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Abstract
We study the problem of maximizing a monotone submodular function subject to a Multiple Knapsack
constraint (SMKP) . The input is a set I of items, each associated with a non-negative weight, and a
set of bins having arbitrary capacities. Also, we are given a submodular, monotone and non-negative
function f over subsets of the items. The objective is to find a subset of items A ⊆ I and a packing
of these items in the bins, such that f(A) is maximized.

SMKP is a natural extension of both Multiple Knapsack and the problem of monotone submodular
maximization subject to a knapsack constraint. Our main result is a nearly optimal polynomial time
(1− e−1 − ε)-approximation algorithm for the problem, for any ε > 0. Our algorithm relies on a
refined analysis of techniques for constrained submodular optimization combined with sophisticated
application of tools used in the development of approximation schemes for packing problems.
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1 Introduction

Submodular optimization has recently attracted much attention as it provides a unifying
framework capturing many fundamental problems in combinatorial optimization, economics,
algorithmic game theory, networking, and other areas. Furthermore, submodularity also
captures many real world practical applications where economy of scale is prevalent. Classic
examples of submodular functions are coverage functions [9], matroid rank functions [3] and
graph cut functions [10]. A recent survey on submodular functions can be found in [1].
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44:2 Aproximation for Monotone Submodular Multiple Knapsack

Submodular functions are defined over sets. Given a ground set I, a function f : 2I → R≥0
is called submodular if for every A ⊆ B ⊆ I and u ∈ I\B, f(A+u)−f(A) ≥ f(B+u)−f(B).1
This reflects the diminishing returns property: the marginal value from adding u ∈ I to a
solution diminishes as the solution set becomes larger. A set function f : 2I → R is monotone
if for any A ⊆ B ⊆ I it holds that f(A) ≤ f(B). While in many cases, such as coverage and
matroid rank function, the submodular function is monotone, this is not always the case (cut
functions are a classic example).

The focus of this work is optimization of monotone submodular functions. In [19]
Nemhauser and Wolsey presented a greedy based (1− e−1)-approximation for maximizing a
monotone submodular function subject to a cardinality constraint, along with a matching
lower bound in the oracle model. A (1 − e−1) hardness of approximation bound is also
known for the problem under P 6= NP, due to the hardness of max-k-cover [9] which is a
special case. The greedy algorithm of [19] was later generalized to monotone submodular
optimization with a knapsack constraint [16, 21].

A major breakthrough in the field was the continuous greedy algorithm presented in [22].
Initially used to derive a (1− e−1)-approximation for maximizing a monotone submodular
function subject to a matroid constraint, the algorithm has become a primary tool in the
development of monotone submodular maximization algorithms subject to various other
constraints. These include d-dimensional knapsack constraints [17], and combinations of
d-dimensional knapsack and matroid constraints [7]. A variant of the continuous greedy
algorithm for non-monotone functions is given in [11].

In the multiple knapsack problem (MKP) we are given a set of items, where each item
has a weight and a profit, and a set of bins of arbitrary capacities. The objective is to find
a packing of a subset of the items that respects the bin capacities and yields a maximum
profit. The problem is one of the most natural extensions of the classic Knapsack problem
that arises in the context of Virtual Machine (VM) allocation in cloud computing. The
practical task is to assign VMs to physical machines such that capacity constraints are
satisfied, while maximizing the profit of the cloud provider. A submodular cost function
allows cloud providers to offer complex cost models to high-volume customers, where the
price customers pay for each VM can depend on the overall number of machines used by the
customer.

A polynomial time approximation scheme for MKP was first presented by Chekuri and
Khanna [5]. The authors also ruled out the existence of a fully polynomial time approximation
scheme for the problem. An efficient polynomial time approximation scheme was later
developed by Jansen [14, 15].

1.1 Our Results
In this paper we consider the submodular multiple knapsack problem (SMKP). The input
consists of a set of n items I andm bins B. Each item i ∈ I is associated with a weight wi ≥ 0,
and each bin b ∈ B has a capacity Wb ≥ 0. We are also given an oracle to a non-negative
monotone submodular function f : 2I → R≥0. A feasible solution to the problem is a tuple
of m subsets (Ab)b∈B such that for every b ∈ B it holds that

∑
i∈Ab wi ≤Wb. The value of a

solution (Ab)b∈B is f
(⋃

b∈B Ab
)
. The goal is to find a feasible solution of maximum value.2

1 Equivalently, for every A, B ⊆ I: f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).
2 We note that the set of bins B is part of the input for SMKP, thus the number of bins is non-constant.

This is one difference between SMKP and the problem of maximizing a submodular set function subject
to d knapsack constraints (or, a d-dimensional knapsack constraint) where d is fixed (for more details
see, e.g., [17]).
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The problem is a natural generalization of both Multiple Knapsack [5] (where f is modular
or linear), and the problem of monotone submodular maximization subject to a knapsack
constraint [21] (where m = 1). Our result is stated in the next theorem.

I Theorem 1. For any ε > 0, there is a randomized (1− e−1 − ε)-approximation algorithm
for SMKP.

As mentioned above, a (1 − e−1) hardness of approximation bound is known for the
problem under P 6= NP, due to the hardness of max-k-cover [9] which is a special case
of SMKP. This is a vast improvement over previous results. Feldman presented in [12] a(
e−1
3e−1 − o(1)

)
≈ 0.24-approximation for the special case of identical bin capacities, along

with a 1
9 -approximation for general capacities. To the best of our knowledge, this is the best

known approximation ratio for the problem.3
In very recent work, carried out independently of our work, Sun et al. [20] present a

deterministic greedy based (1− e−1 − ε)-approximation for the special case of identical bins.
They also derive a randomized (1− e−1 − ε)-approximation for the special case where the
ratio between the capacity of the largest and smallest bins is a constant. In this paper we
give a randomized algorithm for the most general case, based on a different approach (as
described below).

1.2 Tools and Techniques
Our algorithm relies on a refined analysis of techniques for submodular optimization subject
to d-dimensional knapsack constraints [17, 4, 7], combined with sophisticated application of
tools used in the development of approximation schemes for packing problems [8].

At the heart of our algorithm lies the observation that SMKP for a large number of
identical bins (i.e., ∀b ∈ B, Wb = W for some W ≥ 0) can be easily approximated via a
reduction to the problem of maximizing a submodular function subject to a 2-dimensional
knapsack constraint (see, e.g., [17]). Given such an SMKP instance and ε > 0, we partition
the items to small and large, where an item i ∈ I is small if wi ≤ εW and large otherwise.
We further define a configuration to be a subset of large items which fits into a single bin,
and let C be the set of all configurations. It follows that for fixed ε > 0, the number of
configurations is polynomial.

Using the above we define a new submodular optimization problem, to which we refer as
the block-constraint problem. We define a new universe E which consists of all configurations
C and all small items, E = C ∪ {{i}| i is small}. We also define a new submodular function
g : 2E → R≥0 by g(T ) = f

(⋃
A∈T A

)
. Now, we seek a subset of elements T ⊆ E such that

T has at most m = |B| configurations, i.e., |T ∩ C| ≤ m, and the total weight of sets selected
is at most m ·W ; namely,

∑
A∈T w(A) ≤ m ·W , where w(A) =

∑
i∈A wi.

It is easy to see that the optimal value of the block-constraint problem is at least the value
of the optimum for the original instance. Moreover, a solution T for the block-constraint
problem can be used to generate a solution for the SMKP instance with only a small loss in
value. As there are no more than m configurations, and all other items are small, the items in
T can be easily packed into (1+ε)m+1 bins of capacityW using First Fit. Then, it is possible

3 Sun et al. [20] indicate that a
(

1− e1−e−1
− o(1)

)
≈ 0.468-approximation for the problem can be

derived using the techniques of [4]. We note that this derivation is non-trivial (no details were given
in [4]).

