamp that is inconsistent
with ψ. Thus, µ must be extended on or before time τ in order to be matched with β.

▶ Example 7. In Section 2, µ10 satisfies φ and must be extended no later than 9. Then, the
deadline for matching the unpaired µ10 in extr(η⩽9) is 9. At time 9, a Payment event creates
β2 (Fig. 5), and µ10 and β2 are inserted into extr(η⩽9) with deadline 13 because β2(w) = 9
and ψ contains v ⩽ w + 4. Assuming no matching Launch event arrives, µ10 can be reported
as a violation at time 13.

We now present the algorithm Detect (Algorithm 4) that detects permanent violations.
These are unmatched body assignments in ext (1) whose largest deadline is less than or
equal to the current time or (2) whose enactments have ended.

Algorithm 4 Detect(∆, extr(η∪∆)).

Input: A batch ∆, updated extr(η∪∆)
Output: A set of assignments indicating rule violations
1: Violations := {};
2: for each complete body assignment µ in extr(η∪∆) do
3: if µ is not extended by any complete head assignment then
4: if ∆ contains an END event e with e.id = µ.id then
5: Add µ to Violations ;
6: Let τ be the maximum deadline for the rows in extr(η∪∆) with µ;
7: if ts∆ ⩾ τ > max(η) then
8: Add µ to Violations ;
9: output Violations ;

In the following theorem, we assert that applying Algorithm 4 reports rule violations at
the earliest possible time.

I. Mackey, R. Chimni, and J. Su 4:11

▶ Theorem 8. Let r be a rule, η an enactment, and ∆ a batch for η. Then, µ is a violation
in η∪∆ but not in η iff Detect(∆,extr(η∪∆)) reports µ.

A sketch of the proof is given in Appendix A. The key idea is that for a given body
assignment µ in extr(η∪∆), by Lemma 6, if µ is a violation, it will be in exclusively
unmatched rows in extr(η∪∆) with a deadline of at most ts∆. Then, when ∆ is processed,
µ can be recognized and reported.

From Theorem 8, we see that our monitoring algorithm reports exactly the set of violations
in the enactment as soon as they are permanent. This concludes the presentation of the data
structures and sub-routines used in our monitoring algorithm.

5 Optimizations

While the algorithms presented in Section 4 handle the monitoring task, their time and space
complexities can be improved. We present one optimization to remove useless assignments
using a similar reasoning to deadline calculation, another to avoid repeated computation by
tracking which data is new. We report their improvement of relevant algorithms as a factor
of the log size |L|, the batch size |∆|, the number of active enactments as approximated by
|∆|, and the number of event atoms in the rule body or head e.

Expiring partial assignments. Early violation detection motivates a similar technique for
discarding useless assignments. Partial assignments in ba and ha are expired (i.e., useless) if
(1) they can no longer be extended because their timestamps and unresolved gap atoms are
inconsistent with all possible future assignments, or (2) they are derived from an enactment
that has ended. It is much desired to remove expired assignments, and thus reduce the
sizes of ba and ha. Calculating expiration times resembles deadline calculation; in fact, the
Deadline function is reused. To incorporate expiration time, we augment ba and ha (resp.)
with an expiration column as new tables bae and hae, requiring that incomplete assignments
in bae and hae be extendable by future events to complete assignments. To maintain this
property, Deadline calculates its expiration time for each incomplete assignment with respect
to its unresolved gap atoms. Removing expired assignments reduces the size of the bae and
hae tables from O(|L|e) to O(|∆|e), which benefits the algorithms in § 4 by reducing the
number of computations in Update from O(|L|2e) to O(|∆|2e), and that in Update-E from
O(|L|e) to O(|∆|e). It also improves Update-E by decreasing the number of assignments
checked for insertion into ext (Lines 2 and 4), from O(|L|e) to O(|∆|e).

Semi-naive merge of assignments. We can also decrease the number of computations
in the Update algorithm by tracking which data generated by the most recent batch. The
while loop (Lines 7-10) in Update tests pairs of assignments to merge. For each batch ∆, we
only need to try pairs that have at least one assignment added from events in ∆, because all
other pairs of assignments were considered before ∆ arrived. To make Update to reflect this,
we use a queue Γnew to hold new assignments generated at Line 6. We exchange the for loop
in Update (Lines 8-10) to a doubly nested for-loop that iterates through each assignment
µn in Γnew (outer loop) and each row µo in Γ (inner loop), adding the new assignment to
the queue Γnew, moving µn from Γnew to Γ after processing µn. This resembles “semi-naive”
evaluation of Datalog programs [1] and reduces the search for matching assignments from
considering O(|L|2e|) pairs to only pairs involving some new data: O(|L|e|∆|e) pairs.

