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Abstract
Given a graph G and two independent sets Is and It of size k, the Independent Set Recon-
figuration problem asks whether there exists a sequence of independent sets (each of size k)
Is = I0, I1, I2, . . . , Iℓ = It such that each independent set is obtained from the previous one using a
so-called reconfiguration step. Viewing each independent set as a collection of k tokens placed on the
vertices of a graph G, the two most studied reconfiguration steps are token jumping and token sliding.
In the Token Jumping variant of the problem, a single step allows a token to jump from one vertex
to any other vertex in the graph. In the Token Sliding variant, a token is only allowed to slide from
a vertex to one of its neighbors. Like the Independent Set problem, both of the aforementioned
problems are known to be W[1]-hard on general graphs (for parameter k). A very fruitful line of
research [5, 14, 27, 25] has showed that the Independent Set problem becomes fixed-parameter
tractable when restricted to sparse graph classes, such as planar, bounded treewidth, nowhere-dense,
and all the way to biclique-free graphs. Over a series of papers, the same was shown to hold for the
Token Jumping problem [17, 22, 26, 8]. As for the Token Sliding problem, which is mentioned in
most of these papers, almost nothing is known beyond the fact that the problem is polynomial-time
solvable on trees [11] and interval graphs [6]. We remedy this situation by introducing a new model
for the reconfiguration of independent sets, which we call galactic reconfiguration. Using this new
model, we show that (standard) Token Sliding is fixed-parameter tractable on graphs of bounded
degree, planar graphs, and chordal graphs of bounded clique number. We believe that the galactic
reconfiguration model is of independent interest and could potentially help in resolving the remaining
open questions concerning the (parameterized) complexity of Token Sliding.
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1 Introduction

Many algorithmic questions can be posed as follows: given the description of a system
state and the description of a state we would “prefer” the system to be in, is it possible to
transform the system from its current state into the more desired one without “breaking”
the system in the process? And if yes, how many steps are needed? Such problems
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15:2 Galactic Token Sliding

naturally arise in the fields of mathematical puzzles, operational research, computational
geometry [23], bioinformatics, and quantum computing [13] for instance. These questions
received a substantial amount of attention under the so-called combinatorial reconfiguration
framework in the last few years [9, 28, 30]. We refer the reader to the surveys by van den
Heuvel [28] and Nishimura [24] for more background on combinatorial reconfiguration.

In this work, we focus on the reconfiguration of independent sets. Given a simple
undirected graph G, a set of vertices S ⊆ V (G) is an independent set if the vertices of S

are all pairwise non-adjacent. Finding an independent set of maximum cardinality, i.e., the
Independent Set problem, is a fundamental problem in algorithmic graph theory and is
known to be not only NP-hard, but also W[1]-hard and not approximable within O(n1−ϵ),
for any ϵ > 0, unless P = NP [31].

We view an independent set as a collection of tokens placed on the vertices of a graph such
that no two tokens are adjacent. This gives rise to two natural adjacency relations between
independent sets (or token configurations), also called reconfiguration steps. These two
reconfiguration steps, in turn, give rise to two combinatorial reconfiguration problems. In the
Token Jumping (TJ) problem, introduced by Kamiński et al. [20], a single reconfiguration
step consists of first removing a token on some vertex u and then immediately adding it back
on any other vertex v, as long as no two tokens become adjacent. The token is said to jump
from vertex u to vertex v. In the Token Sliding (TS) problem, introduced by Hearn and
Demaine [15], two independent sets are adjacent if one can be obtained from the other by a
token jump from vertex u to vertex v with the additional requirement of uv being an edge
of the graph. The token is then said to slide from vertex u to vertex v along the edge uv.
Note that, in both the TJ and TS problems, the size of independent sets is fixed. Generally
speaking, in the Token Jumping and Token Sliding problems, we are given a graph G

and two independent sets Is and It of G. The goal is to determine whether there exists a
sequence of reconfiguration steps – a reconfiguration sequence – that transforms Is into It

(where the reconfiguration step depends on the problem).
Both problems have been extensively studied, albeit under different names [6, 7, 11, 12,

16, 19, 20, 22]. It is known that both problems are PSPACE-complete, even on restricted
graph classes such as graphs of bounded bandwidth (and hence pathwidth) [29] and planar
graphs [15]. On the positive side, it is easy to prove that Token Jumping can be decided in
polynomial time on trees (and even on chordal graphs) since we simply have to iteratively
jump tokens to leaves (resp. vertices that only appear in the bag of a leaf in the clique
tree) to transform an independent set into another. Unfortunately, for Token Sliding, the
problem becomes more complicated because of what we call the bottleneck effect. Indeed,
there might be a lot of empty leaves in the tree but there might be a bottleneck in the graph
that prevents us from reaching these desirable vertices. For instance, consider a star plus a
long subdivided path attached to the center of the star. One cannot move any token from
the leaves of the star to the path if there are at least two tokens on the leaves (in other
words, two tokens adjacent to a cut-vertex prevent us from using the cut vertex). Even if
we can overcome this issue for instance on trees [11] and on interval graphs [6], the Token
Sliding problem remains much “harder” than the Token Jumping problem. In split graphs
for instance (which are chordal), Token Sliding is PSPACE-complete [4]. Lokshtanov
and Mouawad [21] showed that, in bipartite graphs, Token Jumping is NP-complete while
Token Sliding remains PSPACE-complete.