ESA 2020



44:4 Aproximation for Monotone Submodular Multiple Knapsack

to remove εm+ 1 of the bins while maintaining at least m
εm+1 ≥

1
1+2ε of the solution value,

for m ≥ 1
ε . Once these εm+ 1 bins are removed, we have a feasible solution for the SMKP

instance. The block-constraint problem can be viewed as monotone submodular optimization
subject to a 2-dimensional knapsack constraint. Thus, a (1− e−1 − ε)-approximate solution
can be found efficiently [17].

Our approximation algorithm for SMKP is based on a generalization of the above. We
refer to a set of bins of identical capacity as a block, and show how to reduce an SMKP
instance into a submodular optimization problem with a d-dimensional knapsack constraint,
in which d is twice the number of blocks plus a constant. While, generally, this problem
cannot be solved for non-constant d, we use a refined analysis of known algorithms [17, 7] to
show that the problem can be efficiently solved if the blocks admit a certain structure, to
which we refer as leveled.

We utilize a grouping technique, inspired by the work of Fernandez de la Vega and Lueker
[8], to convert a general SMKP instance to a leveled instance. We sort the bins in decreasing
order by capacity and then partition them into levels, where level t, t ≥ 0, has N2+t bins,
divided into N2 consecutive blocks, each containing N t bins. We decrease the capacity of
each bin to the smallest capacity of a bin in the same block. While the decrease in capacity
generates the leveled structure required for our algorithm to work, it only slightly decreases
the optimal solution value. The main idea is that given an optimal solution, each block of
decreased capacity can now be used to store the items assigned to the subsequent block on
the same level. Also, the items assigned to N blocks from each level can be evicted, while
only causing a reduction of 1

N to the profit (as only N of the N2 blocks of the level are
evicted). These evicted blocks are then used for the items assigned to the first block in the
next level.

2 Preliminaries

Our analysis utilizes several basic properties of submodular functions. Given a monotone
submodular function f : 2I → R≥0 and a set S ⊆ I, we define fS : 2I → R≥0 by fS(A) =
f(S ∪A)− f(S). It follows that fS is a monotone, non-negative submodular function. The
proof of the next claim is given in Appendix A.

B Claim 2. Let f : 2I → R≥0 be a non-negative, monotone and submodular function, and
let E ⊆ 2I ×X for some set X (each element of E is a pair (S, h) with S ⊆ I and h ∈ X).
Then function g : 2E → R≥0 defined by g(A) = f

(
∪(S,h)∈AS

)
is non-negative, monotone

and submodular.

While Claim 2 is essential for our algorithm, it is important to emphasize it does not
hold for non-monotone submodular functions.

Many modern submodular optimization algorithms rely on the submodular Multilinear
Extension ([3, 17, 18, 23, 11, 2]). Given a function f : 2I → R≥0, its multilinear extension is
F : [0, 1]I → R≥0 defined as:

F (x̄) =
∑
S⊆I

f(S)
∏
i∈S

x̄i
∏
i∈I\S

(1− x̄i).

The multilinear extension can be interpreted as an expectation of a random variable. Given
x̄ ∈ [0, 1]I we say that a random set X is distributed according to x̄, X ∼ x̄, if Pr(i ∈ X) = x̄i
and the events (i ∈ X)i∈I are independent. It follows that F (x̄) = EX∼x̄[f(X)].
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The continuous greedy of [3] can be used to find approximate solution for maximization
problems of the form maxF (x̄) s.t. x̄ ∈ P , where F is the multilinear extension of a
monotone submodular function f , and P is a down-monotone polytope. The algorithm uses
two oracles, one for f and another which given λ̄ ∈ RI returns a vector x̄ ∈ P such that x̄ · λ̄
is maximal. The algorithm returns x̄ ∈ P such that F (x̄) ≥ (1− e−1) maxȳ∈P F (ȳ).

We use I = (I, w,B,W, f) to denote an SMKP instance consisting of a set of items I
with weights wi for i ∈ I, a set of bins B with capacities Wb for b ∈ B, and objective function
f . Given a set A ⊆ I, let w(A) =

∑
i∈A wi. We denote by OPT(I) the optimal solution

value for the instance I.

3 The Approximation Algorithm

In this section we present our approximation algorithm for SMKP. Given an instance I of
the problem, let A∗ = ∪b∈BA∗b be an optimal solution of value OPT (I). We first observe
that there exists a constant size subset A = ∪b∈BAb, where Ab ⊆ A∗b , satisfying the following
property: the value gained from any item in i ∈ A∗ \A is small relative to OPT (I). Thus,
our algorithm initially enumerates over all possible partial assignments of constant size. Each
assignment is then extended to an approximate solution for I. Among all possible partial
assignments and the respective extensions the algorithm returns the best solution. Thus,
from now on we restrict our attention to finding a solution for the residual problem, obtained
by fixing the initial partial assignment.

Formally, given an SMKP instance, I = (I, w,B,W, f), a feasible partial solution (Ab)b∈B
and ξ ∈ N, we define the residual instance I ′ = (I ′, w,B,W ′, f ′) with respect to (Ab)b∈B and
ξ as follows. Let A = ∪b∈BAb and set I ′ =

{
i ∈ I \A

∣∣∣ fA({i}) ≤ f(A)
ξ

}
. The weights of the

items remain the same and so is the set of bins. For every b ∈ B we set W ′b = Wb − w(Ab).
Finally, the objective function of the residual instance is f ′ = fA.

I Lemma 3. Let I be an SMKP instance, ξ ∈ N, and (A∗b)b∈B an optimal solution for I
such that A∗b1

∩ A∗b2
= ∅ for any b1, b2 ∈ B, b1 6= b2. If

∑
b∈B |A∗b | ≥ ξ there is a feasible

solution (Ab)b∈B for I such that Ab ⊆ A∗b for any b ∈ B,
∑
b∈B |Ab| = ξ, and (A∗b \Ab)b∈B

is a feasible solution for the residual instance of I ′ w.r.t (Ab)b∈B and ξ.

Proof. Let (A∗b)b∈B be an optimal solution to the SMKP instance. Define A∗ = ∪b∈BA∗b
and order the items of A∗ by their marginal values. That is A∗ = {a1, . . . , ar} where
fT`−1({a`}) = maxa∈A∗\T`−1 fT`−1({a}) with T` = {a1, . . . , a`} for every 1 ≤ ` ≤ r (also,
T0 = ∅). Define (Ab)b∈B by Ab = A∗b ∩ {a1, . . . , aξ} for every b ∈ B and A = ∪b∈BAb. We
therefore have A = {a1, . . . , aξ}.

For any b ∈ B it holds that w(Ab) ≤ w(A∗b) ≤Wb, and thus (Ab)b∈B is a feasible solution
for I. Furthermore, for any b ∈ B it holds that Ab ⊆ A∗b by definition. As the sets (A∗b)b∈B
are disjoint it follows that

∑
b∈B |Ab| = ξ.

Let I ′ = (I ′, w,B,W ′, f ′) be the residual instance of I w.r.t (Ab)b∈B and ξ. We are left
to show that (A∗b \Ab)b∈B is a feasible solution for I ′. For every ξ < i ≤ r and 1 ≤ ` ≤ ξ it
holds that fA({ai}) ≤ fT`−1({ai}) ≤ fT`−1({a`}) where the first inequality follows from the
submodularity of f and the second by the definition of a`. Combining the last inequality
with f ′ = fA we obtain,

ξ · f ′({ai}) = ξ · fA({ai}) ≤
ξ∑
`=1

fT`−1({a`}) = f(A)− f(∅) ≤ f(A).

