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Abstract
We define a new problem in comparative genomics, denoted PQ-Tree Search, that takes as
input a PQ-tree T representing the known gene orders of a gene cluster of interest, a gene-to-gene
substitution scoring function h, integer parameters dT and dS , and a new genome S. The objective
is to identify in S approximate new instances of the gene cluster that could vary from the known
gene orders by genome rearrangements that are constrained by T , by gene substitutions that are
governed by h, and by gene deletions and insertions that are bounded from above by dT and dS ,
respectively. We prove that the PQ-Tree Search problem is NP-hard and propose a parameterized
algorithm that solves the optimization variant of PQ-Tree Search in O∗(2γ) time, where γ is the
maximum degree of a node in T and O∗ is used to hide factors polynomial in the input size.

The algorithm is implemented as a search tool, denoted PQFinder, and applied to search for
instances of chromosomal gene clusters in plasmids, within a dataset of 1,487 prokaryotic genomes.
We report on 29 chromosomal gene clusters that are rearranged in plasmids, where the rearrangements
are guided by the corresponding PQ-tree. One of these results, coding for a heavy metal efflux
pump, is further analysed to exemplify how PQFinder can be harnessed to reveal interesting new
structural variants of known gene clusters.
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1 Introduction

Recent advances in pyrosequencing techniques, combined with global efforts to study infectious
diseases, yield huge and rapidly-growing databases of microbial genomes [38, 42]. These big
new data statistically empower genomic-context based approaches to functional analysis:
the biological principle underlying such analysis is that groups of genes that are located
close to each other across many genomes often code for proteins that interact with one
another, suggesting a common functional association. Thus, if the functional association and
annotation of the clustered genes is already known in one (or more) of the genomes, this
information can be used to infer functional characterization of homologous genes that are
clustered together in another genome.

Groups of genes that are co-locally conserved across many genomes are denoted gene
clusters. The locations of the group of genes comprising a gene cluster in the distinct genomes
are denoted instances. Gene clusters in prokaryotic genomes often correspond to (one or
several) operons; those are neighbouring genes that constitute a single unit of transcription
and translation. However, the order of the genes in the distinct instances of a gene cluster
may not be the same.

The discovery (i.e. data-mining) of conserved gene clusters in a given set of genomes is a
well studied problem [8, 21, 44]. However, with the rapid sequencing of prokaryotic genomes
a new problem is inspired: Namely, given an already known gene cluster that was discovered
and studied in one genomic dataset, to identify all the instances of the gene cluster in a given
new genomic sequence.

One exemplary application for this problem is the search for chromosomal gene clusters in
plasmids. Plasmids are circular genetic elements that are harbored by prokaryotic cells where
they replicate independently from the chromosome. They can be transferred horizontally
and vertically, and are considered a major driving force in prokaryotic evolution, providing
mutation supply and constructing new operons with novel functions [28], for example
antibiotic resistance [20]. This motivates biologists to search for chromosomal gene clusters
in plasmids, and to study structural variations between the instances of the found gene
clusters across the two distinct replicons. However, in addition to the fact that plasmids
evolve independently from chromosomes and in a more rapid pace [14], their sequencing,
assembly and annotation involves a more noisy process [29].

To accommodate all this, the proposed search approach should be an approximate one,
sensitive enough to tolerate some amount of genome rearrangements: transpositions and
inversions, missing and intruding genes, and classification of genes with similar function to
distinct orthology groups due to sequence divergence or convergent evolution. Yet, for the
sake of specificity and search efficiency, we consider confining the allowed variations by two
types of biological knowledge: (1) bounding the allowed rearrangement events considered by
the search, based on some grammatical model trained specifically from the known gene orders
of the gene cluster, and (2) governing the gene-to-gene substitutions considered by the search
by combining sequence homology with functional-annotation based semantic similarity.

(1) Bounding the allowed rearrangement events. The PQ-tree [9] is a combina-
torial data structure classically used to represent gene clusters [6]. A PQ-tree of a gene
cluster describes its hierarchical inner structure and the relations between instances of the
cluster succinctly, aids in filtering meaningful from apparently meaningless clusters, and also
gives a natural and meaningful way of visualizing complex clusters. A PQ-tree is a rooted
tree with three types of nodes: P-nodes, Q-nodes and leaves. The children of a P-node can
appear in any order, while the children of a Q-node must appear in either left-to-right or
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Figure 1 A gene cluster containing most of the genes of the PhnCDEFGHIJKLMNOP operon
[25] and the corresponding PQ-tree. The Phn operon encodes proteins that utilize phosphonate
as a nutritional source of phosphorus in prokaryotes. The genes PhnCDE encode a phosphonate
transporter, the genes PhnGHIJKLM encode proteins responsible for the conversion of phosphonates
to phosphate, and the gene PhnF encodes a regulator. (1)-(3). The three distinct gene orders
found among 47 chromosomal instances of the Phn gene cluster. (4). A PQ-tree representing the
Phn gene cluster, constructed from its three known gene orders shown in 1-3. (5). An example of
a Phn gene cluster instance identified by the PQ-tree shown in (4), and the one-to-one mapping
between the leaves of the PQ-tree and the genes comprising the instance. The instance genes are
rearranged differently from the gene orders shown in 1-3 and yet can be derived from the PQ-tree.
In this mapping, gene F is substituted by gene R, gene N is an intruding gene (i.e., deleted from
the instance string), and gene K is a missing gene (i.e., deleted from the PQ-tree).

right-to-left order. (In the special case when a node has exactly two children, it does not
matter whether it is labeled as a P-node or a Q-node.) Booth and Lueker [9], who introduced
this data structure, were interested in representing a set of permutations over a set U , i.e.
every member of U appears exactly once as a label of a leaf in the PQ-tree. We, on the other
hand, allow each member of U to appear as a label of a leaf in the tree any non-negative
number of times. Therefore, we will henceforth use the term string rather than permutation
when describing the gene orders derived from a given PQ-tree.

An example of a PQ-tree is given in Figure 1. It represents a Phn gene cluster that
encodes proteins that utilize phosphonate as a nutritional source of phosphorus in prokaryotes
[25]. The biological assumptions underlying the representation of gene clusters as PQ-trees
is that operons evolve via progressive merging of sub-operons, where the most basic units in
this recursive operon assembly are colinearly conserved sub-operons [17]. In the case where
an operon is assembled from sub-operons that are colinearly dependent, the conserved gene
order could correspond, e.g., to the order in which the transcripts of these genes interact in
the metabolic pathway in which they are functionally associated [43]. Thus, transposition
events shuffling the order of the genes within this sub-operon could reduce its fitness. On
the other hand, inversion events, in which the genes participating in this sub-operon remain
colinearly ordered are accepted. This case is represented in the PQ-tree by a Q-node (marked
with a rectangle). In the case where an operon is assembled from sub-operons that are not
colinearly co-dependent, convergent evolution could yield various orders of the assembled
components [17]. This case is represented in the PQ-tree by a P-node (marked with a circle).
Learning the internal topology properties of a gene cluster from its corresponding gene orders
and constructing a query PQ-tree accordingly, could empower the search to confine the
allowed rearrangement operations so that colinear dependencies among genes and between
sub-operons are preserved.

(2) Governing the gene-to-gene substitutions. A prerequisite for gene cluster
discovery is to determine how genes relate to each other across all the genomes in the dataset.
In our experiment, genes are represented by their membership in Clusters of Orthologous
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Groups (COGs) [37], where the sequence similarity of two genes belonging to the same COG
serves as a proxy for homology. Despite low sequence similarity, genes belonging to two
different COGs could have a similar function, which would be reflected in the functional
description of the respective COGs. Using methods from natural language processing [31],
we compute for each pair of functional descriptions a score reflecting their semantic similarity.
Combining sequence and functional similarity could increase the sensitivity of the search and
promote the discovery of systems with related functions.

