
Gabbay Separation for the Duration Calculus
Dimitar P. Guelev #Ñ

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Abstract
Gabbay’s separation theorem about linear temporal logic with past has proved to be one of the most
useful theoretical results in temporal logic. In particular it enables a concise proof of Kamp’s seminal
expressive completeness theorem for LTL. In 2000, Alexander Rabinovich established an expressive
completeness result for a subset of the Duration Calculus (DC), a real-time interval temporal logic.
DC is based on the chop binary modality, which restricts access to subintervals of the reference time
interval, and is therefore regarded as introspective. The considered subset of DC is known as the
⌈P ⌉-subset in the literature. Neighbourhood Logic (NL), a system closely related to DC, is based
on the neighbourhood modalities, also written ⟨A⟩ and ⟨Ā⟩ in the notation stemming from Allen’s
system of interval relations. These modalities are expanding as they allow writing future and past
formulas to impose conditions outside the reference interval. This setting makes temporal separation
relevant: is expressive power ultimately affected, if past constructs are not allowed in the scope of
future ones, or vice versa? In this paper we establish an analogue of Gabbay’s separation theorem
for the ⌈P ⌉-subset of the extension of DC by the neighbourhood modalities, and the ⌈P ⌉-subset of
the extension of DC by the neighbourhood modalities and chop-based analogue of Kleene star. We
show that the result applies if the weak chop inverses, a pair binary expanding modalities, are given
the role of the neighbourhood modalities, by virtue of the inter-expressibility between them and the
neighbourhood modalities in the presence of chop.
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Introduction

Separation for Linear Temporal Logic (LTL, cf., e.g., [28]) was established by Dov Gabbay
in [14]. Separation is about expressing temporal properties without making reference to
the past in the scope of future constructs and vice versa. Gabbay proved that such a
restriction does not affect the ultimate expressive power of past LTL, by a syntactically
defined translation from arbitrary formulas to ones that are separated, i.e., satisfy the
restriction. The applications of this theorem are numerous and important on their own right.
They include a concise proof of Kamp’s seminal expressive completeness result for LTL (see,
e.g., [13]), the elimination of the past modalities from LTL, which simplifies the study of
extensions of LTL, c.f., e.g., [10], Fisher’s clausal normal form for past LTL [12], other normal
forms [19, 15], etc. In this paper we establish an analogue of Gabbay’s separation theorem for
the extension of a subset of the Duration Calculus (DC) with a pair of expanding modalities
known as the neighbourhood modalities, with and without the chop-based analogue of Kleene
star, which is also called iteration in DC.

The Duration Calculus (DC, [32, 30]) is an extension of real time Interval Temporal
Logic (ITL), which was first proposed by Moszkowski for discrete time [24, 25, 11]. DC is
a real-time interval-based predicate logic for the modeling of hybrid systems. Unlike time
points, time intervals, the possible worlds in DC, have an internal structure of subintervals.
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10:2 Gabbay Separation for the Duration Calculus

This justifies calling modalities like chop introspective for their providing access to these
subintervals only. Modalities for reaching outside the reference interval are called expanding.
Several sets of such modalities have been proposed in the literature.

In this paper we prove a separation theorem for the ⌈P ⌉-subset of DC with the expanding
neighbourhood modalities 3l and 3r added to DC’s chop and iteration. The system based
on 3l and 3r only, which are also written ⟨A⟩ and ⟨A⟩ after Allen’s interval relations [3], is
called Neighbourhood Logic (NL, [4]), whereas we target DC with 3l and 3r. Our theorem
holds with iteration included too. We write DC-NL (DC-NL∗) for DC with 3l and 3r (and
iteration). In separated formulas, 3d cannot appear in the scope of other modalities, except
3d, d = l, r. 3r-free formulas are regarded as past, and 3l-free formulas are future. The
strict forms of past (future) formulas are defined by further restricting chop and iteration to
occur only in the scope of a 3l (3r). DC is a predicate logic. We prove that formulas in
each of ⌈P ⌉-subsets of DC-NL and DC-NL∗ have separated equivalents in their respective
subsets. These subsets are compatible with the system of DC from Rabinovich’s expressive
completeness result [29]. We also show that the weak chop inverses, which are binary
expanding modalities, are expressible using 3l and 3r in the considered subset. Their use in
the Mean-value Calculus, another system from the DC family, was studied in [26]. 3l and
3r are definable using the weak chop inverses. Consequently, our separation theorem applies
to the extensions of DC and DC∗ by the weak chop inverses too.

The technique of our proofs builds on our finds from [16] which led to establishing
separation for discrete time ITL.

Structure of the paper. Section 1 gives preliminaries on DC and DC∗, the neighbourhood
modalities, the weak chop inverses, and a supplementary result on quantification over state
in DC. In Section 2 we state our separation theorem for the ⌈P ⌉-subsets of DC-NL and
DC-NL∗ and give a simple example application. Section 3 is dedicated to the proof. The
transformations for separating DC-NL and DC-NL∗ formulas are given in Sections 3.2 and
3.3, respectively, and use a lemma which is given in the preceding Section 3.1. Section 4 is
about the expressibility of the weak chop inverses in the ⌈P ⌉-subsets of DC-NL and DC-NL∗,
using the lemma from Section 3.1 too. We conclude by pointing to some related work and
making some comments on the relevance of the result.

