
Breaking the Barrier of 2 for the Storage
Allocation Problem
Tobias Mömke
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
moemke@cs.uni-saarland.de

Andreas Wiese
Department of Industrial Engineering, Universidad de Chile, Santiago, Chile
awiese@dii.uchile.cl

Abstract
Packing problems are an important class of optimization problems. The probably most well-known
problem if this type is knapsack and many generalizations of it have been studied in the literature
like Two-dimensional Geometric Knapsack (2DKP) and Unsplittable Flow on a Path (UFP). For
the latter two problems, recently the first polynomial time approximation algorithms with better
approximation ratios than 2 were presented [Gálvez et al., FOCS 2017][Grandoni et al., STOC 2018].
In this paper we break the barrier of 2 for the Storage Allocation Problem (SAP), a problem which
combines properties of 2DKP and UFP. In SAP, we are given a path with capacitated edges and a set
of tasks where each task has a start vertex, an end vertex, a size, and a profit. We seek to select the
most profitable set of tasks that we can draw as non-overlapping rectangles underneath the capacity
profile of the edges where the height of each rectangle equals the size of the corresponding task.

The problem SAP appears naturally in settings of allocating resources like memory, bandwidth,
etc. where each request needs a contiguous portion of the resource. The best known polynomial
time approximation algorithm for SAP has an approximation ratio of 2 + ε [Mömke and Wiese,
ICALP 2015] and no better quasi-polynomial time algorithm is known. We present a polynomial
time (63/32 + ε) < 1.969-approximation algorithm for the important case of uniform edge capacities
and a quasi-polynomial time (1.997+ε)-approximation algorithm for non-uniform quasi-polynomially
bounded edge capacities. Key to our results are building blocks consisting of stair-blocks, jammed
tasks, and boxes that we use to construct profitable solutions and which allow us to compute
solutions of these types efficiently. Finally, using our techniques we show that under slight resource
augmentation we can obtain even approximation ratios of 3/2 + ε in polynomial time and 1 + ε in
quasi-polynomial time, both for arbitrary edge capacities.

2012 ACM Subject Classification Theory of computation → Dynamic programming; Theory of
computation → Packing and covering problems; Theory of computation → Rounding techniques

Keywords and phrases Approximation Algorithms, Resource Allocation, Dynamic Programming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.86

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at [28], https://arxiv.org/abs/1911.10871.

Funding Tobias Mömke: This work was partially supported by the ERC Advanced Investigators
Grant 695614 (POWVER), and by DFG Grant 389792660 as part of TRR 248 (CPEC).
Andreas Wiese: Partially supported by FONDECYT Regular grant 1170223.

1 Introduction

Packing problems play an important role in combinatorial optimization. The most basic
packing problem is knapsack where we are given a knapsack of a certain capacity, a set of
items with different sizes and profits, and we are looking for a subset of items of maximum
profit that fit into the knapsack. Many generalizations of it have been studied. For example,

EA
T

C
S

© Tobias Mömke and Andreas Wiese;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 86; pp. 86:1–86:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2509-6972
mailto:moemke@cs.uni-saarland.de
https://orcid.org/0000-0003-3705-016X
mailto:awiese@dii.uchile.cl
https://doi.org/10.4230/LIPIcs.ICALP.2020.86
https://arxiv.org/abs/1911.10871
https://powver.org
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

86:2 Breaking the Barrier of 2 for the Storage Allocation Problem

in the Two-dimensional Geometric Knapsack problem (2DKP) the items are axis-parallel
rectangles and we seek to find the most profitable subset of them that fit non-overlappingly
into a given rectangular knapsack. Another generalization of the knapsack problem is called
Unsplittable Flow on a Path (UFP). We are given a path with capacities on its edges and
each item can be interpreted as a commodity of flow that needs to send a given amount of
flow from its start vertex to its end vertex in case that we select it. If the path consists of a
single edge then UFP is identical to knapsack.

In this paper, we study the Storage Allocation Problem (SAP) which combines properties
of 2DKP and UFP: We are given a path (V,E) where each edge e ∈ E has a capacity ue ∈ N,
and a set of tasks T where each task i ∈ T is specified by a size di ∈ N, a profit wi ∈ N, a
start vertex si ∈ V , and an end vertex ti ∈ V . Let P (i) denote the path between si and ti for
each i ∈ T . The goal is to select a subset of tasks T ′ ⊆ T and define a height level h(i) ≥ 0
for each task i ∈ T ′ such that the resulting rectangle [si, ti)× [h(i), h(i) + di) lies within the
profile of the edge capacities, and we require that the rectangles of the tasks in T ′ are pairwise
non-overlapping. Formally, for each task i ∈ T ′ we require that h(i) + di ≤ ue for each edge
e ∈ P (i) and additionally for any two tasks i, i′ ∈ T ′ we require that if P (i)∩P (i′) 6= ∅, then
[h(i), h(i) + di) ∩ [h(i′), h(i′) + di′) = ∅. Note that since we can choose h(i) we can define
the vertical position of the rectangle of each task i but not its horizontal position. Again, if
E has only one edge then the problem is identical to knapsack.

The problem SAP is motivated by settings in which tasks need a contiguous portion of
an available resource, e.g., a consecutive portion of the computer memory or a frequency
bandwidth. Observe that in contrast to UFP, in many applications of SAP the instances
have uniform edge capacities, e.g., if the available memory or frequency spectrum does not
change over time. From a mathematical perspective, SAP and UFP are closely related. Every
feasible SAP-solution T ′ satisfies

∑
i∈T ′:e∈P (i) di ≤ ue on each edge e. This is exactly the

condition when a solution to UFP is feasible (UFP and SAP have the same type of input).
In SAP we require additionally that we can represent the tasks in T ′ as non-overlapping
rectangles. Also, if all edges have the same capacity then SAP can be seen as a variant of
2DKP in which the horizontal coordinate of each item i is fixed and we can choose only the
vertical coordinate.

For quite some time, the best known polynomial time approximation ratios for 2DKP
and UFP had been 2 + ε [24, 2]. Recently, the barrier of 2 was broken for both problems
and algorithms with strictly better approximation ratios have been presented [16, 20]. For
SAP, the best known approximation ratio is still 2 + ε [27], even for uniform edge capacities
and if we allow quasi-polynomial running time. In contrast, for 2DKP and UFP, better
quasi-polynomial time algorithms had been known earlier [3, 9, 1].

1.1 Our contribution
In this paper, we break the barrier of 2 for SAP and present a polynomial time (63/32 + ε) <
1.969-approximation algorithm for uniform edge capacities and a quasi-polynomial time
(1.997 + ε)-approximation algorithm for non-uniform edge capacities in a quasi-polynomial
range. Key to our results is to identify suitable building blocks to construct profitable
near-optimal solutions such that we can design algorithms that find profitable solutions
of this type. We call a task small if its demand is small compared to the capacity of the
edges on its path and large otherwise. One can show that each edge can be used by only
relatively few large tasks which allows for a dynamic program that finds the best solution
with large tasks only. However, there can be many small tasks using an edge and hence this
approach fails for small tasks. We therefore consider boxable solutions in which the tasks

T. Mömke and A. Wiese 86:3

Figure 1 Left: a boxable solution in which the (gray) tasks are assigned into the (orange) boxes.
Right: A stair-block into which small tasks (light gray) and large tasks (dark gray) are assigned. All
small tasks need to cross the vertical dashed line and all large tasks need to be placed on the right
of it underneath the dashed horizontal line. Therefore, the orange area denotes the space that is
effectively usable for the tasks that we assign into the stair-block.

are assigned into rectangular boxes such that each edge is used by only (logn)O(1) of these
boxes, see Fig. 1. Using the latter property, we present a quasi-polynomial time algorithm
that essentially finds the optimal boxable solution. Furthermore, for many types of instances
we prove that there exist boxable solutions with high profit.