Our Contribution and Roadmap. In this paper we define a new problem in comparative
genomics, denoted PQ-Tree Search (in Section 2), that takes as input a PQ-tree T
(the query) representing the known gene orders of a gene cluster of interest, a gene-to-gene
substitution scoring function h, integer parameters dT and dS , and a new genome S (the
target). The objective is to identify in S a new approximate instance of the gene cluster that
could vary from the known gene orders by genome rearrangements that are constrained by
T , by gene substitutions that are governed by h, and by gene deletions and insertions that
are bounded from above by dT and dS , respectively. We prove that PQ-Tree Search is
NP-hard (Theorem 9 in Appendix A).

We define an optimization variant of PQ-Tree Search and propose an algorithm (in
Section 3) that solves it in O(nγdT 2dS

2(mp · 2γ +mq)) time, where n is the length of S,
mp and mq denote the number of P-nodes and Q-nodes in T , respectively, and γ denotes
the maximum degree of a node in T . In the same time and space complexities, we can also
report all approximate instances of T in S and not only the optimal one.

The algorithm is implemented as a search tool, denoted PQFinder. The code for the tool
as well as all the data needed to reconstruct the results are publicly available on GitHub
(https://github.com/GaliaZim/PQFinder). The tool is applied to search for instances of
chromosomal gene clusters in plasmids, within a dataset of 1,487 prokaryotic genomes. In
our preliminary results (given in Section 5), we report on 29 chromosomal gene clusters
that are rearranged in plasmids, where the rearrangements are guided by the corresponding
PQ-tree. One of these results, coding for a heavy metal efflux pump, is further analysed to
exemplify how PQFinder can be harnessed to reveal interesting new structural variants of
known gene clusters.

Previous Related Works. Permutations on strings representing gene clusters have been
studied earlier by [5, 15, 22, 32, 39]. PQ-trees were previously applied in physical mapping
[2, 10], as well as to other comparative genomics problems [3, 7, 24].

In Landau et al. [24] an algorithm was proposed for representation and detection of gene
clusters in multiple genomes, using PQ-trees: the proposed algorithm computes a PQ-tree of
k permutations of length n in O(kn) time, and it is proven that the computed PQ-tree is the
one with a minimum number of possible rearrangements of its nodes while still representing
all k permutations. In the same paper, the authors also present a general scheme to handle
gene multiplicity and missing genes in permutations. For every character that appears a
times in each of the k strings, the time complexity for the construction of the PQ-tree,
according to the scheme in that paper, is multiplied by an O((a!)k) factor.

Additional applications of PQ-trees to genomics were studied in [1, 4, 30], where PQ-trees
were considered to represent and reconstruct ancestral genomes.

However, as far as we know, searching for approximate instances of a gene cluster that is
represented as a PQ-tree, in a given new string, is a new computational problem.

https://github.com/GaliaZim/PQFinder
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2 Preliminaries

Let Π be an NP-hard problem. In the framework of Parameterized Complexity, each instance
of Π is associated with a parameter k, and the goal is to confine the combinatorial explosion
in the running time of an algorithm for Π to depend only on k. Formally, Π is fixed-parameter
tractable (FPT) if any instance (I, k) of Π is solvable in time f(k) · |I|O(1), where f is an
arbitrary computable function of k. Nowadays, Parameterized Complexity supplies a rich
toolkit to design or refute the existence of FPT algorithms [11, 12, 16].

PQ-Tree: Representing the Pattern. The possible reordering of the children nodes in a
PQ-tree may create many equivalent PQ-trees. Booth and Lueker [9] defined two PQ-trees
T, T ′ as equivalent (denoted T ≡ T ′) if one tree can be obtained by legally reordering the
nodes of the other; namely, randomly permuting the children of a P-node, and reversing
the children of a Q-node. To allow for deletions in the PQ-trees, a generalization of their
definition is given in Definition 1 below. Here, smoothing is a recursive process in which if by
deleting leaves from a tree T , some internal node x of T is left without children, then x is
also deleted, but its deletion is not counted (i.e. only leaf deletions are counted).

I Definition 1 (Quasi-Equivalence Between PQ-Trees). For any two PQ-trees, T and T ′, the
PQ-tree T is quasi-equivalent to T ′ with a limit d, denoted T �d T ′, if T ′ can be obtained
from T by (a) randomly permuting the children of some of the P-nodes of T , (b) reversing
the children of some of the Q-nodes of T , and (c) deleting up to d leaves from T and applying
the corresponding smoothing. (The order of the operations does not matter.)

Figure S2 shows two equivalent PQ-trees (Figure S2a, Figure S2b) that are each quasi-
equivalent with d = 1 to the third PQ-tree (Figure S2c). The frontier of a PQ-tree T ,
denoted F (T ), is the sequence of labels on the leaves of T read from left to right. For
example, the frontier of the PQ-tree in Figure 1 is ECDFGHIJKLM . It is interesting
to consider the set of frontiers of all the equivalent PQ-trees, defined in [9] as a consistent
set and denoted by C(T ) = {F (T ′) : T ≡ T ′}. Intuitively, C(T ) is the set of all leaf label
sequences defined by the PQ-tree structure and obtained by legally reordering its nodes.
Here, we generalize the consistent set definition to allow a bounded number of deletions from
T , using quasi-equivalence.

I Definition 2 (d-Bounded Quasi-Consistent Set). Cd(T ) = {F (T ′) : T �d T ′}.

clearly C0(T ) = C(T ), and so in a setting where d = 0 the latter notation is used. For a
node x of a PQ-tree T , the subtree of T rooted in x is denoted by T (x), the set of leaves in
T (x) is denoted by leaves(x), and the span of x (denoted span(x)) is defined as |leaves(x)|.

PQ-Tree Search and Related Terminology. An instance of the PQ-Tree Search problem
is a tuple (T, S, h, dT , dS), where T is a PQ-tree with m leaves, mp P-nodes, mq Q-nodes
and every leaf x in T has a label label(x)∈ ΣT ; S = σ1 . . . σn ∈ ΣnS is a string of length n
representing the input genome; dT ∈ N specifies the number of allowed deletions from T ;
dS ∈ N specifies the number of allowed deletions from S; and h is a boolean substitution
function, describing the possible substitutions between the leaf labels of T and the characters
of the given string, S. Formally, h is a function that receives a pair (σt, σs), where σt ∈ ΣT
is one of the labels on the leaves of T , and σs ∈ ΣS is one of the characters of the given
string S, and returns True if σt can be replaced with σs, and False, otherwise. Considering
the biological problem at hand, ΣT and ΣS are both sets of genes. For 1 ≤ i ≤ j ≤ n,
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S′ = S[i : j] = σi...σj is a substring of S beginning at index i and ending at index j. The
substring S′ is a prefix of S if S′ = S[1 : j] and it is a suffix of S if S′ = S[i : n]. In addition,
we denote σi, the ith character of S, by S[i].

The objective of PQ-Tree Search is to find a one-to-one mapping M between the
leaves of T and the characters of a substring S′ of S, that comprises a set of pairs each
having one of three forms: the substitution form, (x, σs(`)), where x is a leaf in T , σs ∈ ΣS ,
h(label(x), σs) = True and ` ∈ {1, . . . ,n} is the index of the occurrence of σs in S that is
mapped to the leaf x; the character deletion form, (ε, σs(`)), which marks the deletion of the
character σs ∈ ΣS at index ` of S; the leaf deletion form, (x, ε), which marks the deletion of
x, a leaf node of T .