1 Preliminaries

An in-depth presentation of DC and its extensions can be found in [30]. The syntax of the
⌈P ⌉-subset of DC is built starting from a set V of state variables. It includes state expressions
S and formulas A. Let P stand for a state variable. The BNFs are:

S ::= 0 | P | S ⇒ S A ::= ⊥ | ⌈⌉ | ⌈S⌉ | A ⇒ A | A; A

Semantics. Given a set of state variables V , the type of valuations I is V × R → {0, 1}.
Valuations I are required to have finite variability:

For any P ∈ V and any bounded interval [a, b] ⊂ R there exists a finite sequence
t0 = a < t1 < . . . < tn = b such that λt.I(P, t) is constant in (ti−1, ti), i = 1, . . . , n.

The value It(S) of state expression S at time t ∈ R is defined by the clauses:

It(0) =̂ 0, It(P ) =̂ I(P, t), It(S1 ⇒ S2) =̂ max{It(S2), 1 − It(S1)}.



D. P. Guelev 10:3

Satisfaction has the form I, [a, b] |= A, where [a, b] ⊂ R. The defining clauses are:

I, [a, b] ̸|= ⊥, I, [a, b] |= ⌈⌉ iff a = b,

I, [a, b] |= ⌈S⌉ iff a < b and It(S) = 1 for all but finitely many t ∈ [a, b],
I, [a, b] |= A ⇒ B iff I, [a, b] |= B or I, [a, b] ̸|= A,

I, [a, b] |= A; B iff I, [a, m] |= A and I, [m, b] |= B for some m ∈ [a, b].

The connectives ¬, ∧, ∨ and ⇔ are defined as usual in both state expressions and formulas.
Furthermore 1 =̂ 0 ⇒ 0 and ⊤ =̂ ⊥ ⇒ ⊥. A formula A is valid in DC, written |= A, if
I, [a, b] |= A for all I and all intervals [a, b]. In this paper we consider the extension of the
⌈P ⌉-subset of DC by the neighbourhood modalities 3d, d ∈ {l, r}. The defining clauses for
their semantics are as follows:

I, [a, b] |= 3lA iff I, [a′, a] |= A for some a′ ≤ a,

I, [a, b] |= 3rA iff I, [b, b′] |= A for some b′ ≥ b.

The universal duals 2d of 3d are defined by putting 2dA =̂ ¬3d¬A, d ∈ {l, r}. Chop A; B is
written A⌢B in much of the literature. We write DC-NL for the extension of DC by 3l and
3r. We also consider DC-NL∗, the extension of DC-NL by iteration, the chop-based form of
Kleene star, included. The defining clause for this operator is

I, [a, b] |= A∗ iff a = b or there exist a finite sequence m0 = a < m2 < · · · < mn = b

such that I, [mi−1, mi] |= A for i = 1, . . . , n.

Iteration is interdefinable with positive iteration A+ =̂ A; (A∗), which we assume to be the
derived one of the two: |= A∗ ⇔ ⌈⌉ ∨ A+.

Predicate DC and NL include a (defined) flexible constant ℓ for the length b − a of reference
interval [a, b]. Using ℓ, chop can be defined in NL:

A; B =̂ ∃x∃y(x + y = ℓ ∧ 3l3r(A ∧ ℓ = x) ∧ 3r3l(B ∧ ℓ = y)).

This definition is not available in NL’s ⌈P ⌉-subset. Therefore we discern the ⌈P ⌉-subsets of
NL and DC-NL.

Quantification over state in DC. Given a state variable P , I, [a, b] |= ∃ P A iff I ′, [a, b] |= A

for some I ′ such that I ′(Q, t) = I(Q, t) and all Q ∈ V \ {P}, t ∈ R. Quantification over state
is expressible in the ⌈P ⌉-subset of DC∗:

▶ Theorem 1. For every ⌈P ⌉-formula A in DC∗ and every state variable P there exists a
(quantifier-free) ⌈P ⌉-formula B in DC∗ such that |= B ⇔ ∃ P A.

Mind that B is not guaranteed to be iteration-free, even in case A is.
This theorem follows from a correspondence between stutter-invariant regular languages

and the ⌈P ⌉-subset that led to the decidability of the ⌈P ⌉-subset in [31]. It is not our
contrubution, but the transformations from its proof supplement those from our other proofs.

Notation. In this paper write ε, possibly with subscripts, to denote optional occurrences of
the negation sign ¬, e.g, εQ below. We write [A/B]C to denote the result of simultaneously
replacing all the occurrences of B by A in C, e.g., [0/P ]S below.

TIME 2022



10:4 Gabbay Separation for the Duration Calculus

Proof of Theorem 1. Following [31], A translates into a regular expression over the alphabet

Σ =̂ {
∧

Q is a state variable in A

εQQ : εQ is either ¬ or nothing} . (1)

The translation clauses are as follows:

t(⊥) =̂ ∅ t(⌈S⌉) =̂ ({σ ∈ Σ :|= σ ⇒ S})+ t(A; B) =̂ t(A); t(B)
t(⌈⌉) =̂ ϵ (the empty string) t(A ⇒ B) =̂ t(B) ∪ Σ∗ \ t(A) t(A∗) =̂ t(A)∗

Up to equivalence, t can be inverted. Regular expressions admit complementation- and ∩-free
equivalents; hence these operations can be omitted in the converse translation t̄:

t̄(∅) =̂ ⊥ t̄(a) =̂ ⌈a⌉ for a ∈ Σ t̄(R1 ∪ R2) =̂ t̄(R1) ∨ t̄(R2) t̄(R∗) =̂ t̄(R)∗

t̄(ε) =̂ ⌈⌉ t̄(Σ∗) =̂ ⌈⌉ ∨ ⌈1⌉ t̄(R1; R2) =̂ t̄(R1); t̄(R2)