There are, however, instances for which it is not clear how to construct boxable solutions
that yield a better approximation ratio than 2. This is where our second building block
comes into play which are stair-blocks. Intuitively, a stair-block is an area into which we
assign small and large tasks such that the small tasks are jammed between the large tasks
and the capacity profile of the edges, see Fig. 1. We prove the crucial insight that if we fail to
construct a good boxable solution then this is because a lot of profit of the optimum is due to
small tasks in stair-blocks. We therefore devise a second algorithm that computes solutions
for such instances, yielding an approximation ratio better than 2. The algorithm is based on
a configuration-LP with a variable for each possible set of large tasks in each stair-block and
additionally variables for placing the small tasks in the remaining space. We separate it via
the dual LP in which the separation problem turns out to be a variation of SAP with large
tasks only. Then we sample the set of large tasks according to the probabilities implied by
the LP solution. As a result, there are some small tasks that we cannot pick anymore since
they would overlap the sampled large tasks. For some small tasks this will happen with very
large probability so most likely we will lose their profit. This is problematic if they represent
a large fraction of the profit of the LP. We therefore introduce additional constraints that
imply that if the latter happens then we can use another rounding routine for small tasks
only that yields enough profit.

I Theorem 1. There is a quasi-polynomial time (1.997 + ε)-approximation algorithm for
SAP if the edge capacities are quasi-polynomially bounded integers.

Recall that in many applications of SAP the instances have uniform edge capacities. For
our polynomial time algorithm for this setting the above building blocks are not sufficient
since for example in our boxable solutions above an edge can be used by more than constantly
many boxes and hence we cannot enumerate all possibilities for those in polynomial time.
We therefore identify types of boxable solutions that are more structured and that allow us
to find profitable solutions of these types in polynomial time. The first such type are boxable
solutions in which each edge is used by only constantly many boxes. A major difficulty is
here that for a small task there are possibly several boxes that we can assign it to and if
we assign it to the wrong box then it occupies space that we should have used for other
tasks instead (in our quasi-polynomial time algorithm above we use a method to address
this which inherently needs quasi-polynomial time). We solve this issue by guessing the
boxes in a suitable hierarchical order which is not the canonical linear order given by their

ICALP 2020

86:4 Breaking the Barrier of 2 for the Storage Allocation Problem

Figure 2 Left: a laminar boxable solution that consists of boxes of geometrically increasing sizes
whose paths form a laminar family. Right: a jammed solution in which a set of small tasks (light
gray) that are placed underneath some large tasks (dark gray). The small tasks are relatively large
compared to the (orange) space underneath the large tasks.

respective leftmost edges and we assign the tasks into the boxes in the guessed order. With
a double-counting argument we show that with our strategy we obtain a solution which has
essentially at least the profit of the large tasks in the optimal boxable solution of the first
type plus half of the profit of the small tasks. Our second special type of boxable solutions is
the case in which the paths of the boxes form a laminar family and the sizes of the boxes are
geometrically increasing, see Fig. 2. Even though there can be Ω(logn) such boxes using an
edge, we devise an algorithm with polynomial running time for this kind of solutions. It is a
dynamic program inspired by [20] that guesses the boxes in the order given by the laminar
family and assigns the tasks into them. Finally, there can be small tasks such that in the
optimal solution the large tasks take away so much space that with respect to the remaining
space those small tasks actually become relatively large. We say that a solution consisting of
such small and large tasks forms a jammed solution which is our third type of building block,
see Fig. 2. We extend an algorithm in [27] for instances with large tasks only to compute
essentially the most profitable jammed solution. Our key technical lemma shows that for
any instance there exists a profitable solution that uses only the building blocks above and
we provide a polynomial time algorithm that finds such a solution.

I Theorem 2. There is a polynomial time (63/32 + ε) < 1.969-approximation algorithm for
SAP for uniform edge capacities.

We would like to note that we did not attempt to optimize our approximation ratios up
to the third decimal place but instead we focus on a clean exposition of our results (which are
already quite complicated). Finally, we study the setting of (1 + η)-resource augmentation
where we can increase the capacity of each edge by a factor of 1 + η for an arbitrarily small
constant η > 0 while the compared optimal solution cannot do this. In this case we obtain
even better approximation ratios and improve the factor of 2 for arbitrary edge capacities
even with a polynomial time algorithm. Key for these results is to show that using the
resource augmentation we can reduce the general case to the case of a constant range of edge
capacities and then establish that there are essentially optimal boxable solutions in which
each edge is used by a constant number of boxes. Using our algorithmic tools from above
this implies the following theorem.

I Theorem 3. In the setting of (1 + η)-resource augmentation there exists a polynomial
time (3/2 + ε)-approximation algorithm and a quasi-polynomial time (1 + ε)-approximation
algorithm for SAP with arbitrary edge capacities.

Due to space constraints, this extended abstract intends to give only an overview of our
methodology. For a complete presentation of our results we refer to [28].

T. Mömke and A. Wiese 86:5

1.2 Other related work
Previous to the mentioned (2 + ε)-approximation algorithm for SAP [27], Bar-Noy et al. [6]
found a 7-approximation algorithm if all edges have the same capacities which was improved
by Bar-Yehuda et al. to a (2 + ε)-approximation [7]. Bar-Yehuda et al. [8] presented the
first constant factor approximation algorithm for SAP for arbitrary capacities, having an
approximation ratio of 9 + ε. A related problem is the dynamic storage allocation problem
(DSA) where in the input we are given a set of tasks like in SAP and we all need to pack all
of them as non-overlapping rectangles, minimizing the maximum height of a packed item.
The best known approximation ratio for DSA is a (2 + ε)-approximation which in particular
uses a (1 + ε)-approximation if all tasks are sufficiently small [11]. This improves earlier
results [25, 26, 17, 18].

For 2DKP for squares there is an EPTAS [21] which improves earlier PTASs [22, 23].
For rectangles, there was a (2 + ε)-approximation known [24, 23] which was improved to a
(17/9 + ε)-approximation [16]. There is a PTAS if the profit of each item is proportional
to its area [5]. Also, there is a QPTAS for quasi-polynomially bounded input data [1]. For
UFP there is a long line of work on the case of uniform edge capacities [29, 6, 12], the
no-bottleneck-assumption [13, 15], and the general case [3, 4, 14, 10, 2] which culminated in
a QPTAS [3, 9], PTASs for several special cases [19, 9], a (2 + ε)- approximation [2], which
was improved to a (5/3 + ε)-approximation [20].

2 Overview

In this section we present an overview of our methodology for our algorithms. Let ε > 0 and
assume that 1/ε ∈ N. First, we classify tasks into large and small tasks. For each task i ∈ T
let b(i) := mine∈P (i) ue denote the bottleneck capacity of i. For constants µ, δ > 0 we define
that a task i is large if di > δ · b(i) and small if di ≤ µ · b(i). The constants δ, µ are chosen
to be the values δi∗ and µi∗ due to the following lemma, which in particular ensures that the
tasks i with µ · b(i) < di ≤ δ · b(i) contribute only a marginal amount to the optimal solution
OPT whose weight we denote by opt.

I Lemma 4. We can compute a set (µ1, δ1), . . . , (µ1/ε, δ1/ε) such that for each tuple (µk, δk)

we have εO
(

(1/ε)1/ε
)
≤ µk ≤ ε10δ

1/ε
k , δi ≤ ε and for one tuple (µk∗ , δk∗) it holds that

w(OPT ∩ {i ∈ T | µk∗ · b(i) < di ≤ δk∗ · b(i)}) ≤ ε · opt.

Let TL and TS denote the sets of large and small input tasks, respectively. For each edge
e let Te ⊆ T denote the set of tasks i ∈ T for which e ∈ P (i). We will show later that for
many instances there are profitable solutions that are boxable which intuitively means that
the tasks can be assigned into rectangular boxes such that each edge is used by only few
boxes. A box B is defined by a start vertex sB , an end vertex tB , and a size dB . We define
P (B) to be the path of B which is the path between sB and tB . A set of tasks T ′ ⊆ T fits
into B if

for each i ∈ T ′ we have that P (i) ⊆ P (B), and
there is a value h(i) ∈ [0, dB) for each i ∈ T ′ such that (T ′, h) is feasible if each edge
e ∈ P (B) has capacity dB , and
|T ′| = 1 or we have di ≤ ε8 · dB for each i ∈ T ′.

We say that a set of boxes B and a height level assignment h : B → N forms a feasible
solution (B, h) if the boxes in B interpreted as tasks form a feasible solution with h (see
Fig. 1), i.e., if the set (T (B), h′) is feasible where T (B) contains a task i(B) for each B ∈ B
such that P (i(B)) = P (B), di = di(B) and h′(i(B)) = h(B).

ICALP 2020

86:6 Breaking the Barrier of 2 for the Storage Allocation Problem

eL eM eR

f

.