To account for the number of deletions of characters of S′ and leaves of T in M, the
number of pairs inM of the form (ε, σ) are marked by delS(M) and the number of pairs
in M of the form (x, ε) are marked by delT (M). Applying the substitutions defined in
M to S′ resulting in the string SM is the process in which for every (x, σs(`)) ∈ M, the
character σs at index ` of S is deleted if x = ε, and otherwise substituted by x. This
process is demonstrated in Figure S3b. We say that S′ is derived from T under M with dT
deletions from the tree and dS deletions from the string, if dT = delT (M), dS = delS(M)
and SM ∈ CdT

(T ). Thus, by definition, there is a PQ-tree T ′ such that F (T ′) = SM and
T �dT

T ′. Note that the deletions of the nodes in T to obtain the nodes in T ′ are determined
byM. The conversion of T to T ′ as defined by the derivation is illustrated in Figure S3a.
The set of permutations and node deletions performed to obtain T ′ from T together with
the substitutions and deletions from S′ specified byM is named the derivation µ of T to S′.
We also say thatM yields the derivation µ.

For a derivation µ of T to S′ = S[s : e], we give the following terms and notations
(illustrated in Figure S3). The root of T (denoted rootT

2) is the node that µ derives or
the root of the derivation and it is denoted by µ.v. For abbreviation, we say that µ is a
derivation of µ.v. The substring S′ is the string that µ derives. We name s and e the start and
end points of the derivation and denote them by µ.s and µ.e, respectively. The one-to-one
mapping that yields µ is denoted by µ.o. The number of deletions from the tree is denoted
by µ.delT . The number of deletions from the string is denoted by µ.delS . In addition, if x is
a leaf node in T and (x, σs(`)) ∈ µ.o, then x is mapped to S[`] under µ. The character S[`]
is said to be deleted under µ if (ε, σs(`)) ∈ µ.o. If x ∈ T (µ.v) is a leaf for which (x, ε) ∈ µ.o,
then x is deleted under µ. For an internal node of T , x, if every leaf in T (x) is deleted under
µ, then x is deleted under µ, and otherwise x is kept under µ.

We define two versions of the PQ-Tree Search problem: a decision version (Definition 3)
and an optimisation version (Definition 4).

I Definition 3 (Decision PQ-Tree Search). Given a string S of length n, a PQ-tree T with
m leaves, deletion limits dT , dS ∈ N, and a boolean substitution function h between ΣS and
ΣT , decide if there is a one-to-one mappingM that yields a derivation of T to a substring
S′ of S with up to dT and up to dS deletions from T and S′, respectively.

To define an optimization version of the PQ-Tree Search problem it is necessary to
have a score for every possible substitution between the characters in ΣT and the characters
in ΣS . Hence, for this problem variant assume that h is a substitution scoring function, that
is, h(σt, σs) for σt ∈ ΣT , σs ∈ ΣS is the score for substituting σs by σt in the derivation, and
if σt cannot be substituted by σs, then h(σt, σs) = −∞. In addition, we need a cost function,
denoted by δ, for the deletion of a character of S and for the deletion of a leaf of T according

2 We abuse notation and use the term rootT also to refer to the index of the root in T .
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to the label of the leaf. The score of a derivation µ, denoted by µ.score, is the sum of scores
of all operations (deletions from the tree, deletions from the string and substitutions) in µ.
Now, instead of deciding whether there is a one-to-one mapping that yields a derivation of T
to a substring of S, we can search for the one-to-one mapping that yields the best derivation
(if there exists such a derivation), i.e. a one-to-one mapping for which µ.score is the highest.

I Definition 4 (Optimization PQ-Tree Search). Given a string of length n, S, a PQ-tree with
m leaves, T , deletion limits dT , dS ∈ N, a substitution scoring function between ΣS and ΣT ,
h, and a deletion cost function, δ, return the one-to-one mapping,M, that yields the highest
scoring derivation of T to a substring S′ of S with up to dT deletions from T and up to dS
deletions from S′ (if such a mapping exists).

3 A Parameterized Algorithm

In this section we develop a dynamic programming (DP) algorithm to solve the optimization
variant of PQ-Tree Search (Definition 4). Our algorithm receives as input an instance of
PQ-Tree Search (T, S, h, dT , dS), where h is a substitution scoring function as defined in
Section 2. Our default assumption is that deletions are not penalized, and therefore δ is not
given as input. The case where deletions are penalized, as well as additional technical details,
are omitted due to lack of space, and can be found in [45]. The output of the algorithm is a
one-to-one mapping,M, that yields the best (highest scoring) derivation of T to a substring
of S with up to dT deletions from T and up to dS deletions from the substring, and the
score of that derivation. With a minor modification, the output can be extended to include
a one-to-one mapping for every substring of S and the derivations that they yield.

Brief Overview. On a high level, our algorithm consists of three components: the main
algorithm, and two other algorithms that are used as procedures by the main algorithm.
Apart from an initialization phase, the crux of the main algorithm is a loop that traverses
the given PQ-tree, T . For each internal node x, it calls one of the two other algorithms:
P-mapping (given in Section 3.3) and Q-mapping (deferred to [45], due to space constraints).
These algorithms find and return the best derivations from the subtree of T rooted in x,
T (x), to substrings of S, based on the type of x (P-node or Q-node). Then, the scores of the
derivations are stored in the DP table.

We now give a brief informal description of the main ideas behind our P-mapping and
Q-mapping algorithms. Our P-mapping algorithm is inspired by an algorithm described by
Bevern et al. [40] to solve the Job Interval Selection problem. Our problem differs from
theirs mainly in its control of deletions. Intuitively, in the P-mapping algorithm we consider
the task at hand as a packing problem, where every child of x is a set of intervals, each
corresponding to a different substring. The objective is to pack non-overlapping intervals
such that for every child of x at most one interval is packed. Then, the algorithm greedily
selects a child x′ of x and decides either to pack one of its intervals (and which one) or
to pack none (in which case x′ is deleted). Our Q-mapping algorithm is similar to the
P-mapping algorithm, but simpler. It can be considered as an interval packing algorithm as
well, however, this algorithm packs the children of x in a specific order.

In the following sections, we describe the main algorithm, the P-mapping algorithm, and
afterwards analyse the time complexity.

WABI 2020
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3.1 The Main Algorithm

We now delve into more technical details. The algorithm constructs a 4-dimensional DP
table A of size m′ × n× dT + 1× dS + 1, where m′ = m+mp +mq is the number of nodes
in T . The purpose of an entry of the DP table, A[j, i, kT , kS ], is to hold the highest score of
a derivation of the subtree T (xj) to a substring S′ of S starting at index i with kT deletions
from T (xj) and kS deletions from S′. If no such derivation exists, A[j, i, kT , kS ] = −∞.
Addressing A with some of its indices given as dots, e.g. A[j, i, ·, ·], refers to the subtable of
A that is comprised of all entries of A whose first two indices are j and i. Some entries of
the DP table define illegal derivations, namely, derivations for which the number of deletions
are inconsistent with the start index, i, the derived node and S. These entries are called
invalid entries and their value is defined as −∞ throughout the algorithm.