TIME 2022

4:12 Early Detection of Temporal Constraint Violations

6 Experimental Evaluation

We implemented (Python 3.8.2) a monitoring algorithm using the data structures and
algorithms in Section 4 and optimizations in Section 5. Moreover, our implementation handles
multiple enactments simultaneously. Using this implementation, we experimentally evaluated
the benefits and costs of early violation detection (EVD) and the overall batch processing
times. We used logs created by simulating workflow models of the IaaS application in
Section 2 with a simulator [25], varying the size of enactments from normal enactments
(10 events per enactment) to large enactments (100 events per enactment) and using batch
sizes of 100, 1,000, and 10,000 events. We used logs with an average of 100 concurrent
enactments and monitored both simple rules (1-2 body atoms, 1-2 head atoms) and complex
rules (2-4 body atoms, 2-4 head atoms). Our test data is motivated by discovering the
feasible ranges for monitoring for enactment and batch size in five target applications areas:
(1) healthcare information systems that manage medical services for compliance with patients’
medical history, (2) drone management services that enforce geographic fencing and limits on
flight time, (3) college admissions portals that manage application due dates and admission
decisions, (4) IaaS providers, as illustrated above, and (5) retail websites where customers’
orders must be paid for, filled, and delivered in a timely manner. For all experiments, we
used a Mac laptop (MacOS Big Sur 12.2.1) with a 3.2 GHz, 8-core Apple M1 processor with
8GB memory.

Our experimental results indicate that early violation detection yields a significant resource
savings (Finding 1) with a negligible overhead (Finding 2), and is feasible for enactments
with up to 100 events and batches up to 10,000 events (Finding 3). Additionally, we can
conclude that our algorithms are appropriate for some application areas of business services.

Finding 1. 16% of events in normal-length violating enactments and 66% of events in large
violating enactments may be ignored.

First, we examine how soon violations could be detected with respect to each enactment’s
events. We report the average percentage of events observed in violating enactments before
and after their first reported violation. This number represents the percentage of events that
could be ignored, or even prevented, in the case that detecting a violation early halts the
enactment’s execution. This finding is partially dependent on the percentage of enactments
that are violating and the size of gaps in rules as a proportion of enactment duration; future
work could analyze these dimensions as factors of the potential savings. Fig. 7 shows the
percentage of events observed in violating enactments before and after their first detected
violation.

normal-length enactments large enactments
rules % events before first violation % after % events before first violation % after

simple 74.9 25.1 33.5 66.5
complex 83.7 16.3 69.4 30.6

Figure 7 Percentages of events observed before and after the first detected violation.

Finding 2. The overhead of detecting violations early is ⩽15% compared with the overall
processing time, even for large enactments and rules with up to 8 atoms.

The benefits of early violation detection could be nullified if the time to calculate deadlines
and find matches is a significant percentage of the overall processing time. As a baseline,
we used an algorithm that does not calculate deadlines, and instead, detects and reports

I. Mackey, R. Chimni, and J. Su 4:13

violations only once the enactment’s END event arrives. Fig. 8 compares our monitoring
algorithm with EVD to the baseline algorithm (without EVD). The increase in processing
time with EVD for normal enactments (⩽2%) is less than the increase with EVD for large
enactments (⩽15%). This is attributed to the higher number of events with matching data
values in large enactments, which increases the number of assignment pairs, thus more
deadlines are calculated in Lines 3 and 8 of Algorithm 3.

normal-length enactments large enactments
rules without EVD with EVD without EVD with EVD

simple 4.27×10−2 4.73×10−2 (+0.2%) 6.65×10−2 7.60×10−2 (+14.3%)
complex 9.19×10−2 9.31×10−2 (+1.3%) 1.840×10−1 2.084×10−1 (+13.3%)

Figure 8 Batch processing times (seconds) with and without early violation detection.

Finding 3. Monitoring is feasible for enactments with up to 100 events, and batches of up
to 10,000 events, with an arrival rate of 1 second.