Figure 3 A stair-block SB = (eL, eM , eR, f, T ′
L, h′). The black tasks are the tasks in T ′

L. The
orange area denotes the area that is effectively usable for the tasks that we assign to SB. The light
and dark gray tasks are small and large tasks, respectively, that together fit into SB.

I Definition 5. A solution (T ′, h′) is a β-boxable solution if there exists a set of boxes
B = {B1, . . . , B|B|} and a partition T ′ = T ′1∪̇ . . . ∪̇T ′|B| such that

for each j ∈ [|B|], T ′j fits into the box Bj and if T ′j ∩ TL 6= ∅ then |T ′j | = 1,
each edge e ∈ E is used by the paths of at most β boxes in B,
there is a height level h′(B) for each box B ∈ B such that (B, h′) is feasible.

In the following lemma we present an algorithm that essentially computes the optimal
β-boxable solution. We will use it later with β = (logn)O(1). Assume in the sequel that we
are given a SAP-instance where ue ≤ n(logn)c for some c ∈ N for each e ∈ E.

I Lemma 6. Let β ∈ N and let (Tbox, hbox) be a β-boxable solution. There is an algorithm
with running time n(β logn/awε)O(c) that computes a β-boxable solution (T ′, h′) with w(T ′) ≥
w(Tbox)/(1 + ε).

Our second type of solutions are composed by stair-blocks (see Fig. 1 and Fig. 3).
Intuitively, a stair-block is an area underneath the capacity profile defined by a function
f : E → N0 and three edges eL, eM , eR, where eM lies between eL and eR. The corresponding
area contains all points above each edge between eL and eM whose y-coordinate is at least
ueL and all points above each edge e between eM and eR whose y-coordinate is in [fe, ueM).
Additionally, there are some tasks T ′L ⊆ TL ∩ (TeM ∪ TeR) and a function h′ : T ′L → N0 that
assigns height levels to them where the intuition is that those tasks are given in advance and
fixed. We require that each of them intersects the mentioned area below ueL , i.e., for each
i ∈ T ′L we have that h′(i) + di ≤ ueL and there is an edge e ∈ P (i)∩PeM ,eR \ {eM} such that
h′(i) + di > fe where PeM ,eR is the path that starts with eM and ends with eR. Also, we
require that f(e) = ueL for e = eM and each edge e on the left of eM .

Given a stair-block, we will assign tasks T ′′ into the mentioned area such that we require
that all small tasks in T ′′ use eM and for each large tasks i ∈ T ′′ we require that P (i) ⊆ PeM ,eR .
Due to the former condition, not all points with x-coordinate between eL and eM are actually
usable for tasks assigned to SB and the usable ones form a staircase shape (see Fig. 1).
Formally, we say that a solution (T ′′, h′′) fits into a stair-block SB = (eL, eM , eR, f, T ′L, h′) if
P (i) ⊆ PeM ,eR and fe ≤ h′′(i) ≤ ueM−di for each i ∈ T ′′∩TL and each e ∈ P (i), h′′(i′) ≥ ueL
and i′ ∈ TeM for each i′ ∈ T ′′ ∩ TS , and additionally (T ′L ∪ T ′′, h′ ∪ h′′) forms a feasible
solution. Also, we require that h′′(i) < di for each i ∈ T ′′ ∩ TL which is a technical condition
that we need later in order to be able to compute a profitable stair solution efficiently. A
set of tasks T ′′ fits into a stair-block SB, if there is a function h′′ such that the solution
(T ′′, h′′) fits into SB. We will need later that the function f is simple and to this end we say
that a stair-block SB = (eL, eM , eR, f, T ′L, h′) is a γ-stair-block if f is a a step-function with

T. Mömke and A. Wiese 86:7

at most γ steps. Note that it can happen that eR lies on the left of eL and then we define
PeM ,eR to be the path that starts with eR and ends with eM (one may imagine that Fig. 1 is
mirrored).

We seek solutions that consist of stair-blocks and large tasks that are compatible with
each other. To this end, for a stair-block SB = (eL, eM , eR, f, T ′L, h′) we define P (SB) to
be the path starting with the edge on the right of eL and ending with eR. A large task i
with height h(i) is compatible with SB if i /∈ T ′L and intuitively i does not intersect the area
of the stair-block, i.e., if h(i) ≥ ueM or h(i) + di ≤ fe for each e ∈ P (i) ∩ P (SB). We say
that a task i ∈ TL with height h(i) is part of SB if i ∈ T ′L and h(i) = h′(i). We say that
stair-blocks SB = (eL, eM , eR, f, T ′L, h′) and SB = (ēL, ēM , ēR, f̄ , T̄ ′L, h̄′) are compatible if for
each task i ∈ T̄ ′L ∩ T ′L we have h′(i) = h̄′(i), each task i ∈ T̄ ′L \ T ′L is compatible with SB,
each task i ∈ T ′L \ T̄ ′L is compatible with SB, and there is no task i ∈ T that fits into both
SB and SB (for suitable heights h′′(i) and h̄′′(i)). Intuitively, a stair-solution consists of a
set of stair-blocks and a set of large tasks T 0

L that are all compatible with each other.

I Definition 7. A solution (T ′′, h′′) is a γ-stair-solution if there exists a set of γ-stair-blocks
{SB1, . . . ,SBk} and partitions T ′′ ∩ TL = T 0

L∪̇T 1
L∪̇ . . . ∪̇T kL and T ′′ ∩ TS = T 1

S∪̇ . . . ∪̇T kS such
that for each j ∈ [k], the tasks T jL∪T

j
S fit into SBj , for any j, j′ ∈ [|SB|] the stair-blocks SBj

and SBj′ are compatible, for each stair-block SBj and each task i ∈ T 0
L with height h′′(i),

the task i is compatible with SBj or part of SBj , and each edge is contained in the path P (i)
of at most γ tasks i ∈ T 0

L and in the path P (SBj) of at most γ stair-blocks SBj.

Our main structural lemma is that there exists a boxable solution or a stair solution
whose profit is large enough so that we can get an approximation ratio better than 2.

I Lemma 8 (Structural lemma). There exists a (logn/δ2)O(c+1)-boxable solution Tbox such
that w(Tbox) ≥ opt/(1.997 + ε) or there exists a (logn/O(δ))O(c+1)-stair-solution Tstair
with w(TS ∩ Tstair) ≥ 1

αw(TL ∩ Tstair) for some value α ≥ 1 such that w(Tstair ∩ TL) +
1

8(α+1)w(Tstair ∩ TS) ≥ opt/(1.997 + ε).

If the first case of Lemma 8 applies then the algorithm due to Lemma 6 yields a (1.997+ε)-
approximation. In the second case the following algorithm yields a (1.997 + ε)-approximation
which completes the proof of Theorem 1.

I Lemma 9. Let (Tstair, hstair) be a γ-stair solution with w(TS ∩Tstair) ≥ 1
αw(TL∩Tstair) for

some value α ≥ 1. There is an algorithm with running time (n ·maxe ue)Oδ(γ
2 log(maxe ue)) that

computes a stair solution (T ′, h′) with w(T ′) ≥ (1−O(ε))(w(Tstair∩TL)+ 1
8(α+1)w(Tstair∩TS)).

2.1 Uniform edge capacities
Assume now that all edge capacities are identical, i.e., that there exists a value U such that
ue = U for each edge e ∈ E but that not necessarily U ≤ n(logn)c . For this case we want to
design a polynomial time (63/32 + ε)-approximation algorithm. The above building blocks
are not sufficient since the corresponding algorithms need quasi-polynomial time. Therefore,
first we consider special cases of boxable solutions for which we design polynomial time
algorithms. We begin with such an algorithm for β-boxable solutions for constant β that
intuitively collects all the profit from the large tasks in the optimal β-boxable solution and
half of the profit of its small tasks.

I Lemma 10. Let β ∈ N and let (Tbox, hbox) be a β-boxable solution. There is an algorithm
with running time nO(β3/ε) that computes a solution (T ′, h′) with w(T ′) ≥ w(Tbox ∩ TL) +
(1/2− ε)w(Tbox ∩ TS).

ICALP 2020

86:8 Breaking the Barrier of 2 for the Storage Allocation Problem

B1

E1

B2

E2

Figure 4 A jammed solution with two subpaths E1, E2 corresponding horizontal line segments
E1 ×B1 and E1 ×B2, and small tasks (light gray) that are jammed in the respective orange areas
between the large tasks (dark gray).