In this paper we focus on the parameterized complexity of the Token Sliding problem.
While the complexity of Token Jumping parameterized by the size of the independent set
is quite well understood, the comprehension of the complexity of Token Sliding remains
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evasive. A problem Π is FPT (fixed-parameterized tractable) parameterized by k if one
can solve it in time f(k) · poly(n), for some computable function f . In other words, the
combinatorial explosion can be restricted to a parameter k. In the rest of the paper, our
parameter k will be the size of the independent set (i.e. number of tokens). Both Token
Jumping and Token Sliding are known to be W[1]-hard1 parameterized by k on general
graphs [22]. On the positive side, Lokshtanov et al. [22] showed that Token Jumping is
FPT on bounded degree graphs. This result has been extended in a series of papers to planar
graphs, nowhere-dense graphs, and finally strongly Kℓ,ℓ-free graphs [18, 8], a graph being
strongly Kℓ,ℓ-free if it does not contain any Kℓ,ℓ as a subgraph. For Token Sliding, it was
proven in [2] that the problem is W[1]-hard on bipartite graphs and C4-free graphs (a similar
result holds for Token Jumping but based on weaker assumptions for the bipartite case [1]).

Almost no positive result is known for Token Sliding even for incredibly simple cases
like graphs of bounded degree. Our main contributions are to develop two general tools for
the design of parameterized algorithms for Token Sliding, namely galactic reconfiguration
and types. Galactic reconfiguration is a general simple tool that allows us to reduce instances.
Using it, we will derive that Token Sliding is FPT on bounded degree graphs. Our second
tool, called types, will in particular permit to show that when the deletion of a small subset
of vertices leaves too many components, then one of them can be removed. Combining both
tools with additional rules, we prove that Token Sliding is FPT on planar graphs and on
chordal graphs of bounded clique number. We complement these results by proving that
Token Sliding is W[1]-hard on split graphs.

Our first result is the following:

▶ Theorem 1.1. Token Sliding is FPT on bounded degree graphs parameterized by k.

Much more than the result itself, we believe that our main contribution here is the general
framework we developed for its proof, namely galactic reconfiguration. Before explaining
exactly what it is, let us explain the intuition behind it. As we already said, even if there
are vertices which are far apart from the vertices of an independent set, we are not sure
we can reach them because of the bottleneck effect. Our intuition was that it should be
possible to reduce a part of large diameter of the graph that does not contain any tokens
(just as we can find irrelevant vertices when we have large grid minors). The idea is that
since the diameter is large, we should be able to hide tokens far apart from each other in
this structure, avoiding the “bottleneck issue”. And thus the structure should be reducible.
However, proving that a structure can be reduced in reconfiguration is usually very technical.
To overcome this problem, we introduce a new kind of vertices called black holes which can
swallow as many tokens of the independent set as we like. A galactic graph is a graph that
might contain black holes. A galactic independent set is a set of vertices on which tokens lie,
such that the set of non black hole vertices holding tokens is an independent set and such
that each black hole might contain any number of tokens.

Our main result is to prove that if there exists a long shortest path that is at distance
at least two from the initial and target independent sets, then we can replace it by a black
hole (whose neighborhood is the union of the neighborhoods of the path vertices). This
rule, together with other simple rules on galactic graphs, allows us to reduce the size of
bounded-degree graphs until they reach a size of at most f(k) in polynomial time. Since a
kernel ensures the existence of an FPT algorithm, Theorem 1.1 holds.

1 Informally, it means that they are very unlikely to admit an FPT algorithm.
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In the rest of the paper, we combine galactic graphs with other techniques to prove that
Token Sliding is FPT on several other graph classes. We first prove the following:

▶ Theorem 1.2. Token Sliding is FPT on planar graphs parameterized by k.

To prove Theorem 1.2, we cannot simply use our previous long path reduction since, in
a planar graph, there might be a universal vertex which prevents the existence of a long
shortest path. Note that the complexity of Token Sliding is open on outerplanar graphs
and it was not known to be FPT prior to our work.

Our strategy consists in reducing to planar graphs of bounded degree and then applying
Theorem 1.1. To do so, we provide another general tool to reduce graphs for Token Sliding.
Namely, we show that if there is a set X of vertices such that G − X contains too many
connected components (in terms of k and |X|) then at least one of them can be safely
removed. The idea of the proof consists in defining the type of a connected component of
G − X. From a very high level perspective, the type2 of a path in a component of G − X

is the sequence of its neighborhoods in X. The type of a component C is the union of the
types of the paths starting on a vertex of C. We then show that if too many components of
G − X have the same type then one of them can be removed.

However, this component reduction is not enough since, in the case of a vertex x universal
to an outerplanar graph, the deletion of x does not leave many connected components. We
prove that, we can also reduce a planar graph if (i) there are too many vertex-disjoint
(x, y)-paths for some pair x, y of vertices or, (ii) if a vertex has too many neighbors on an
induced path. Since one can prove that in an arbitrarily large planar graph with no long
shortest path (i) or (ii) holds, it will imply Theorem 1.2.