ESA 2020



44:6 Aproximation for Monotone Submodular Multiple Knapsack

Thus, ai ∈ I ′, implying that A∗b \Ab ⊆ I ′ for any b ∈ B. Furthermore, for any b ∈ B,

w(A∗b \Ab) = w(A∗b)− w(Ab) ≤Wb − w(Ab) = W ′b.

It follows that (A∗b \Ab)b∈B is a solution to the residual instance. J

Next, we observe that instances of SMKP are easier to solve when the number of distinct
bin capacities is small (e.g., uniform bin capacities), leading us to consider bin blocks:

I Definition 4. For a given instance of SMKP we say that a subset of bins B̃ ⊆ B is a
block if all the bins in B̃ have the same capacity, i.e., for bins b1 and b2 belonging to the
same block it holds that Wb1 = Wb2 .

Following an enumeration over partial assignments, our algorithm reduces the number of
blocks by altering the bin capacities. To this end, we use a specific structure that we call
leveled, defined as follows.

I Definition 5. For any N ∈ N, we say that a partition (Bj)kj=0 of a set B of bins with
capacities (Wb)b∈B is N -leveled if Bj is a block, and |Bj | = Nb

j

N2 c for all 0 ≤ j ≤ k.

By the above definition, we can view each set of consecutive blocks of the same size as a
level. For 0 ≤ j ≤ k, block j belongs to level ` = b j

N2 c. Thus, for ` ≥ 0, the number of bins
in each block increases by factor of N when moving from level ` to level `+ 1.

In Section 3.1 we give Algorithm 2 which generates an N -leveled partition of the bins,
B̃ = ∪kj=0B̃j with the capacities of the bins (Wb)b∈B modified to (W̃b)b∈B̃. We show that
solving the problem with these new bin capacities may cause only a small harm to the
optimal solution value. In particular, we prove (in Section 3.1) the following.

I Lemma 6. Given a set of bins B, capacities (Wb)b∈B and a parameter N , Algorithm 2
returns in polynomial time a subset of bins B̃ ⊆ B, capacities (W̃b)b∈B̃ and an N-leveled
partition (B̃j)kj=0 of B̃, such that
1. The bin capacities satisfy W̃b ≤Wb, for all b ∈ B̃.
2. OPT(Ĩ) ≥

(
1− 1

N

)
OPT(I), for any SMKP instance I = (I, w,B,W, f) and Ĩ =

(I, w, B̃, W̃ , f).

Once the instance is N -leveled, we proceed to solve the problem (fractionally) and apply
randomized rounding to obtain an integral solution (see Section 3.2). Algorithm 4 utilizes
efficiently the leveled structure of the instance. Instead of having a separate constraint for
each bin in a block − to bound the total size of the items packed in this bin − we use only
two constraints for each block. The first constraint is a knapsack constraint referring to the
total capacity of a block, and the second constraint restricts the number of configurations
assigned to the block.4 Thus, the number of constraints significantly decreases if the blocks
are large. Since leveled instances also have a constant number of blocks consisting of a single
bin, those are handled separately via the notion of δ-restricted SMKP.

An input for δ-restricted SMKP includes the same parameters as an input for SMKP,
and also a subset Br ⊆ B of restricted bins. A solution for δ-restricted SMKP is a feasible
assignment (Ab)b∈B satisfying also the property that ∀b ∈ Br the items assigned to b are
relatively small; namely, for any i ∈ Ab wi ≤ δWb.

4 We defined a configuration in Section 1.2.
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Given the N -leveled instance of our problem, we turn the blocks of a single bin (that is
blocks B̃j such that |B̃j | = 1) to be restricted. We note that while items of weight greater
than δWb may be assigned to these blocks in some optimal solution, the overall number
of such items is bounded by a constant. Indeed, our initial enumeration guarantees that
evicting these items from an optimal solution may cause only small harm to the optimal
solution value, allowing us to consider the instance as δ-restricted.

In Section 3.2 we show the following bound on the performance guarantee of Algorithm 4,
which uses randomized rounding. The algorithm is parameterized by µ ∈ (0, 0.1) (to be
determined). Suppose we are given a δ-restricted SMKP instance I, such that the unrestricted
bins are partitioned into blocks, i.e., B \Br = B1 ∪ . . .∪Bk, and υ = maxi∈I f({i})− f(∅).

I Lemma 7. For µ ∈ (0, 0.1), Algorithm 4 returns a feasible solution (Sb)b∈B such that
E [f(∪b∈BSb)] ≥ (1− e−1) (1−µ)2

1+µ (1− γ)OPT(I), where

γ = exp
(
−µ

3

16 ·
OPT(I)

υ

)
+ |Br| exp

(
−µ

2

12 ·
1
δ

)
+ 2 ·

k∑
j=1

exp
(
−µ

2

12 |Bj |
)
.

Algorithm 1 gives the pseudocode of our approximation algorithm for general SMKP
instances. The algorithm uses several configuration parameters that will be set in the proof
of Lemma 8.

Algorithm 1 Algorithm for SMKP.

Input :An SMKP instance I = (I, w,B,W, f) and the parameters N, ξ, δ and µ.
1 forall feasible assignments A = (Ab)b∈B such that

∑
b∈B |Ab| ≤ ξ do

2 Let I ′ = (I ′, w,B,W ′, f ′) be the residual instance of I w.r.t (Ab)b∈B and ξ.
3 Run Algorithm 2 with the bins B and capacities (W ′b)b∈B . Let B̃ and (W̃b)b∈B̃ be

the output, and B̃ = ∪kj=0B̃j the partition of B̃ to leveled blocks. Let
Ĩ = (I ′, w, B̃, W̃ , f ′) be the resulting instance.

4 Let ĨR be the δ-restricted SMKP instance of Ĩ with the restricted bins
B̃r = ∪min{N2−1,k}

j=0 B̃j .
5 Solve ĨR using Algorithm 4 with parameter µ, and the partition

B̃ \ B̃r = ∪kj=1B̃j . Denote the returned assignment by (S̃b)b∈B̃ , and let Sb = S̃b

for b ∈ B̃ and Sb = ∅ for b ∈ B \ B̃.
6 If f(∪b∈B(Ab ∪ Sb)) is higher than the value of the current best solution, set

(Ab ∪ Sb)b∈B as the current best solution.
7 end
8 Return the best solution found.

I Lemma 8. For any ε > 0, there are parameters N, ξ, δ, µ such that, for any SMKP instance
I, Algorithm 1 returns a solution of expected value at least (1− e−1 − ε)OPT(I).

Proof. We start by setting the parameter values. The reason for selecting these values will
become clear later. Given a fixed ε ∈ (0, 0.1), there is µ ∈ (0, 0.1) such that (1−µ)2

1+µ ≥ (1− ε2).
By the Monotone Convergence Theorem,

lim
N→∞

2N2 ·
∞∑
t=1

exp
(
−µ

2 ·N t

12

)
=
∞∑
t=1

lim
N→∞

2N2 exp
(
−µ

2 ·N t

12

)
= 0.
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44:8 Aproximation for Monotone Submodular Multiple Knapsack

It follows that there are N > 1
ε2 and δ > 0 such that

N2 exp
(
−µ

2

12 ·
1
δ

)
+ 2N2 ·

∞∑
t=1

exp
(
−µ

2

12N
t

)
<
ε2

2 . (1)

Finally, we select ξ such that ξ ≥ N2

ε2δ and exp
(
−µ

3

16
ξ
5

)
≤ ε2

2 .
Let I = (I, w,B,W, f) be an SMKP instance, and let (A∗b)b∈B be an optimal solution for

I. Assume w.l.o.g that A∗b1
∩ A∗b2

= ∅ for any b1, b2 ∈ B, b1 6= b2. Define A∗ = ∪b∈BA∗b . If
|A∗| ≤ ξ, there is an iteration of Line 1 in which A∗b = Ab for all b ∈ B. Therefore, in this
iteration we have at Line 6 f(∪b∈B(Ab ∪ Sb)) ≥ f(A∗), and the algorithm returns a solution
of value at least f(A∗). Otherwise, by Lemma 3, there is a feasible solution (Ab)b∈B such that
Ab ⊆ A∗b ,

∑
b∈B |A∗b | = ξ and (A∗b \Ab)b∈B is a feasible solution to I ′, the residual instance

of I w.r.t (Ab)b∈B and ξ. It follows that there is an iteration of Line 1 which considers this
solution (Ab)b∈B . We focus on this iteration for the rest of the analysis.