Next, we define laminar boxable solutions which are boxable solutions in which the paths
of the boxes form a laminar family and the sizes of the boxes are geometrically increasing
through the levels (see Fig. 2). A set of boxes B = {B1, . . . , B|B|} with a height assignment
h : B → N is a laminar set of boxes if

the paths of the boxes form a laminar family, i.e., for any two boxes Bk, Bk′ we have that
P (Bk) ⊆ P (Bk′), P (Bk′) ⊆ P (Bk), or P (Bk) ∩ P (Bk′) = ∅,
there is a box B∗ ∈ B with P (B) ⊆ P (B∗) for each B ∈ B,
for each box B ∈ B we have that dB = (1 + ε)k for some k ∈ N0,
for each box B ∈ B with dB = (1 + ε)k for some integer k ≥ 1 there is a box B′ ∈ B with
P (B) ⊆ P (B′), dB′ = (1 + ε)k−1, and h(Bk) = h(Bk−1) + dBk−1 .

We define P (B) := P (B∗). A β-laminar boxable solution is now a boxable solution whose
boxes can be partitioned into sets B = {B0,B1, . . . ,B|B|−1} such that the boxes in the sets
B1, . . . ,B|B|−1 are laminar sets of boxes whose respective paths P (Bj) are pairwise disjoint
and each edge is used by at most β boxes from B0. Also, each box in B0 contains exactly one
large task and each box in B1, . . . ,B|B|−1 contains only small tasks. We design a polynomial
time algorithm for finding profitable laminar boxable solutions.

I Lemma 11. Let (Tlam, hlam) be a β-laminar boxable solution. There is an algorithm
with a running time of nO(β+1/ε2) that computes a β-laminar boxable solution (T ′, h′) with
w(T ′) ≥ w(Tlam ∩ TL) + w(Tlam ∩ TS)/(2 + ε).

The next class of solutions are pile boxable solutions. A set of boxes B = {B1, . . . , B|B|}
with a height assignment h : B → N is called a β-pile of boxes if |B| ≤ β, P (Bk) ⊇ P (Bk+1),
h(Bk) = (k − 1)U/|B| and dBk = U/|B| for each k. We define P (B) := P (B1). A β-pile
boxable solution is, similarly as above, a boxable solution whose boxes can be partitioned
into sets of boxes B = {B0,B1, . . . ,B|B|−1} such that the boxes in the sets B1, . . . ,B|B|−1 are
β-piles of boxes whose respective paths P (Bj) are pairwise disjoint and each edge is used by
at most β boxes in B0. For β-pile boxable solutions we design a polynomial time algorithm
that finds essentially the optimal solution of this type.

I Lemma 12. Let (Tpile, hpile) be a β-pile boxable solution. There is an algorithm with a
running time of nO(β+1/δ) that computes a β-pile boxable solution (T ′, h′) with w(T ′) ≥
w(Tpile)/(1 + ε).

Finally, we define jammed solutions (which are not defined via boxes). Intuitively, they
consist of large and small tasks such that the small tasks are placed in areas between some
horizontal line segments and the large tasks such that the small tasks are relatively large
compared to the free space on each edge in these areas (see Fig. 2 and Fig. 4). Formally,
given a solution (T ′, h′) where we define T ′L := T ′ ∩ TL, let E′ ⊆ E be a subpath, and let
B ≥ 0 such that intuitively no task i ∈ T ′L crosses the line segment E′ × B, i.e., for each

T. Mömke and A. Wiese 86:9

task i ∈ T ′L we have that E′ ∩ P (i) = ∅ or h′(i) ≥ B or h′(i) + di ≤ B. The reader may
imagine that we draw the line segment E′ ×B in the solution given by the large tasks T ′L
and that we are interested in small tasks that are drawn above E′ ×B. For each edge e ∈ E′
let u′e := mini∈T ′

L
:e∈P (i)∧h(i)≥B h(i) − B and define u′e := U − B if there is no task i ∈ T ′L

with e ∈ P (i) and h(i) ≥ B. A task i ∈ T ′ ∩ TS is a δ′-jammed tasks for (T ′L, E′, B, h′) if
P (i) ⊆ E′, B ≤ h′(i) ≤ h′(i) + di ≤ u′e for each edge e ∈ P (i), and there exists an edge
e′ ∈ P (i) such that di > δ′u′e′ , i.e., intuitively i is relatively large for the edge capacities u′.

I Definition 13. A solution solution (T ′, h′) is a δ′-jammed-solution if there are pairwise
disjoint subpaths E1, . . . , Ek ⊆ E, values B1, . . . , Bk, and a partition T ′S := T ′ ∩ TS =
T ′S,1∪̇ . . . ∪̇T ′S,k such that T ′S,` is a set of δ′-jammed tasks for (T ′L, E`, B`, h′) for each ` ∈ [k]
with T ′L := T ′ ∩ TL.

I Lemma 14. Let (Tjam, hjam) be a δ′-jammed solution. There is an algorithm with a
running time of nOε(1/(δ·δ′)3) that computes a O(δ′)-jammed solution (T ′, h′) with w(T ′) ≥
w(Tlam)/(1 + ε).

Our key structural lemma for the case of uniform edge capacities shows that for each
instance there exists a solution of one of the above types for which the respective algorithm
finds a solution of profit at least opt/(63/32 + ε). Then Theorem 2 follows from combining
Lemmas 10, 11, 12, 14, and 15.

I Lemma 15 (Structural lemma, uniform capacities). Given a SAP-instance (T,E) where
ue = U for each edge e ∈ E and some value U . There exists at least one of the following
solutions

a Oε(1)-boxable solution (Tbox, hbox) such that
w(Tbox ∩ TL) + w(Tbox ∩ TS)/2 ≥ OPT/(63/32 + ε)
a laminar boxable solution (Tlam, hlam) with
w(Tlam ∩ TL) + w(Tlam ∩ TS)/2 ≥ OPT/(63/32 + ε)
a Oε(1)-pile boxable solution (Tpile, hpile) with w(Tpile) ≥ OPT/(63/32 + ε)
a jammed-solution (Tjam, hjam) with w(Tjam) ≥ OPT/(63/32 + ε).

2.2 Resource augmentation
We consider now again the case of arbitrary edge capacities but under (1 + η)-resource
augmentation. First, we show that due to the latter we can reduce the general case to the
case of a constant range of edge capacities.

I Lemma 16. If there is an α-approximation algorithm with a running time of nO(f(η,M))

for the case of (1 + η)-resource augmentation where η < 1 and ue ≤Mue′ for any two edges
e, e′ then there is an α(1 + ε)-approximation algorithm with a running time of nO(f(η,1/(εη)))

for the case of (1 +O(η))-resource augmentation.

Next, we show that if we are given an instance with a constant range of edge capacities,
under (1 + η)-resource augmentation we can guarantee that there is an (1 + ε)-approximative
Oε,η(1)-boxable solution. Then Theorem 3 follows by combining Lemmas 6, 10, 16, and 17
with the (1 + ε)-approximation algorithm for sufficiently small tasks in [27].

I Lemma 17. Given an instance where ue ≤ Mue′ for any two edges e, e′ with optimal
solution (T ∗, h∗). If we increase the edge capacities by a factor of 1 + η, there is a Oε,η(1)-
boxable solution (T ′, h′) such that w(T ′) ≥ w(T ∗)/(1 + ε).

ICALP 2020

86:10 Breaking the Barrier of 2 for the Storage Allocation Problem

3 Structural lemma for uniform capacities

In the remaining part of this subsection, we sketch the proof of Lemma 15. Consider an
optimal solution (OPT, h). We define OPTL := OPT ∩ TL and OPTS := OPT ∩ TS .

Recall that our goal is to improve the approximation ratio of 2. Observe that OPTL alone
is a 1/δ-boxable solution and hence if w(OPTL) ≥ 1

(63/32+ε)opt then we obtain a 1/δ-boxable
solution with the desired properties. Similarly, the set OPTS yields a pile boxable solution
with exactly 1 box B with P (B) = E and dB = U . Therefore, if w(OPTS) ≥ 1

(63/32+ε)opt
then we are done. The reader may imagine that w(OPTS) = w(OPTL) = 1

2opt. We split
the small tasks in OPTS into three sets OPTS,top,OPTS,mid,OPTS,bottom. Intuitively, we
draw a strip of height δU at the bottom of the capacity profile and a strip of height δU at
the top of the capacity profile and assign to OPTS,top all tasks in OPTS whose top edge
lies in the top strip, we assign to OPTS,bottom all tasks in OPTS whose bottom edge lies
in the bottom strip, and we assign to OPTS,mid all other small tasks. Formally, we define
OPTS,top := {i ∈ OPTS | h(i) + di > (1 − δ)U}, OPTS,bottom := {i ∈ OPTS | h(i) < δU},
and OPTS,mid := OPTS \ (OPTS,top ∪OPTS,bottom).

