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Abstract
The article investigates the relation between three well-known hypotheses.

Hunion: the union of disjoint ≤p
m-complete sets for NP is ≤p

m-complete

Hopps: there exist optimal propositional proof systems

Hcpair: there exist ≤pp
m -complete disjoint NP-pairs

The following results are obtained:

The hypotheses are pairwise independent under relativizable proofs, except for the known
implication Hopps ⇒ Hcpair.

An answer to Pudlák’s question for an oracle relative to which ¬Hcpair, ¬Hopps, and UP has
≤p

m-complete sets.

The converse of Köbler, Messner, and Torán’s implication NEE ∩ TALLY ⊆ coNEE ⇒ Hopps

fails relative to an oracle, where NEE df=NTIME(2O(2n)).

New characterizations of Hunion and two variants in terms of coNP-completeness and p-
producibility of the set of hard formulas of propositional proof systems.
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1 Introduction

The three hypotheses studied in this paper came up in the context of fascinating questions.
The first one states a simple closure property for the class of NP-complete sets. The second
one addresses the existence of optimal propositional proof systems. It is equivalent to the
existence of a finitely axiomatized theory that proves the finite consistency of each finitely
axiomatized theory by a proof of polynomial length [25]. The third hypothesis is motivated
and also implied by the second one.

Below we explain the context in which these hypotheses came up and discuss further
connections to complete sets for promise classes like UP, to the security of public-key
cryptosystems, and to complete functions for NPSV, the class of single-valued functions
computable by NP-machines. At the end of this section we summarize our results.
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Hypothesis Hunion: unions of disjoint ≤p
m-complete sets for NP are ≤p

m-complete

The beauty of hypothesis Hunion lies in its simplicity. It states that the class of NP-complete
sets is closed under unions of disjoint sets. The question of whether Hunion holds was raised
by Selman [37] in connection with the study of self-reducible sets in NP.1

An interesting example for a union of disjoint NP-complete sets is the Clique-Coloring
pair, which is due to Pudlák [31]:

C0 = {(G, k) | G is a graph that has a clique of size k}
C1 = {(G, k) | G is a graph that can be colored with k − 1 colors}

The sets are NP-complete and disjoint, since a clique of size k cannot be colored with
k − 1 colors. C0 and C1 are P-separable [31], which means that there exists an S ∈ P, the
separator, such that C0 ⊆ S and C1 ⊆ S. The P-separability of C0 and C1 is a result based
on deep combinatorial arguments by Lovász [26] and Tardos [38]. It implies that C0 ∪ C1 is
NP-complete.

Glaßer et al. [14, 17] give several equivalent formulations of Hunion and show that the
union of disjoint sets that are ≤p

m-complete for NP is complete with respect to strongly non-
deterministic, polynomial-time Turing reducibility. Moreover, the union is also nonuniformly
polynomial-time many-one complete for NP under the assumption that NP is not infinitely-
often in coNP. Moreover, Glaßer et al. [13] provide sufficient and necessary conditions for
Hunion in terms of refuters that distinguish languages L ∈ NP with SAT ∩ L = ∅ from SAT.

Hypothesis Hopps: there exist optimal propositional proof systems

Cook and Reckhow [6] define a propositional proof system (pps) as a polynomial-time
computable function f whose range is TAUT, the set of tautologies. If f(x) = y, then x is a
proof for y. A pps f is simulated by a pps g, if proofs in g are at most polynomially longer
than proofs in f . We say that f is P-simulated by g, if additionally for a given proof in f
we can compute in polynomial time a corresponding proof in g. A pps g is optimal (resp.,
P-optimal) if it simulates (resp., P-simulates) each pps.

The question of whether Hopps holds was raised by Krajíček and Pudlák [25] in an exciting
context:2 Let ConT (n) denote the finite consistency of a theory T , which is the statement
that T does not have proofs of contradiction of length ≤ n. Krajíček and Pudlák [25] showed
that Hopps is equivalent to the statement that there is a finitely axiomatized theory S that
proves the finite consistency ConT (n) for each finitely axiomatized theory T by a proof of
polynomial length in n. In other words, Hopps expresses that a weak version of Hilbert’s
program (to prove the consistency of all mathematical theories) is possible [30].

Krajíček and Pudlák [25] also show that NE = coNE implies Hopps and that E = NE
implies the existence of P-optimal pps. The converses of these implications do not hold
relative to an oracle constructed by Verbitskii [40]. Köbler, Messner, and Torán [24] prove
similar implications with weaker assumptions and reveal a connection to promise classes. For
EE df=DTIME(2O(2n)) and NEE df=NTIME(2O(2n)) they show that NEE ∩ TALLY ⊆ coNEE
implies Hopps, which in turn implies that NP ∩ SPARSE has ≤p

m-complete sets. Moreover,
NEE ∩ TALLY ⊆ EE implies the existence of P-optimal pps, which in turn implies that UP
has ≤p

m-complete sets.

1 The analog of Hunion in computability theory holds [39], since the many-one complete c.e. sets are
creative [27].

2 The analog of Hopps in computability theory holds trivially, since there the notion of simulation does
not have any bounds for the length of proofs and hence each proof system is optimal.
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Sadowski [36] proves that Hopps is equivalent to the statement that the class of all easy
subsets of TAUT is uniformly enumerable. Beyersdorff [2, 3, 4, 5] investigates connections
between disjoint NP-pairs and pps, and in particular studies the hypotheses Hcpair and
Hopps. Pudlák [30, 32] provides comprehensive surveys on the finite consistency problem, its
connection to propositional proof systems, and related open questions. In a recent paper,
Khaniki [23] shows new relations between the conjectures discussed in [32] and constructs
two oracles that separate several of these conjectures. In a couple of further papers [9, 8, 7],
one of the authors also builds oracles separating several of the conjectures in [32].

Hypothesis Hcpair: there exist ≤pp
m -complete disjoint NP-pairs

Even, Selman, and Yacobi [12, 11] show that the security of public-key cryptosystems depends
on the computational complexity of certain promise problems. The latter can be written
as disjoint NP-pairs, i.e., pairs (A,B) of disjoint sets A,B ∈ NP. The Clique-Coloring pair
mentioned above is an interesting example for a P-separable disjoint NP-pair. Even, Selman,
and Yacobi [12, 11] conjecture that every disjoint NP-pair has a separator that is not ≤p

T-hard
for NP. If the conjecture holds, then there are no public-key cryptosystems that are NP-hard
to crack. Grollmann and Selman [20] observe that secure public-key cryptosystems exist only
if P-inseparable disjoint NP-pairs exist.

The question of whether Hcpair holds was raised by Razborov [34] in the context of pps.3
To explain this connection we need the notions of reducibility and completeness for disjoint
NP-pairs. (A,B) polynomial-time many-one reduces to (C,D), written as (A,B)≤pp

m (C,D),
if there is a polynomial-time computable h such that h(A) ⊆ C and h(B) ⊆ D. A disjoint
NP-pair (A,B) is ≤pp

m -complete, if each disjoint NP-pair ≤pp
m -reduces to (A,B). Razborov

[34] defines for each pps f a corresponding disjoint NP-pair, the canonical pair of f . He
shows that the canonical pair of an optimal pps is an ≤pp

m -complete disjoint NP-pair, i.e.,

Hopps ⇒ Hcpair. (1)

This means that the open question of whether optimal pps exist can be settled by proving
that ≤p

m-complete disjoint NP-pairs do not exist. As we will see, (1) is the only nontrivial
implication between the three hypotheses and their negations that holds relative to all
oracles. For the relationship between Hcpair and Hopps this is shown by Glaßer et al. [16]
who construct two oracles such that Hcpair holds relative to both oracles, but Hopps holds
relative to the first one and ¬Hopps relative to the second one.