Note that our proof techniques can be easily adapted to prove that the problem is FPT
for any graph of bounded genus. We think that the notion of types may be crucial to derive
FPT algorithms on larger classes of graphs such as bounded treewidth graphs.

We finally provide another application of our method by proving that the following holds:

▶ Theorem 1.3. Token Sliding is FPT on chordal graphs of bounded clique number.

The proof of Theorem 1.3 consists in proving that, since there is a long path in the clique
tree, we can either find a long shortest path (and we can reduce the graph using galactic
rules) or find a vertex x in a large fraction of the bags of this path. In the second case, we
show that we can again reduce the graph. We complement this result by proving that it
cannot be extended to split graphs, contrarily to Token Jumping.

▶ Theorem 1.4. Token Sliding is W[1]-hard on split graphs.

We show hardness via a reduction from the Multicolored Independent Set problem,
known to be W[1]-hard [10]. The crux of the reduction relies on the fact that we have a
clique of unbounded size and hence we can use different subsets of the clique to encode vertex
selection gadgets and non-edge selection gadgets.

The first natural generalization of our result on chordal graphs of bounded clique size
would be the following:

▶ Question 1.1. Is Token Sliding FPT on bounded treewidth graphs? Or simpler, on
bounded pathwidth graphs?

2 The exact definition is actually more complicated.



V. Bartier, N. Bousquet, and A. E. Mouawad 15:5

We did not succeed in answering Question 1.1 but we think that the method we used for
Theorem 1.3 is a good starting point (with a much more involved analysis). Recall that the
problem is PSPACE-complete on graphs of constant bandwidth for a large enough constant
that is not explicit in the proof [29]. Note that our galactic reconfiguration rules directly
ensure that Token Sliding is FPT on bounded bandwidth graphs and the multi-component
reduction ensures that the problem is FPT for graphs of bounded treedepth. But even for
bounded pathwidth, the situation is unclear. There are good indications to think that solving
the bounded pathwidth case is the hardest step to obtain an FPT algorithm for bounded
treewidth graphs. On the positive side, we simply know that the problem is polynomial
time solvable on graphs of treewidth one (namely forests) [11] and the problem is open for
outerplanar graphs, which are graphs of treewidth 2:

▶ Question 1.2. Is Token Sliding polynomial-time solvable on outerplanar graphs? Trian-
gulated outerplanar graphs?

Organization of the paper. In Section 2, we formally introduce galactic graphs and provide
our main reduction rules concerning such graphs, including the long shortest path reduction
lemma. In Section 3, we introduce the notion of types and journeys and prove that if there
are too many connected components in G − X then at least one of them can be removed. In
Section 4, we briefly describe our results for Token Sliding on planar graphs and chordal
graphs of bounded clique number. Our hardness reduction for split graphs and all omitted
proofs can be found in the full version of the paper [3].

2 Galactic graphs and galactic token sliding

We say that a graph G = (V, E) is a galactic graph when V (G) is partitioned into two sets
A(G) and B(G) where the set A(G) ⊆ V (G) is the set of vertices that we call planets and
the set B(G) ⊆ V (G) is the set of vertices that we call black holes. For a given graph G′, we
write G′ ≺ G whenever |A(G′)| < |A(G)| or, in case of equality, |B(G′)| < |B(G)|. In the
standard Token Sliding problem, tokens are restricted to sliding along edges of a graph as
long as the resulting sets remain independent. This implies that no vertex can hold more
than one token and no two tokens can ever become adjacent. In a galactic graph, the rules
of the game are slightly modified. When a token reaches a black hole (a special kind of
vertex), the token is absorbed by the black hole. This implies that a black hole can hold more
than one token, in fact it can hold all k tokens. Moreover, we allow tokens to be adjacent
as long as one of the two vertices is a black hole (since black holes are assumed to make
tokens “disappear”). On the other hand, a black hole can also “project” any of the tokens
it previously absorbed onto any vertex in its neighborhood (be it a planet or a black hole).
Of course, all such moves require that we remain an independent set in the galactic sense.
We say that a set I is a galactic independent set of a galactic graph G whenever G[I ∩ A]
is edgless. To fully specify a galactic independent set I of size k containing more than one
token on black holes, we use a weight function ωI : V (G) → {0, . . . , k}. Hence, ωI(v) ≤ 1
whenever v ∈ A(G), ωI(v) ∈ {0, . . . , k} whenever v ∈ B(G), and

∑
v∈V (G) ωI(v) = k.

We are now ready to define the Galactic Token Sliding problem. We are given
a galactic graph G, an integer k, and two galactic independent sets Is and It such that
|Is| = |It| = k ≥ 2 (when k = 1 the problem is trivial). The goal is to determine whether there
exists a sequence of token slides that will transform Is into It such that each intermediate
set remains a galactic independent set. As for the classical Token Sliding problem,
given a galactic graph G we can define a reconfiguration graph which we call the galactic
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reconfiguration graph of G. It is the graph whose vertex set is the set of all galactic independent
sets of G, two vertices being adjacent if their corresponding galactic independent sets differ
by exactly one token slide. We always assume the input graph G to be a connected graph,
since we can deal with each component independently otherwise. Furthermore, components
without tokens can be safely deleted. Given an instance (G, k, Is, It) of Galactic Token
Sliding, we say that (G, k, Is, It) can be reduced if we can find an instance (G′, k′, I ′

s, I ′
t)

which is positive (yes-instance) if and only if (G, k, Is, It) is positive and G′ ≺ G.
Let G be a galactic graph. A planetary component is a maximal connected component of

G[A]. A planetary path P , or A-path, composed only of vertices of A, is called A-geodesic
if, for every x, y in P , distG[A](x, y) = distP (x, y). We use the term A-distance to denote
the length of a shortest path between vertices u, v ∈ A such that all vertices of the path
are also in A. Let us state a few reduction rules that allow us to safely reduce an instance
(G, k, Is, It) of Galactic Token Sliding to an instance (G′, k′, I ′

s, I ′
t).