We report the average batch processing time for normal and large enactments, simple
and complex rules, and batches of 100, 1,000, and 10,000 events. Logs with larger batches
were not obtained due to limitations of the simulator. We assume a batch arrival interval of 1
second, thus an average processing time ⩽1 second indicates monitoring is feasible for some
application areas, because each batch can (on average) be processed before the following
batch arrives, thus no backlog of events accumulates over time. Fig. 9 shows that the average
processing time is ⩽1 second for all trials.

As the batch size grows, the number of events processed by Algorithm 2 grows propor-
tionally. Given that most events in a batch are from different enactments, larger batches do
not have proportionally more pairs of assignments to compare in Line 8 of Algorithm 2, so
these times grow linearly with the batch size as expected. As the enactment length grows,
the number of compatible events, and thus partial assignment pairs, grows, increasing the
number of matches in Line 8 of Algorithm 2 and the number of updates to the ext table in
Line 4 of Algorithm 3. Then, enactment length accounts for the increase in processing time.

Lastly, we place the results in context for the five application areas. Given that the batch
processing times in Finding 3 for enactments with 100 events, batches of 10,000 events, and
rules with 8 atoms are below our assumed batch interval of 1 second, applying our algorithms
to applications in areas (1) and (2), which feature similar dimensions for enactments and
constraints, is feasible. It is also feasible for small applications in areas (3), (4), and (5),
though monitoring larger applications with hundreds of thousands of concurrent users or
enactments with thousands of events may not be possible. Additionally, Finding 2 suggests
whenever monitoring is feasible, early violation detection is also feasible, as it has negligible
computational overhead.

enactment length
normal large normal large

batch size simple rules complex rules
100 4.55×10−4 6.19×10−4 7.74×10−4 1.363×10−3

1,000 4.330×10−3 6.177×10−3 7.534×10−3 1.3509×10−2

10,000 4.2414×10−2 6.0769×10−2 7.4925×10−2 1.35218×10−1

Figure 9 Batch processing times (seconds) for different enactments and rules.

TIME 2022

4:14 Early Detection of Temporal Constraint Violations

7 Conclusions

Techniques for event monitoring are increasing in demand as more software systems generate
and/or rely on events. This paper contributes monitoring and violation detection techniques
for temporal constraints in workflow systems. More study is needed of the trade-offs of
expressiveness of temporal constraints, specifically a comparison of our language’s gap atoms
with LTL and MTL, as well with extensions of our language with negation for modeling the
absence of events. Additionally, it remains to be seen if early violation detection is possible,
and then more effective and efficient, with respect to sets of rules, where deadlines may
appear earlier due to interactions of “conflicting” constraints, as in [19]. Also, our techniques
only consider whether or not a violation is certain; it may be useful to reason about violations
probabilistically, which could allow them to be anticipated farther in advance and thus better
mitigated.

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 Howard Barringer, Ylies Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace,

Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann. Runtime Verification: First International
Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings, volume 6418.
Springer, 2010.

3 David Basin, Felix Klaedtke, Samuel Müller, and Eugen Zălinescu. Monitoring metric first-order
temporal properties. Journal of the ACM (JACM), 62(2):1–45, 2015.

4 Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing ltl semantics for runtime
verification. Journal of Logic and Computation, 20(3):651–674, 2010.

5 Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed Jmaiel. On enabling
time-aware consistency of collaborative cross-org. business processes. In ICSOC 2014, pages
351–358. Springer, 2014.

6 Carlo Combi and Roberto Posenato. Towards temporal controllabilities for workflow schemata.
In TIME 2010, pages 129–136. IEEE, 2010.

7 Riccardo De Masellis, Fabrizio M Maggi, and Marco Montali. Monitoring data-aware business
constraints with finite state automata. In Proceedings of the 2014 International Conference on
Software and System Process, pages 134–143, 2014.

8 Riccardo De Masellis and Jianwen Su. Runtime enforcement of first-order ltl properties on
data-aware business processes. In International Conference on Service-Oriented Computing,
pages 54–68. Springer, 2013.

9 Christophe Dousson and Pierre Le Maigat. Chronicle recognition improvement using temporal
focusing and hierarchization. In IJCAI, volume 7, pages 324–329, 2007.

10 Johann Eder, Marco Franceschetti, and Julius Köpke. Controllability of business processes
with temporal variables. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing, pages 40–47, 2019.

11 Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian. Maintaining
views incrementally. ACM SIGMOD Record, 22(2):157–166, 1993.