The algorithm first initializes the entries of A that are meant to hold scores of derivations
of the leaves of T to every possible substring of S. Afterwards, all other entries of A are
filled as follows. Go over the internal nodes of T in postorder. For every internal node, x,
go in ascending order over every index, i, that can be a start index for the substring of S
derived from T (x) (the possible values of i are explained in the next paragraph). For every
x and i, use the algorithm for Q-mapping or P-mapping according to the type of x. Both
algorithms receive the same input: a substring S′ of S, the node x, its children x1, . . . , xγ ,
the collection of possible derivations of the children (denoted by D), which have already
been computed and stored in A (as will be explained ahead) and the deletion arguments
dT , dS . Intuitively, the substring S′ is the longest substring of S starting at index i that can
be derived from T (x) given dT and dS . After being called, both algorithms return a set of
derivations of T (x) to a prefix of S′ = S[i : e] and their scores. The set holds the highest
scoring derivation for every E(xj , i, dT , 0) ≤ e ≤ E(xj , i, 0, dS) and for every legal deletion
combination 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS .

We now explain the possible values of i and the definition of S′ more formally. To this
end, note that given the node x and some numbers of deletions kT and kS , the length of the
derived substring is L(x, kT , kS) .= span(x)− kT + kS . Thus, on the one hand, a substring
of maximum length is obtained when there are no deletions from the tree and dS deletions
from the string. Hence, S′ = S[i : E(x, i, 0, dS)] where E(x, i, kT , kS) is the function for the
calculation of the end point of a derivation, defined as E(x, i, kT , kS) .= i− 1 + L(x, kT , kS).
On the other hand, a shortest substring is obtained when there are dT deletions from the tree
and none from the string. Then, the length of the substring is L(x, dT , 0) = span(x)− dT .
Hence, the index i runs between 1 and n− (span(x)− dT ) + 1.

We now turn to address the aforementioned input collection D in more detail. Formally,
it contains the best scoring derivations of every child xj of x to every substring of S′ with up
to dT and dS deletions from the tree and string, respectively. It is produced from the entries
A[j, i′, kT , kS ] (where each entry gives one derivation) for all kT and kS , and all i′ between i
and the end index of S′, i.e. i ≤ i′ ≤ E(xj , i, 0, dS). For the efficiency of the Q-mapping and
P-mapping algorithms, the derivations in D are arranged in descending order with respect to
their end point (µ.e). This does not increase the time complexity of the algorithm, as this
ordering is received by previous calls to the Q-mapping and P-mapping algorithms.

In the final stage of the main algorithm, when the DP table is full, the score of a
best derivation is the maximum of {A[rootT , i, kT , kS ] : kT ≤ dT , kS ≤ dS , 1 ≤ i ≤
n − (span(rootT ) − kT ) + 1}. We remark that by tracing back through A the one-to-one
mapping that yielded this derivation can be found.
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3.2 P-Node and Q-Node Mapping: Terminology
Before describing the P-mapping algorithm, we set up some terminology, which is useful
both for the P-mapping algorithm and the Q-mapping algorithm.

We first define the notion of a partial derivation. In the Q-mapping and P-mapping
algorithms, the derivation of the input node, x, is built by considering subsets U of its children.
With respect to such a subset U , a derivation µ of x is built as if x had only the children in
U , and is called a partial derivation. Formally, µ is a partial derivation of a node x if µ.v = x

and there is a subset of children U ′ ⊆ children(x) such that the two following conditions are
true. First, for every u ∈ U ′ all the leaves in T (u) are neither mapped nor deleted under
µ - that is, there is no mapping pair (`, y) ∈ µ.o such that ` ∈ leaves(u). Second, for every
v ∈ children(x)\U ′ the leaves in T (v) are either mapped or deleted under µ. For every u ∈ U ′,
we say that u is ignored under µ. Notice that any derivation is a partial derivation, where the
set of ignored nodes (U ′ above) is empty. Since all derivations that are computed in a single
call to the P-mapping or Q-mapping algorithms have the same start point i, it can be omitted
(for brevity) from the end point function: thus, we denote EI(x, kT , kS) .= L(x, kT , kS).
Then, for a set U of nodes, we define L(U, kT , kS) .=

∑
x∈U span(x)+kS−kT and accordingly

EI(U, kT , kS) .= L(U, kT , kS).
We now define certain collections of derivations with common properties (such as having

the same numbers of deletions and end point).

I Definition 5. The collection of all the derivations of every node u ∈ U to suffixes of
S′[1 : EI(U, kT , kS)] with exactly kT deletions from the tree and exactly kS deletions from
the string is denoted by D(U, kT , kS).

I Definition 6. The collection of all the best derivations from the nodes in U to suffixes
of S′[1 : EI(U, kT , kS)] with up to kT deletions from the tree and up to kS deletions from
the string is denoted by D≤(U, kT , kS). Specifically, for every node u ∈ U , k′T ≤ kT and
k′S ≤ kS, the set D≤(U, kT , kS) holds only one highest scoring derivation of u to a suffix of
S′[1 : EI(U, kT , kS)] with k′T and k′S deletions from the tree and string, respectively.3

It is important to distinguish between these two definitions. First, the derivations in
D(U, kT , kS) have exactly kT and kS deletions, while the derivations in D≤(U, kT , kS) have
up to kT and kS deletions. Second, in D(U, kT , kS) there can be several derivations that differ
only in their score and in the one-to-one mapping that yields them, while in D≤(U, kT , kS),
there is only one derivation for every node u ∈ U and deletion combination pair (k′T , k′S).
Note that the end points of all of the derivations are equal.

Definition 5 is used for describing the content of an entry of the DP table, where the
focus is on the collection of all the derivations of x to S′ with exactly kT and kS deletions,
D({x}, kT , kS). For simplicity, the abbreviation D(u, kT , kS) = D({u}, kT , kS) is used. In
every step of the P-mapping and Q-mapping algorithms, a different set of derivations of
the children of x is examined, thus, Definition 6 is used for U ⊆ children(x). In addition,
the set of derivations D that is received as input to the algorithms can be described using
Definition 6 as can be seen in Equation (1) below. In this equation, the union is over all
U ⊆ children(x) because in this way the derivations of all the children of x with every possible

3 D≤(U, kT , kS) can be defined using Definition 5: D≤(U, kT , kS) =
⋃
u∈U

⋃
k′

T
≤kT

⋃
k′

S
≤kS

max
µ∈D(U,kT ,kS )

s.t.
µ.delT =k′T
µ.delS =k′S
µ.v=u

µ.score.
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end point are obtained (in contrast to having only U = children(x), which results in the
derivations of all the children of x with the end point EI(children(x), kT , kS)).

D =
⋃

U⊆children(x)

⋃
kT≤dT

⋃
kS≤dS

D≤(U, kT , kS) (1)

In the P-mapping algorithm for C ⊆ children(x), the notation x(C) is used to indicate
that the node x is considered as if its only children are the nodes in C. Consequentially,
the span of x(C) is defined as span(x(C)) .=

∑
c∈C span(c), and the set D(x(C), kT , kS) (in

Definition 5 where U = {x(C)}) now refers to a set of partial derivations.

3.3 P-Node Mapping: The Algorithm

Recall that the input consists of an internal P-node x, a string S′, limits on the number of
deletions from the tree T and the string S′, dT and dS , respectively, and a set of derivations
D (see Equation (1)). The output is

⋃
kT≤dT

⋃
kS≤dS

arg maxµ∈D(x,kT ,kS) µ.score, which is
the collection of the best scoring derivations of x to every possible prefix of S′ having up
to dT and dS deletions from the tree and string, respectively. Thus, there are O(dT dS)
derivations in the output.