Reduction rule R1 (adjacent black holes rule): If two black holes u and v are adjacent,
we contract them into a single black hole w. If there are tokens on u or v, the merged
black hole receives the union of all such tokens. In other words, ωI′

s
(w) = ωIs(u) + ωIs(v)

and ωI′
t
(w) = ωIt

(u) + ωIt
(v). Loops and multi-edges are ignored.

Reduction rule R2 (dominated black hole rule): If there exists two black holes u and v

such that N(u) ⊆ N(v), ωIs
(u) = 0, and ωIt

(u) = 0, we delete u.
Reduction rule R3 (absorption rule): If there exists u, v such that u is a black hole, v ∈
N(u)∩A (v is a neighboring planet that could be in Is ∪It) and |((Is ∪It)∩A)∩N [v]| ≤ 1,
then we contract the edge uv. We say that v is absorbed by u. If v ∈ Is ∪ It then we
update the weights of u accordingly.
Reduction rule R4 (twin planets rule): Let u, v ∈ A(G) be two planet vertices that are
twins (true or false twins). That is, either uv ̸∈ E(G) and N(u) = N(v) or uv ∈ E(G)
and N [u] = N [v]. If u ̸∈ Is ∪ It then delete u. If both u and v are in Is (resp. It) and at
least one of them is not in It (resp. Is) then return a trivial no-instance. If both u and v

are in Is as well as It then delete N [u] ∪ N [v], decrease k by two, and set I ′
s = Is \ {u, v}

and I ′
t = It \ {u, v}.

Reduction rule R5 (path reduction rule): Let G be a galactic graph and P be a A-geodesic
path of length at least 5k such that (A ∩ N [P ]) ∩ (Is ∪ It) = ∅. Then, P can be contracted
into a black hole (we ignore loops and multi-edges). That is, we contract all edges in P

until one vertex remains.

▶ Lemma 2.1. Reduction rule R5, the path reduction rule, is safe.

Sketch of the proof. Let P be an A-geodesic path of length 5k in G such that no vertex of
A∩N [P ] are in the initial or target independent sets, Is and It. Let G′ be the graph obtained
after contracting P into a single black hole b. Let I ′

s and I ′
t be the galactic independent

sets corresponding to Is and It. If there is a transformation from Is to It in G, then one
can show that there is a transformation from I ′

s to I ′
t in G′ by simply absorbing tokens that

become adjacent to the black hole and then projecting them appropriately when needed.
Now we consider a transformation from I ′

s to I ′
t in G′ and show how to adapt it in G.

We first prove (in the full version of the paper [3]) that we can always assume the existence
of a sequence in G′ where the number of tokens in N(b) ∩ A is at most one throughout the
sequence, for any black hole b. Now, assuming such a sequence, we can simulate the sequence
in G with the hard case being when multiple tokens slide into b. Note, however, that P is of
length 5k and is A-geodesic. Hence, every vertex a ∈ A has at most three neighbors in P

and any independent set of size at most k in A has at most 3k neighbors in P . This leaves
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2k vertices on P which we can use to hold as many as k tokens that need to slide into b (in
G′). In other words, whenever more than one token slides into b in G′, we simulate this by
sliding the tokens in P onto the 2k vertices of P that are free. ◀

As immediate consequences, the following properties hold in an instance where reduction
rules R1 to R5 cannot be applied.

▶ Corollary 2.2. Every planetary component must contain at least one token and therefore
G can have at most k planetary components, when k ≥ 2.

▶ Corollary 2.3. Let (G, k, Is, It) be an instance of Galactic Token Sliding where
reduction rules R1, R3, and R5 (adjacent black holes rule, absorption rule, and the path
reduction rule) have been exhaustively applied. Then, the graph G has diameter at most
O(k2). Moreover, any planetary component has diameter at most O(k2).

We now show how the galactic reconfiguration framework combined with the previous
reduction rules immediately implies that Token Sliding is fixed-parameter tractable
for parameter k + ∆(G), where ∆(G) denotes the maximum degree of G. Theorem 2.4
immediately implies positive results for graphs of bounded bandwidth/bucketwidth.

▶ Theorem 2.4. Token Sliding is fixed-parameter tractable when parameterized by k+∆(G).
Moreover, the problem admits a bikernel3 with k∆(G)O(k2) + (2k + 2k∆(G))∆(G) vertices.