Let A = ∪b∈BAb. If f(A) ≥ (1− e−1)f(A∗) then when the algorithm reaches Line 6 it
holds that f(∪b∈B(Ab ∪ Sb)) ≥ f(A) ≥ (1− e−1)f(A∗); therefore, the algorithm returns a
(1− e−1)-approximation in this case. Henceforth, we assume that f(A) ≤ (1− e−1)f(A∗).
Then,

f ′(∪b∈B(A∗b \Ab)) = f ′(A∗ \A) = f(A∗)− f(A) ≥ f(A)
1− e−1 − f(A) = 1

e− 1f(A). (2)

As (A∗b \Ab)b∈B is a feasible solution for I ′, it holds that OPT(I ′) ≥ f ′(A∗\A). Therefore,
by Lemma 6 and the choice of N , it holds that

OPT(Ĩ) ≥
(

1− 1
N

)
f ′(A∗ \A) ≥ (1− ε2)f ′(A∗ \A), (3)

where I ′ is the instance output by Algorithm 2. Let (Db)b∈B̃ by an optimal solution for Ĩ.
Consider (Dr

b)b∈B̃ where Dr
b = Db \ {i ∈ Db|wi > δ · W̃b} for b ∈ B̃r (the set B̃r is defined

in Line 4) and Dr
b = Db for b ∈ B̃ \ B̃r. It follows that Dr

b is a solution for the δ-restricted
SMKP instance ĨR. As for any b ∈ B̃r, |{i ∈ Db|wi > δ · W̃b}| ≤ 1

δ , we have that

OPT
(
ĨR
)
≥ f ′

(
∪b∈B̃D

r
b

)
≥ OPT

(
Ĩ
)
− N2

δ · ξ
f(A) ≥ (1− ε2)f ′ (A∗ \A)− ε2 · f(A). (4)

The second inequality follows from the definition of residual instance, and the third inequality
from (3) and the choice of ξ. Since f ′(A∗ \ A) ≥ 1

e−1f(A) and ε ∈ (0, 0.1), it follows that
OPT(ĨR) ≥ f(A)

5 .
By Lemma 7, we have that

E
[
f ′(∪b∈B̃S̃b)

]
≥ (1−e−1) (1− µ)2

1 + µ
(1−γ)OPT(ĨR) ≥ (1−e−1)(1−ε2)(1−γ)OPT(ĨR), (5)

where

γ = exp
(
−µ

3

16 ·
OPT(ĨR)
ξ−1f(A)

)
+ |B̃r| exp

(
−µ

2

12 ·
1
δ

)
+ 2 ·

∑k
j=N2 exp

(
−µ

2

12 |B̃j |
)

≤ exp
(
−µ

3

16 ·
ξ
5

)
+N2 exp

(
−µ

2

12 ·
1
δ

)
+ 2 ·N2 ·

∑∞
t=1 exp

(
−µ

2

12N
t
)
≤ ε2. (6)

The first equality uses f ′({i}) ≤ ξ−1f(A) (by the definition of I ′). The first inequality
holds since OPT(ĨR) ≥ f(A)

5 , |B̃r| ≤ N2 and there are at most N2 blocks B̃j of size N t.
The second inequality uses (1) and the choice of ξ. Combining (6) with (5) and (4), we
obtain
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E [f(∪b∈B(Ab ∪ Sb))] ≥ f(A) + E
[
f ′(∪b∈B̃)S̃b)

]
≥ f(A) + (1− e−1)(1− ε2)2OPT(ĨR)

≥f(A) + (1− e−1)(1− ε2)3f ′(A∗ \A)− ε2f(A) ≥ (1− e−1 − ε)f(A∗).

Hence, in this iteration the solution considered in Line 6 has expected value at least
(1− e−1 − ε)f(A∗). This completes the proof of the lemma. J

I Lemma 9. For any constant parameters N , ξ, δ and µ, Algorithm 1 returns a feasible
solution for the input instance in polynomial time.

Proof. We first note that for any fixed parameter values the algorithm has a polynomial
running time. The number of assignments considered in Line 1 can be trivially bounded by
(n ·m)ξ. As Algorithms 2 and 4 are polynomial in their input size, the operations in each
iteration are also done in polynomial time.

For each iteration of Line 1, by Lemma 7, (S̃b)b∈B̃ is a feasible solution to ĨR. Therefore,
for any b ∈ B either w(Sb) = w(∅) ≤ W ′b or w(Sb) = w(S̃b) ≤ W̃b ≤ W ′b, where the last
equality follows from Lemma 6. Therefore, w(Ab ∪ Sb) ≤ w(Ab) + W ′b ≤ Wb. Hence, the
solution considered in each iteration is feasible for the input instance. J

Theorem 1 follows from Lemmas 8 and 9.

3.1 Structuring the Instance
In this section we present Algorithm 2 and prove Lemma 6. Our technique for generating
an N -leveled partition can be viewed as a variant of the linear grouping technique of [8]
which requires the use of non-uniform group sizes (each group of bins then becomes a block).
Given a set of bins B with capacities (Wb)b∈B , we sort the bins in non-increasing order by
capacities. We now use the numbering B = {1, . . . ,m}, where W1 ≥ W2 ≥ . . . ≥ Wm. To
generate an N -leveled partition of the bins and the modified capacities, we define groups (or
blocks) of bins, where each group j consists of Nb

j

N2 c consecutive bins, for j ≥ 0. Starting
from the first bin, we keep generating such groups as long as there are enough bins to form a
group of the desired size. We omit the remaining bins and decrease the capacity of each bin
to the minimal capacity of a bin in its group. We formalize this procedure in Algorithm 2.

Algorithm 2 Structure in Blocks.

Input :A set of bins B, capacities (Wb)b∈B and N .
1 Let B = {1, . . . ,m} where W1 ≥W2 ≥ . . . ≥Wm.
2 Let k = max

{
` ∈ N

∣∣∣ ∑`
r=0N

b r
N2 c ≤ m

}
.

3 Define B̃j =
{
b
∣∣∣ ∑j−1

r=0N
b r
N2 c < b ≤

∑j
r=0N

b r
N2 c

}
for 0 ≤ j ≤ k.

4 Let B̃ = ∪kj=0B̃j , and W̃b = minb′∈B̃j Wb′ for all 0 ≤ j ≤ k and b ∈ B̃j .
5 Return B̃, (W̃b)b∈B̃ and the partition (B̃j)kj=0.

The following standard result for submodular functions is used in the proof of Lemma 6.

I Lemma 10. Let h : 2Ω → R≥0 be a monotone submodular function, and let Si,1, . . . , Si,N ⊆
Ω for 1 ≤ i ≤M . Then for every 1 ≤ i ≤M there is 1 ≤ j∗i ≤ N such that

h

 M⋃
i=1

⋃
1≤j≤N, j 6=j∗

i

Si,j

 ≥ (1− 1
N

)
h

 M⋃
i=1

N⋃
j=1

Si,j

 .