Pudlák [31] further investigates the connection between pps and disjoint NP-pairs and
shows that the canonical pair of the resolution proof system is symmetric. Glaßer, Selman,
and Sengupta [15] characterize Hcpair in several ways, e.g., by the uniform enumerability
of disjoint NP-pairs and by the existence of ≤p

m-complete functions in NPSV. Glaßer,
Selman, and Zhang [18] prove that disjoint NP-pairs and pps have identical degree structures.
Moreover, they show the following statement, which connects disjoint NP-pairs, pps, and
Hunion [19]: If NP 6= coNP and each disjoint NP-pair (SAT, B) is strongly polynomial-time
many-one equivalent to the canonical pair of a pps, then Hunion holds.

Our Contribution

The results of this paper improve our understanding on the three hypotheses and their
relationships in the following way.

3 The analog of Hcpair in computability theory holds [35, Ch. 7., Thm XII(c)].

STACS 2020
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1. Relativized independence of the hypotheses. We show that Hunion, Hopps, and Hcpair
are pairwise independent under relativizable proofs (except for the known implication
Hopps ⇒ Hcpair). For each two of these hypotheses and every combination of their truth
values there exists an appropriate oracle, except for Hopps ∧ ¬Hcpair which is impossible.
The relativized relationships between Hopps and Hcpair were settled by Glaßer et al. [16].
The remaining ones are obtained from an oracle by Ogiwara and Hemachandra [28], an
oracle by Homer and Selman [22], and three oracles constructed in the present paper.

2. Answer to a question by Pudlák. The oracle in Theorem 11 answers a question by Pudlák
[32] who asks for an oracle relative to which ¬Hcpair and UP has ≤p

m-complete sets, i.e.,
DisjNP 6⇒ UP in the notation of [32] (see subsection 4.1 for definitions). In particular,
relative to this oracle there are no P-optimal pps, but UP has ≤p

m-complete sets, i.e.,
CON 6⇒ UP. This is interesting, since CON⇐ UP is a theorem [24].

3. Possibility of Hopps without NEE ∩ TALLY ⊆ coNEE. The oracle constructed in The-
orem 12 shows that the converses of the following implications by Krajíček and Pudlák [25]
and Köbler, Messner, and Torán [24] fail relative to an oracle. For the implications (a) and
(b) this was known by Verbitskii [40], for the other implications this is a new result. It tells
us that Hopps might be possible under assumptions weaker than NEE∩TALLY ⊆ coNEE.
(a) [25] NE = coNE ⇒ Hopps

(b) [25] E = NE ⇒ there exist P-optimal pps
(c) [24] NEE ∩ TALLY ⊆ coNEE ⇒ Hopps, where NEE df=NTIME(2O(2n))
(d) [24] NEE∩TALLY ⊆ EE ⇒ there exist P-optimal pps, where EE df=DTIME(2O(2n))

4. Characterization of Hunion. We characterize Hunion and two variants (one is weaker, the
other one stronger) in several ways. For instance, Hunion (resp., its stronger version) is
equivalent to the statement that for each pps, the set of hard formulas is coNP-complete
(resp., p-producible). The latter notion was introduced by Hemaspaandra, Hemaspaandra,
and Hempel [21] for the study of inverses of NP-problems.

2 Preliminaries

Throughout this paper let Σ be the alphabet {0, 1}. We denote the length of a word w ∈ Σ∗
by |w|. The empty word is denoted by ε and the i-th letter of a word w for 0 ≤ i < |w| is
denoted by w(i), i.e., w = w(0)w(1) · · ·w(|w| − 1). For k ≤ |w| let prk(w) = w(0) · · ·w(k− 1)
be the length k prefix of w. If v is a prefix (resp., proper prefix) of w, then we write v v w
(resp., v vp w). A function f : Σ∗ → Σ∗ is length-increasing, if |f(x)| > |x| for all x ∈ Σ∗. N
(resp., N+) denotes the set of natural numbers (resp., positive natural numbers). The set of
primes is denoted by P = {2, 3, 5, . . .}, the set of primes ≥ k by P≥k = {n ∈ P | n ≥ k}. We
identify Σ∗ with N via the polynomial-time-computable, polynomial-time-invertible bijection
w 7→

∑
i<|w|(1+w(i))2i, which is a variant of the dyadic encoding. Hence notations, relations,

and operations for Σ∗ are transferred to N and vice versa. In particular, |n| denotes the length
of n ∈ N. We eliminate the ambiguity of the expressions 0i and 1i by always interpreting
them over Σ∗.

Let 〈·〉 :
⋃

i≥0 Ni → N be an injective, polynomial-time-computable, polynomial-time-
invertible pairing function such that |〈u1, . . . , un〉| = 2(|u1|+ · · ·+ |un|+ n).

Given two sets A and B, A−B = {a ∈ A | a /∈ B}. The complement of A relative to the
universe U is denoted by A = U −A. The universe will always be apparent from the context.

FP, P, and NP denote standard complexity classes [29]. Define coC = {A ⊆ Σ∗ | A ∈ C}
for a class C. Let UP denote the set of problems that can be accepted by a non-deterministic
polynomial-time Turing machine that on every input x has at most one accepting path
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and that accepts if and only if there exists an accepting path. TALLY denotes the class
{A | A ⊆ {0}∗}. We adopt the following notions from Köbler, Messner, and Torán [24]
with the remark that in the literature there exist inequivalent definitions for the double
exponential time classes EE and NEE. To avoid confusion, we will recall these definitions
where appropriate.

E df= DTIME(2O(n)) EE df= DTIME(2O(2n))
NE df= NTIME(2O(n)) NEE df= NTIME(2O(2n))

We also consider all these complexity classes in the presence of an oracle O and denote
the corresponding classes by FPO, PO, NPO, and so on. We use the usual oracle model
where the length of queries is not bounded, e.g., exponential-time machines can ask queries
of exponential length.

Let M be an oracle Turing machine. MD(x) denotes the computation of M on input x
with D as an oracle. For an arbitrary oracle D we let L(MD) = {x | MD(x) accepts}, where
as usual ifM is nondeterministic, the computationMD(x) accepts if and only if it has at least
one accepting path. For a deterministic polynomial-time oracle Turing transducer F (i.e., a
Turing machine computing a function), depending on the context, FD(x) either denotes the
computation of F on input x with D as an oracle or the output of this computation.

If A,B ∈ NP and A ∩ B = ∅, then we call (A,B) a disjoint NP-pair. The set of all
disjoint NP-pairs is denoted by DisjNP.

We use the following reducibilities for sets A,B ⊆ Σ∗. A≤p
mB if there exists an f ∈ FP

such that x ∈ A ⇔ f(x) ∈ B. A≤p
m,liB if A≤p

mB via some length-increasing f ∈ FP.
For disjoint NP-pairs (A,B) and (C,D) we define specific reducibilities. (A,B)≤pp

m (C,D)
(resp., (A,B)≤pp

m,li(C,D)) if there exists an f ∈ FP (resp., a length-increasing f ∈ FP) with
f(A) ⊆ C and f(B) ⊆ D. We use A≤pp

m (C,D) as an abbreviation for (A,A)≤pp
m (C,D) and

analogous notations for other reducibilities.
When we consider reducibilities in the presence of an oracle O, we write ≤p,O

m , ≤p,O
m,li,

≤pp,O
m , and ≤pp,O

m,li to indicate that the reduction function has access to O.
For a complexity class C and some problem A, we say that A is ≤-hard for C if for all

B ∈ C it holds B ≤ A, where ≤ is some reducibility. A is called ≤-complete for C if A is
≤-hard for C and A ∈ C. Let NPCp

m (resp., NPCp
m,li, NPCio-p/poly

m ) be the set of problems that
are ≤p

m-complete (resp., ≤p
m,li-complete, ≤io-p/poly

m -complete) for NP, where the reducibility
≤io-p/poly

m is given in Definition 6 below. If for all A ∈ NP it holds A≤pp
m (C,D), then we say

that (C,D) is ≤pp
m -hard for NP.