Proof. Let (G, k, Is, It) be an instance of Token Sliding. We first transform it to an
instance of Galactic Token Sliding where all vertices are planetary vertices. We then
apply all of the reduction rules R1 to R5 exhaustively. By a slight abuse of notation we let
(G, k, Is, It) denote the irreducible instance of Galactic Token Sliding.

The total number of planetary components in G is at most k by Corollary 2.2 and the
diameter of each such component is at most O(k2) by Corollary 2.3. Hence the total number
of planet vertices is at most k∆(G)O(k2).

To bound the total number of black holes, it suffices to note that no black hole can have
a neighbor in B ∪ (A \ N [Is ∪ It]). In other words, no black hole can be adjacent to another
black hole (since the adjacent black holes reduction rule would apply) and no black hole can
be adjacent to a planet without neighboring tokens (otherwise the absorption reduction rule
would apply). Hence, combined with the fact that each black hole must have degree at least
one, the total number of black holes is at most (2k + 2k∆(G))∆(G). ◀

3 The multi-component reduction rule (R6)

General idea. The goal of this section is to show how we can reduce a graph when we have
a small vertex separator with many components attached to it. We let X be a subset of
vertices and H be an induced subgraph of G−X (for simplicity we assume G is a non-galactic
graph in this section). Let Is and It be two independent sets which are disjoint from H

and consider a reconfiguration sequence from Is to It in G. Let v be a vertex of H and
assume that there is a token t that is projected on v at some point of the reconfiguration
sequence, meaning that the token t is moved from a vertex of X to v. This token may stay a
few steps on v, move to some other vertex w of H, and so on until it eventually goes back
to X. Let this sequence of vertices (allowing duplicate consecutive vertices) be denoted by
v1 = v, v2, . . . , vr. We call this sequence the journey of v (formal definitions are given in the
next subsection).

3 A kernel where the resulting instance is not an instance of the same problem.
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Assume now that the number of connected components attached to X is arbitrarily large.
Our goal is to show that one of those components can be safely deleted, that is, without
compromising the existence of a reconfiguration sequence if one exists. Suppose that we
decide to delete the component H. The transformation from Is to It does not exist anymore
since, in the reconfiguration sequence, the token t was projected on v ∈ V (H). But we can
ask the following question: Is it possible to simulate the journey of v in another connected
component of G − X? In fact, if we are able to find a vertex w in a connected component
H ′ ≠ H of G − X and a sequence w1 = w, . . . , wr of vertices such that wiwi+1 is an edge
for every i and such that N(wi) ∩ X = N(vi) ∩ X, then we could project the token t on w

instead of v and perform this journey instead of the original journey4 of t. One possible issue
is that the number r of (distinct) vertices in the journey can be arbitrarily large, and thus
the existence of w and H ′ is not guaranteed a priori. This raises more questions: What is
important in the sequence v = v1, . . . , vr? Why do we go from v1 to vr? Why many steps in
the journey if r is large? The answers are not necessarily unique. We distinguish two cases.

First, suppose that in the reconfiguration sequence, the token t was projected from X to
v, performed the journey without having to “wait” at any step (so no duplicate consecutive
vertices in the journey), and then was moved to a vertex x′ ∈ X. Then, the journey only
needs to “avoid” the neighbors of the vertices in X that contain a token. Let us denote by s1
the step where the token t is projected on v and by s2 the last step of the journey (that is,
the step where t is one move/slide away from X). Let Y be the vertices of X that contain
a token between the steps s1 and s2. The journey of t can then be summarized as follows:
a vertex whose neighborhood in X is equal to N(v) ∩ X, a walk whose vertices all belong
to H and are only adjacent to subsets of X \ Y , and then a vertex whose neighborhood in
X is equal to N(vr) ∩ X. In particular, if we can find, in another connected component of
G − X, a vertex w for which such a journey (with respect to the neighborhood in X) also
exists, then the we can project t on w instead of v. Clearly, the obtained reconfiguration
sequence would also be feasible (assuming again no other tokens in the component of w).

However, we might not be able to go “directly” from v1 = v to vr. Indeed, at some point
in the sequence, there might be a vertex vi1 which is adjacent to a token in X. This token
will eventually move (since the initial journey with t in H is valid), which will then allow the
token t to go further on the journey. But then again, either we can reach the final vertex vr

or the token t will have to wait on another vertex vi2 for some token on X to move, and so
on (until the end of the journey). We say that there are conflicts during the journey5.

So we can now “compress” the path as a path from v1 to vi1 , then from vi1 to vi2 (together
with the neighborhood in X of these paths), as we explained above. However, we cannot
yet claim that we have reduced the instance sufficiently since the number of conflicts is not
known to be bounded (by a function of k and/or the size of X). The main result of this
section consists in proving that, if we consider a transformation from Is to It that minimizes
the number of moves “related” to X, then (almost) all the journeys have a “controllable”
amount of (so-called important) conflicts. Actually, we prove that, in most of the connected
components H of G − X, we can assume that we have a “controllable” number of important
conflicts for every journey on H in a transformation that minimizes the number of token
modifications involving X. The idea consists in proving that, if there are too many important
conflicts during a journey of a token t, we could mimic the journey of t on another component
to reduce the number of token slides involving X. Finally, we will only have to prove that if
all the vertices have a controllable number of conflicts (and there are too many components),
then we can safely delete a connected component of G − X.