Small tasks at bottom and large tasks. We define solutions that consists of OPTL and sub-
sets of OPTS,bottom. For each edge e let u′e := mini∈T ′

L
:e∈P (i) h(i) and define u′e := U if there

is no task i ∈ T ′L with e ∈ P (i). One may think of u′ as a pseudo-capacity profile for which
OPTS,bottom is a feasible solution. We the following lemma and obtain sets OPTS,bottom,L,
OPTS,bottom,S with w(OPTS,bottom,L ∪OPTS,bottom,S) ≥ (1− ε)w(OPTS,bottom).

I Lemma 18. Given a solution (T ′, h′) for a SAP instance where maxe ue ≤ n(logn)c for
some constant c. Then there are sets T ′L ⊆ T ′ and T ′S ⊆ T ′ with w(T ′L∪T ′S) ≥ (1−O(ε))w(T ′)
and there is an η = Oε,δ(1) such that
1. for each edge e it holds that |T ′L ∩ Te| ≤ (logn)Oε,δ(c), and
2. for each task i ∈ T ′L there is an edge e ∈ P (i) with di ≥ ηue,
3. there is a boxable solution for T ′S in which each edge e is used by at most (logn)Oε(c)

boxes,
4. these boxes form groups of laminar sets of boxes.

We have that for each task i ∈ OPTS,bottom,L there is an edge e ∈ P (i) with di >

δu′e, therefore OPTS,bottom,L is a set of δ-jammed tasks for (OPTL, E, 0, h) and hence
OPTL ∪ OPTS,bottom,L forms a δ-jammed-solution. Also, OPTL ∪ OPTS,bottom,S forms a
laminar boxable solution. Hence, if w(OPTS,bottom,S) or w(OPTS,bottom,L) is sufficiently
large then we are done. Therefore, the reader may imagine that w(OPTS,bottom,S) =
w(OPTS,bottom,L) = 0.

Small tasks at top and large tasks. We mirror OPT along the y-axis and do a symmetric
construction with OPTS,top: we apply Lemma 18 which yields sets OPTS,top,L,OPTS,top,S
and a δ-jammed solution OPTL ∪ OPTS,top,L and a laminar boxable solution OPTL ∪
OPTS,top,S . Like before, the reader may imagine that w(OPTS,top,S) = w(OPTS,top,L) = 0
and hence w(OPTS,mid) = w(OPTS) = 1

2opt.

Small and large tasks in the middle. Next, we split the large tasks OPTL into three sets
OPTL,top, OPTL,mid, and OPTL,bottom. Intuitively, OPTL,top consists of all tasks in OPTL
whose top edge lies in the strip of height δU at the top of the capacity profile, OPTL,bottom
consists of all tasks in OPTL whose bottom edge lies in the strip of height δU at the bottom

T. Mömke and A. Wiese 86:11

of the capacity profile, and OPTL,mid contains all remaining tasks in OPTL. Formally,
OPTL,top := {i ∈ OPTL|h(i) + di > (1− δ)U}, OPTL,bottom := {i ∈ OPTL|h(i) < δU}, and
OPTL,mid := OPTL \ (OPTL,top ∪OPTL,bottom).

Observe that no task in OPT \ (OPTL,bottom ∪OPTS,bottom) touches the rectangle E ×
[0, δU). Using this, we define a boxable solution Tbox that will consist essentially of all tasks in
the set OPT\(OPTL,bottom ∪OPTS,bottom). Intuitively, we will use the free space E× [0, δU)
in order to untangle the interaction between the large and small tasks. More precisely, Tbox
will be a Oδ(1)-boxable solution in which all small tasks are assigned into boxes of height Θδ(U)
each. More formally, we apply the following lemma to OPT \ (OPTL,bottom ∪OPTS,bottom)
and denote by (T ′box, h

′
box) the resulting solution.

I Lemma 19. Given a solution (T ′, h′) such that no task touches the rectangle E × [0, δU).
Then there exists a Oδ(1)-boxable solution (T ′, hbox).

We apply Lemma 19 to the solution obtained by taking OPT \ (OPTL,top ∪OPTS,top)
and shifting each task up by δU units. Let (T ′′box, h

′′
box) denote the resulting solution. Assume

w.l.o.g. that w(OPTL,top) ≤ w(OPTL,bottom). Observe that if w(OPTL,mid) ≥ γopt then

w(T ′ ∩ TL) ≥ w(OPTL,bottom) + w(OPTL,mid)

≥ 1
2w(OPTL,top ∪OPTL,bottom) + w(OPTL,mid)

≥ 1 + γ

2 w(OPTL)

and w(T ′ ∩ TS) ≥ w(OPTS \ OPTS,bottom). Therefore, the reader may imagine now that
w(OPTL,mid) = 0.

Types of points in the middle

We distinguish points in the rectangle E × [0, U] into different types and identify each task
i ∈ OPT with a rectangle Ri := P (i)× [h(i), h(i) + di]. For each point p let `p denote the
maximally long horizontal line segment in E × [0, U] that contains p and that does not touch
the relative interior of a task in OPTL,top ∪OPTL,bottom. We say that p is a top-point if no
endpoint of `p touches a task in OPTL,bottom, p is a sandwich-point if one of the end-points
of `p touches a task in OPTL,top and the other end-point touches task in OPTL,bottom, and
p is a bottom-point if no endpoint of `p touches a task in OPTL,top and at least one endpoint
of `p touches a task in OPTL,bottom. Note that here we do not define stair-points since the
edges have uniform capacities. Let Ctop, Csw, Cbottom denote the set of connected components
of top- sandwich-, and bottom-points, respectively.

Each edge is used by at most three connected components in Ctop ∪ Csw ∪ Cbottom.

I Lemma 20. Each edge e can be used by at most one connected component of top-points,
by at most one connected component of sandwich-points, and by at most one connected
component of bottom-points.

Let OPTS,cross ⊆ OPTS,mid denote the tasks in OPTS,mid that intersect at least two
different connected components, e.g., a connected component of top-points and a connected
component of sandwich-points.

I Lemma 21. Each edge is used by at most 2 different tasks in OPTS,cross.

In particular, OPTL ∪OPTS,cross forms a O(1/δ)-boxable solution. If w(OPTS,cross) is
sufficiently large we are therefore done. The reader may imagine that w(OPTS,cross) = 0.

ICALP 2020

86:12 Breaking the Barrier of 2 for the Storage Allocation Problem

Top points. Consider a connected component C of top-points. Let OPTS,mid,top(C) ⊆
OPTS,mid denote the tasks in OPTS,mid contained in C. We apply Lemma 18 and obtain
the sets OPTS,mid,top,S(C) and OPTS,mid,top,L(C). Let

OPTS,mid,top,S :=
⋃

C∈Ctop

OPTS,mid,top,S(C)

and

OPTS,mid,top,L :=
⋃

C∈Ctop

OPTS,mid,top,L(C).

We obtain that OPTL,top ∪ OPTL,bottom ∪ OPTS,mid,top,L is a δ-jammed solution and
OPTL,top ∪ OPTL,bottom ∪ OPTS,mid,top,S is a laminar boxable solution. Intuitively, if
w(OPTS,mid,top,L) or w(OPTS,mid,top,S) is sufficiently large then we are done. The reader
may therefore imagine that both quantities are zero.

Bottom points. We do a symmetric operation for all connected components C of bottom-
points, obtaining respective sets OPTS,mid,bottom,S ,OPTS,mid,bottom,L, a δ-jammed solution

OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,L,

and a laminar boxable solution

OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,S .

Like before, the reader may imagine that w(OPTS,mid,bottom,S) = w(OPTS,mid,bottom,L) = 0.