Let SAT denote the set of satisfiable formulas and TAUT the set of tautologies. Without
loss of generality, we assume that each word over Σ∗ encodes a propositional formula.

I Definition 1 ([6]). A function f ∈ FP is called a proof system for the set ran(f). For
f, g ∈ FP we say that f is simulated by g (resp., f is P-simulated by g) denoted by f ≤ g

(resp., f ≤p g), if there exists a function π (resp., a function π ∈ FP) and a polynomial p
such that |π(x)| ≤ p(|x|) and g(π(x)) = f(x) for all x. A function g ∈ FP is optimal (resp.,
P-optimal), if f ≤ g (resp., f ≤p g) for all f ∈ FP with ran(f) = ran(g). Corresponding
relativized notions are obtained by using PO, FPO, and ≤p,O in the definitions above. A
propositional proof system (pps) is a proof system for TAUT.

I Remark 2. The notion of a propositional proof system does not have a canonical relativiza-
tion. However, in view of Corollary 4 below, it is reasonable to use the following convention.
We say that there exist PO-optimal (resp., optimal) pps relative to an oracle O, if there
exists a ≤p,O

m -complete A ∈ coNPO that has a PO-optimal (resp., optimal) proof system.

STACS 2020
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The following proposition states the relativized version of a result by Köbler, Messner,
and Torán [24], which they show with a relativizable proof.

I Proposition 3 ([24]). For every oracle O, if A has a PO-optimal (resp., optimal) proof
system and ∅ 6= B≤p,O

m A, then B has a PO-optimal (resp., optimal) proof system.

I Corollary 4. For every oracle O, if there exists a ≤p,O
m -complete A ∈ coNPO that has a

PO-optimal (resp., optimal) proof system, then all non-empty sets in coNPO have PO-optimal
(resp., optimal) proof systems.

I Definition 5. For f ∈ FP and a polynomial q, a word y ∈ ran(f) is q-hard w.r.t. the proof
system f if there does not exist x ∈ Σ≤q(|y|) such that f(x) = y. The set of elements that are
q-hard w.r.t. the proof system f is denoted by fq, i.e., fq = {y ∈ ran(f) | y is q-hard w.r.t. f}.

We introduce ≤io-p/poly
m -reducibility, which we use to study a weakened variant of Hunion:

the union of disjoint ≤p
m-complete sets for NP is ≤io-p/poly

m -complete.
P/poly is the class of sets A ⊆ Σ∗ for which there exist a B ∈ P and a function

h : N → Σ∗ such that |h(n)| is polynomially bounded in n and for all x it holds that
x ∈ A ⇔ (x, h(|x|)) ∈ B. FP/poly is the class of total functions f : Σ∗ → Σ∗ for which there
exist a g ∈ FP and a function h : N→ Σ∗ such that |h(n)| is polynomially bounded in n and
for all x it holds that f(x) = g(x, h(|x|)). Two total functions f, g : Σ∗ → Σ∗ agree infinitely
often, written as f io= g, if for infinitely many n it holds that ∀x ∈ Σn, f(x) = g(x). Two sets
A,B ⊆ Σ∗ agree infinitely often, written as A io=B, if their characteristic functions agree
infinitely often. For a class C of functions or sets let io-C = {A | ∃B ∈ C, A io=B}.

I Definition 6. A set A ⊆ Σ∗ is infinitely often P/poly reducible to a set B ⊆ Σ∗,
written as A≤io-p/poly

m B, if there exists an f ∈ io-FP/poly such that for all x it holds that
x ∈ A ⇔ f(x) ∈ B.

It should be mentioned that ≤io-p/poly
m is an artificial reducibility notion (e.g., it is not

transitive), which emerged from the attempt to express the right-hand side of the known
implication Hunion ⇒ NP 6= coNP as a variant of Hunion. In Theorem 10 we show that this
is possible with ≤io-p/poly

m reducibility.

In our oracle constructions we use the following notations: If a partial function t is not
defined at point x, then t ∪ {x 7→ y} denotes the extension t′ of t that at x has value y and
satisfies dom(t′) = dom(t) ∪ {x}.

If A is a set, then A(x) denotes the characteristic function at point x, i.e., A(x) is 1
if x ∈ A, and 0 otherwise. An oracle D ⊆ N is identified with its characteristic sequence
D(0)D(1) · · · , which is an ω-word. In this way, D(i) denotes both, the characteristic function
at point i and the i-th letter of the characteristic sequence, which are the same. A finite
word w describes an oracle that is partially defined, i.e., only defined for natural numbers
x < |w|. Occasionally, we use w instead of the set {i | w(i) = 1} and write for example
A = w ∪ B, where A and B are sets. In particular, for an oracle Turing machine M , the
notation Mw(x) refers to M{i|w(i)=1}(x) (hence, oracle queries that w is not defined for are
answered by “no”). Using w instead of {i | w(i) = 1} additionally allows us to define the
following notion: for a nondeterministic oracle Turing machine M , the computation Mw(x)
definitely accepts if it contains a path that accepts and all queries on this path are < |w|.
The computation Mw(x) definitely rejects if all paths reject and all queries are < |w|. We say
that the computation Mw(x) is definite if it definitely accepts or definitely rejects. Similarly,
for a deterministic oracle Turing transducer F , the computation Fw(x) is definite if all its
queries are < |w|.
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3 Are Unions of Disjoint NP-Complete Sets NP-Complete?

It is difficult to find out whether Hunion is true or not, since each outcome solves a long
standing open problem:

Hunion is true ⇒ NP 6= coNP
Hunion is false ⇒ P-inseparable disjoint NP-pairs exist if and only if P 6= NP

Therefore, researchers approach the hypothesis Hunion by proving equivalent, necessary, and
sufficient conditions. This section continues this program as follows. In subsection 3.1
we investigate a stronger variant of Hunion, in 3.2 the original hypothesis, and in 3.3 a
weaker variant. We characterize Hunion and its variants in several ways, e.g., in terms
of p-producibility or coNP-completeness of the set of hard formulas of pps. Within each
subsection all hypotheses are equivalent and hence the following implications hold.

hypotheses in subsect. 3.1 ⇒ hypotheses in subsect. 3.2 ⇒ hypotheses in subsect. 3.3
m m

Hunion NP 6= coNP

Note that under the assumption that all sets in NPCp
m are complete w.r.t. length-increasing

reductions (which holds for example under the Berman-Hartmanis conjecture), all hypotheses
in the subsections 3.1 and 3.2 are equivalent.

3.1 Length-Increasing Polynomial-Time Reducibility
Consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤p

m,li-complete for
NP. We show that this hypothesis can be characterized in terms of the p-producibility of the
set of hard formulas of pps. The notion of p-producibility was introduced by Hemaspaandra,
Hemaspaandra, and Hempel [21].

I Definition 7 ([21]). A set A is p-producible if and only if there is some f ∈ FP with
|f(x)| ≥ |x| and f(x) ∈ A for all x.