The proof for the Lemma is given in Appendix A.

ESA 2020



44:10 Aproximation for Monotone Submodular Multiple Knapsack

Proof of Lemma 6. By construction, we have that (B̃j)kj=0 is an N -leveled partition of
(W̃b)b∈B̃ and W̃b ≤Wb for any b ∈ B̃. Also, Algorithm 2 has a polynomial running time.

To complete the proof we need to show Property 2 in the lemma. Let I = (I, w,B,W, f)
be an SMKP instance, and let Ĩ = (I, w, B̃, W̃ , f) be the instance with bins and capacities
generated (as output) by Algorithm 2. We need to show that OPT(Ĩ) ≥

(
1− 1

N

)
OPT(I).

Let A∗1, . . . , A∗m be an optimal solution for I, and A∗ = ∪b∈BA∗b . We modify this solution
using a sequence of steps, eventually obtaining a feasible solution for Ĩ. The latter is used to
lower bound OPT(Ĩ). Define B̃k+1 = B \ B̃. We note that B̃k+1 may be empty. We partition
{B̃j | 0 ≤ j ≤ k + 1} into levels and super-blocks. We consider each N2 consecutive blocks
to be a level, and each N consecutive blocks within a level to be a super-block. Formally,
level t is

Lt =
{
j | t ·N2 ≤ j < min{(t+ 1)N2, k + 2}

}
for 0 ≤ t ≤ ` with ` =

⌊
k+1
N2

⌋
. Also, super-block r of level t is

St,r =
{
j | t ·N2 + r ·N ≤ j < t ·N2 + (r + 1) ·N

}
for 0 ≤ r < N and level 0 ≤ t < ` (we do not partition the last level to super-blocks). It
follows that B = ∪`t=0 ∪j∈Lt B̃j and Lt = ∪N−1

r=0 St,r for 0 ≤ t < `. Furthermore, for any
j ∈ Lt, j 6= k + 1 it holds that |B̃j | = N t and |B̃k+1| < N `. Essentially, all the blocks of
level t are of the same size.

We modify A∗1, . . . , A∗m using the following steps. First, in each level (except the last one)
we evict all the bins from a singe super-block. Since there are N super-blocks in each of
these levels, this may decrease the value of the assignment at most by factor 1

N . Then, we
slightly shuffle the content of the bins in all levels (except the last one). In each level, we
place the content of the bins of the last super-block in bins of the evicted super-block in the
same level. As the bins are ordered by capacity, this will keep the assignment feasible with
respect to the original capacities. In the last step, for each level (except level 0) we move the
content of the bins from the first block to the bins of the last super-block in the previous
level (the two sets of bins have the same cardinality), and content of bins from other blocks
(except level 0) to the previous block from the same level. This yields a feasible assignment
for the leveled instance. We formally describe these steps in the following.

Eviction: We first evict a super-block of bins from each level (except the last one). Let
R = ∪b∈L`A∗b be the subset of items assigned to the last level. By Lemma 10, for any
0 ≤ t < ` there is r∗t such that

fR

`−1⋃
t=0

⋃
0≤r<N, r 6=r∗t

⋃
j∈St,r

⋃
b∈B̃j

A∗b

 ≥ (1− 1
N

)
fR

`−1⋃
t=0

N−1⋃
r=0

⋃
j∈St,r

⋃
b∈B̃j

A∗b


=
(

1− 1
N

)
fR(A∗).

Define T1, . . . , Tm by Tb = ∅ for any b ∈
⋃`−1
t=0
⋃

j∈St,r∗
t

B̃j , and Tb = A∗b for any

b ∈ B \
(⋃`−1

t=0
⋃

j∈St,r∗
t

B̃j

)
. Then,

f

(⋃
b∈B

Tb

)
= f(R) + fR

`−1⋃
t=0

⋃
0≤r<N−1, r 6=r∗t

⋃
j∈St,r

⋃
b∈B̃j

A∗b

 ≥ (1− 1
N

)
f(A∗).

It also holds that T1, . . . , Tm is a feasible solution for I.
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Shuffling: We generate a new assignment T̃1, . . . , T̃m such that ∪b∈BT̃b = ∪b∈BTb and the
last super-blocks in each level (except the last one) is empty. This property is obtained by
moving the content of the bins in super-block N − 1 to the bins of super-block r∗t for every
0 ≤ t < `.

We define (T̃b)b∈B as follows. For any 0 ≤ t < `, j ∈ St,r∗t let ϕt :
⋃
j∈St,r∗

t

B̃j →⋃
j∈St,N−1

B̃j be a bijection (since
∣∣∣⋃j∈St,N−1

B̃j

∣∣∣ =
∣∣∣∣⋃j∈St,r∗

t

B̃j

∣∣∣∣ = N ·N t, such a function

exists). For any b ∈
⋃
j∈St,r∗

t

B̃j set T̃b = Tϕt(b). By definition we have ϕt(b) ≥ b; therefore,
in this case

w(T̃b) = w(Tϕt(b)) ≤Wϕt(b) ≤Wb.

For any 0 ≤ t < `, j ∈ St,N−1 and b ∈ B̃j set T̃b = ∅. For any other bin b ∈ B set T̃b = Tb.
It follows that ∪b∈BT̃b = ∪b∈BTb, since Tb = ∅ for every 0 ≤ t < `, j ∈ St,r∗t and b ∈ Bj .

Also, (T̃b)b∈B is a feasible solution for I.

Shifting: In this step we generate the assignment (Ab)b∈B̃ which satisfies the properties in
the lemma. As the bins of the last super-block in each level (except the last one) are vacant
in T̃1, . . . , T̃m, we use them for the content assigned to the first block of the next level. This
can be done since N blocks of level t contain the same number of bins as a single block of
level t+ 1. We also use blocks in levels greater than 0 which are not in the last super-block
to store the content of the next block in the same level.

For any 0 < t ≤ ` and j ∈ Lt, consider a block B̃j . Suppose that j 6= t · N2 and
j /∈ St,N−1 where t 6= `; that is, B̃j is not the first block in the level, and is not in the last
super-block of a level other than the last one. Then, let ψj : B̃j → B̃j−1 be a bijection, and
define Aψt(b) = T̃b for any b ∈ B̃j . If j = t ·N2 (that is, B̃j is the first block in a level), let
ψj : B̃j →

⋃
j′∈St−1,N−1

B̃j′ be a bijection, and define Aψt(b) = T̃b for any b ∈ B̃j . Finally, for
any 0 ≤ j < N2 −N , let ψj : B̃j → B̃j be the identity function and define Aψt(b) = Ab = T̃b
for the single bin b ∈ B̃j . For any bin b ∈ B̃ not handled in this process, set Ab = ∅.

We note that the definition is sound as the ranges of the functions ψj above do not
intersect. Let b ∈ B̃. If Ab = ∅ then w(Ab) ≤ W̃b. Otherwise, if b ∈ B̃j for 0 ≤ j < N2 −N
then w(Ab) = w(T̃b) < Wb ≤ W̃b. Finally, the only option left is that b = ψj′(b′) for some
0 < t ≤ `, j′ ∈ Lt and b′ ∈ B̃j′ , such that j′ 6= t ·N2 and j′ /∈ St,N−1 if t 6= `. By definition,
it holds that b′ ∈ B̃j for some j < j′. Since the bins were ordered by capacity, we have

w(Ab) = w(Aφj′ (b′)) = w(T̃b′) ≤Wb′ ≤ min
b′′∈B̃j

Wb′′ = W̃b.

Thus, the assignment is feasible with respect to the bins B̃ with capacities
(
W̃b

)
b∈B̃ .