Given a regular expression R = t(A), t̄(R′) is equivalent to A for any R′ that defines the
same language as R. Applying t̄ to a complementation- and ∩-free equivalent R′ to t(A)
produces an equivalent to A with ∨ as the only propositional connective, except possibly
inside state expressions. Given this, ∃ P can be eliminated from formulas of the form t̄(R′):

|= ∃ P ⊥ ⇔ ⊥ |= ∃ P ⌈S⌉ ⇔ ⌈[0/P ]S ∨ [1/P ]S⌉+ |= ∃ P (A1; A2) ⇔ ∃ P A1; ∃P A2

|= ∃ P ⌈⌉ ⇔ ⌈⌉ |= ∃ P (A1 ∨ A2) ⇔ ∃ P A1 ∨ ∃ P A2 |= ∃ P A∗ ⇔ (∃ P A)∗.

The equivalence ∃ P ⌈S⌉ above hinges on the finite variability of It(P ). ◀

The weak chop inverses A/B and A\B, cf., e.g., [26], are defined by the clauses:

I, [a, b] |= A/B iff for all r ≥ b, if I, [b, r] |= B then I, [a, r] |= A.

I, [a, b] |= A\B iff for all l ≤ a, if I, [l, a] |= B then I, [l, b] |= A.

3lA and 3rA can be defined as ¬(⊥\A) and ¬(⊥/A), respectively. In Section 4 we show
how A/B and A\B can be expressed using 3l and 3r too for ⌈P ⌉-formulas A and B, but
with the expressing formulas built in a more complex way.

Separation as Known for LTL. We relate the setting and statement of Gabbay’s separation
theorem about past LTL as our work builds in the example of this theorem. Let p stand for
an atomic proposition. Discrete time LTL formulas with past have the syntax:

A ::= ⊥ | p | A ⇒ A | ⃝ A | A U A | −⃝A | A S A

−⃝ and S are the past mirror operators of ⃝ and U. −⃝- and S-free formulas are called future
formulas, and ⃝- and U-free formulas are called past. Formulas of the form ⃝ F where F

is future are called strictly future. In [14], Dov Gabbay demonstrated that any formula in
LTL with past is equivalent to a Boolean combination of past and strictly future formulas
for flows of time which are either finite or infinite, in either the future or the past, or both.

Modal heights h3l
(.), h3r

(.) and h∗(.) of formulas wrt the neighbourhood modalities and
iteration appear in our inductive reasoning below. In general, h(A) denotes the length of the
longest chain of A’s subformulas, including possibly A, with the main connective being the
specified modality wrt the (transitive closure of) the subformula relation.
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2 The Separation Theorem

In this section we formulate the main contribution of the paper, Theorems 2 and 3, which
are separation theorems for the ⌈P ⌉-subsets of DC-NL and DC-NL∗, and use Theorem 2 to
demonstrate the expressibility of an interval-based version of the “past-forgetting” operator
from [18] as a simple example application.

We call DC-NL (DC-NL∗) formula F (non-strictly) future if it has the syntax

F ::= C | ¬F | F ∨ F | 3rF

where C stands for a DC (DC∗) formula, where chop (and iteration) are the only modalities.
Non-strictly past formulas are defined similarly, with 3l instead of 3r. A separated formula
is a Boolean combination of past and future formulas.

Following the example of LTL, we call Boolean combinations of 3l-, resp. 3r-formulas
with non-strict past, resp. future operands strictly past, resp. strictly future formulas.
Such formulas can impose no conditions on the reference interval; they only refer to the
adjacent past and future intervals along the timeline. These adjacent intervals still include
the respective endpoints of the reference interval. However the ⌈P ⌉ construct cannot tell
apart interpretations I of the state variables such that λt.I(P, t) varies only at finitely many
time points t. Unlike that, in discrete time an extra step away from the present time using
−⃝, resp., ⃝ is necessary to prevent a formula from imposing conditions on the reference time
point or the reference interval’s respective endpoint. This shared time point causes strictly
past and strictly future formulas to be defined differently in discrete time ITL. Separated
formulas can also be defined as Boolean combinations of strictly past formulas, strictly future
formulas and introspective, i.e., just DC (DC∗), formulas, where the only modalities are chop
(and iteration), that are known as introspective too.

▶ Theorem 2. Let A be a ⌈P ⌉-formula in DC-NL (DC-NL∗). Then there exists a separated
⌈P ⌉-formula A′ in DC-NL (DC-NL∗) such that |= A ⇔ A′.

In Section 4 we demonstrate the inter-expressibility between (./.) and (.\.), and 3l and 3r,
respectively. This implies that Theorem 2 holds for the weak chop inverses instead of the
respective 3d, d ∈ {l, r} wrt a corresponding notion of separated formula too:

▶ Theorem 3. Let A be a ⌈P ⌉-formula in the extension of DC (DC∗) by (./.) and (.\.).
Then there exists a separated ⌈P ⌉-formula A′ in DC (DC∗) with (./.) and (.\.) such that
|= A ⇔ A′.

An Example Application: Expressing the N operator. The temporal operator N (“now”)
was proposed for past LTL in [18], see also [17], as a means for “preventing access” into the
past beyond the time of applying N. Assuming σ =̂ σ0σ1 . . . to be a sequence of states

σ, i |=LTL NA iff σiσi+1 . . . , 0 |=LTL A .