The algorithm constructs a 3-dimensional DP table P, which has an entry for every
0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS and subset C ⊆ children(x). The purpose of an entry P [C, kT , kS ]
is to hold the best score of a partial derivation in D(x(C), kT , kS), i.e. a partial derivation
rooted in x(C) to a prefix of S′ with exactly kT deletions from the tree and kS deletions
from the string. The children of x that are not in C are ignored (as defined in Section 3.2)
under the partial derivation stored by the DP table entry P [C, kT , kS ], thus they are neither
deleted nor counted in the number of deletions from the tree, kT . (They will be accounted
for in the computation of other entries of P.) Similarly to the main algorithm, some of the
entries of P are invalid, and their value is defined as −∞. Every entry P [C, kT , kS ] for which
L(C, kT , kS) = 0 and kS = 0 or for which C = ∅ and kT = 0 is initialized with 0.

After the initialization, the remaining entries of P are calculated using the recursion rule
in Equation (2) below. The order of computation is ascending with respect to the size of the
subsets C of the children of x, and for a given C ⊆ children(x), the order is ascending with
respect to the number of deletions from both tree and string.

P[C, kT , kS ] = max

P[C, kT , kS − 1]
max

µ∈D≤(C,kT ,kS)
P[C \ {µ.v}, kT − µ.delT , kS − µ.delS ] + µ.score

(2)

Intuitively, every entry P [C, kT , kS ] defines some index e′ of S′ that is the end point of every
partial derivation in D(x(C), kT , kS). Thus, S′[e′] must be a part of any partial derivation
µ ∈ D(x(C), kT , kS), so, either S′[e′] is deleted under µ or it is mapped under µ. The former
option is captured by the first case of the recursion rule. If S′[e′] is mapped under µ, then
due to the hierarchical structure of T (x), it must be mapped under some derivation µ′ of
one of the children of x that are in C. Thus we receive the second case of the recursion rule.
We remark that the case of a node deletion is captured by the initialization.

Once the entire DP table is filled, a derivation of maximum score for every end point
and deletion numbers combination can be found in P[children(x), ·, ·]. Traversing the said
subtable in a specific order guarantees the output derivations are ordered with respect to
their end point without further calculations.
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3.4 Complexity Analysis of the Main Algorithm
In this section we compare the time complexity of the main algorithm (in Section 3.1) to the
naïve solution for PQ-Tree Search. Lemma 8 ahead (proven in Appendix B) gives the
time complexity of the main algorithm, and thus it is proven that PQ-Tree Search has an
FPT solution with the parameter γ (Theorem 7).

I Theorem 7. PQ-Tree Search with parameter γ is FPT. Particularly, it has an FPT
algorithm that runs in O∗(2γ) time4.

I Lemma 8. The algorithm in Section 3.1 runs in O(nγdT 2dS
2(mp2γ + mq)) time and

O(dT dS(mn+ 2γ)) space, where γ is the maximum degree of a node in T .

The naïve solution for PQ-Tree Search solves it in O(2mq (γ!)mpnm(dT + dS)dT dS)
time. Therefore, we conclude that the time complexity of our algorithm is substantially
better, as exemplified by considering two complementary cases. One, when there are only
P-nodes in T (i.e.mp = O(m)), the naïve algorithm is super-exponential in γ, and even worse,
exponential in m, while ours is exponential only in γ, and hence polynomial for any γ that is
constant (or even logarithmic in the input size). Second, when there are only Q-nodes in T
(i.e. mq = O(m)), the naïve algorithm is exponential while ours is polynomial.

4 Methods and Datasets

Dataset and Gene Cluster Generation. 1, 487 fully sequenced prokaryotic strains with
COG ID annotations were downloaded from GenBank (NCBI; ver 10/2012). Among these
strains, 471 genomes included a total of 933 plasmids.

The gene clusters were generated using the tool CSBFinder-S [36]. CSBFinder-S was
applied to all the genomes in the dataset after removing their plasmids, using parameters
q = 1 (a colinear gene cluster is required to appear in at least one genome) and k = 0 (no
insertions are allowed in a colinear gene cluster), resulting in 595,708 colinear gene clusters.
Next, ignoring strand and gene order information, colinear gene clusters that contain the
exact same COGs were united to form the generalized set of gene clusters. The resulting
gene clusters were then filtered to 26,270 gene clusters that appear in more than 30 genomes.

Generation of PQ-Trees. The generation of PQ-trees was performed using a program [19]
that implements the algorithm described in [24] for the construction of a PQ-tree from a list
of strings comprised from the same set of characters. In the case where a character appeared
more than once in a training string, the PQ-tree with a minimum sized consistent set was
chosen. The generated PQ-trees varied in size and complexity. The length of their frontier
ranged between 4 and 31, and the size of their consistent set ranged between 4 and 362, 880.

Implementation and Performance. PQFinder is implemented in Java 1.8. The runs were
performed on an Intel Xeon X5680 machine with 192 GB RAM. The time it took to run
all plasmid genomes against one PQ-tree ranged between 5.85 seconds (for a PQ-tree with
a consistent set of size 4) and 181.5 seconds (for a PQ-tree with a consistent set of size
362, 880). In total it took an hour and 47 minutes to run every one of the 779 PQ-trees
against every one of the 933 plasmids.

4 The notation O* is used to hide factors polynomial in the input size.
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Substitution Scoring Function. The substitution scoring function reflects the distance
between each pair of COGs, that is computed based on sentences describing the functional
annotation of the COGs (e.g., “ABC-type sugar transport system, ATPase component”).
The “Bag of Words model” was employed, where the functional description of each COG
is represented by a sparse vector that is normalized to have a unit Euclidean norm. First,
each COG description was tokenized and the occurrences of tokens in each description was
counted and normalized using tf–idf term weighting. Then, the cosine similarity between
each two vectors was computed, resulting in similarity scores ranging between 0 and 1. The
sentences describing COGs are short, therefore each word largely influences the score, even
after the tf–idf term weighting. Therefore, words that do not describe protein functions that
were found in the top 30 most common words in the description of all COGs were used as
stop-words. Two COGs with the same COG IDs were set to have a score of 1.1, and the
substitution score between a gene with no COG annotation to any other COG was set to be
-0.1. Two COGs with a zero score were penalized to have a score of -0.2 and the deletion of a
COG from the query or the target string was set to have a score of zero.

Enrichment Analysis. For each of the four variants in Figure 2.C, a hypergeometric test
was performed to measure the enrichment of the corresponding variant in one of the classes
in which it appears. A total of 10 p-values were computed and adjusted using the Bonferroni
correction; two p-values were found significant (<0.05), reported in Section 5.

Specificity Score. We define a specificity score for a PQ-tree T of a gene cluster named
S-score. Let T̃ be the least specific PQ-tree that could have been generated for the genes
of the gene cluster based on which T was constructed. Namely, a PQ-tree that allows all
permutations of said genes, has height 1 and is rooted in a P-node whose children (being the
leaves of the tree) are the leaves of T . Thus, the S-score of T is |C(T̃ )|

|C(T )| . For a gene cluster of
permutations (i.e. there are no duplications), the computation of |C(T )| is as described in
Equation (3), where the set of P-nodes in T is denoted by T.p.

|C(T )| = 2mq ·
∏
x∈T.p

|children(x)|! (3)

For a gene cluster that has duplications, the set C(T ) is generated to learn its size. Let
a(`, T ) denote the number of appearances of the label ` in the leaves of T and let labels(T )
denote the set of all labels of the leaves of T . So, the formula for |C(T̃ )| is as in Equation (4).
Clearly, for T with no duplications |C(T̃ )| = |F (T )|!.

|C(T̃ )| = |F (T )|!∏
`∈labels(T ) a(`, T )! (4)

5 Results

5.1 Chromosomal Gene Orders Rearranged in Plasmids
The labeling of each internal node of a PQ-tree as P or Q, is learned during the construction
of the tree, based on some interrogation of the gene orders from which the PQ-tree is trained
[24]. As a result, the set of strings that can be derived from a PQ-tree T , consists of two
parts: (1) all the strings representing the known gene orders from which T was constructed,
and (2) additional strings, denoted tree-guided rearrangements, that do not appear in the
set of gene orders constructing T , but can be obtained via rearrangement operations that
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are constrained by T . Thus, the tree-guided rearrangements conserve the internal topology
properties of the gene cluster, as learned from the corresponding gene orders during the
construction of T , such that colinear dependencies among genes and between sub-operons
are preserved in the inferred gene orders.