I Theorem 8. The following statements are equivalent:
1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp

m,li.
2. For all A,B ∈ NPCp

m,li with A ∩B = ∅ it holds A ∪B ∈ NPCp
m,li.

3. fq is p-producible for all pps f and all polynomials q.

Proof. 1 ⇒ 2: Let A,B ∈ NPCp
m,li be disjoint and SAT≤p

m,liA via a length-increasing
f ∈ FP. B′ = f−1(B) is in NP and disjoint to SAT and hence SAT ∪ B′ ∈ NPCp

m,li.
SAT ∪B′≤p

m,liA ∪B via f and thus A ∪B ∈ NPCp
m,li.

2 ⇒ 3: By assumption, NP 6= coNP. Let f be a pps, q a polynomial, and define

B = {ϕ | f(y) = ¬ϕ for some y with |y| ≤ q(|¬ϕ|)}.

B ∩ SAT = ∅ and SAT ∪ B ( Σ∗. For A′ = 0SAT ∪ 1B and B′ = 1SAT ∪ 0B it holds
A′∩B′ = ∅ and A′, B′ ∈ NPCp

m,li. By 2, A′∪B′ = {0, 1}(SAT∪B) ∈ NPCp
m,li. In particular,

SAT≤p
m,li{0, 1}(SAT ∪ B). Hence SAT≤p

mSAT ∪ B via h1 ∈ FP with |x| ≤ |h1(x)|. Let
h2 ∈ FP be length-increasing such that SAT≤p

m,liSAT via h2. Thus SAT≤p
m,liSAT ∪ B

via h(x) = h1(h2(x)). We claim that fq is p-producible via the length-increasing g(x) =
¬h(x ∧ ¬x): As h(x ∧ ¬x) /∈ SAT ∪B, g(x) is a tautology. If g(x) /∈ fq, then there exists y
with |y| ≤ q(|g(x)|) and f(y) = g(x) = ¬h(x ∧ ¬x). Hence h(x ∧ ¬x) ∈ B, a contradiction.

STACS 2020
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3⇒ 1: Choose B according to 1. Consider B′ = {x | x ∈ B or ∃z |z| ≤ |x| and x∨z ∈ B}
and observe B′ ∈ NP, B ⊆ B′, and B′∩SAT = ∅. LetM be an NP-machine with L(M) = B′

running in polynomial time q. The following f is a pps.

〈x, z〉 7→

{
x M accepts ¬x on path z or (|z| ≥ 2|x| and x is a tautology)
True otherwise.

Let q′ be a polynomial such that |¬x| ≤ q′(|x|). Choose r(n) = 2 · (q(q′(n)) + n + 1). By
3, fr is p-producible via some g ∈ FP with |g(x)| ≥ |x|. Consider the length-increasing
h ∈ FP with h(x) = ¬g(x) ∨ x. We show SAT≤pp

m,li(SAT,SAT ∪B) via h, which implies
SAT≤p

m,liSAT∪B via h. As g(x) is a tautology, x ∈ SAT⇔ h(x) ∈ SAT. It remains to show
x /∈ SAT ⇒ h(x) /∈ B. Let x /∈ SAT. If h(x) = ¬g(x) ∨ x ∈ B, then due to |x| ≤ |¬g(x)|
it holds ¬g(x) ∈ B′. Hence there is some path z such that M accepts ¬g(x) on path z.
Thus |z| ≤ q(q′(|g(x)|)). Consequently, f(〈g(x), z〉) = g(x) and |〈g(x), z〉| ≤ r(|g(x)|), in
contradiction to g(x) ∈ fr. J

3.2 Polynomial-Time Reducibility

We consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤p
m-complete

for NP. This is equivalent to Hunion. We prove one more characterization stating that for
each pps f the set of formulas hard for f is coNP-complete. In the following theorem, the
equivalence 1 ⇔ 2 was shown in [14].

I Theorem 9. The following statements are equivalent:
1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCp

m.
2. For all A,B ∈ NPCp

m with A ∩B = ∅ it holds A ∪B ∈ NPCp
m.

3. fq is ≤p
m-complete for coNP for all pps f and all polynomials q.

Proof. We argue for “1 ⇒ 3”. By definition, fq = {x ∈ TAUT | ¬∃z ∈ Σ≤q(|x|)f(z) = x}
and hence fq ∈ coNP. Let B = {x ∈ Σ∗ | ∃z ∈ Σ≤q(|¬x|)f(z) = ¬x}.

Observe that B ∈ NP and SAT ∩B = ∅. By assumption, SAT ∪B ∈ NPCp
m and hence

SAT ∪B is ≤p
m-complete for coNP. Note SAT ∪B = {x ∈ Σ∗ | ¬x ∈ TAUT ∧ ¬∃z ∈

Σ≤q(|¬x|)f(z) = ¬x}. Thus x ∈ SAT ∪B ⇔ ¬x ∈ fq and hence fq is ≤p
m-complete for coNP.

“3⇒ 1”: Let B ∈ NP such that SAT∩B = ∅ and letM be a nondeterministic polynomial-
time machine that accepts B. Choose a polynomial q such that for all x ∈ Σ∗ and all accepting
paths y of M(¬x) it holds that |〈x, y〉| ≤ q(|x|). Let

f(z) =


x, if z = 〈x, y〉, |y| < 2|x|, and y is an accepting path of M(¬x)
x, if z = 〈x, y〉, |y| = 2|x|, and x ∈ TAUT
True, otherwise.

Observe that f is a pps. By assumption, the set fq = {x ∈ TAUT | ¬∃z ∈ Σ≤q(|x|)f(z) = x}
is ≤p

m-complete for coNP. Observe fq ∩Σ≥n = {x ∈ TAUT | ¬x /∈ B}∩Σ≥n for sufficiently
large n ∈ N. Hence for all x ∈ Σ≥n it holds that x ∈ fq ⇔ ¬x ∈ SAT ∪B. In the case
SAT ∪B 6= ∅ this shows fq≤p

mSAT ∪B and hence SAT ∪B is ≤p
m-complete for NP.

It remains to argue that the case SAT ∪B = ∅ is not possible. If SAT ∪B = ∅, then
NP = coNP and hence there exists a polynomially bounded pps f ′. Thus for some polynomial
q′ it holds f ′q′ = ∅, which is not≤p

m-complete for coNP, in contradiction to our assumption. J
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3.3 Infinitely Often P/poly Reducibility

Consider the hypothesis that the union of SAT with a disjoint B ∈ NP is ≤io-p/poly
m -complete

for NP. We show that this hypothesis is equivalent to NP 6= coNP.

I Theorem 10. The following statements are equivalent:
1. For all B ∈ NP with SAT ∩B = ∅ it holds SAT ∪B ∈ NPCio-p/poly

m .
2. For all A,B ∈ NPCp

m with A ∩B = ∅ it holds A ∪B ∈ NPCio-p/poly
m .

3. NP 6= coNP (i.e., polynomially bounded pps do not exist).

4 Oracle Constructions

4.1 An Oracle for P = UP and ¬Hcpair

We construct an oracle O relative to which P = UP and ¬Hcpair. This answers open questions
by Pudlák [32], who lists several conjectures and asks for equivalence proofs and oracles
relative to which conjectures are different. Among these are:

DisjNP df= “there are no ≤pp
m -complete disjoint NP-pairs (i.e., ¬Hcpair)”

CON df= “there are no P-optimal propositional proof systems”
SAT df= “NP-complete sets do not have P-optimal proof systems”
UP df= “UP does not have ≤p

m-complete sets”
NP ∩ coNP df= “NP ∩ coNP does not have ≤p

m-complete sets”

Relative to O, DisjNP and NP ∩ coNP hold, but UP does not. Hence DisjNP and NP ∩ coNP
do not imply UP. Moreover, relative to O, also the following conjectures mentioned by
Pudlák [32] do not imply UP (as they are implied by DisjNP relative to all oracles): CON,
CON∨SAT, and P 6= NP. The fact that relative to O, CON does not imply UP is of particular
interest as the converse implication holds relative to all oracles.