If an arbitrary closed interval D ⊆ R, and not only the whole of R, is allowed to be the time
domain, N can be defined for (real-time) DC-NL too. With such time domains, the endpoints
of “all time” can be identified, because, e.g., D, I, [a, b] |= 2l⌈⌉ iff a = min D. (Since the
⌈P ⌉-subset of DC-NL is merely topological, as opposed to metric, it cannot distinguish open
time domains from R.) We can define N on intervals by putting:

D, I, [a, b] |= NlA iff {x ∈ D : x ≥ a}, I, [a, b] |= A

D, I, [a, b] |= NrA iff {x ∈ D : x ≤ b}, I, [a, b] |= A

Theorem 2 entails that Nl and Nr are expressible in DC-NL:

TIME 2022



10:6 Gabbay Separation for the Duration Calculus

▶ Proposition 4. DC-NL + Nl, Nr has the same expressive power as DC-NL.

Proof. Let A′ be a separated equivalent of A. Then |= NdA ⇔ [3d(B ∧ ⌈⌉)/3dB :
B ∈ Subf(A′)]A′, d ∈ {l, r}, where Subf(F ) stands for the set of the subformulas of F ,
including F . ◀

3 The Proof of Separation for DC-NL and DCNL*

In this section we propose a set of valid equivalences which, if appropriately used as trans-
formation rules starting from some arbitrary given formula from the ⌈P ⌉-subset of DC-NL∗,
lead to a separated formula in DC-NL∗. If the given formula is iteration-free, i.e., in DC-NL,
then so is the separated equivalent. This amounts to proving Theorem 2.

Our key observation is that formulas which are supposed to be evaluated at intervals that
extend some given interval into either the future or the past have equivalents which consist of
subformulas to be evaluated at the given interval and subformulas to be evaluated at intervals
which are adjacent to it, these two subintervals being appropriately referenced using chop as
parts of the enveloping interval. In our proof of separation, this observation is refered to as a
lemma that states the possibility to express any introspective formula as a case distinction of
chop-formulas with the LHS (RHS) operands of chop forming a full system. The lemma can
be seen as a generalization of the guarded normal form, which is ubiquitous in process logics,
with the full systems of guards describing a primitive opening move replaced by full systems
of interval-based temporal conditions to be satisfied at whatever prefixes (suffixes) of the
reference runs necessary. Later on we use the lemma in expressing (./.) ((.\.)) in terms of
3r (3l) too.

3.1 The Key Lemma

A finite set of formulas A1, . . . , An is a full system, if |=
n∨

k=1
Ak and, given 1 ≤ k1 < k2 ≤ n,

|= ¬(Ak1 ∧ Ak2).

▶ Lemma 5. Let A be a ⌈P ⌉-formula in DC (DC∗). Then there exists an n < ω and some
DC (DC∗) ⌈P ⌉-formulas Ak, A′

k, k = 1, . . . , n, such that A1, . . . , An form a full system and

|= A ⇔
n∨

k=1
Ak; A′

k and |= A ⇔
n∧

k=1
¬(Ak; ¬A′

k). (2)

Furthermore, h∗(Ak) ≤ h∗(A) and h∗(A′
k) ≤ h∗(A).

Informally, this means that, I, [a, b] |= A iff whenever m ∈ [a, b] and I, [a, m] |= Ak, I, [m, b] |=
A′

k holds. Furthermore, for every m ∈ [a, b] there is a unique k such that I, [a, m] |= Ak.
Interestingly, the construct ¬(F ; ¬G) used in the second equivalence (2) is regarded as a
form of temporal implication, written F Z⇒ G, in ITL [23, 5]. This construct is akin to
suffix implication [2], see also [1]. It requires the suffix of an interval to satisfy B, if the
complementing prefix satisfies A. Much like ⇒’s being the right adjoint of ∧, Z⇒ is the right
adjoint of chop:

|= (A Z⇒ (B Z⇒ C)) ⇔ ((A; B) Z⇒ C) .

In this paper we stick to the notation in terms of chop for both Z⇒ and its mirror ¬(¬G; F ).
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Proof of Lemma 5. Induction on the construction of A. For ⊥, ⌈⌉ and ⌈P ⌉, we have:

|= ⊥ ⇔ (⊤; ⊥) |= ⌈⌉ ⇔ (⌈⌉; ⌈⌉) ∨ (¬⌈⌉; ⊥)
|= ⌈P ⌉ ⇔ (⌈P ⌉; (⌈P ⌉ ∨ ⌈⌉)) ∨ (⌈⌉; ⌈P ⌉) ∨ (¬(⌈⌉ ∨ ⌈P ⌉); ⊥)

Let B1, . . . , Bn, B′
1, . . . , B′

n satisfy (2) for B and C1, . . . , Cm, C ′
1, . . . , C ′

m satisfy (2) for C.
Then:

|= B op C ⇔
n∨

k=1

m∨
l=1

(Bk ∧ Cl); (B′
k op C ′

l), op ∈ {⇒, ∨, ∧, ⇔}

|= B; C ⇔
n∨

k=1

∨
X⊆{1,...,m}

(
Bk ∧

∧
l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl)
)

;
(

(B′
k; C) ∨

∨
l∈X

C ′
l

)
For the equivalence about iteration, let C1, . . . , Cm, and C ′

1, . . . , C ′
m satisfy (2) for C =̂ B ∨⌈⌉.