In this section, we used the PQ-trees constructed from chromosomal gene clusters, to
examine whether tree-guided rearrangements can be found in plasmids. The objective was to
discover gene orders in plasmids that abide by a PQ-tree representing a chromosomal gene
cluster, and differ from all the gene orders participating in the PQ-tree’s construction. PQ-
trees that are constructed from gene clusters that have only one gene order or gene clusters
with less than four COGs cannot generate gene orders that differ from the ones participating
in their construction. Therefore, only 779 out of 26,270 chromosomal gene clusters were used
for the construction of query PQ-trees (the generation of the chromosomal gene clusters is
detailed in Section 4). Using our tool PQFinder that implements the algorithm proposed for
solving the PQ-Tree Search problem, the query PQ-trees were run against all plasmid
genomes. This benchmark was run conservatively without allowing substitutions or deletions
from the PQ-tree or from the target string. 380 of the query gene clusters were found in
at least one plasmid. The instances of these gene clusters in plasmids are provided in the
Supplementary Materials as a session file that can be viewed using the tool CSBFinder-S
[36].

Tree-guided rearrangements were found among instances of 29 gene clusters. The PQ-trees
corresponding to these gene clusters were sorted by a decreasing S-score, where higher scores
are given to a more specific tree (details in Section 4). In this setting, the higher the S-score,
the smaller the number of possible gene orders that can be derived from the respective
PQ-tree. Interestingly, 21 out of these 29 gene clusters code for transporters, namely 20
importers (ABC-type transport systems) and one exporter (efflux pump). The 10 top ranking
results are presented in Table 1.

We selected the third top-ranking PQ-tree in Table 1 for further analysis. This PQ-tree
was constructed from seven gene orders of a gene cluster that encodes a heavy metal efflux
pump. This gene cluster was found in the chromosomes of 79 genomes (represented by the
seven distinct gene orders mentioned above) and in the plasmids of seven genomes. The
tree-guided rearrangement instance was found in the strain Cupriavidus metallidurans CH34,
isolated from an environment polluted with high concentrations of several heavy metals.
This strain contains two large plasmids that confer resistance to a large number of heavy
metals such as zinc, cadmium, copper, cobalt, lead, mercury, nickel and chromium. We
hypothesize that the rearrangement event could have been caused by a heavy metal stress
[41]. In the following section we will focus on this PQ-tree to further study its different
variants in plasmids.

5.2 RND Efflux Pumps in Plasmids
The heavy metal efflux pump examined in the previous section (corresponding to the third
top-ranking PQ-tree in Table 1), was used as a PQFinder query and re-run against all the
plasmids in our dataset in order to discover approximate instances of this gene cluster, possibly
encoding remotely related variations of the efflux pump it encodes. This time, in order to
increase sensitivity, a semantic substitution scoring function (described in Section 4) was
used, and the parameters were set to dT = 1 (up to one deletion from the tree, representing
missing genes) and dS = 3 (up to three deletions from the plasmid, representing intruding
genes). An instance of a gene cluster is accepted if it was derived from the corresponding
PQ-tree with a score that is higher than 0.75 of the highest possible score attainable by the
query. The plasmid instances detected by PQFinder are displayed in Figure S4.
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Table 1 Ten top ranked PQ-trees for which tree-guided rearrangements were found in plasmids.
1Square brackets represent a Q-node; round brackets represent a P-node. Numbers indicate the
respective COG IDs. 2This column indicates the number of genomes harboring plasmid instances
of the respective PQ-tree. The number in brackets indicates the number of genomes harboring a
tree-guided gene rearrangement of the corresponding gene cluster. The full table can be found in
[45].

PQ-Tree1 S-score # Genomes2 Functional Category
1 [[0683 [[0411 0410] [0559 4177]]] 0583] 22.5 5 (2) Amino acid transport
2 (1609 [1653 1175 0395] 3839) 10.0 10 (2) Carbohydrate transport
3 [[1538 [3696 0845]] [0642 0745]] 7.5 7 (1) Heavy metal efflux
4 [[2115 1070] [4213 [1129 4214]]] 7.5 1 (1) Carbohydrate transport
5 [1960 [[2011 1135] [2141 1464]]] 7.5 3 (1) Amino acid transport
6 [[0596 0599] [[3485 3485] 0015]] 7.5 9 (1) Metabolism
7 [[[1129 1172 1172] 1879] 3254] 7.5 6 (1) Carbohydrate transport
8 (1609 1869 [[1129 1172] 1879] 0524) 7.5 1 (1) Carbohydrate transport
9 (0683 [0559 4177] [0411 0410] 0318) 7.5 1 (1) Amino acid transport
10 (3839 0673 [[0395 1175] 1653]) 5.0 10 (1) Carbohydrate transport

Heavy metal efflux pumps are involved in the resistance of bacteria to a wide range
of toxic metal ions [27] and they belong to the resistance-nodulation-cell division (RND)
family. In Gram-negative bacteria, RND pumps exist in a tripartite form, comprised from
an outer-membrane protein (OMP), an inner membrane protein (IMP), and a periplasmic
membrane fusion protein (MFP) that connects the other two proteins. In some cases, the
genes of the RND pump are flanked with two regulatory genes that encode the factors of a
two-component regulatory system comprising a sensor/histidine kinase (HK) and response
regulator (RR) (Figure 2.B). This regulatory system responds to the presence of a substrate,
and consequently enhances the expression of the efflux pump genes.

The PQ-tree of this gene cluster (Figure 2.A) shows that the COGs encoding the IMP
and MFP proteins always appear as an adjacent pair, the OMP COG is always adjacent to
this IMP-MFP pair, and the HK and RR COGs appear as a pair downstream or upstream
to the other COGs. COG3696, which encodes the IMP protein, is annotated as a heavy
metal efflux pump protein, while the other COGs are common to all RND efflux pumps.
Therefore, it is very likely that the respective gene cluster corresponds to a heavy metal
RND pump. The absence of an additional periplasmic protein likely indicates that this gene
cluster encodes a Czc-like efflux pump that exports divalent metals such as the cobalt, zinc
and cadmium exporter in Cupriavidus metallidurans [27] (Figure 2.C(1)).