I Theorem 11. There exists an oracle O with the following properties.
1. DisjNPO does not have ≤pp,O

m -complete pairs.
2. NPO ∩ coNPO does not have ≤p,O

m -complete sets.
3. PO = UPO.
Sketch of the construction: For simplicity, we argue only for 1 and 3. Let M0,M1, . . . be
a standard enumeration of nondeterministic, polynomial-time oracle Turing machines and
let F0, F1, . . . be a standard enumeration of deterministic, polynomial-time oracle Turing
transducers. We assume that for all i the running times of Mi and Fi are bounded by
the polynomial ni + i. Adopting an idea by Baker, Gill and Solovay [1], we start with a
PSPACE-complete oracle that consists of words of odd length. During the construction we
add words of lengths e(n) to the oracle, where e(0) = 2 and e(n+ 1) = 22e(n) . Since e(n) is
even, the PSPACE-complete set that we started with will not be damaged.

On the one hand, the construction tries to prevent that L(Mi) and L(Mj) are disjoint. If
this is not possible, thenMi andMj inherently accept disjoint sets. In this case, we make sure
that there exists a disjoint NP-pair (Aij , Bij) that does not ≤pp

m -reduce to (L(Mi), L(Mj)).
This prevents the existence of complete disjoint NP-pairs. On the other hand, we try to
prevent that Mi has the uniqueness property “for all x, the computation Mi(x) has at most
one accepting path”. If this is not possible, then Mi inherently has the uniqueness property,
which allows us to show L(Mi) ∈ P.

STACS 2020
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On the technical side, we maintain a growing collection t of properties that we demand
in the further construction. If an oracle satisfies the properties defined by t, then we call it
t-valid. The collection t contains properties of the following style:

V1: The oracle constructed so far guarantees that L(Mi) ∩ L(Mj) 6= ∅ for all extensions of
the oracle.

V2: It is impossible to reach L(Mi) ∩ L(Mj) 6= ∅ and for the oracle constructed so far we
have Aij ∩Bij = ∅. (In the future we restrict to extensions that maintain this property.)

V3: The oracle constructed so far guarantees that for all extensions of the oracle, Mi does
not have the uniqueness property.

V4: It is impossible to destroy the uniqueness property of Mi.

The construction successively settles the following tasks:
task (i, j): If possible, then realize V1 for the pair (L(Mi), L(Mj)), otherwise, V2 holds.
task i: If possible, then realize V3 for Mi, otherwise, V4 holds.
task (i, j, r): Make sure that Fr does not realize a reduction (Aij , Bij)≤pp

m (L(Mi), L(Mj))).

The tasks (i, j) and (i, j, r) make sure that relative to the final oracle, L(Mi)∩L(Mj) 6= ∅
or (L(Mi), L(Mj)) is not ≤pp

m -complete. The task i ensures that machines having the
uniqueness property are very special. An adaption of an argument by Rackoff [33] yields
that these machines accept sets in P, hence P = UP.

4.2 An Oracle for Hunion and Hopps

This section constructs an oracle O relative to which the implication Hopps ⇒ ¬Hunion is
false. Theorem 22 provides the analogous for the converse implication.

In addition, relative to O there exists a tally set in NEE − coNEE, where
NEE df=NTIME(2O(2n)). It shows that two conditions which are sufficient for the exist-
ence of an optimal (resp., a P-optimal) pps [24] are not necessary relative to O.

I Theorem 12. There exists an oracle O with the following properties.
1. There exists a PO-optimal propositional proof system f .
2. If A is ≤p,O

m -complete for NPO and disjoint from B ∈ NPO, then A ∪B is ≤p,O
m -complete

for NPO.
3. NEEO ∩ TALLY 6⊆ coNEEO, where NEEO df=NTIMEO(2O(2n)).

Proof. We only prove statements 1 and 2. Statement 3 follows (in a nontrivial way) from
the construction below. Let M1,M3,M5, . . . be a standard enumeration of nondeterministic,
polynomial-time oracle Turing machines. Let F2, F4, F6, . . . be a standard enumeration of
deterministic, polynomial-time oracle Turing transducers. We assume that the running time
of Mi for i odd (resp., Fj for j > 0 even) is bounded by the polynomial ni + i (resp., nj + j).

For a (possibly partial) oracle D we define sets KD and KD
∨ .

KD = {〈0i, 0j , x〉 | i is odd and MD
i (x) accepts within j steps}

KD
∨ = {〈z1, . . . , zn〉 | z1 ∈ KD ∨ · · · ∨ zn ∈ KD}

B Claim 13. For partial oracles v and w and all y ≤ min(|v|, |w|), if pry(v) = pry(w), then
Kw(y) = Kv(y) and Kw

∨ (y) = Kv
∨(y).

Proof. It suffices to show Kw(y) = Kv(y). We may assume y = 〈0i, 0j , x〉 for suitable i, j, x,
since otherwise, Kw(y) = Kv(y) = 0. For each q that is queried within the first j steps
of Mw

i (x) or Mv
i (x) it holds that |q| ≤ j < |y| and thus q < y. Hence these queries are

answered the same way relative to w and v, showing that Mw
i (x) accepts within j steps if

and only if Mv
i (x) accepts within j steps. C



T. Dose and C. Glaßer 9:11

KD and KD
∨ are ≤p,D

m -complete for NPD and their complements are ≤p,D
m -complete for

coNPD. We construct the oracle such that KD
∨ has a PO-optimal proof system f ∈ FPO. As

KO
∨ is ≤p,O

m -complete for coNPO, this implies the first statement of the theorem.
For a (possibly partial) oracle D let

ED = {0n | ∃x ∈ D such that |x| = n}

and observe that ED ∈ NPD. Choose e ≥ 2 such that L(MD
e ) = ED for all (possibly partial)

oracles D and let vn = 〈0e, 0ne+e, 0n〉. Hence vn ∈ KD if and only if MD
e (0n) accepts, i.e.,

vn ∈ KD ⇔ 0n ∈ ED.
For i ∈ 2N+ and x, y ∈ N let c(i, x, y) = 〈0i, 0(|x|i+i)2ie

, x, y〉. These words are used to
encode proofs into the oracle: if the oracle contains the codeword c(i, x, y), then this means
Fi(x) = y and y /∈ K∨, i.e., c(i, x, y) is a proof for y /∈ K∨.

B Claim 14. The following holds for all partial oracles w, all i ∈ 2N+ and x, y ∈ N.
1. If c(i, x, y) ≤ |w|, then Fw

i (x) is definite and F v
i (x) = Fw

i (x) < |w| for all v w w.
2. If c(i, x, y) ≤ |w|, then Fw

i (x) is definite and Fw
i (x) ∈ Kw

∨ ⇔ F v
i (x) ∈ Kv

∨ for all v w w.