Then B∗ ⇔ C∗, and:

|= B∗ ⇔
∨

X⊆{1,...,m}

( ∧
l∈X

(B∗; Cl) ∧
∧

l ̸∈X

¬(B∗; Cl)
)

;
( ∨

l∈X

(C ′
l ; B∗)

)
(3)

The equivalences on the right in (2) are written similarly. The RHSs of these equivalences
have the form required in the lemma. Using these equivalences as transformation rules
bottom up, an arbitrary A can be given that form.

A direct check is sufficient for establishing (2) about ⊥, ⌈⌉ and ⌈P ⌉. The case of B op C,
esp. op = ⇒, admits the proof that works for the Guarded Normal Form in [6].

For the equivalence on the left in (2) about B; C, (⇒): let I, [a, b] |= B; C, m ∈ [a, b],
and I, [a, m] |= B and I, [m, b] |= C. Let t ∈ [a, b]. If t ∈ [a, m], then I, [a, t] |= Bk for some
unique k. If t ∈ [m, b], then a unique X ⊆ {1, . . . , m} exists such that I, [a, t] |= B; Cl holds
iff l ∈ X. The conjunctions of Bk ∧

∧
l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl), k = 1, . . . , n, X ⊆ {1, . . . , m}

form a full system because so do both the Bks, and the conjunctions
∧

l∈X

(B; Cl)∧
∧

l ̸∈X

¬(B; Cl),

X ⊆ {1, . . . , m}. Since I, [a, m] |= B and I, [m, b] |= C, for an [a, t] satisfying the member of
this full system for any given k and X, we can conclude that I, [t, b] |= (B′

k; C) ∨
∨

l∈X

C ′
l from

the assumptions on the B′
ks and the C ′

ls. For the converse implication (⇐), let [a, b] be an
arbitrary interval, t ∈ [a, b], and let I, [a, t] |= Bk ∧

∧
l∈X

(B; Cl) ∧
∧

l ̸∈X

¬(B; Cl), which is bound

to be true for some unique pair k, X. Then, I, [t, b] |= B′
k; C implies I, [a, b] |= Bk; B′

k; C,
and I, [t, b] |= C ′

l implies I, [a, b] |= B; Cl; C ′
l for any l ∈ X. In both cases I, [a, b] |= B; C

follows because |= Bk; B′
k ⇒ B and |= Cl; C ′

l ⇒ C. The LHS equivalence (2) about B∗ is
established similarly, with the use of C facilitating a uniform handling of the case of B∗

holding trivially at 0-length intervals. The RHS equivalences (2) follow from the LHS ones
by the assumption that the Aks form a full system.

Observe that the equivalence (3) about A = B∗ satisfies h∗(Ak) ≤ h∗(A) and h∗(A′
k) ≤

h∗(A). The non-increase of h∗(.) also holds for the rest of the equivalences, which, despite
not featuring iteration explicitly, may become used for transforming formulas with iteration.
Hence, h∗(Ak) ≤ h∗(A) and h∗(A′

k) ≤ h∗(A) for all A. ◀

The time mirror image of Lemma 5 holds too, with the time mirror of (2) reading

|= A ⇔
n∨

k=1
A′

k; Ak and |= A ⇔
n∧

k=1
¬(¬A′

k; Ak).

The proof is no different because all the modalities are symmetrical wrt the direction of time.
For this reason, in the sequel we omit “mirror” statements and their proofs.

TIME 2022
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On the complexity of the transformations from Lemma 5. Interestingly, a peak (expo-
nential) blowup in the transformations from Lemma 5’s proof occurs in the clause for chop
and not the clause for ¬, the typical source of such blowups. However, a closer look at the
inductive assumptions shows that the pairwise inconsistency achieved at the cost of using
Ak ∧

∧
l∈X

(A; Bl) ∧
∧

l ̸∈X

¬(A; Bl) for all k ∈ {1, . . . , m} and the 2n different X ⊆ {1, . . . , m} in

the required full system is instrumental for the correctness of the clause about the binary
Boolean connectives, where negation is obtained for op =⇒ and B = ⊥. Hence this blowup
can be linked to the alternation of ¬ and monotone operators such as chop that is common
in proofs of the non-elementariness of the blowup upon reaching normal forms.

Lemma 5 admits an automata-theoretic proof, along the lines of the proof of Theorem 1.
We have sketched such a proof for discrete time ITL in [16]. That proof leads to different
Ak and A′

k satisfying (2) for the same A, and allows a non-elementary upper bound on the
length of these formulas to be established using the size of a deterministic FSM recognizing
A. Unlike the automata-based proof, the equivalences of this proof suggest transformations
that are valuable for their compositionality and their validity in DC in general, and not just
for the ⌈P ⌉-subset. Furthermore, the proof given here facilitates establishing that ∗-height is
not increased upon moving to the RHSs of (2).

3.2 Separating the Neighbourhood Modalities in DC-NL
In this section we prove Theorem 2 by showing how occurrences of 3d can be taken out of
the scope of chop and 3d, d ∈ {l, r}, l =̂ r, r =̂ l. The transformations that we propose are
supposed to be applied bottom up, on formulas with chop or 3d, d ∈ {l, r}, as the main
connective, assuming that the operands of are already separated. If the main connective is
3d, then we need to target only the 3d-subformulas in 3d’s operand, possibly at the cost of
introducing some 3d-subformulas in the scope of chop, to be subsequently extracted from
there too.