12 Klaus Havelund and Grigore Rosu. Monitoring programs using rewriting. In ASE 2001, pages
135–143. IEEE, 2001.

13 Luke Hunsberger and Roberto Posenato. Sound-and-complete algorithms for checking the
dynamic controllability of conditional simple temporal networks with uncertainty. In 25th
International Symposium on Temporal Representation and Reasoning (TIME 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

14 Linh Thao Ly, Fabrizio Maria Maggi, Marco Montali, Stefanie Rinderle-Ma, and Wil MP Van
Der Aalst. Compliance monitoring in business processes: Functionalities, application, and
tool-support. Information systems, 54:209–234, 2015.

I. Mackey, R. Chimni, and J. Su 4:15

15 Isaac Mackey and Jianwen Su. Mapping business rules to ltl formulas. In ICSOC 2019, pages
563–565, 2019.

16 Isaac Mackey and Jianwen Su. Mapping singly-linked, acyclic rules to linear temporal logic
formulas. In submission, 2022.

17 Fabrizio Maria Maggi, Marco Montali, and Ubaier Bhat. Compliance monitoring of multi-
perspective declarative process models. In 2019 IEEE 23rd International Enterprise Distributed
Object Computing Conference (EDOC), pages 151–160. IEEE, 2019.

18 Fabrizio Maria Maggi, Marco Montali, Michael Westergaard, and Wil MP Van Der Aalst.
Monitoring business constraints with linear temporal logic: An approach based on colored
automata. In International Conference on Business Process Management, pages 132–147.
Springer, 2011.

19 Fabrizio Maria Maggi, Michael Westergaard, Marco Montali, and Wil MP van der Aalst.
Runtime verification of ltl-based declarative process models. In International Conference on
Runtime Verification, pages 131–146. Springer, 2011.

20 Alessandro Margara, Emanuele Della Valle, Alexander Artikis, Nesime Tatbul, and Helge
Parzyjegla, editors. International Conference on Distributed and Event-Based Systems. ACM,
ACM, 2021.

21 Marco Montali, Federico Chesani, Paola Mello, and Fabrizio M Maggi. Towards data-aware
constraints in declare. In Proceedings of the 28th annual ACM symposium on applied computing,
pages 1391–1396, 2013.

22 Marco Montali, Fabrizio M Maggi, Federico Chesani, Paola Mello, and Wil MP van der Aalst.
Monitoring business constraints with the event calculus. ACM TIST 2014, 5(1):1–30, 2014.

23 Milos Nikolic, Mohammad Dashti, and Christoph Koch. How to win a hot dog eating contest:
Distributed incremental view maintenance with batch updates. In Proceedings of the 2016
International Conference on Management of Data, pages 511–526, 2016.

24 Peter Z Revesz. A closed-form evaluation for datalog queries with integer (gap)-order con-
straints. Theoretical Computer Science, 116(1):117–149, 1993.

25 Gabriel Siqueria. Log generator. https://github.com/GabrielSiq/LogGenerator, 2020.

A Proof Sketches of Lemmas 3, 5, 6 and Theorem 8

▶ Lemma 3. Let r:φ→ψ be a rule, φg, ψg the gap atoms in φ,ψ (resp.), µ a com-
plete body assignment such that µ(φg) is true, β an incomplete head assignment extend-
ing µ such that β(µ(ψg)) is satisfiable, and U the variables in ψg undefined by β. Let
τ = Deadline(ψg, var(φg∪ψg), µ∪β). The following hold:

1. If τ ∈N, then there is a complete head assignment β′ extending µ∪β such that
min(β′(U))⩽ τ and β′(ψg) is true,

2. If τ ∈N, then for all complete head assignments β′ extending µ∪β such that min(β′(U))>τ ,
β′(ψg) is false.

3. If τ = ∞, then for all timestamps n in N, there is a complete head assignment β′ extending
µ∪β such that max(β′(U))>n and β′(ψg) is true.