Proof. 1: Fw
i (x) is definite, since for each q queried by Fw

i (x) it holds that |q| ≤ |x|i + i <

|c(i, x, y)| and hence q < c(i, x, y) ≤ |w|. The same argument shows F v
i (x) = Fw

i (x) < |w|.
2: Follows from Claims 14.1 and 13. C

Preview of construction: On the one hand, the construction tries to prevent that Fi is
a proof system for K∨. If this is not possible, then Fi inherently is a proof system for K∨.
In this case, the codewords c(i, x, y) are used to encode Fi-proofs into the oracle. These
encodings finally yield a P-optimal proof system for K∨. On the other hand, the construction
also tries to prevent that Mi accepts a set disjoint from K∨. If this is not possible, then Mi

inherently accepts a set disjoint from K∨. In this case, there will be a prime p such that the
words vpk for k ≥ 1 are neither in K nor in L(Mi). It even holds 〈vpk , u1, . . . , un〉 /∈ L(Mi)
for all u = 〈u1, . . . , un〉 of length ≤ |vpk |. This means that the vpk are difficult instances for
Mi, since there is no linear-size proof u that allows Mi to recognize that vpk /∈ K. Hence
adding a sufficiently large vpk to an instance u does not change the membership to K∨, but
guarantees that the result is not in L(Mi). This yields a reduction K∨≤p

mK∨ ∪ L(Mi) and
implies that K∨ ∪ L(Mi) is NP-complete.

During the construction we maintain a growing list of properties. This list belongs to the
set T = {(m1, . . . ,mn) | n ≥ 0, m1, . . . ,mn ∈ N, and mi < mj for all i < j with mj 6= 0}.
If a partial oracle satisfies the properties defined by a list t, then we call it t-valid. For a list
t = (m1, . . . ,mn) and a ∈ N let t(i) = mi, |t| = n, and t+ a = (m1, . . . ,mn, a). If the list t
is a prefix of the list t′, then we write t v t′. We start with the empty list t0 = (), which
defines no property. By successively appending an element we obtain lists t1, t2, and so on.

A partial oracle w ∈ Σ∗ is t-valid, where t ∈ T , if the following holds:
V1: w ⊆ {c(i, x, y) | i ∈ 2N+ and x, y ∈ N} ∪ {v | |v| = pk for p ∈ P≥41 and k ≥ 1}

(meaning: the oracle contains only codewords c(i, x, y) and words of length pk)
V2: For all c(i, x, y) ∈ w with i ∈ 2N+ and x, y ∈ N it holds that Fw

i (x) = y /∈ Kw
∨ .

(meaning: if the oracle contains the codeword c(i, x, y), then Fw
i (x) outputs y /∈ Kw

∨ ;
hence c(i, x, y) ∈ w is a proof for y /∈ Kw

∨ )
V3: For all positive even i ≤ |t| it holds that t(i) ∈ 2N and:

a. If t(i) = m > 0, then c(i, x, y) ∈ w for all x, y ∈ N with Fw
i (x) = y and m ≤

c(i, x, y) < |w|.
(meaning: the oracle maintains codewords for Fi, i.e., if x is large enough and Fw

i (x)
outputs y, then w contains a proof for this, namely the codeword c(i, x, y))
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b. If t(i) = 0, then there exists x such that Fw
i (x) is definite and outputs y < |w| with

y ∈ Kw
∨ .

(meaning: Fi is not a proof system for K∨ relative to all extensions of w)
V4: For all odd i ≤ |t| it holds that t(i) ∈ {0} ∪ P≥41 and:

a. If t(i) = p > 0, then {x ∈ w | |x| = pk for k ≥ 1} = ∅ and for all positive even j < i

with t(j) = 0 it holds that {c(j, x, y) ∈ w | x, y ∈ N and |c(j, x, y)| ≥ p} = ∅.
(meaning: the first part says 0pk

/∈ Ew and hence vpk /∈ Kw for all k ≥ 1; the second
part says that if Fj is not a proof system for K∨ and has a smaller index than Mi,
then the oracle contains no codewords c(j, ·, ·) of length ≥ p)

b. If t(i) = 0, then there exists x < |w| such that x ∈ Kw
∨ and Mw

i (x) definitely accepts.
(meaning: Mi is not disjoint from K∨ relative to all extensions of w)

B Claim 15. The following holds in reference to the definition of t-valid.
1. In V1, the two sets are disjoint.
2. In V2, Fw

i (x) is definite and F v
i (x) = y /∈ Kv

∨ for all v w w.
3. In V3a, Fw

i (x) is definite.
4. In V3b, y ∈ Kv

∨ for all v w w.
5. In V4b, x ∈ Kv

∨ for all v w w.

Proof. V1: The union is disjoint, since |c(i, x, y)| is even. V2+V3a: Follows from Claim 14.
V3b+V4b: Follows from Claim 13. C

B Claim 16. Let u and w be t-valid. If u v v v w, then v is t-valid.

Proof. We show that v satisfies V1–V4. When we consider w and v as sets, then v ⊆ w.
Therefore, v satisfies V1 and V4a. Moreover, v v w and Claim 14 imply that v satisfies
V2 and V3a. Since u is t-valid, it satisfies V3b and V4b. From u v v, Claim 15.4, and
Claim 15.5 it follows that v satisfies V3b and V4b. C

Oracle construction: Let t0 = () be the empty list and w0 = ε, which is t0-valid. We
construct a sequence t0 vp t1 vp · · · of lists from T and a sequence w0 vp w1 vp · · · of partially
defined oracles such that |ts| = s and ws is ts-valid. The final oracle is O = lims→∞ ws. We
describe step s > 0, which starts with a list ts−1 of length s− 1 and a ts−1-valid ws−1 and
which defines a list ts wp ts−1 of length s and a ts-valid ws wp ws−1.

s even: If there is a ts−1-valid v wp ws−1 such that for some x, F v
s (x) is definite and has

an output y < |v| with y ∈ Kv
∨, then let ws = v and ts = ts−1 + 0. Otherwise, choose

b ∈ {0, 1} such that ws−1b is ts−1-valid, let ws = ws−1b and ts = ts−1 +m for an even
m > |ws| that is greater than all elements in ts−1.
(meaning: if possible, force that Fs is not a proof system for K∨ relative to all extensions
of v; otherwise, we start to maintain codewords for Fs, i.e., if x is large enough and Fs(x)
outputs y, then the oracle contains a proof for this, namely the codeword c(s, x, y))
s odd: If there is a ts−1-valid v wp ws−1 such that for some x < |v|, x ∈ Kv

∨ and Mv
s (x)

definitely accepts, then let ws = v and ts = ts−1 + 0. Otherwise, let ws = ws−1b for
b ∈ {0, 1} such that ws−1b is ts−1-valid and ts = ts−1 + p for p ∈ P≥41 large enough such
that (16|vpk |)s < 2pk for all k ∈ N+, p > |ws|, and p is greater than all elements in ts−1.
(meaning: force L(Ms) ∩K∨ 6= ∅ if possible; otherwise, choose a suitable prime p and
make sure that the oracle contains no elements of length pk and hence vpk /∈ K for all
k ≥ 1; the step corresponds to V4)

The subsequent claims refer to the construction above. We start by showing that the
construction is possible and how one can extend a ts-valid w w ws by one bit. The proof can
be found in [10].
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B Claim 17. Let s ∈ N. The choices of ws and ts are possible and ws is ts-valid. Moreover,
for each ts-valid w w ws and z = |w| the following holds.
1. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i ≤ s, ts(i) > 0, and z ≥ ts(i), then:

a. if Fw
i (x) = y, then w1 is ts-valid and w0 is not.

b. if Fw
i (x) 6= y, then w0 is ts-valid and w1 is not.

2. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i ≤ s and ts(i) = 0, then:
a. w0 is ts-valid.
b. if Fw

i (x) = y /∈ Kw
∨ and there is no odd i′ such that i < i′ ≤ s, ts(i′) = p ∈ P≥41, and

|z| ≥ p, then w1 is ts-valid.
3. If z = c(i, x, y) for i ∈ 2N+, x, y ∈ N such that i > s, then:

a. w0 is ts-valid.
b. if Fw

i (x) = y /∈ Kw
∨ , then w1 is ts-valid.

4. If |z| = pk for p ∈ P≥41, p /∈ ts, and k ≥ 1, then w0 and w1 are ts-valid.
5. In all other cases w0 is ts-valid.

B Claim 18. MO
s (〈vpk , u1, . . . , un〉) rejects for all odd s with ts(s) = p ∈ P≥41, all k ∈ N+,

and all u = 〈u1, . . . , un〉 with |u| ≤ |vpk |.

Proof. We assume that MO
s (u′) accepts for u′ = 〈vpk , u1, . . . , un〉 and show a contradiction.

Choose j > s large enough such that Mwj
s (u′) definitely accepts, |wj | > u′, and |wj | > q

for all q with |q| = pk. By construction, wj is tj-valid and hence ts−1-valid. Let r be a
definitely accepting path of Mwj

s (u′). For r we inductively define the set of queries and their
dependencies.

Q0 = {q | q is queried on r} (2)
Qn+1 =

⋃
z ∈ Qn with z = c(i, x, y),
i < s, x, y ∈ N, ts−1(i) > 0

{q | q is queried by Fwj

i (x)} (3)

Let Q =
⋃

n≥0Qn. It holds that |Q| < 2pk , which is seen as follows: For mn =
∑

q∈Qn
|q| we

have mn+1 ≤ mn/2, since the sum of lengths of queries induced by z = c(i, x, y) is at most
|x|i + i ≤ (|x|i + i)2ie ≤ |z|/2 by the definition of c and 〈·〉. Thus the mn form a geometric
series. From |u′| = |u| + 2|vpk | + 2 ≤ 4|vpk | it follows |Q| ≤ 2m0 ≤ 2(|u′|s + s) ≤ 4|u′|s ≤
(16|vpk |)s < 2pk , where the latter inequality holds by the choice of p in step s.

Let q̄ be the smallest word of length pk that is not in Q. The word exists, since |Q| < 2pk .
By the assumption that |wj | > q for all q with |q| = pk, it holds in particular |wj | > q̄. By
the choice of p in step s we have p > |ws| and hence |ws−1| < q̄ < |wj |. Thus for v = prq̄(wj)
it holds that ws−1 vp v vp wj , where ws−1 and wj are ts−1-valid. By Claim 16, v is ts−1-valid.
Moreover, |v| = q̄, |q̄| = pk, and p /∈ ts−1, since step s chooses p greater than all elements in
ts−1. From Claim 17.4 it follows that v1 is ts−1-valid.

We show that there is a ts−1-valid w′ w v1 relative to which r is still a definitely accepting
path. More precisely, |w′| = |wj | and for all q ∈ Q it holds that q ∈ w′ ⇔ q ∈ wj . Below we
describe how v1 is extended bit by bit to w′, i.e., how the word w w v1 w ws−1 constructed
so far is extended by one bit b, where z denotes the length of w. We define b and argue that

wb is ts−1-valid and if z ∈ Q then b = wj(z), (4)

where we follow the cases in Claim 17.
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1. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i ≤ s − 1, ts−1(i) > 0: If Fw
i (x) = y, then b = 1

else b = 0. Note that z > q̄ > p > ts−1(i). By Claim 17.1, wb is ts−1-valid. If z ∈ Q,
then by (3), q ∈ Q for all q queried by Fw

i (x). For these q it holds that q < z = |w| and
hence w(q) = wj(q) by (4). Thus Fw

i (x) = F
wj

i (x). We know that wj is ts−1-valid and
z > ts−1(i) > 0. From V2 and V3(a) it follows that z ∈ wj ⇔ F

wj

i (x) = y ⇔ Fw
i (x) =

y ⇔ b = 1. Hence b = wj(z), which proves (4).
2. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i ≤ s − 1, ts−1(i) = 0: Let b = 0. By Claim 17.2,

wb is ts−1-valid. Assume b 6= wj(z), i.e., z ∈ wj . We are in the situation that wj is
tj-valid, s < j is odd, tj(s) = p, i ∈ 2N+ with i < s, and tj(i) = 0. By V4a, the set
{c(i, x, y) ∈ wj | x, y ∈ N and |c(i, x, y)| ≥ p} is empty. However, z belongs to this set,
as z = |w| > |v| = q̄ and hence |z| ≥ pk ≥ p. This is a contradiction, which shows (4).

3. z = c(i, x, y) for i ∈ 2N+, x, y ∈ N, i > s − 1: If z /∈ Q ∩ wj , then b = 0 else b = 1. If
b = 0, then wb is ts−1-valid by Claim 17.3. Otherwise, b = 1 and z ∈ Q ∩ wj .
We show |x|i + i < pk: Assume |x|i + i ≥ pk. From p ≥ 41, e ≥ 2, k ≥ 1, and i ≥ s ≥ 1
it follows that (41 · pke)s < p2ike. Moreover, |vpk | = 2(e + pke + e + pk + 3) ≤ 10 · pke.
Hence we obtain

|c(i, x, y)| > (|x|i + i)2ie ≥ p2ike > (41 ·(pke)s ≥ (40 ·pke)s +s ≥ (4|vpk |)s +s ≥ |u′|s +s.

Thus |z| > |u′|s + s ≥ m0 ≥ m1 ≥ · · · and hence z /∈ Q, a contradiction. This proves
|x|i + i < pk.
We know that wj is tj-valid. By V2, Fwj

i (x) = y /∈ Kwj

∨ . By |x|i +i < pk, the computation
F

wj

i (x) stops within |x|i + i < pk steps. Hence it can only ask queries of length < pk and
|y| < pk. Thus Fw

i (x) = y /∈ Kw
∨ , since w and wj coincide with respect to all words of

length < pk. By Claim 17.3, wb is ts−1-valid.
To show the second part of (4) assume z ∈ Q. If b = 1, then z ∈ Q ∩ wj and hence
b = wj(z). If b = 0, then z /∈ wj and hence b = wj(z). This proves (4).

4. |z| = p′
k for p′ ∈ P≥41, p′ /∈ ts, k ≥ 1: Let b = wj(z). By Claim 17.4, wb is ts−1-valid,

which implies (4).
5. Otherwise: Let b = 0. By Claim 17.5, wb is ts−1-valid. Assume b 6= wj(z), i.e., z ∈ wj .

We know that wj is tj-valid. From V1 it follows that z must be a word of length p′k

for p′ ∈ P≥41 and p′ ∈ ts−1 (note that the case p′ /∈ ts−1 has already been considered in
4). Choose s′ such that ts−1(s′) = p′ and note that s′ is odd. From V4a it follows that
z /∈ wj , a contradiction which implies (4).

This shows that there exists a ts−1-valid w′ w v1 wp ws−1 such that |w′| = |wj | > u′ and
for all q ∈ Q it holds that q ∈ w′ ⇔ q ∈ wj . Hence Mw′

s (u′) definitely accepts. Moreover,
|v| = q̄ and hence q̄ ∈ w′. From |q̄| = pk it follows vpk ∈ Kw′ and u′ ∈ Kw′

∨ . Therefore,
step s of the construction defines ts = ts−1 + 0 (and chooses for instance ws = w′), which
contradicts the assumption ts(s) = p ∈ P≥41. C

B Claim 19. KO
∨ ∪B is ≤p,O

m -complete for NPO for all B ∈ NPO that are disjoint to KO
∨ .