4 We assume for simplicity in this outline that the component of w does not contain tokens.
5 Actually, there might exist another type of conflict we do not explain in this outline for simplicity.
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Journeys and conflicts. We denote a reconfiguration sequence from Is to It by R =
⟨I0, I1, . . . , Iℓ−1, Iℓ⟩. Let X ⊆ V (G) and H be a component in G − X such that Is ∩ V (H) =
It ∩ V (H) = ∅. All along this section, we are assuming that tokens have labels just so we
can keep track of them. For every token t, let vi(t), 0 ≤ i ≤ ℓ, denote the vertex on which
token t is at position i in the reconfiguration sequence R.

Whenever a token enters H and leaves it, we say that the token makes a journey in H.
Let Ii denote the first independent set in R where vi(t) ∈ V (H) and let Ij , i ≤ j, denote the
first independent set after Ii where vj+1(t) ̸∈ V (H). Then the journey J of t in H is the
sequence (vi(t), . . . , vj(t)). The journey is a sequence of vertices (with multiplicity) from H

such that consecutive vertices are either the same or connected by an edge. We associate each
journey J with a walk W in H. The walk W of t in H is the journey of t where duplicate
consecutive vertices have been removed.

We say that a token is waiting at step i if vi(t) = vi−1(t); otherwise the token is active.
Given a journey J and its associated walk W , we say that w ∈ W is a waiting vertex if there
is a step where the vertex w is a waiting vertex in the journey. Otherwise w is an active
vertex (with respect to the reconfiguration sequence). So we can now decompose the walk W

into waiting vertices and transition walks. That is, assuming the walk starts at y and ends
at z, we can write W = yP0w0P1w1 . . . wℓPℓz, where each wi is a waiting vertex and each Pi

is a transition walk (consisting of the walk of active vertices between two consecutive waiting
vertices). Note that the transition walks could be empty.

We are interested in why a token t might be waiting at some vertex w. In fact, we will
only care about waiting vertices that we will call important waiting vertices. Let w1, . . . , wℓ

be the waiting vertices of the journey and, for every i ≤ ℓ, let us denote by [si, s′
i] the time

interval of the reconfiguration sequence where the token t is staying on the vertex wi. Note
that si < s′

i and when t is active the other tokens are not moving; thus the position of any
token different from t is the same all along the interval [s′

i + 1, si+1] for every i ≤ ℓ − 1.
Let i < j ≤ ℓ and let wi be a waiting vertex. We say that wj is the important waiting

vertex after wi if j > i and j is the largest integer such that no vertex along the walk of
token t between wi (included) and wj (included) is adjacent to a token t′ ̸= t or contains a
token t′ ̸= t between steps s′

i and sj (note that the important waiting vertex after wi might
be the last vertex of the sequence). Since token t is active from s′

i + 1 to si+1 and is moving
from wi to wi+1 during that interval, the important waiting vertex after wi is well-defined
and is at least wi+1. Let Qi,j denote the walk in H that the token t follows to go from wi to
wj (both wi and wj are included in Qi,j). In other words, Qi,j = wiPi+1wi+1 . . . Pjwj . Now,
note that since wj is the important waiting vertex after wi (i.e. we cannot replace wj by
wj+1), then we claim that the following holds:

▷ Claim 3.1. If wj is not the last vertex of the walk W , either
(i) there is a token on or adjacent to a vertex of Pj+1wj+1 (the transition walk after wj)

at some step in [s′
i, s′

j ] or,
(ii) there is a token on or adjacent to a vertex of Qi,j − wj in the interval [sj , sj+1].

We now define the notion of conflicts. Since we cannot replace wj by wj+1, it means that,
by definition, there is at least one step sq in [s′

i, sj+1] where a token tq ̸= t is adjacent to
(or on a vertex) vq of Qi,j+1. We call such a step a conflict. We say that (sq, vq, tq) is the
conflict triplet associated to the conflict (we will mostly refer to a triplet as a conflict).

The conflicts of type (i) are called right conflicts and the conflicts of type (ii) are called
left conflicts. It might be possible that wj is the important waiting vertex because we have
(several) left and right conflicts. We say that wj is a left important vertex if there is at least
one left conflict and a right important vertex otherwise.
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If wj is a left important vertex, we let the important conflict (s⋆, v⋆, t⋆) denote the
first conflict associated with Qi,j between steps sj and s′

j , i.e., there exists no s such that
sj ≤ s < s⋆ ≤ s′

j such that there is a conflict at step s with a token t′ ̸= t which is either
on Qi,j or incident to Qi,j . Note that v⋆ cannot be a vertex of Qi,j since that would imply
at least one more conflict before s⋆, hence v⋆ ∈ N(V (Qi,j)). If wj is a right important
vertex, we let (s⋆, v⋆, t⋆) denote the important conflict associated with Pj+1wj+1 between
steps s′

i and s′
j as the last conflict associated to Pj+1wj+1, i.e., there exists no s such that

s′
i ≤ s⋆ < s ≤ s′

j and there is a conflict (s, vs, ts) such that vs in Pj+1wj+1 or incident to
Pj+1wj+1. Note that v⋆ cannot be a vertex of Pj+1wj+1 since that would imply at least one
more conflict after s⋆, hence v⋆ ∈ N(V (Pj+1wj+1)). We use C(Qi,j+1)[s′

i, s′
j ] to denote all

conflict triplets (left and right conflicts) associated with Qi,j+1 between steps s′
i and s′

j .
To conclude this section, let us remark that the conflicts might be due to vertices of