To show that the above transformations combine into a terminating procedure which
produces a separated formula, for DC-NL, we reason by induction on the 3d-height of the
relevant formulas. In the case of DC-NL∗, which is the topic of Section 3.2, we also keep
track of ∗-height. It is not increased upon applying Lemma 5, nor by the transformations
for separating formulas with 3l, 3r or chop as the main connective. The effect on ∗-height
of eliminating some quantification over state which appears at an intermediate stage of the
transformations by an application of Theorem 1 on ∗-height is irrelevant because it involves
only introspective, i.e., DC∗, formulas. In most cases, we give detail only on the extracting
of 3r-subformulas, because of the time symmetry.

Separating 3d-formulas. Let d = l; the case of d = r is its mirror. Since

|= 3l(A1 ∨ A2) ⇔ 3lA1 ∨ 3lA2 , (4)

the availability of DNF for A of 3lA makes it sufficient to consider the case of A of the form
P ∧

n∧
k=1

εk3rFk where P is (non-strictly) past and F1, . . . , Fn are future. Observe that

|= 3l

(
P ∧

n∧
k=1

εk3rFk

)
⇔ 3lP ∧

n∧
k=1

((⌈⌉ ∧ εk3rFk); ⊤) . (5)

Using (4) and (5) does not increase 3l-height and implies that separating 3lA reduces to
separating ((⌈⌉ ∧ ε3rFk); ⊤), which are chop-formulas. Here follow the transformations for
doing this.
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Separating chop-formulas. We need to consider only chop applied to conjunctions of
introspective formulas and possibly negated past 3l-formulas or future 3r-formulas because

|= (L1 ∨ L2); R ⇔ (L1; R) ∨ (L2; R) and |= L; (R1 ∨ R2) ⇔ (L; R1) ∨ (L; R2)

Past 3l-formulas (future 3r-formulas) can be extracted from the left (right) operand of chop
using that

|= (L ∧ ε3lP ); R ⇔ (L; R) ∧ ε3lP and |= L; (R ∧ ε3rF ) ⇔ (L; R) ∧ ε3rF. (6)

Much like (4), this does not affect 3d-height. It remains to consider (L ∧
n∧

k=1
εk3rFk); R,

which, by virtue of the time symmetry, will explain separating L; (R ∧
n∧

k=1
εk3lPk) too.

The transformations of formulas of the form (L∧ε3rF ); R below are about the designated
ε3rF only, and are supposed to be used repeatedly, if L has more conjuncts of this form. By
(4), F can be assumed to be a conjunction C ∧ G where C is introspective and G is strictly
future. Let Ck, C ′

k, k = 1, . . . , n, satisfy Lemma 5 for C. We do the cases of (L ∧ 3rF ); R

and (L ∧ ¬3rF ); R separately.
(L ∧ 3rF ); R: Observe that

|= (L ∧ 3r(C ∧ G)); R ⇔ (L; (R ∧ ((C ∧ G); ⊤))) ∨
n∨

k=1
(L; (R ∧ Ck)) ∧ 3r(C ′

k ∧ G)

and further process the RHS of ⇔ in it. The two disjuncts on the RHS above correspond
to F being satisfied at an interval which is shorter, or the same length, or longer than the
one which presumably satisfies R. Since Ck and C ′

k are introspective, the newly introduced
formulas 3r(C ′

k ∧ G) on the RHS of ⇔ are separated. G can be extracted from the scope of
chop in L; (R ∧ ((C ∧ G); ⊤)) too, because h3r

(G) < h3r
((L ∧ 3rF ); R).

(L ∧ ¬3rF ); R: Satisfying (L ∧ ¬3r(C ∧ G)); R requires ¬(C ∧ G) to hold at all the
intervals which start at the right end of the one where L presumably holds. Therefore we
can use that

|= (L ∧ ¬3r(C ∧ G)); R ⇔
n∨

k=1
(L; (R ∧ Ck ∧ ¬((C ∧ G); ⊤))) ∧ ¬3r(C ′

k ∧ G).

Again, G must be extracted from the scope of chop in the newly introduced L; (R ∧ Ck ∧
¬((C ∧ G); ⊤)) on the RHS of the equivalence. This can be accomplished because h3r (G) <

h3r
((L ∧ ¬3rF ); R).
The transformations above are sufficient for establishing Theorem 2 about DC-NL. By

Lemma 5, these transformations do not cause ∗-height to increase. This is relevant in
separating formulas in DC-NL∗, which is explained next.

3.3 Separating iteration formulas
To extract 3l and 3r from the scope of iteration, we use the inter-expressibility between
iteration and quantification over state, and the expressibility of quantification over state in
the ⌈P ⌉-subset of DC∗ (Theorem 1). Consider B∗ where B is a separated formula. Without

loss of generality, B can be assumed to be
t∨

s=1
Bs where

Bs =̂ Hs ∧
u∧

i=1
εp

s,i3lPi ∧
v∧

j=1
εf

s,j3rFj ,

TIME 2022
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Hs, s = 1, . . . , t are introspective, Pi, i = 1, . . . , u, are past formulas, and Fj , j = 1, . . . , v,
are future formulas. Furthermore, Pi, i = 1, . . . , u, (Fj , j = 1, . . . , v) can be assumed to be
conjunctions of introspective and strictly past (strictly future) formulas by (4) and its mirror
equivalence.