It also holds that for any b ∈ B such that T̃b 6= 0 there is b′ ∈ B̃ such that Ab′ = T̃b. There-
fore,

⋃
b∈B̃ Ab =

⋃
b∈B T̃b =

⋃
b∈B Tb. Hence, f(∪b∈B̃Ab) = f(∪b∈BTb) ≥

(
1− 1

N

)
f(A∗).

We conclude that OPT(Ĩ) ≥
(
1− 1

N

)
OPT(I). J

3.2 Solving a Continuous Relaxation and Rounding
In this section we give Algorithm 4 which outputs a solution satisfying Lemma 7. The input for
the algorithm is a δ-restricted SMKP instance along with a partition B \Br = B1 ∪ . . .∪Bk
of the bins, where Bj is a block for all 1 ≤ j ≤ k. Algorithm 4 uses Algorithm 3 as a
subroutine which converts a solution for an auxiliary block-constraint problem into a solution
for δ-restricted SMKP.
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3.2.1 The Block-Constraint Problem

We now define the block-constraint problem, to be solved for a given instance I of δ-restricted
SMKP, using the partition B \ Br = B1 ∪ . . . ∪ Bk and the parameter µ. The input for
the block-constraint problem is a universe of elements E, a monotone submodular function
g : 2E → R≥0 and a polytope P ⊆ [0, 1]E (see below).

For simplicity, let {Bk+1, . . . , B`} = {{b}| b ∈ Br} be the set of blocks, each consisting
of a single bin. Thus, B = ∪`j=1Bj . Denote the (uniform) capacity of the bins in block Bj
by W ∗j , for 1 ≤ j ≤ `. That is, for any b ∈ Bj it holds that W ∗j = Wb. For 1 ≤ j ≤ k, we say
that an item i ∈ I is j-small if wi ≤ µ ·W ∗j , otherwise i is j-large. Let Ij = {{i}| i is j-small}
for 1 ≤ j ≤ k. For k < j ≤ ` define Ij = {{i} | wi ≤ δW ∗j }.

A j-configuration is a subset of j-large items which can be packed into a single bin in Bj .
That is, C ⊆ I is a j-configuration if every item i ∈ C is j-large and w(C) ≤W ∗j . Let Cj be
the set of all j-configurations for 1 ≤ j ≤ k and Cj = ∅ for k < j ≤ `. As any j-configuration
has at most µ−1 items, it follows that |Cj | ≤ |I|µ

−1 , i.e., the number of configurations is
polynomial in the size of I. Furthermore, for A ⊆ I such that w(A) ≤W ∗j , 1 ≤ j ≤ k, there
are C ∈ Cj and S ⊆ I such that all the items in S are j-small and A = C ∪S. Our algorithm
exploits this property.

Towards solving the block-constraint problem we define a submodular function g over a
new universe of elements. Let E = {(S, j)| S ∈ Cj ∪ Ij , 1 ≤ j ≤ `}. Informally, the element
(S, j) ∈ E represents an assignment of all the items in S to a single bin b ∈ Bj . We now
define g : 2E → R≥0 by g(T ) = f

(⋃
(S,j)∈T S

)
. By Claim 2, g is a submodular, monotone

and non-negative function‘.

We define a polytope P for the instance I as follows.

P =

x̄ ∈ [0, 1]E

∣∣∣∣∣∣∣∣
∑
C∈Cj

x̄(C,j) ≤ |Bj | ∀1 ≤ j ≤ k∑
S∈Cj∪Ij

w(S) · x̄(S,j) ≤ |Bj | ·W ∗j ∀1 ≤ j ≤ `

 (7)

The polytope represents a relaxed version of the capacity constraints over the bins. For
each block Bj , 1 ≤ j ≤ k, we only require that the total weight of items assigned to bins in
Bj does not exceed the total capacity of the bins in this block. We also require that the
number of j-configurations selected for Bj is no greater than the number of bins in this block.

Given an instance I of δ-restricted SMKP, along with the partition B \Br = B1∪ . . .∪Bk
and the parameter µ, we use for the block-constraint problem the universe E, the function g
and the polytope P ⊆ [0, 1]E as defined above.

We start by establishing a connection between the solution for the block-constraint
problem for the given instance I and the optimal solution for δ-restricted SMKP on this
instance. For a set T ⊆ E, we use x̄T to denote the vector x̄T ∈ {0, 1}E defined by x̄Te = 1
for e ∈ T , and x̄Te = 0 for e ∈ E \ T . Also, given a polytope Q and η ≥ 0 we use the notation
η ·Q = {ηx̄ | x̄ ∈ Q}.

Our algorithm for solving δ-restricted SMKP on I solves first the block-constraint problem
on this instance and then transforms the solution into a feasible solution for δ-restricted
SMKP. We give the pseudocode for the transformation in Algorithm 3.
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Algorithm 3 Employ a Block-Constraint Solution for SMKP.

Input : A δ-restricted SMKP instance I = (I, w,B,W, f), the partition of bins to
block ∪`j=1Bj and T ⊆ E.

1 Set Ab = ∅ for every b ∈ B.
2 Sort the elements (S, j) in T in decreasing order by the w(S) values.
3 for each (S, j) ∈ T in the sorted order do
4 Set Ab ← Ab ∪ S where b = arg minb∈Bj w(Ab).
5 end
6 Return (Ab)b∈B .

I Lemma 11. Given an instance I of δ-restricted SMKP, consider the universe E and the
polytope P as defined above. Then the following hold:
1. There is T ⊆ E, x̄T ∈ P such that g(T ) ≥ OPT(I), where OPT(I) is the optimal solution

value for δ-restricted SMKP on I.
2. Given T ⊆ E such that x̄T ∈ (1−µ) ·P , Algorithm 3 returns in polynomial time a feasible

solution (Ab)b∈B for δ-restricted SMKP instance I satisfying f(∪b∈BAb) = g(T ).

Proof. We start by proving part 1. Let (A∗b)b∈B be an optimal solution for the δ-restricted
SMKP instance, and let Lj be the set of all j-large items for 1 ≤ j ≤ k and Lj = ∅ for
k < j ≤ `. Define

T =

 k⋃
j=1
{(A∗b ∩ Lj , j) | b ∈ Bj}

 ∪
⋃̀
j=1

⋃
b∈Bj

{({i}, j) | i ∈ A∗b \ Lj}

 .

It can be easily shown that g(T ) = f(∪b∈BA∗b). Furthermore, as (A∗b)b∈B is a feasible
solution, it holds that x̄T ∈ P .

We now prove part 2. Let (Ab)b∈B be the output of Algorithm 3 for the given input. We
first note that ∪b∈BAb = ∪(S,j)∈TS, and thus g(T ) = f(∪b∈BAb).

For any b ∈ Br, there is k < j ≤ ` such that Bj = {b}. Therefore Ab = {i|({i}, j) ∈ T},
and since x̄T ∈ (1− µ)P it follows that w(Ab) ≤W ∗j = Wb.

Let 1 ≤ j ≤ k and b ∈ Bj . Assume by negation that w(Ab) > Wb = W ∗j . Let (S, j) ∈ T
be the last element in T such that S 6= ∅ and S was added to Ab in Line 4. We conclude that
w(Ab \ S) > 0, as otherwise w(Ab) = w(S) ≤ Wb, by the definition of E. Therefore there
are at least |Bj | elements (S′, j) ∈ T such that w(S′) ≥ w(S) (else, on the iteration of (S, j)
there must be b ∈ Bj with Ab = ∅). If S ∈ Cj then w(S) > µ ·W ∗j and thus

|{S′ 6= ∅| (S′, j) ∈ T, S′ ∈ Cj}| ≥ |{S′| (S′, j) ∈ T, w(S′) ≥ w(S)}| > |Bj |,

contradicting x̄T ∈ (1− µ)P .
Therefore S /∈ Cj , and we can conclude that S = {i} with wi ≤ µ ·W ∗j . Thus, w(Ab \S) >

(1 − µ) ·W ∗j . Here, S has been allocated to Ab (which is itself a set of minimum weight).
Then, for any b′ ∈ Bj , we have w(Ab′) ≥ w(Ab) > (1− µ) ·W ∗j . Thus,∑

(S′,j)∈T

w(S′) ≥
∑
b′∈Bj

w(Ab′) > |Bj |(1− µ) ·W ∗j ,

contradicting x̄T ∈ (1− µ)P . We conclude that w(Ab) ≤Wb.
Also, by definition, we have that for any b ∈ Br and i ∈ Ab it holds that wi ≤ δWb.