Sandwich points. Finally, let OPTS,mid,sw denote all points in OPTS,mid that are contained
in a connected component in Csw. We assume first that w(OPTL,top) ≥ w(OPTL,bottom).
We define a solution consisting of some tasks in OPTS,mid,sw and additionally all tasks in
OPTL,top. Let C ∈ Csw and denote by OPTS,mid(C) the set of tasks in OPTS,mid that
are contained in C. Let E′ denote the maximally long subpath between two vertices v, v′
such that for each x ∈ [v, v′] the vertical line through x, i.e., {x} × R, has non-empty
intersection with C. Note that the rectangle E′ × [0, δU] has empty intersection with each
tasks in OPTL,top ∪OPTS,mid. Intuitively, we use this free space in order to push all tasks
in OPTS,mid(C) down by δU units. Then they all fit into Oε(1) boxes that have non-empty
intersection with the tasks in OPTL,top.

I Lemma 22. Given C ∈ Csw. There is a pile of boxes B = {B1, . . . , B1/δ} (with a
height assignment h : B → N0) such that P (B) ⊆ E′ and there are pairwise disjoint sets
T1, . . . , T|B| ⊆ OPTS,mid(C) such that for each j, the tasks in Tj fit into Bj. The weight of
tasks in the boxes is at least

∑
j w(Tj) ≥ (1− ε)w(OPTS,mid(C)).

Let OPTS,mid,sw :=
⋃
C∈Csw

OPTS,mid,S(C). We apply Lemma 22 to each component
C ∈ Csw and hence we obtain a pile boxable solution whose profit is at least

(1− ε)w (OPTL,top ∪OPTS,mid,sw) .

In a similar way we can construct a pile boxable solution of profit at least

(1− ε)w (OPTL,bottom ∪OPTS,mid,sw) .

T. Mömke and A. Wiese 86:13

I Lemma 23. There is a pile boxable solution (T ′sw, h′sw) with profit at least

(1− ε)w (OPTL,top ∪OPTS,mid,sw ∪OPTS,cross)

and a pile boxable solution (T ′′sw, h′′sw) with profit at least

(1− ε)w (OPTL,bottom ∪OPTS,mid,sw ∪OPTS,cross) .

Intuitively, since w(OPTL,mid) = 0 we have w(OPTL,top) ≥ opt/4 or w(OPTL,bottom) ≥
opt/4. Also, since w(OPTS,mid,top) = w(OPTS,mid,bottom) = w(OPTS,cross) = 0 and
w(OPTS,mid) = opt/2 we have that w(OPTS,mid,sw) = opt/2. Hence, (T ′sw, h′) or (T ′′sw, h′′)
satisfies the claim of the lemma. Formally, our candidate solutions are

OPT(1) := OPTS ,

OPT(2) := OPTL ∪OPTS,bottom,S ,

OPT(3) := OPTL ∪OPTS,bottom,L ,

OPT(4) := OPTL ∪OPTS,top,S

OPT(5) := OPTL ∪OPTS,top,L ,

OPT(6) := T ′box ,

OPT(7) := T ′′box ,

OPT(8) := OPTL ∪OPTS,cross ,

OPT(7) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,top,S ,

OPT(8) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,top,L ,

OPT(9) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,S ,

OPT(10) := OPTL,top ∪OPTL,bottom ∪OPTS,mid,bottom,L ,

OPT(11) := T ′sw , and

OPT(12) := T ′′sw .

The sets OPT(1),OPT(9), and OPT(10) are pile boxable solutions, OPT(2),OPT(4),OPT(7),
and OPT(9) are laminar boxable solutions, OPT(3),OPT(5),OPT(8), and OPT(10) are δ-
jammed solutions, and finally OPT(7) and OPT(8) are Oδ(1)-boxable solutions.

Our insights above determine constraints of a linear program which provides an upper
bound on the approximation ratio. Using LP duality, we are able to prove that the obtained
value is at most 63/32, which completes the proof of Lemma 15.

4 Structural lemma for arbitrary capacities

In this section we prove Lemma 8. We first limit the number of large tasks per edge that
can appear in a feasible solution.

I Lemma 24. For each edge e and each feasible solution (TSOL, hSOL) it holds that |TSOL ∩
TL ∩ Te| ≤ (log ue)/δ2.

Consider an optimal solution (OPT, h). Define OPTL := OPT ∩ TL and OPTS :=
OPT∩TS . Since we assumed the maximum edge capacity to be quasi-polynomially bounded,
Lemma 24 shows that each edge can be used by at most 1/δ2(logn)O(1) large tasks in OPT.

ICALP 2020

86:14 Breaking the Barrier of 2 for the Storage Allocation Problem

top-points

bottom-points

sandwich-points

stair-points

stair-points

(1 + δ)k+1

(1 + δ)k

Figure 5 The different types of points within a corridor Ck. Note that the small tasks are not
shown in the figure.

Therefore, the tasks in OPTL alone form a boxable solution. Since our goal is to improve the
approximation ratio of 2 in [27], we are done if w(OPTL) ≥ (1

2 +γ)OPT for some γ > 0. The
reader may therefore imagine that w(OPTL) ≤ OPT/2 and hence that w(OPTS) ≥ OPT/2.

We partition the large tasks OPTL into two groups. We define OPTL,↓ := {i ∈ OPTL |
h(i) < di} and OPTL,↑ := {i ∈ OPTL | h(i) ≥ di}. In the next lemma we show that there is
a boxable solution that contains essentially all tasks in OPTS ∪OPTL,↑.

I Lemma 25. For an arbitrary 0 < ε ≤ 1/3 there exists a boxable solution with profit at
least (1− ε)w(OPTS ∪OPTL,↑).

Intuitively, if now w(OPTL,↑) ≥ γOPT for some γ > 0 then w(OPTS ∪ OPTL,↑) ≥
(1

2 + γ)OPT and we are done, due to Lemma 6 and Lemma 25. The reader therefore may
imagine that w(OPTL,↑) = 0 and w(OPTS) = OPT/2 and hence also w(OPTL,↓) = OPT/2.

Next, we define solutions that either consist of OPTL,↓ or of a subset of OPTL,↓ and
additionally some small tasks. We will prove that one of the constructed sets or OPTS ∪
OPTL,↑ has large profit. In the sequel, we will identify the vertices {v1, . . . , v|V |} of (V,E)
with the coordinates 1, . . . , |V | and a path P between vertices vi, vi′ with the closed interval
[i, i′]. For each task i ∈ OPT define its rectangle Ri := P (i) × [h(i), h(i) + di]. We will
identify a task i with its rectangle Ri.

We define (logn)Oδ(1) corridors. We draw a horizontal line `(k) with y-coordinate y =
(1 + δ)k for each k ∈ N. For each k ∈ N we define the area R× [`(k), `(k+1)) to be the corridor
Ck. Consider a task i ∈ OPTL. Observe that for each task i ∈ OPTL the rectangle Ri has
to be intersected by at least one line `(k) since di > δ · b(i). Also, observe that for each edge
e and each corridor Ck there can be at most two tasks i, i′ ∈ OPTL whose respective paths
P (i), P (i′) use e and whose respective rectangles Ri, Ri′ intersect Ck. If there are two such
task i, i′ then for one of them its rectangle must intersect `(k) and for the other its rectangle
must intersect `(k+1).

Let Ck be a corridor. For a task i ∈ OPTL with Ri ∩ Ck 6= ∅ we say that i is a top-
large-task for Ck if h(i) ∈ [(1 + δ)k, (1 + δ)k+1), a bottom-large-task for Ck if h(i) + di ∈
[(1+δ)k, (1+δ)k+1), and a cross-large-task for Ck if h(i) < (1+δ)k and h(i)+di ≥ (1+δ)k+1.
We partition the area of Ck that is not used by large tasks into connected components of
points. For each point p, let `p denote the maximally long horizontal line segment that
contains p and that neither crosses a large task nor the capacity profile. We say that p is
a top-point if each endpoint of `p touches a top-large-task or the capacity profile; p is a
sandwich-point if one of the end-points of `p touches a top-large-task and the other end-point

T. Mömke and A. Wiese 86:15

touches a bottom-large-task; p is a stair-point if one end-point of `p touches a bottom-
large-task and the other end-point touches the capacity profile; and p is a bottom-point, if
both end-points of `p touch a bottom-large-task, see Fig. 5. In each corridor Ck this yields
connected components of top-, bottom-, sandwich-, and stair-points. In the remaining proof
(see [28]) we show that for each of these types there exists a (logn/δ)Oε(c)-boxable solution
or a (logn/δ)Oε(c)-stair solution that contains all tasks in OPTL,↓ and a constant fraction
of the small tasks in all connected components of the respective type, or of the small tasks
that overlap more than one type of points. Hence, we obtain an approximation ratio strictly
better than 2, unless essentially all small tasks lie in connected components of sandwich
points. For this case, intuitively we prove that there is a (logn/δ)Oε(c)-boxable solution
that contains all profit from the small tasks and a 1/4-fraction of the profit of the tasks in
OPTL,↓. We show that the best of our solutions yields an approximation ratio of 1.997 + ε

which proves Lemma 8.