Proof. Choose s odd such that B = L(MO
s ). We claim that ts(s) = p ∈ P≥41. Otherwise,

there exists x ∈ Kws
∨ such that Mws

s (x) definitely accepts. Hence x ∈ KO
∨ and MO

s (x)
accepts, which contradicts the assumption KO

∨ ∩ L(MO
s ) = ∅.

Let f(〈u1, . . . , un〉) = 〈u0, u1, . . . , un〉, where u0 = vpk for the minimal k ≥ 1 such that
|〈u1, . . . , un〉| ≤ |vpk |.

It holds that f ∈ FP ⊆ FPO. We argue that f reduces KO
∨ to KO

∨ ∪B. If 〈u1, . . . , un〉 ∈
KO
∨ , then f(〈u1, . . . , un〉) ∈ KO

∨ .
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Assume now 〈u1, . . . , un〉 /∈ KO
∨ . From ts(s) = p it follows that for all k ≥ 1, O does

not contain elements of length pk and hence vpk /∈ KO. Therefore, f(〈u1, . . . , un〉) /∈ KO
∨ .

Moreover, by Claim 18, f(〈u1, . . . , un〉) /∈ L(MO
s ) = B. C

B Claim 20. If A is ≤p,O
m -complete for NPO and disjoint to B ∈ NPO, then A ∪ B is

≤p,O
m -complete for NPO.

Proof. Otherwise, there are counterexamples A and B. Choose f ∈ FPO such that KO
∨≤p,O

m A

via f and let B′ = f−1(B). Observe B′ ∈ NPO, KO
∨ ∩B′ = ∅, and KO

∨ ∪B′≤p,O
m A ∪B via

f . Hence KO
∨ ∪B′ is not ≤p,O

m -complete for NPO, which contradicts Claim 19. C

B Claim 21. KO
∨ has PO-optimal proof systems.

The straightforward proof of this claim is left due to space restrictions. As KO
∨ is ≤p,O

m -
complete for coNPO, the first statement of the theorem holds. This finishes the proof of
Theorem 12. J

Köbler, Messner, and Torán [24] prove the following implications (5) and (6).

NEE ∩ TALLY ⊆ coNEE ⇒ Hopps (5)
NEE ∩ TALLY ⊆ EE ⇒ ∃ P-optimal pps (6)

Relative to the oracle O constructed above, the converses of (5) and (6) fail, i.e., the
premises are stronger than the conclusions. This supports the hope that one can weaken the
premises in (5) and (6).

4.3 Further Oracles
We briefly discuss two further oracles.

I Theorem 22. There exists an oracle O with the following properties.
1. DisjNPO does not have ≤pp,O

m -complete pairs (and hence ¬Hopps relative to O).
2. There are disjoint sets A and B that are ≤p,O

m -complete for NPO such that A ∪B is not
≤p,O

m -complete for NPO.
The construction of this oracle is simpler than the other constructions. In order to achieve
statement 1, we proceed similarly as for the oracle in Theorem 11. ¬Hunion can be achieved
by a straightforward diagonalization.

The following theorem shows that the implication Hunion ⇒ Hcpair cannot be proven in a
relativizable way. Ogiwara and Hemachandra [28] construct an oracle that proves that the
converse implication Hcpair ⇒ Hunion cannot be proven relativizably as well.

I Theorem 23. There exists an oracle O with the following properties.
1. DisjNPO does not have ≤pp,O

m -complete pairs (and hence ¬Hopps relative to O).
2. If A is ≤p,O

m -complete for NPO and disjoint to B ∈ NPO, then A ∪ B is ≤p,O
m -complete

for NPO.
The construction of this oracle has similarities to the constructions in the Theorems 11 and
12. However, there are less dependencies and thus, the construction is less complicated.
Roughly speaking, we achieve ¬Hcpair in the same way as in Theorem 11 and Hunion can be
obtained similarly as in Theorem 12.

STACS 2020
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Table 1 Summary of oracles and their properties. Each column corresponds to the oracle
mentioned in the topmost cell. We say that there exist P-optimal (resp., optimal) pps relative to an
oracle, if relative to this oracle, some ≤p

m-complete A ∈ coNP has a P-optimal (resp., optimal) proof
system (cf. Remark 2). A disjoint NP-pair (A, B) is ≤pp

T -complete, if for every disjoint NP-pair
(C, D) and every separator S of (A, B) there exists a separator T of (C, D) such that T≤p

TS. A
disjoint NP-pair (A, B) is ≤pp

T -hard for NP, if for every C ∈ NP and every separator S of (A, B) it
holds that C≤p

TS. The double exponential time classes are defined as EE = DTIME(2O(2n)) and
NEE = NTIME(2O(2n)).

[1
6,

T
3.
8]

[1
6,

T
6.
1]

[1
6,

T
6.
7]

[2
8,

L4
.7
]

[2
2,

T
1]

T
hm

11

T
hm

12

T
hm

22

T
hm

23

∃ P-optimal pps false false false true false false
∃ optimal pps / Hopps false true false true false true false false
NPCp

m closed under disj. union / Hunion false true true false true
∃ ≤pp

m -complete disjoint NP-pairs / Hcpair false true true true true false true false false
∃ ≤pp

T -complete disjoint NP-pairs false true true true true true
∃ disj. NP-pairs that are ≤pp

T -hard for NP false false false true false
∃ P-inseparable disjoint NP-pairs true true true true false true true true
P 6= UP false false
P 6= NP true true true true true true true true true
UP 6= NP true true true true true true
NP 6= coNP true true true false true true true true true
NP ∩ SPARSE has ≤p

m-complete sets true false true true
E 6= NE true true true true true true true
NE 6= coNE true false true false true true true true
NEE ∩ TALLY 6⊆ EE true true true true true true
NEE ∩ TALLY 6⊆ coNEE true false true false true true true true

5 Conclusion and Open Questions

The main goal of this paper is to investigate the hypotheses Hunion, Hopps, and Hcpair. We
have shown that – except for the known implication Hopps ⇒ Hcpair – each two of these
hypotheses are independent under relativizable proofs. But what are the connections between
the hypotheses if we consider all three at once? At first glance there are 8 possible situations.
As Hopps implies Hcpair relative to all oracles, there remain 6 possible situations. Table 1
illustrates that oracles for 4 of the 6 possible situations are known. This leads to the open
question: do there also exist oracles for the remaining two situations. More precisely, we ask:

Does there exist an oracle O1 with the following properties?
Relative to O1, ¬Hopps ∧Hunion ∧Hcpair, i.e., there are no optimal pps, unions of disjoint,
≤p

m-complete NP-sets remain complete, and there are ≤pp
m -complete disjoint NP-pairs.

Does there exist an oracle O2 with the following properties?
Relative toO2, ¬Hopps∧¬Hunion∧Hcpair, i.e., there is no optimal pps, unions of disjoint≤p

m-
complete NP-sets are not always ≤p

m-complete, and DisjNP has ≤pp
m -complete elements.

Furthermore we receive new insights on problems related to the main topic. On the
one hand, we answer an open question by Pudlák [32] who asks for an oracle relative to
which neither ¬Hcpair nor ¬Hopps implies that UP does not have ≤p

m-complete elements
(cf. Theorem 11). On the other hand, we show that the converses of Köbler, Messner,
and Torán’s [24] implications (NEE ∩ TALLY ⊆ coNEE ⇒ Hopps) and (NEE ∩ TALLY ⊆
EE ⇒ there exist P-optimal pps) fail relative to an oracle.
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