Hence, (Ab)b∈B is a solution to the restricted SMKP instance. J
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3.2.2 An Algorithm for δ-restricted SMKP
We are now ready to present our algorithm for δ-restricted SMKP. We note that in Line 3 of
Algorithm 4 we use sampling by a solution vector x̄∗, as defined in Section 2.

Algorithm 4 Solve and Round.

Input :A δ-restricted SMKP instance I, a partition to blocks B \Br = ∪jj=kBj , and
a parameter µ > 0.

1 Define E, g and P for the block-constraint problem on I and ∪kj=1Bj .
2 Let G : [0, 1]E → R≥0 be the multilinear extension of g. Find a solution x̄∗ for

maxx̄∈ 1−µ
1+µP

G(x̄) using the continuous greedy of [4].
3 Sample a set T ∼ x̄∗.
4 if T ∈ (1− µ)P then
5 Use Algorithm 3 to convert T into a solution (Ab)b∈B for δ-restricted SMKP on I

and return (Ab)b∈B .
6 else
7 Return (Ab)b∈B with Ab = ∅ for every b ∈ B.
8 end

For the analysis, consider first the running time. We note that, for any λ̄ ∈ RE , a vector
x̄ ∈ 1−µ

1+µP which maximizes x̄ · λ̄ can be found in polynomial time. Therefore, the continuous
greedy in Line 2 runs in polynomial time. Thus, Algorithm 4 has a polynomial running time.

It remains to show that the algorithm returns a solution of expected value as stated
in Lemma 7. The approach we use to prove the statement of the lemma is similar to the
approach taken in [6]. In fact, it is possible to prove a variant of this claim using an approach
of [17]. While eliminating the dependency on υ, this will result in a more involved proof.

Proof of Lemma 7. For any e ∈ E define Xe to be a random variable such that Xe = 1 if
e ∈ T and Xe = 0 otherwise. It follows that (Xe)e∈E are independent Bernoulli random
variables, E[Xe] = x̄∗e and T = {e ∈ E|Xe = 1}.

We first consider blocks k < j ≤ `. Let k < j ≤ ` and Bj = {b}. Since x̄∗ ∈ 1−µ
1+µP , it

follows that E
[∑

(S,j)∈E w(S) ·X(S,j)

]
≤ 1−µ

1+µ ·Wb. Also, w(S,j) ≤ δ ·Wb for every (S, j) ∈ E.
Using Chernoff’s bound (Theorem 3.1 in [13], see also Lemma 15), we have

Pr

 ∑
(S,j)∈T

w(S) > (1− µ)Wb

 ≤ exp
(
−µ

2

3 ·
1− µ
1 + µ

· 1
δ

)
≤ exp

(
−µ

2

12 ·
1
δ

)
, (8)

with the last inequality following from µ ∈ (0, 0.1).
Now, let 1 ≤ j ≤ k. For every (S, j) ∈ E it holds that w(S) ≤W ∗j . Also, since x̄∗ ∈

1−µ
1+µP ,

E
[∑

(S,j)∈E w(S) ·X(S,j)

]
≤ 1−µ

1+µ · |Bj |W
∗
j , and E

[∑
(S,j)∈E: S∈Cj 1 ·X(S,j)

]
≤ 1−µ

1+µ · |Bj |.
Therefore, by Chernoff’s bound (Theorem 3.1 in [13] and Lemma 15), we have

Pr

 ∑
(S,j)∈T

w(S) > (1− µ)|Bj |W ∗j

 ≤ exp
(
−µ

2

3 ·
1− µ
1 + µ

· |Bj |
)
≤ exp

(
−µ

2

12 · |Bj |
)

(9)

Pr

 ∑
(S,j)∈T : S∈Cj

1 > (1− µ)|Bj |

 ≤ exp
(
−µ

2

3 ·
1− µ
1 + µ

· |Bj |
)
≤ exp

(
−µ

2

12 · |Bj |
)
. (10)
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By Lemma 11, maxz̄∈P G(z̄) ≥ OPT(I). Since the second derivatives of G are non-
positive (see [4]) it follows that maxz̄∈ 1−µ

1+µP
G(z̄) ≥ 1−µ

1+µOPT(I). As the continuous greedy of
[4] yields a (1− e−1)-approximation for the problem of maximizing the multilinear extension
subject to a polytope constraint, it follows that

G(x̄∗) ≥ (1− e−1)1− µ
1 + µ

OPT(I). (11)

For any (S, j) ∈ E we have |S| ≤ µ−1, and from the submodularity of f , g({(S, j)})−
g(∅) ≤ µ−1υ (recall that υ is defined in Lemma 7). Therefore, by the concentration bound
of [6] (see Lemma 16), we have

Pr
(
g(T ) ≤ (1− e−1) (1− µ)2

1 + µ
OPT(I)

)
≤ Pr (g({e ∈ E|Xe = 1}) ≤ (1− µ)G(x̄∗))

≤ exp
(
−µ

3 ·G(x̄∗)
2υ

)
≤ exp

(
−µ

3(1− e−1)
2υ

1− µ
1 + µ

OPT(I)
)
≤ exp

(
−µ

3 ·OPT(I)
16 · υ

) (12)

The first and third inequality are due to (11).
Let ω be the event x̄T ∈ (1− µ)P and g(T ) ≥ (1−µ)2

1+µ (1− e−1)OPT(I). By applying the
union bound over (8), (9), (10) and (12), we have

Pr(ω) ≥ 1−

|Br| exp
(
−µ

2

12
1
δ

)
− 2

k∑
j=1

exp
(
−µ

2

12 |Bj |
)
− exp

(
−µ

3

16
OPT(I)

υ

) = 1−γ.

In case the event ω occurs, the algorithm executes Line 5, and by Lemma 11, f(∪b∈BAb) =
f(T ). Hence,

E [f(∪b∈BAb)] = Pr (ω) · E [f(∪b∈BAb)|ω] ≥ (1− γ) (1− µ)2

1 + µ
(1− e−1)OPT(I).

Also, the algorithm either returns an empty solution when Line 7 executes, or Line 5
executes. In the latter case the solution is feasible by Lemma 11. Therefore the algorithm
always returns a feasible solution. J

4 Discussion

In this paper we presented a randomized (1 − e−1 − ε)-approximation for the monotone
submodular multiple knapsack problem. Our algorithm relies on three main building
blocks. The structuring technique (Section 3.1) which converts a general instance to a
leveled instance, the reduction to the block-constraint problem (Section 3.2.1) and a refined
analysis of known algorithms for submodular optimization with a d-dimensional knapsack
constraint (Section 3.2.2). While the structuring technique and the refined analysis seem to
be fairly robust, the reduction to the block-constraint problem proved to be limiting when
generalizations of the problem were considered.