Proof Sketch for Lemma 3. To show (1), assume there is no complete head assignment β′

extending µ∪β such that min(β′(U))⩽ τ and β′(ψg) is true. Then, (µ ∪ β)(ψ) ∧ (z = τ) is
not satisfiable. Then, there is a gap atom in µ ∪ β(ψ) that provides an upper bound for z
below τ . Then, τ is not the minimum of the upper bounds in UpperBd. Thus Algorithm 1
on µ ∪ β and ψ should not output τ . This is a contradiction. To show (2), assume some
complete head assignment β′ extends µ∪β such that min(β′(U))>τ and β′(ψg) is true.
Then, (µ ∪ β)(ψ) ∧ (z = τ ′) is satisfiable for some z in var(ψ). Then, µ(ψ) does not imply
zi ⩽ τ for all variables zi. Thus Algorithm 1 on µ ∪ β and ψ should not output τ . This

TIME 2022

https://github.com/GabrielSiq/LogGenerator

4:16 Early Detection of Temporal Constraint Violations

is a contradiction. To show (3), assume τ = ∞. Algorithm 1 only produces ∞ when µ(ψ)
is satisfiable and for some variable zi and for all n ∈ N, µ(ψ) ̸→ (zi ⩽ n) Then, for all
timestamps n in N, there is some complete assignment that extends µ, satisfies ψ, and uses
some n′ larger than n. Then, µ can be extended arbitrary far in the future. ◀

▶ Lemma 5. Let r:φ→ψ be a rule, η an enactment, and ∆ a batch for η.
Update(φ,∆,bar(η)) (or Update(ψ,∆,har(η))) computes bar(η ∪ ∆) (resp. har(η ∪ ∆)).

Proof Sketch for Lemma 5. We argue this for bar(η); adapting this argument for har(η) is
trivial. For an assignment µ in bar(η∪∆) created by Update(φ,∆,bar(η)), some events C in
η and some D in ∆ provide values for µ. Then an assignment µC for C is present in bar(η)
and Lines 2–5 of Alg. 2 generates |D| assignments for each event in D. Next, these |D| + 1
assignments will merge with each other in the loop of Line 7 of Alg. 2 until µ is created
and added to Γ. Alternatively, consider any assignment µ that is not in bar(η∪∆) after
Algorithm 2. Then, no subset of events in η∪∆ can create µ on Line 4 or µ is inconsistent
with the rule body or head and will not proceed past Lines 5 or 8 of Alg. 2. ◀

▶ Lemma 6. Let η be an enactment with no END event, r a rule, τ a timestamp, and µ a
complete body assignment for r. Then, µ is a violation of r in η iff µ occurs in extr(η) but
no rows in extr(η) pairs µ with a complete head assignment, and each row in extr(η) with
µ has a deadline no greater than τ .

Proof Sketch for Lemma 6. Let τ be the largest timestamp in η. extr(η) contains all
possible pairs for µ and head assignments from har(η), so if µ is unmatched in bar(η), there
is no assignment with min(β) ⩽ τ that extends µ and satisfies ψ. Alternatively, let τ be
the largest deadline for µ in extr(η), by Lemma 3, for all rows with µ and β in extr(η),
for all complete head assignments β′ that extend µ ∪ β, such that min(β′(U)) > τ , β′(ψ) is
inconsistent. Thus, no future (i.e., with a value greater than τ) complete head assignment
can extend µ and satisfy ψ. Then, µ will never be extended by a complete head assignment
that satisfies ψ, so µ is a violation for η. ◀

▶ Theorem 8. Let r be a rule, η be an enactment, and ∆ a batch for η. Then, µ is a
violation in η∪∆ but not in η iff Detect(∆,extr(η∪∆)) reports µ.

Proof Sketch for Theorem 8. Let µ be a violation in η∪∆. η∪∆ may contain an END event
and will have no later events, in which case, η.END is in ∆ and µ will be added to Violations on
Line 5 of Algorithm 4. Otherwise, by Lemma 6, µ is complete and in exclusively unmatched
rows in extr(η∪∆) with a deadline of, at most, ts∆. Then, µ will be added to Violations on
Line 8 of Algorithm 4.

Conversely, if Detect(∆,extr(η∪∆)) reports µ, then µ is added to Violations on Line 5
or Line 8 of Algorithm 4. Given Line 2 of the algorithm, µ must be a complete assignment in
extr(η∪∆) that is not extended by any complete head assignment. Then, either (1) η.END

in ∆ or (2) ts∆ is greater than or equal to the deadline for µ in all rows in extr(η∪∆). If
(1), then µ is a violation because η∪∆ will have no later events. If (2), µ is a violation in
η∪∆ by Lemma 6. ◀

	1 Introduction
	1.1 Related Work

	2 An Opportunity for Early Violation Detection
	3 Rules and the Detection Problem
	4 Techniques for Early Violation Detection
	5 Optimizations
	6 Experimental Evaluation
	7 Conclusions
	A Proof Sketches of Lemmas 3, 5, 6 and Theorem 8