PQFinder discovered instances of this gene cluster in the plasmids of 12 genomes (Figures
2.C(1) and 2.D), and it is significantly enriched in the β-proteobacteria class (hypergeometric
p-value= 1.09× 10−5, Bonferroni corrected p-value = 1.09× 10−4). In addition, three other
variants of RND pumps were found as instances of the query gene cluster (Figure 2.C(2-4)).
The plasmids of three genomes contained instances that were missing the COG corresponding
to the OMP gene CzcC (Figure 2.C(2)). This could be caused by a low quality sequencing
or assembly of these plasmids. An alternative possible explanation is that a Czc-like efflux
pump can still be functional without CzcC; a previous study showed that the deletion of
CzcC resulted in the loss of cadmium and cobalt resistance, but most of the zinc resistance
was retained [27].
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Figure 2 A. A PQ-tree of a heavy metal RND efflux pump, corresponding to the third top scoring
result in Table 1. B. An illustration of an RND efflux pump consisting of an outer-membrane protein
(OMP), an inner membrane protein (IMP), and a periplasmic membrane fusion protein (MFP) that
connects the other two proteins. In addition, a two-component regulatory system consisting of a
sensor/histidine kinase (HK) and response regulator (RR) enhances the transcription of the efflux
pump genes. C. Representatives of the three different RND efflux pumps found in plasmids. (1) A
Czc-like heavy metal efflux pump, (2) A Czc-like heavy metal efflux pump with a missing OMP
gene, (3) A Cus-like heavy metal efflux pump, (4) An Acr-like multidrug efflux pump. Additional
details can be found in the text. D. The presence-absence map of the three types of efflux pumps
found in the plasmids of different genomes. The rows correspond to the rows in (C), the columns
correspond to the genomes in which instances were found, organized according to their taxonomic
classes. A black cell indicates that the corresponding efflux pump is present in the plasmids of the
genome. The labels below the map indicate the classes α, β, γ, δ-Proteobacteria and Acidobacteriia.

Some instances identified by the query, found in the plasmids of six genomes, seem to
encode a different heavy metal efflux pump (Figure 2.C(3)). This variant includes all COGs
from the query, in addition to an intruding COG that encodes a periplasmic protein (CusF).
This protein is a predicted copper usher that facilitates access of periplasmic copper towards
the heavy metal efflux pump. Indeed, the genomic region of Cus-like efflux pumps that export
monovalent metals, such as the silver and copper exporter in Escherichia coli, include this
periplasmic protein, in contrast to the Czc-like efflux pump [27]. This variant was found in the
plasmids of six bacterial genomes belonging to the class γ-proteobacteria (Figure 2.D). This
gene cluster is significantly enriched in the γ-proteobacteria class (hypergeometric p-value=
2.13× 10−4, Bonferroni corrected p-value = 2.13× 10−3). Surprisingly, all of these strains,
except for one, are annotated as human or animal pathogens. Interestingly, previous studies
suggest that the host immune system exploits excess copper to poison invading pathogens
[18], which can explain why these pathogens evolved copper efflux pumps.

Another variant of the pump, appearing in five genomes (Figures 2.C(4) and 2.D), resulted
from a substitution of the query IMP gene (COG3696) by a different IMP gene (COG0841)
belonging to the multidrug efflux pump AcrAB-TolC. The AcrAB-TolC system, mainly
studied in Escherichia coli, transports a diverse array of compounds with little chemical
similarity [13]. AcrAB-TolC is an example of an intrinsic non-specific efflux pump, which is
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widespread in the chromosomes of Gram-negative bacteria, and likely evolved as a general
response to environmental toxins [35]. In this case, the query gene cluster and the identified
variant share all COGs, except for the COGs encoding the IMP genes. The differing COGs
are responsible for substrate recognition, which naturally differs between the two pumps, as
one pump exports heavy metal while the other exports multiple drugs. When considering
the functional annotation of these two COGs, we see that the query metal efflux pump
COG encoding the IMP gene is annotated as “Cu/Ag efflux pump CusA”, while in the
multidrug efflux pump the COG encoding the IMP gene is annotated as “Multidrug efflux
pump subunit AcrB”. Thus, in spite of the difference in substrate specificity, the semantic
similarity measure employed by PQFinder was able to reflect their functional similarity and
allowed the substitution between them, while conferring to the structure of the PQ-tree.

6 Conclusions

In this paper, we defined a new problem in comparative genomics, denoted PQ-Tree
Search. The objective of PQ-Tree Search is to identify approximate new instances
of a gene cluster in a new genome S. In our model, the gene cluster is represented by a
PQ-tree T , and the approximate instances can vary from the known gene orders by genome
rearrangements that are constrained by T , by gene substitutions that are governed by a
gene-to-gene substitution scoring function h, and by gene deletions and insertions that are
bounded from above by integer parameters dT and dS , respectively.

We proved that the PQ-Tree Search problem is NP-hard and proposed a parameterized
algorithm that solves it in O∗(2γ) time, where γ is the maximum degree of a node in T and
O∗ is used to hide factors polynomial in the input size.

The proposed algorithm was implemented as a publicly available tool and harnessed to
search for tree-guided rearrangements of chromosomal gene clusters in plasmids. We identified
29 chromosomal gene clusters that are rearranged in plasmids, where the rearrangements are
guided by the corresponding PQ-tree. A tree-guided rearrangement event of one of these gene
clusters, coding for a heavy metal efflux pump, was detected in a bacterial strain that was
isolated from an environment polluted with several heavy metals. Thus, a future extension
of this study could explore whether similar gene cluster rearrangement events are correlated
with environmental stress or other bacterial adaptations.

The said gene cluster was further analysed to characterize its approximate instances in
plasmids. An interesting variant of the analysed gene cluster, found among its approximate
instances, corresponds to a copper efflux pump. It was found mainly in pathogenic bacteria,
and likely constitutes a bacterial defense mechanism against the host immune response.
These results exemplify how our proposed tool PQFinder can be harnessed to find meaningful
variations of known biological systems that are conserved as gene clusters, and to explore
their function and evolution.

One of the downsides to using PQ-trees to represent gene clusters is that very rare gene
orders taken into account in the tree construction could greatly increase the number of
allowed rearrangements and thus substantially lower the specificity of the PQ-tree. Thus,
a natural continuation of our research would be to increase the specificity of the model by
considering a stochastic variation of PQ-Tree Search. Namely, defining a PQ-tree in which
the internal nodes hold the probability of each rearrangement, and adjusting the algorithm
for PQ-Tree Search accordingly. In addition, future extensions of this work could also aim
to increase the sensitivity of the model by taking into account gene duplications, gene-merge
and gene-split events, which are typical events in gene cluster evolution.
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A PQ-Tree Search is NP-Hard

In this section we prove Theorem 9 by describing a reduction from the Job Interval
Selection problem (JISP) to PQ-Tree Search.

I Theorem 9. PQ-Tree Search is NP-hard.

Since its initial definition by Nakajima and Hakimi [26], JISP has seen several equivalent
definitions [23, 33, 34, 40]. We use the following formulation for JISPk based on colors.
Given γ k-tuples of intervals on the real line, where the intervals of every k-tuple have a
different color i (1 ≤ i ≤ γ), select exactly one interval of each color (k-tuple) such that no
two intervals intersect. The notation Iij is used to denote the interval that starts at sij , ends
at fij (i.e. the interval [sij , fij ]) and has the color i (i.e. it is a part of the ith k-tuple).

JISP3 was shown to be NP-complete by Keil [23]. Crama et al. [34] showed that JISP3 is
NP-complete even if all intervals are of length 2. We use these results to show that PQ-Tree
Search is NP-hard.

The Reduction. Given an instance, J , of JISP3 where all intervals have length 2, an
instance of PQ-Tree Search is created. It is easy to see that shifting all intervals by some
constant does not change the problem. Hence, assume that the leftmost starting interval
starts at 1. Let L be the rightmost ending point of an interval, so the focus can be only on
the segment [1, L] of the real line. Now, an instance of PQ-Tree Search (T, S, h, dT , dS)
is constructed (an illustrated example is given in Figure S1 below):
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I1 I2, I3
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(b)

Figure S1 (a) The input of the reduction - a JISP3 instance J with intervals of length 2. (b)
The output of the reduction - a PQ-Tree Search instance (T, S, h, dT , dS).