Let T , Sp
i , i = 1, . . . , u, and Sf

j , j = 1, . . . , v, be fresh state variables. Then

|= B∗ ⇔ ∃T∃Sp
1 . . . Sp

u∃Sf
1 . . . Sf

v

(
(⌈T ⌉; ⌈¬T ⌉) ∧

t∨
s=1

(
Bs ∧

u∧
i=1

⌈εp
s,iS

p
i ⌉ ∧

v∧
j=1

⌈εf
s,jSf

j ⌉
))∗

,

This equivalence states that an interval [a, b] such that I, [a, b] |= B∗ can be partitioned
into subintervals [m0, m1], . . . , [md−1, me] so that each subinterval satisfies Bs for some
s ∈ {1, . . . , t}, and an assignment of T , Sp

1 , . . . , Sp
u and Sf

1 , . . . , Sf
v can be chosen so that, for

d = 1, . . . , e, [md−1, md] is a maximal ⌈T ⌉; ⌈¬T ⌉-interval, and for some s ∈ {1, . . . , t} such
that I, [md−1, md] |= Bs, I, [md−1, md] |= ⌈εp

s,iS
p
i ⌉ iff I, [md−1, md] |= εp

s,i3lPi, i = 1, . . . , u,
and I, [md−1, md] |= ⌈εf

s,jSf
j ⌉ iff I, [md−1, md] |= εf

s,j3rFj , j = 1, . . . , v.
Now observe that I, [md−1, md] |= Bs would follow, if I, [md−1, md] |= Hs, and, for some

appropriate a′ ≤ md−1, I, [a′, md−1] |= εp
s,iPi, i = 1, . . . , u, and, for some appropriate b′ ≥ md,

I, [mk, b′] |= εf
s,jFj , i = 1, . . . , v. Here appropriate stands for all b′ ≥ md (a′ ≤ md−1), if

εf
s,j (εp

s,i) is ¬; otherwise it stands for some b′ ≥ md (a′ ≤ md−1). Furthermore, the md

such that I, [md, b′] |= εf
s,jFj is required for all (some) b′ ≥ md can be identified by the

condition that ¬T ∧ εf
s,jSf

j holds in a left neighbourhood of md and T holds in a right
neighbourhood of md, for d = 1, . . . , e − 1. For d = e, md = b, and, unless a = b, ¬T ∧ εf

s,jSf
j

holds in a left neighbourhood of md. The mirror conditions allow identifying the md−1 for
which I, [a′, md−1] |= εp

s,iPi is required, for either some or all a′ ≤ md−1, depending on εp
s,i,

d = 1, . . . , e, with m0 similarly handled separately.
Given the possibility to identify the relevant md as observed, I, [md, b′] |= εf

s,jFj for the
required b′ ≥ md can be expressed as I, [a, b] |= φj where

φj =̂
(

(⊤; ⌈Sf
j ⌉) ⇒ 3rFj ∧ ¬((⊤; ⌈Sf

j ∧ ¬T ⌉); ((⌈T ⌉; ⊤) ∧ ¬((3rFj ∧ ⌈⌉); ⊤)))∧
(⊤; ⌈¬Sf

j ⌉) ⇒ ¬3rFj ∧ ¬((⊤; ⌈¬Sf
j ∧ ¬T ⌉); ((⌈T ⌉; ⊤) ∧ ((3rFj ∧ ⌈⌉); ⊤)))

)
. (7)

The time mirrors of φj can be used to enforce I, [a′, md−1] |= εp
s,iPi for the required a′ ≤ md−1,

i = 1, . . . , u. Let these formulas be πi, i = 1, . . . , u. Then B∗ is equivalent to

∃T∃Sp
1 . . . ∃Sp

u∃Sf
1 . . . ∃Sf

v


(

(⌈T ⌉; ⌈¬T ⌉) ∧
t∨

s=1
Hs ∧

u∧
i=1

⌈εp
s,iS

p
i ⌉ ∧

v∧
j=1

⌈εf
s,jSf

j ⌉
)∗

∧
u∧

i=1
πi ∧

v∧
j=1

φj

 . (8)

3rFj occurs in the left operand of chop in φj . As mentioned above, by the mirror equivalence
of (4), Fj can be assumed to be the conjunction of some introspective Cj and some strictly
future Gj . Let Cj,k and C ′

j,k, k = 1, . . . , n, satisfy Lemma 5 for Cj . Then

|= ((3rFj ∧ ⌈⌉); ⊤) ⇔ ((Cj ∧ Gj); ⊤) ∨
n∧

k=1
Cj,k ⇒ 3r(C ′

j,k ∧ Gj). (9)

Since h3r
(Gj) < h3r

(B) and h∗(Gj) < h∗(B), Gj can be extracted from the left operand of
chop in the RHS of (9). This produces a (non-strictly) future formula which is equivalent
to ((3rFj ∧ ⌈⌉); ⊤). After replacing ((3rFj ∧ ⌈⌉); ⊤) by this future formula in (7), the 3r-
subformulas of this future formula and the formulas 3r(C ′

j,k ∧ Gj) can be further extracted
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from the right operand of chop in (7) using the right equivalence of (6). This leads to a future
equivalent of φj , by which we replace φj in (8), j = 1, . . . , v. We use the time mirror of (9)
and the left equivalence of (6) to similarly replace πi, i = 1, . . . , u, by some appropriate past
equivalents. This leads to a separated formula as the operand of ∃T∃Sp

1 . . . ∃Sp
u∃Sf

1 . . . ∃Sf
v

in (8).
In order to obtain a separated equivalent to B∗, we need to eliminate this quanti-

fier prefix. To this end, observe that the 3l- and 3r-subformulas which appear in the
separated equivalents of πi, i = 1, . . . , u, and φj , j = 1, . . . , v, have no occurrences of
T, Sp

1 , . . . , Sp
u, Sf

1 , . . . , Sf
v , and are linked with the remaining introspective subformulas in the

scope of ∃T∃Sp
1 . . . ∃Sp

u∃Sf
1 . . . ∃Sf

v , which may have such occurrences, by Boolean connectives
only. Hence the 3l- and 3r-subformulas can be extracted using the De Morgan laws and

|= ∃ S (X ∨ Y ) ⇔ ∃ S X ∨ ∃ S Y, and, for S-free X, |= ∃ S(X ∧ Y ) ⇔ X ∧ ∃ S Y,

Then the quantifier prefix can be eliminated by Theorem 1, which is about introspective
formulas only. Hence Theorem 2 holds about DC-NL∗ too.