5 Compute stair solution

In this section we prove Lemma 9. To this end, we first show how to compute a solution
for a single stair-block SB. Then we devise a dynamic program that intuitively sweeps the
path from left to right, guesses the stair-blocks and the other large tasks, and then uses the
subroutine for a single stair-block to assign tasks into each stair-block. Suppose that we are
given a γ-stair-block SB = (eL, eM , eR, f, T ′L, h′). Let T̄ denote the set of tasks i ∈ T such
that {i} fits into SB. In the sequel, we prove the following lemma.

I Lemma 26. Let T ∗ ⊆ T̄ be an unknown set of tasks that fits into SB such that w(TS∩T ∗) ≥
1
αw(TL ∩ T ∗) for some value α ≥ 1. There is a (n ·maxe ue)Oδ(log(maxe ue)) time algorithm
that computes a set T̂ that fits into SB such that

w(T̂) ≥ (1−O(ε)))
(
w(TL ∩ T ∗) + 1

8(α+ 1) · w(TS ∩ T ∗)
)
.

First, we guess w(TL ∩ T ∗) up to a factor 1 + ε, i.e., we guess a value W such that
w(TL ∩ T ∗) ∈ [W, (1 + ε)W). One can show that (n/ε)O(1) many guesses for W suffice. Our
algorithm is based on a linear program that uses configurations for the sets of large tasks
that fit into SB. Formally, we define a pair C = (T̄ ′, h̄′) to be a configuration if T̄ ′ ⊆ T̄ ,
w(T̄ ′) ∈ [W, (1 + ε)W), h̄′ is a function h̄′ : T̄ ′ → N such that h̄′(i) < di for each task i ∈ T̄ ′,
and (T̄ ′, h̄′) fits into SB. Let C denote the set of all configurations. We introduce a variable
yC for each configuration C ∈ C. Intuitively, yC = 1 indicates that the computed solution
contains exactly the set of large tasks in C, each of them drawn at the height level determined
by C. For each small task j ∈ T̄S := T̄ ∩ TS and each t ∈ {0, . . . , b(j)− dj} we introduce a
variable xj,t indicating whether j is contained in the solution and drawn at height t. Note
that we do not need variables xj,t for t > b(j)− dj since the upper edge of j has to have a
height of at most b(j).

We add constraints that ensure that the rectangles corresponding to the selected tasks do
not overlap. To this end, for each small tasks j ∈ T̄S and each possible height t ∈ {0, . . . , b(j)−
dj} we define a “rectangle” p(j, t) = {(e, t′) | e ∈ P (j) and t ≤ t′ < t+ dj}. For a pair (e, t)
the reader may imagine that it represents the point whose x-coordinate is the mid-point of the
edge e and whose y-coordinate is t. Similarly, for a configuration C = (T̄ ′, h̄′) ∈ C we define
the “points” covered by C to be p(C) := {(e, t′) | ∃i ∈ T̄ ′ : e ∈ P (i) and h̄′(i) ≤ t′ < h̄′(i)+di}
and wC := w(T̄ ′).

ICALP 2020

86:16 Breaking the Barrier of 2 for the Storage Allocation Problem

Denote by LPSB the linear program below where for convenience we assume that all
non-existing variables are set to zero.

max
∑
C∈C yCwC +

∑
j∈T̄S ,t xj,twj (1)

s.t.
∑
C : (e,t)∈p(C) yC (2)

+
∑

j∈T̄S ,t′ : (e,t)∈p(j,t′)

xj,t′ ≤ 1 for all e ∈ PeM ,eR , t ≥ 0 (3)

∑
C : (e,t)∈p(C) yC +

∑
t′ : t′≤t xj,t′ ≤ 1 for all e ∈ PeM ,eR , t ≥ 0, j ∈ T̄S ∩ Te (4)∑

C∈C yC = 1 (5)∑
t≥0 xj,t ≤ 1 for all j ∈ T̄S (6)

xj,t, yC ≥ 0 for all j ∈ T̄S , t ∈ N, t ≤ b(j)− dj , C ∈ C

The first set of constraints (3) expresses intuitively that no two rectangles overlap. Then
(4) strengthens this condition by stating that if a configuration C covers a point (e, t) then
no small task j using e can be selected such that it covers a point (e, t′) with t′ ≤ t (note
that if C covers (e, t) then it also covers each point (e, t′) with t′ ≤ t). Constraint (5) ensures
that we select exactly one configuration. A task j still cannot be drawn at two positions
simultaneously, which we ensure with (6). In the LP above, we introduce constraints (3) and
(4) for each t ≥ 0, however, it is sufficient to state those for each t such that t ∈ N since
di ∈ N for each task i ∈ T and we introduce the variables xj,t only for values t with t ∈ N.
This yields an equivalent formulation with only (nmaxe ue)O(1) constraints (apart from the
non-negativity constraints). The number of variables in LPSB is exponential. However, we
can solve it in polynomial time via a suitable separation oracle for the dual.

I Lemma 27. There is an algorithm with running time (nmaxe ue)Oδ(log(maxe ue)) that
computes an optimal solution to LPSB.

5.1 The rounding algorithm
Let (x∗, y∗) denote the optimal solution to LPSB. We round (x∗, y∗) via randomized rounding.
First, we sample a configuration Ĉ using the distribution determined by y∗, i.e., for each
configuration C ∈ C, we obtain Ĉ = C with probability yC . Define ȳĈ := 1 and ȳC := 0 for
each C ∈ C \ {Ĉ}. Then we construct a new solution x for the small tasks where intuitively
we remove all pairs (j, t) that overlap with Ĉ, i.e., such that p(j, t) ∩ p(Ĉ) 6= ∅. For each
pair of the latter type we define xj,t := 0 and we define xj,t := x∗j,t for all other pairs (j, t).
Observe that x is a solution to the LP that is obtained by taking LPSB and removing all
variables yC and constraint (5). Denote by LP′SB the resulting LP. We can round it via
randomized rounding with alteration, using that for two pairs (j, t), (j′, t′) with j, j′ ∈ TS
the corresponding rectangles p(j, t), p(j′, t′) overlap if and only if they overlap on a “vertical
line segment above eM”, i.e., on ∪t′′∈[t,t+dj)∩[t′,t′+dj′)(eM , t

′′).

I Lemma 28. Given a solution x to LP′SB. In polynomial time we can compute an integral
solution x̄ to LP′SB with expected value

∑
j∈T̄S ,t x̄j,twj ≥

1
4
∑
j∈T̄S ,t xj,twj such that the

support of x̄ is contained in the support of x.

Let (x̄, ȳ) denote the resulting solution. Secondly, we compute the optimal solution to
LP′SB (hence ignoring the configurations of large tasks) and round it via Lemma 28, let
(x̄′, ȳ′) denote the resulting solution. In the sequel we prove that the most profitable solution
among (x̄, ȳ) and (x̄′, ȳ′) satisfies the claim of Lemma 9. Since we sampled Ĉ according to

T. Mömke and A. Wiese 86:17

the distribution given by y∗, we have that E[wĈ] =
∑
C∈C y

∗
CwC . Recall that we discarded

all pairs (j, t) such that p(j, t) overlaps with p(Ĉ). Hence, there are some pairs (j, t) that are
discarded with very high probability. We call such a pair problematic where formally we
say that a pair (j, t) with j ∈ T̄S and t ∈ N is problematic if

∑
C∈C:p(C)∩p(j,t)6=∅ y

∗
C > 1− η

for some value η > 0 to be defined later. Let TS! denote the set of all problematic pairs. In
the following lemma we prove that their contribution to the profit of (x∗, y∗) is only small
and hence we can afford to ignore them, unless (x̄′, ȳ′) already has enough profit. Here we
crucially need constraint (4). We define optLP :=

∑
C∈C y

∗
CwC +

∑
j∈T̄S ,t x

∗
j,twj .

I Lemma 29. We have that
∑

(j,t)∈TS!
x∗j,twj ≤ 4ηoptLP or the profit of (x̄′, ȳ′) is at least

optLP ≥ w(TL ∩ T ∗) + w(TS ∩ T ∗).