The PQ-tree T : The root node, rootT , is a P-node with 3L−2−3γ children: x1, . . . ,xγ ,

y1, . . . ,y3L−2−4γ . The children of rootT are defined as follows: for every color 1 ≤ i ≤ γ,
create a Q-node xi with four children xsi , xai , xbi , x

f
i ; for every index 1 ≤ i ≤ 3L− 2− 3γ,

create a leaf yi.
The string S: Define S = σ1σaσbσ2σaσb . . . σaσbσL.
The substitution function h: For every interval of the color i, Iij = [sij , fij ], the
function h returns True for the following pairs: (xsi , σsij ), (xfi , σfij ), (xai , σa) and (xbi , σb).
In addition, every leaf yr can be substituted by every letter of S, namely for every index
1 ≤ r ≤ 3L− 2− 3γ and for every s ∈ {a, b, 1, . . . , L} the function h returns True for the
pair (yr, σs). For every other pair h returns False. For the optimization version of the
problem, define a scored substitution function h′, such that h′(u, v) = 1 if h(u, v) = True

and h′(u, v) = −∞ if h(u, v) = False.
Number of deletions: Define dT = 0 and dS = 0, i.e. deletions are forbidden from
both tree and string.

An example of the reduction is shown in Figure S1. A collection of two 3-tuples (one
blue and one red) where each interval is of length 2, i.e a JISP3 instance, is in Figure S1a.
Running the reduction algorithm yields the PQ-Tree Search instance in Figure S1b. The
pairs that can be substituted (i.e. the pairs for which h returns True) are given by the
lines connecting the leafs of the PQ-tree and the letters of the string S. The nodes and
substitutable pairs created due to the blue and red intervals in the JISP3 instance are
marked in blue and red, respectively. The substitutable pairs containing a y node are marked
in gray. Note that the colors given in Figure S1b are not a part of the PQ-Tree Search
instance, and are given for convenience.



G.R. Zimerman, D. Svetlitsky, M. Zehavi, and M. Ziv-Ukelson 1:21

B Time and Space Complexity of the PQ-Tree Search Algorithm

Here we prove Lemma 8.

Proof. The number of leaves in the PQ-tree T is m, hence there are O(m) nodes in the tree,
i.e the size of the first dimension of the DP table, A, is O(m). In the algorithm description
(Section 3.1) a bound for the possible start indices of substrings derived from nodes in T is
given. The node with the largest span in T is the root which has a span of m. The root is
mapped to the longest substring when there are dS deletions from the string. Hence, the size
of the second dimension of A is Ω(n− (m+ dS) + 1) = Ω(n) (given that d < m << n). The
nodes with the smallest spans are the leaves, which have a span of 1, hence the size of the
second dimension of A is O(n). The third and fourth dimensions of A are of size dT + 1 and
dS + 1, respectively. In total, the DP table A is of size O(dT dSmn).

In the initialization step O(dT dSmn) entries of A are computed in O(1) time each. This
holds because there are m leaves and n possible start indices for strings of length 1. The dT
and dS factors come from the initialization of entries with −∞. The P-mapping algorithm is
called for every P-node in T and every possible start index i, i.e. the P-mapping algorithm is
called O(nmp) times. Similarly, the Q-mapping algorithm is called O(nmq) times. Thus, it
takes O(n (mp ·Time(P-mapping)+mq ·Time(Q-mapping))) time to fill the DP table. In the
final stage of the algorithm the maximum over the entries corresponding to every combination
of deletion number and start index (0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS , 1 ≤ i ≤ n−(span(x)−dT )+1})
is computed. So, it takes O(dT dSn) time to find the maximum score of a derivation. Tracing
back through the DP table to find the actual mapping does not increase the time complexity.

The P-mapping algorithm takes O(γ2γdT 2dS
2) time and O(dT dS2γ) space, and the

Q-mapping algorithm takes O(γdT 2dS
2) time and O(dT dSγ) space. Thus, in total, our

algorithm runs in O(n(mp · γ2γdT 2dS
2 +mq · γdT 2dS

2)) = O(nγdT 2dS
2(mp · 2γ +mq)) time.

Adding to the space required for the main DP table the space required for the P-mapping
algorithm (the space needed for the Q-mapping algorithm is insignificant with respect to
the P-mapping algorithm) results in a total space complexity of O(dT dSmn) +O(dT dS2γ) =
O(dT dS(mn+ 2γ)). This completes the proof. J

C Figures

A B C D E F G

(a) T1.

D C B A E G F

(b) T2.

A B D F E G

(c) T3.

Figure S2 Three different PQ-trees. By the definition of frontier, F (T1) = ABCDEFG; F (T2) =
DCBAEGF ; F (T3) = ABDFEG. T2 can be obtained from T1 by reversing the children of a Q-node
(the left child of the root) and by reordering the children of a P-node (the right child of the root), so
T2 ≡ T1. T3 can be obtained from T1 by deleting one leaf and permuting the children of the right
child of the root, so T1 �1 T3. Now, T2 �1 T3 can be inferred, because the ≡ is an equivalence
relation.
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x11

x4

x1 x2 x3

x7

x5 x6

x10

x8 x9

T

M : (x5, ε) (x6, ε)

reorder the children of x4

smoothing: delete x7

x11

x4

x3 x1 x2

x10

x8 x9

T ′

(a) The derivation µ applied on T resulting in T ′: reorder the children of x4, delete leaves according to
M (delete x5 and x6) and perform smoothing (delete x7, the parent node of x5 and x6). The root of T ,
x11, is the node that µ derives, denoted µ.v. Also, µ is a derivation of x11. The nodes x5, x6 and x7 are
deleted under µ. The leaves x1, x2, x3, x8, x9 are mapped under µ. The nodes x4, x10, x11 are kept under
µ.

S : σ1 σ2 σ1 σ2 σ3 σ4 σ5 σ6 σ3

S′

M : (x3, σ1(3)) (ε, σ2(4)) (x1, σ3(5)) (x2, σ4(6)) (x8, σ5(7)) (x9, σ6(8))

SM : x3 x1 x2 x8 x9

(b) The derivation µ on S′ resulting in SM: apply substitutions and deletions according to M. The
substring S′ = S[3 : 8] is the string that µ derives. The character S[4] is deleted under µ. The characters
S[3], S[5], S[6], S[7], S[8] are mapped under µ.

Figure S3 An illustration of the derivation µ from the PQ-tree T to the substring S′ under the
one-to-one mapping M (µ.o) with µ.delT = delT (M) = 2 deletions from the tree and µ.delS =
delS(M) = 1 deletions from the string. The start point of the derivation (µ.s) is 3. The end point
of the derivation (µ.e) is 8. Notice that SM = F (T ′) and T �2 T

′ which means that SM ∈ C2(T ).
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Figure S4 This figure is continued in the next page.
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(a)

(b)

Figure S4 (Cont.) (a) The plasmid instances of the heavy metal efflux pump gene cluster
discussed in Section 5.2. The COGs of the query gene cluster are: COG0642, COG0745, COG3639,
COG0845, COG1538. The instances were identified using PQFinder and displayed using the graphical
interface of the tool CSBFinder-S [36]. X indicates a gene with no COG annotation. The image was
edited to display instances of the same genome in separate lines. (b) The functional description of
the COGs shown in (a).
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