4 Expressing the Weak Chop Inverses by the Neighbourhood
Modalities and Separation for the Weak Chop Inverses

In this section we prove that the weak chop inverses are expressible in DC-NL, which means
that separation applies to DC with these expanding modalities instead of 3l and 3r too.

Suppose that A1, A2, B are separated formulas in DC-NL (DC-NL∗). Then the availability
of conjunctive normal forms and the validity of the equivalences

(A1 ∧ A2)/B ⇔ A1/B ∧ A2/B

entails that we need to consider only formulas A/B where A is a disjunction of introspective
formulas, strictly future formulas and strictly past formulas. Strictly past disjuncts P in the
left operand of (./.) can be extracted using the validity of

(A ∨ P )/B ⇔ P ∨ A/B.

The following proposition shows how to express A/B in case A is a disjunction of introspective
and possibly negated 3r-formulas.

▶ Proposition 6. Let A be a ⌈P ⌉-formula in DC (DC∗) and Ak, A′
k, k = 1, . . . , n satisfy

Lemma 5 for A. Let B be a ⌈P ⌉-formula in DC-NL∗. Let F be a strictly future formula.
Then

|= (A ∨ F )/B ⇔
n∨

k=1
Ak ∧ 2r(B ⇒ (A′

k ∨ F )) . (10)

Proof. (⇒): Let I, [a, b] satisfy the RHS of (10). Consider an arbitrary r ≥ b such that
I, [b, r] |= B. Then I, [a, r] |= A∨F . There is a (unique) k ∈ {1, . . . , n} such that I, [a, b] |= Ak.
Hence I, [b, r] |= A′

k ∨ F follows from I, [a, r] |= A ∨ F and |= A ⇒ ¬(Ak; ¬A′
k), which follows

from Lemma 5. The (⇐) direction is trivial to check and we omit it. ◀

The formula for A/B in terms of 3l and 3r in the RHS of (10) can be further separated
to extract past subformulas of B from the scope of 2r as in DC-NL (DC-NL∗). The above
argument shows that (./.)-formulas whose operands are in the ⌈P ⌉-subset of DC-NL (DC-NL∗)
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have equivalents in the ⌈P ⌉-subset of DC-NL (DC-NL∗) themselves. Observe that, in the
presence of chop, it takes only 3r to eliminate (./.). Similarly, (.\.), which is about looking
to the left of reference interval, can be eliminated using only chop and 3l. As mentioned in
the Preliminaries section, expressing 3l and 3r by means of (.\.) and (./.) is straightforward.
This concludes our reduction of the ⌈P ⌉-subset of DC-NL (DC-NL∗) with the weak chop
inverses to the ⌈P ⌉-subset of DC-NL (DC-NL∗), and entails that separation applies to that
system too as stated in Theorem 3.

Concluding Remarks

In this paper we have shown how separation after Gabbay applies to the ⌈P ⌉-subsets of
DC-NL and DC-NL∗, the extensions of DC by the neighbourhood modalities. These subsets
correspond to the subset of DC whose expressive completeness was demonstrated in [29].

The ⌈S⌉-construct, which is definitive for the ⌈P ⌉-subsets of DC-NL and DC-NL∗, has
a considerable similarity with the homogeneity principle which is known from studies on
neighbourhood logics of discrete time. That principle was proposed in [22, 20] and was
adopted in a number of more recent works such as [7, 8, 9]. Unlike the locality principle from
Moszkowski’s (standard) discrete time ITL, where the satisfaction of an atomic proposition
p is determined by the labeling of the initial state of the reference interval, homogeneity
means that atomic proposition p must label all the states in the reference interval for p

to hold at that interval as a formula. The two variants are ultimately interdefinable, but
facilitate applications in a slightly different way. Homogeneity can be compared with DC’s
⌈P ⌉ because ⌈P ⌉ means that P is supposed to hold “almost everywhere” in the reference
interval. The main difference is that varying valuations at zero-length interval is negligible in
real-time NL and DC, whereas the labeling of the only point in such intervals can be referred
to in discrete time. This leads to different notions of strictly past and strictly future formulas.
It is known that past expanding modalities increase the ultimate expressive power of discrete
time ITL [21], and not just its succinctness, the latter being the case in past LTL. This adds
to the relevance of algorithmic methods for interval-based expanding modalities in general.

Providing a separation theorem to the ⌈P ⌉-subset of DC-NL improves our understanding
of the logic and may facilitate further results. One obvious avenue of future study would be
to consider interval-based variants of the applications of separation that are known about
point-based past LTL. In particular, one rather straightforward application would be to
simplify the theoretical considerations that are needed for the study of extensions, especially
branching time ones such as [27], by making it sufficient to consider future-only formulas,
while still enjoying the succinctness contributed by the availability of past operators.
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