H or vertices of X. In other words, for a conflict triple (s, v, t) ∈ C(Qi,j+1)[s′
i, s′

j ], v is an
H-conflict or an X-conflict depending on whether v is in H or in X. In what follows we
will only be interested in X-conflicts. The X-important waiting vertex after wi is wj where
j > i is the smallest integer such that C(Qi,j+1)[s′

i, s′
j ] contains at least one triplet (s, v, t′)

where t′ ≠ t, v ∈ X, and s′
i ≤ s ≤ s′

j . Now given a journey we can define the sequence of
X-important waiting vertices as the sequence w′

1, . . . , w′
r starting with vertex w1 and such

that w′
j+1 is the X-important waiting vertex after wj . What will be important in the rest

of the section is the length r of this sequence. If this sequence is short (bounded by f(k)),
then we can check if we can simulate a similar journey in other components efficiently. If the
sequence is long, we will see that it implies that we can find a “better” transformation.

Since we will mostly be interested in how a journey interacts with X, we introduce
the notion of the X-walk associated with journey J . The X-walk is written as W X =
yP0w0P1w1 . . . wℓPℓz, where each w is an X-important waiting vertex and each P is the walk
that the token takes (this walk could have non-important waiting vertices) before reaching
the next X-important waiting vertex. We call each P in an X-walk an X-transition walk.

Types and signatures. Let X be a subset of vertices and H be a component of G − X.
An ℓ-type is defined as a sequence IY1W1Y2W2 . . . YℓWℓYℓ+1F such that for every i, Wi is a
(possibly empty) subset of X and Yi is a (possibly empty) subset of X or a special value ⊥
(the meaning of ⊥ will become clear later on). We call I the initial value and F the final
value and they are both non-empty subsets of vertices of X. The 0-type is defined as IY0F

and we allow I to be equal to F . We will often represent an ℓ-type by (I(YiWi)i≤ℓYℓ+1F ).
Note that if X is bounded, then the number of ℓ-types is bounded. More precisely, we have:
▶ Remark 3.2. The number of ℓ-types is at most (2|X| + 1)2(ℓ+2).

The neighborhood of a set of vertices S ⊆ V (H) in X is called the X-trace of S. A journey
J is compatible with an ℓ-type IY1W1Y2W2 . . . YℓWℓYℓ+1F if it is possible to partition the
X-walk W of J into W X = yP0w0P1w1 . . . PℓwℓPℓ+1z such that:

the X-trace of each vertex wi is Wi,
for every walk Pi which is not empty, the X-trace of Pi is Yi, i.e., ∪x∈Pi

N(x) ∩ X = Yi

(note that we can have Yi = ∅),
for every empty walk Pi, we have Yi =⊥, and
the X-trace of y is I and the X-trace of z is F .

The ℓ-signature of a vertex v ∈ V (H) (with respect to X) is the set of all ℓ′-types with ℓ′ ≤ ℓ

that can be simulated by v in H. That is, for every ℓ-type, there exists a walk W starting at
v such that W = vP0w0P1w1 . . . PℓwℓPℓ+1z is compatible with the ℓ-type if and only if the
ℓ-type is in the signature. Two vertices are ℓ-equivalent if their ℓ-signatures are the same.
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▶ Lemma 3.3. One can compute in O∗((2|X| + 1)2(ℓ+2)) the ℓ-signature of a vertex v in H.

X-reduced sequences and equivalent journeys. Let J be a journey with exactly r X-
important waiting vertices (in its X-walk). Let wi and Pi be respectively the i-th X-important
waiting vertex and the i-th X-transition walk. Let Pr+1 be the final X-transition walk. Let
us denote by Wi the neighborhoods of wi in X, and by Yi the neighborhood of Pi in X. Let
I and F be the neighborhoods of the initial and final vertices of the walk associated with J ,
respectively. The type T of the journey J is I(YiWi)i≤rYr+1F .

▶ Definition 3.4. Two journeys are X-equivalent whenever the following holds:
They have the same number of X-important waiting vertices;
The initial and final vertex of the X-walk have the same X-trace;
For every i, the X-trace of the ith X-important waiting vertex is the same in both journeys;
For every i, the X-trace of the ith X-transition walk is the same in both journeys.

Let I, J be two independent sets and X be a subset of vertices of G. A slide of a token
is related to X if the token is moving from or to a vertex in X (possibly from some other
vertex in X). We call such a move an X-move.

▶ Definition 3.5. A transformation R from I to J is X-reduced if the number of X-moves
is minimized and, among the transformations that minimize the number of X-moves, R
minimizes the total number of moves.