A notable example is the non-monotone submodular multiple knapsack problem, in
which the set function f is non-monotone. Unfortunately, when f is non-monotone the
function g used for solving the block-constraint problem is not submodular. A variant of the
block-constraint problem which does not alter the set function may be used to overcome this
hurdle. However, this variant limits the knapsacks utilization and degrades the approximation
ratio. Our preliminary results for the non-monotone case guarantee an approximation ratio
of 1

2 · e
− 1

2 − ε ≈ 0.303− ε using this approach.
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Another natural generalization of SMKP is monotone submodular optimization subject
to a multiple knapsack and a matroid constraints, in which the solution (Ab)b∈B must also
satisfy ∪b∈BAb ∈ M for a matoidM. However, the matroid properties are not preserved
throughout the reduction to the block-constraint problem, rendering existing techniques for
submodular optimization with matroid and d-dimensional knapsack constraints [6] ineffective.

On the positive side, we believe that the techniques described in this paper can be
extended to handle the problem for maximizing a monotone submodular function subject to
a multiple knapsack constraint and an additional d-dimensional knapsack constraint, for a
fixed d. We defer the details to the full version of the paper.
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A Basic Properties of Submodular Functions

B Claim 12. Let f : 2I → R≥0 be monotone and submodular function, then for any
A ⊆ B ⊆ I and S ⊆ I it holds that f(A ∪ S)− f(A) ≥ f(B ∪ S)− f(B).

Proof. By the submodularity of f , we have

f(A ∪ S) + f(B) ≥ f(A ∪ S ∪B) + f((A ∪ S) ∩B) ≥ f(B ∪ S) + f(A)

where the second inequality follows from A ⊆ (A ∪ S) ∩B and the monotonicity of f . By
rearranging the terms in the above we get

f(A ∪ S)− f(A) ≥ f(B ∪ S)− f(B)

as required. C

B Claim 13. Let f : 2I → R≥0 be be a non-negative, monotone and submodular function,
and let S ⊆ I. Then fS is a submodular, monotone and non-negative function.

Proof. Let A ⊆ I. As f is monotone, we have

fS(A) = f(S ∪A)− f(S) ≥ 0.

That is, f is non-negative.
By claim 12, for any A ⊆ B ⊆ I and x ∈ I \B it holds that

fS(A ∪ {x})− fS(A) = f(S ∪A ∪ {x})− f(S ∪A)
≥ f(S ∪B ∪ {x})− f(S ∪B) = fS(B ∪ {x})− fS(B).

Therefore, fS is submodular.
Finally, for A ⊆ B ⊆ I, as f is monotone we have that

fS(A) = f(S ∪A)− f(S) ≥ f(S ∪B)− f(S) = fS(B).

Thus, fS is also monotone. C
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Proof of Claim 2. It is easy to see that g is non-negative, as f is non negative. In addition,
for any two subsets A ⊆ B ⊆ E we have ∪(S,h)∈As ⊆ ∪(S,h)∈Bs. Thus, since f is monotone,
g is monotone as well.

All that is left to prove is that g is submodular. Consider subsets A ⊆ B ⊆ E and
(S, h) ∈ E \B.

g(A ∪ {(S, h)})− g(A) = f(∪(S′,h′)∈AS
′ ∪ S)− f(∪(S′,h′)∈As)

≤ f(∪(S′,h′)∈BS
′ ∪ S)− f(∪(S′,h′)∈BS

′)
= g(B ∪ {(S, h)})− g(B).

The inequality follows from Claim 12 and ∪(S′,h′)∈AS
′ ⊆ ∪(S′,h′)∈BS

′. C

To prove Lemma 10 we first prove a special case of the lemma.

I Lemma 14. Let h : 2Ω → R≥0 be a submodular monotone and non-negative function, and
let S1, . . . , SN ⊆ Ω. Then there is 1 ≤ j∗ ≤ N such that

h

 ⋃
1≤j≤N, j 6=j∗

Sj

 ≥ (1− 1
N

)
h(S1 ∪ . . . ∪ SN ).

Proof. As h is submodular and monotone, using Claim 2, we have

h(S1 ∪ . . . ∪ SN )− h(∅) =
N∑
j=1

(h(S1 ∪ . . . ∪ Sj)− h(S1 ∪ . . . ∪ Sj−1))

≥
N∑
j=1

h
 N⋃
j′=1

Sj′

− h
 ⋃

1≤j′≤N,j′ 6=j
Sj′


Therefore there is 1 ≤ j∗ ≤ N such that

h

 N⋃
j=1

Sj

− h
 ⋃

1≤j≤N,j 6=j∗
Sj

 ≤ 1
N

(h(S1 ∪ . . . ∪ SN )− h(∅)) .

By rearranging the terms and using h(∅) ≥ 0 we obtain

h

 ⋃
1≤j≤N,j 6=j∗

Sj

 ≥ (1− 1
N

)
h(S1 ∪ . . . ∪ SN ),

as required. J

Proof of Lemma 10. Let h : 2Ω → R+ be a submodular, non-negative and monotone
function, and Si,1, . . . , Si,N ⊆ Ω for every 1 ≤ i ≤M .

Define Ti =
⋃N
j=1 Si,j . Now,

h

 M⋃
i=1

N⋃
j=1

Si,j

− h(∅) =
M∑
i=1

h(⋃i−1
i′=1

Ti′
)(Ti) =

M∑
i=1

h(⋃i−1
i′=1

Ti′
)  N⋃

j=1
Si,j

 .

By Lemma 14 for every 1 ≤ i ≤M there is 1 ≤ j∗i ≤ N such that

h(⋃i−1
i′=1

Ti′
)  N⋃

1≤j≤N, j 6=j∗
i

Si,j

 ≥ (1− 1
N

)
h(⋃i−1

i′=1
Ti′
) (Ti) .
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Therefore,

h

 M⋃
i=1

⋃
1≤j≤M, j 6=j∗

i

Si,j

− h(∅) =
M∑
i=1

h(⋃i−1
i′=1

⋃
1≤j≤M, j 6=j∗

i′
Si′,j

) ⋃
1≤j≤M, j 6=j∗

i

Si,j


≥

M∑
i=1

h(⋃i−1
i′=1

Ti′
)  ⋃

1≤j≤M, j 6=j∗
i

Si,j

 ≥ (1− 1
N

) M∑
i=1

h(⋃i−1
i′=1

Ti′
) (Ti)

=
(

1− 1
N

)h
 M⋃
i=1

N⋃
j=1

Si,j

− h(∅)

 .

The first inequality follows from hT1(A) ≥ hT2(A) for any T1 ⊆ T2 ⊆ Ω and A ⊆ Ω due to
Claim 2. As h is non-negative, we conclude that

h

 M⋃
i=1

⋃
1≤j≤M, j 6=j∗

i

Si,j

 ≥ (1− 1
N

)
· h

 M⋃
i=1

N⋃
j=1

Si,j

 . J

B Chernoff Bounds

In the analysis of the algorithm we use the following Chernoff-like bounds.

I Lemma 15 (Theorem 3.1 in [13]). Let X =
∑n
i=1Xi · λi where (Xi)ni=1 is a sequence of

independent Bernoulli random variable and λi ∈ [0, 1] for 1 ≤ i ≤ n. Then for any ε ∈ (0, 1)
and η ≥ E[X] it holds that

Pr (X > (1 + ε)η) < exp
(
−ε

2

3 η
)

I Lemma 16 (Theorem 1.3 in [6]). Let I = {1, . . . , n}, υ > 0 and f : 2I → R+ be a monotone
submodular function such that f({i})−f(∅) ≤ υ for any i ∈ I. Let X1, . . . , Xn be independent
random variables and η = E[f({i ∈ I|Xi = 1})]. Then for any ε > 0 it holds that

E[f({i ∈ I|Xi = 1}) ≤ (1− ε)η] ≤ exp
(
−η · ε

2

2υ

)
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