Assume now that the first case of Lemma 29 applies. We argue that then the problematic
pairs contribute at most half of the profit of all pairs (for all small tasks) and hence we can
ignore the problematic pairs.

I Lemma 30. Assume that η ≤ 1
8

1/α−O(ε)
1+1/α−O(ε) . Then

∑
(j,t)/∈TS!

x∗j,twj ≥ 1
2
∑
j∈T̄S ,t x

∗
j,twj.

Proof sketch. Let us pretend that
∑
C∈C y

∗
CwC = w(TL ∩ T ∗). Then

∑
j∈T̄S ,t x

∗
j,twj ≥

w(TS ∩ T ∗) since (x∗, y∗) is the optimal fractional solution. Therefore,
∑
j∈T̄S ,t x

∗
j,twj ≥

1
α

∑
C∈C y

∗
CwC and (1 + 1

α)
∑
j∈T̄S ,t x

∗
j,twj ≥ 1

α

(∑
C∈C y

∗
CwC +

∑
j∈T̄S ,t x

∗
j,twj

)
= 1

αoptLP .
This implies that

∑
j∈T̄S ,t x

∗
j,twj ≥ optLP /(α + 1). Since

∑
(j,t)∈TS!

x∗j,twj ≤ 4ηoptLP ≤
optLP
2(α+1) ≤

1
2
∑
j∈T̄S ,t x

∗
j,twj the claim follows. J

Each non-problematic pair is discarded only with probability at most 1 − η. Therefore,
the expected profit of the auxiliary solution x is at least an η-fraction of the profit of the
non-problematic pairs. Due to Lemma 30 we can neglect the profit due to problematic pairs.
For η := 1−O(ε)

8(α+1) the claim of Lemma 26 follows from some simple calculation.

Arbitrary stair-solutions

In order to compute a profitable γ-stair-solution we device a DP that intuitively sweeps
the path from left to right and guesses the stair-blocks in the optimal stair-solution. For
each stair-block we invoke the algorithm above. Since each edge can be used by at most γ
stair-blocks and large tasks we obtain a running time of n(γ logn)O(c/δ) . Since we require the
stair-blocks to be compatible, there can be no task that can be assigned to more than one
stair-block, even if the subproblems for each stair-block is solved independently. Recall that
for a large task i ∈ TL we required that h(i) < di for its computed height h(i) and hence
we cannot assign it into two stair-blocks, even if it would fit into the respective areas of the
stair-blocks. We defer the details to the full version of the paper [28].

References
1 Anna Adamaszek and Andreas Wiese. A quasi-PTAS for the two-dimensional geometric

knapsack problem. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), pages 1491–1505. SIAM, 2015.

2 Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing
2 + ε approximation for unsplittable flow on a path. In SODA, 2014.

3 N. Bansal, A. Chakrabarti, A. Epstein, and B. Schieber. A quasi-PTAS for unsplittable flow
on line graphs. In STOC, pages 721–729. ACM, 2006.

4 N. Bansal, Z. Friggstad, R. Khandekar, and R. Salavatipour. A logarithmic approximation for
unsplittable flow on line graphs. In SODA, pages 702–709, 2009.

ICALP 2020

86:18 Breaking the Barrier of 2 for the Storage Allocation Problem

5 Nikhil Bansal, Alberto Caprara, Klaus Jansen, Lars Prädel, and Maxim Sviridenko. A
structural lemma in 2-dimensional packing, and its implications on approximability. In
Algorithms and Computation, pages 77–86. Springer, 2009.

6 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. A
unified approach to approximating resource allocation and scheduling. Journal of the ACM
(JACM), 48(5):1069–1090, 2001.

7 Reuven Bar-Yehuda, Michael Beder, Yuval Cohen, and Dror Rawitz. Resource allocation in
bounded degree trees. Algorithmica, 54(1):89–106, 2009.

8 Reuven Bar-Yehuda, Michael Beder, and Dror Rawitz. A constant factor approximation
algorithm for the storage allocation problem. Algorithmica, 77(4):1105–1127, 2017.

9 Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New
approximation schemes for unsplittable flow on a path. In SODA, pages 47–58, 2015.
doi:10.1137/1.9781611973730.5.

10 Paul Bonsma, Jens Schulz, and Andreas Wiese. A constant-factor approximation algorithm
for unsplittable flow on paths. SIAM Journal on Computing, 43:767–799, 2014.

11 Adam L Buchsbaum, Howard Karloff, Claire Kenyon, Nick Reingold, and Mikkel Thorup. Opt
versus load in dynamic storage allocation. SIAM Journal on Computing, 33(3):632–646, 2004.

12 Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved
approximation algorithm for resource allocation. ACM Transactions on Algorithms, 7:48:1–48:7,
2011. doi:10.1145/2000807.2000816.

13 A. Chakrabarti, C. Chekuri, A. Gupta, and A. Kumar. Approximation algorithms for the
unsplittable flow problem. Algorithmica, 47:53–78, 2007.

14 C. Chekuri, A. Ene, and N. Korula. Unsplittable flow in paths and trees and column-restricted
packing integer programs. In APPROX-RANDOM, pages 42–55, 2009.

15 C. Chekuri, M. Mydlarz, and F. Shepherd. Multicommodity demand flow in a tree and packing
integer programs. ACM Transactions on Algorithms, 3, 2007.

16 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating geometric knapsack via l-packings. In 58th Annual Symposium
on Foundations of Computer Science (FOCS 2017), pages 260–271. IEEE, 2017.

17 Jordan Gergov. Approximation algorithms for dynamic storage allocation. In Algorithms–
ESA’96, pages 52–61. Springer, 1996.

18 Jordan Gergov. Algorithms for compile-time memory optimization. In Proceedings of the tenth
annual ACM-SIAM symposium on Discrete algorithms, pages 907–908. Society for Industrial
and Applied Mathematics, 1999.

19 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. To augment or not to
augment: Solving unsplittable flow on a path by creating slack. In SODA, pages 2411–2422,
2017.

20 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3 + ε)-approximation
for unsplittable flow on a path: placing small tasks into boxes. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 607–619, 2018. doi:10.1145/3188745.3188894.

21 Sandy Heydrich and Andreas Wiese. Faster approximation schemes for the two-dimensional
knapsack problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2017), pages 79–98, 2017. doi:10.1137/1.9781611974782.6.

22 Klaus Jansen and Roberto Solis-Oba. A polynomial time approximation scheme for the square
packing problem. In Andrea Lodi, Alessandro Panconesi, and Giovanni Rinaldi, editors,
Integer Programming and Combinatorial Optimization, pages 184–198, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

23 Klaus Jansen and Guochuan Zhang. Maximizing the number of packed rectangles. In
Scandinavian Workshop on Algorithm Theory, pages 362–371. Springer, 2004.

24 Klaus Jansen and Guochuan Zhang. Maximizing the total profit of rectangles packed into a
rectangle. Algorithmica, 47(3):323–342, 2007.

https://doi.org/10.1137/1.9781611973730.5
https://doi.org/10.1145/2000807.2000816
https://doi.org/10.1145/3188745.3188894
https://doi.org/10.1137/1.9781611974782.6

T. Mömke and A. Wiese 86:19

25 Hal A Kierstead. The linearity of first-fit coloring of interval graphs. SIAM Journal on Discrete
Mathematics, 1(4):526–530, 1988.

26 Hal A Kierstead. A polynomial time approximation algorithm for dynamic storage allocation.
Discrete Mathematics, 88(2):231–237, 1991.

27 Tobias Mömke and Andreas Wiese. A (2+ε)-approximation algorithm for the storage allocation
problem. In Proceedings of the 42nd Annual International Colloquium on Automata, Languages
and Programming (ICALP 2015), volume 9134 of Lecture Notes in Computer Science, pages
973–984. Springer, 2015.

28 Tobias Mömke and Andreas Wiese. Breaking the barrier of 2 for the storage allocation problem.
CoRR, abs/1911.10871, 2019. arXiv:1911.10871.

29 C. A. Phillips, R. N. Uma, and J. Wein. Off-line admission control for general scheduling
problems. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’00), pages 879–888. ACM, 2000.

ICALP 2020

http://arxiv.org/abs/1911.10871

	Introduction
	Our contribution
	Other related work

	Overview
	Uniform edge capacities
	Resource augmentation

	Structural lemma for uniform capacities
	Structural lemma for arbitrary capacities
	Compute stair solution
	The rounding algorithm