The multi-component reduction. Let H be a connected component of G − X. The ℓ-
signature of H is the union of the ℓ-signatures of the vertices in H. Let H be a subset of
connected components of G − X. We say that H ∈ H is ℓ-dangerous for H if there is a ℓ-type
in the ℓ-signature of H that appears in at most ℓ connected components of H. Otherwise we
say that H is ℓ-safe. If there are no ℓ-dangerous components, we say that H is ℓ-safe. One
can easily prove the following using iterated extractions:

▶ Lemma 3.6. Let ℓ = 5|X|k. If there are more than ℓ(2|X| + 1)2(ℓ+2) + 2k + 1 components
in G − X, then there exists a collection of at least 2k + 1 components that are ℓ-safe which
can be found in f(k, |X|) · nO(1)-time, for some computable function f .

We can now prove the main result of this section:

▶ Lemma 3.7. Let Is, It be two independent sets and X be a subset of V (G). Let R be an
X-reduced transformation from Is to It. Assume that there exists a subset H of at least 2k +1
connected components of G − X that is (5|X|k)-safe. Then, for every C ∈ H, any journey
on the component C has at most 5|X|k − 1 X-important waiting vertices in its X-walk.

Sketch of the proof. Assume for a contradiction that there exists a safe component C ∈ H
and a journey J of some token t in C that has at least 5|X|k X-important waiting vertices.
Amongst all such journeys, select the one that reaches first its (5|X|k)-th X-important waiting
vertex. Let us denote by I(YiWi)i≤5kY5k+1 the type of the journey J that we truncate after
Y5k+1. And, let us denote by v(Piwi)i≤5kP5k+1 the partition of the walk into X-important
waiting vertices and X-transition walks (we assume the walk starts at vertex v ∈ V (C)).

For each X-important waiting vertex wi, let (qi, xi, ti) be the important conflict associated
to it. Since there are at most k labels of tokens and |X| vertices in X, there exists a vertex
x ∈ X and a token with label t′ such that there exists at least 5 waiting vertices such
that the important conflict is of the form (q, x, t′) for some q. In other words, there exists
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Pi1 , . . . , Pi5 such that for each Pi we have a triplet (q, x, t′) (recall that q denotes the step in
the reconfiguration sequence). Let us denote by s1, . . . , s5 the steps of those conflicts whose
token label is t′ and whose vertex in X is x and such that these conflicts are important
conflict triples in five different X-transition walks.

The rest of the proof consists in proving that, rather than making the initial transformation,
we can project t′ on an appropriately chosen component C ′ of H distinct from C and mimic
the journey of t between steps s1 and s5. In other words, t′ can simply follow a journey on
C ′ of the same type as that of t between s1 and s5 and we can then safely project it back
on x at step s5 without creating any X-conflicts. This implies that we can strictly reduce
the number of X-conflicts, a contradiction to the assumption that the transformation is
X-reduced. We also manage H-conflicts by using the minimality of the journey. ◀

▶ Lemma 3.8. Let Is, It be two independent sets and X be a subset of V (G). If G − X

contains at least 4k + 2 (5|X|k)-safe components, then we can delete one of those components,
say C, such that there is a transformation from Is to It in G if and only if there is a
transformation in G − V (C).

Sketch of the proof. The proof consists in proving that, since all the journeys have at most
5|X|k − 1 X-important waiting vertices by Lemma 3.7, one can replace a journey in a safe
component by a journey in another component either by not creating any conflicts or by
creating some conflicts on shorter “time periods” which ensures the procedure converges. ◀

▶ Corollary 3.9. Given a cutset X, we can assume that G − X has at most 5|X|k(2|X| +
1)2(5|X|k+2) + 4k + 2 = 2O(|X|2k) connected components. Moreover, when the number of
components is larger we can find a component to delete in f(k, |X|) · nO(1)-time.

4 Applications

Due to space restriction we only very briefly explain the main steps of the proofs.

Planar graphs. First note that, using galactic reconfiguration, we can reduce the diameter
of the graph to O(k2) by Corollary 2.3. The core of the proof then consists in reducing high
degree vertices. If the degree is bounded by a function of k, then the conclusion will follow
from Theorem 2.4. To reduce the degree, we prove that, for every pair x, y of large degree
vertices, 1) V (G) \ {x, y} does not contain too many components by Corollary 3.9 (Rule
R6), 2) the graph can be reduced if there are not too many internally vertex-disjoint paths
from x to y and, 3) the graph can be reduced if it contains a few other slightly more general
structures. All these results together permit to ensure that G does not contain any large
degree vertices after applying all the rules, which completes the proof.

Chordal graphs of bounded clique number. A chordal graph is a graph with no induced
cycle of length at least four. Equivalently, it also has a clique-tree (see full version [3] for
formal definitions). If a node v of the clique-tree has large degree then V (G) \ Bv (where Bv

denotes the bag of v) has many connected components, and one of them can be removed
by Corollary 3.9. So we can assume that the degree of the clique-tree is bounded. Thus,
if the graph is large, the clique-tree should contain a long path P . If no vertex belongs to
a large fraction of the bags of P , then the diameter is large and we can reduce the graph
by Corollary 2.3. So a vertex belongs to a large fraction of the bags of P . We can actually
prove that, there exists a sub-path P ′ of P and X ⊆ V (G) such that X belongs to all the
bags of P ′ and no other vertex appears in a significant fraction of the bags of P ′. Together
with a few other properties, we prove that some vertices in the bags of P ′ can be deleted
without modifying the existence of a reconfiguration sequence from Is to It.
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