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—— Abstract

We study algorithmic randomness properties for probability measures on Cantor space. We say
that a measure p on the space of infinite bit sequences is Martin-Lo6f absolutely continuous if the
non-Martin-Lo6f random bit sequences form a null set with respect to p. We think of this as a weak
randomness notion for measures. We begin with examples, and a robustness property related to
Solovay tests. Our main work connects our property to the growth of the initial segment complexity
for measures p; the latter is defined as a p-average over the complexity of strings of the same
length. We show that a maximal growth implies our weak randomness property, but also that
both implications of the Levin-Schnorr theorem fail. We briefly discuss K-triviality for measures,
which means that the growth of initial segment complexity is as slow as possible. We show that
full Martin-Lo6f randomness of a measure implies Martin-Lof absolute continuity; the converse fails
because only the latter property is compatible with having atoms. In a final section we consider weak
randomness relative to a general ergodic computable measure. We seek appropriate effective versions
of the Shannon-McMillan-Breiman theorem and the Brudno theorem where the bit sequences are
replaced by measures.
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1 Introduction

The theory of algorithmic randomness is usually developed for bit sequences. A central
randomness notion based on algorithmic tests is the one due to Martin-Lof [11].

Let {0, 1} denote the topological space of infinite bit sequences. A probability measure
p on {0,1}Y can be seen as a statistical superposition of bit sequences. The bit sequences
Z form an extreme case: the corresponding measure p is the Dirac measure dz, i.e., p is
concentrated on {Z}. The opposite extreme is the uniform measure A which independently
gives each bit value the probability 1/2. The uniform measure represents the maximum
disorder as no bit sequence is preferred over any other.
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Randomness for Probability Measures

Recall that a measure p on {0,1}" is called absolutely continuous if each A-null set is a
p-null set. Our main concept is an algorithmic randomness notion for probability measures
that is a weakening of absolute continuity: we require that the A-null set in the hypothesis
be effective in the sense of Martin-Lof. Given that there is a universal Martin-Lof test, and
hence a largest effective null set, all we have to require is that ;(C) = 0 where C is the class
of bit sequences that are not Martin-Lof random.

Our research is partly motivated by a recent definition of Martin-Lof randomness for
quantum states corresponding to infinitely many qubits, due to the first author and Scholz [18].
Using the terminology there, probability measures correspond to the quantum states p where
the matrix p [z, is diagonal for each n, where M,, is the algebra of complex 2™ x 2™ matrices.
Subsequent work of Tejas Bhojraj has shown that for measures, the randomness notion defined
there is equivalent to the one proposed here. So the measures form a useful intermediate
case to test conjectures in the subtler setting of quantum states. This applies, for instance,
to the SMB theorem discussed at the end of this section, which is studied in the setting of
quantum states by the first author and Tomamichel (see the post in [20]).

Growth of initial segment complexity. Given a binary string x, by C'(x) one denotes its
plain descriptive complexity, and by K (x) its prefix-free descriptive complexity. Our main
motivation is derived from the classical theory. Randomness of infinite bit sequences is
linked to the growth of the descriptive complexity of their initial segments. For instance, the
Levin-Schnorr theorem intuitively says that randomness of Z means incompressibility (up to
the same constant b) of all the initial segments of Z. We want to study how much of this is
retained in the setting of measures u. One now takes the u-average over the complexity of
all strings of a given length n. It turns out that interesting new growth behaviour is possible,
such as having maximal growth of C-complexity on all initial segments. This growth rate
is ruled out for bit sequences by a result of Katseff. However, using that “most strings are
incompressible” we verify in Fact 9 that the uniform measure A has this growth behaviour,
namely C(A[,) >* n. On the other hand, we show that this type of fast growth implies our
weak randomness notion.

The formal growth condition in the Levin-Schnorr theorem says that K(x) > |z| — b for
each initial segment x of Z, where K (z) is the prefix free version of Kolmogorov complexity of
a string . The “n-th initial segment” of a measure p is given by its values u[z] for all strings
x of length n, where [z] denotes the set of infinite sequences extending x. As mentioned,
it is natural to define the initial segment complexities C(u [,) and K (u [,,) of this initial
segment as the p-average of the individual complexities of those strings. With this definition,
in Section 3 we show that both implications of the analog of the Levin-Schnorr theorem
fail. However, we also show in Proposition 25 that for measures that are random in our
weak sense, C'(u[,)/n, or equivalently K (u[,)/n, converges to 1. Thus, such measures have
effective dimension 1; see Downey and Hirschfeldt [5, Section 12.3] on effective dimension.

Further results and potential avenues for future research. Opposite to random bit se-
quences are the K-trivial sequences, where the initial segment complexity grows no faster
than that of a computable set; for background see e.g. Nies [17, Section 5.3]. In Section 4
we briefly extend this notion to statistical superpositions of bit sequences: we introduce
K-trivial measures and show that they have countable support. This means that they are
countable combinations of Dirac measures.

Measures can be viewed points in a canonical computable probability space, in the sense
of [8]. This yields a notion of Martin-Lof randomness for measures. Culver [4, Th. 2.7.1]
has shown that no measure p that is Martin-Lo6f random is absolutely continuous; in fact p
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is orthogonal to A in the sense that some null set is co-null with respect to u. In contrast,
in Section 5 we show that this notion implies our weak notion of randomness, ML-absolute
continuity. The stronger randomness notion forces the measure to be atomless, so the
converse implication fails. Further questions can be asked about the relationships between
the different randomness notions for measures we have discussed. For instance, does the
strong notion imply maximal growth of initial segment complexity for the measure (in the
sense of C or of K)? We plan to address such questions in the upcoming journal version of
the paper.

The Shannon-McMillan-Breiman Theorem from the 1950s (see [24], where it is called
the Entropy Theorem) says informally that for an ergodic measure p on {0, 1}, outside a
null set every bit sequence Z reflects the entropy of the measure p by the limiting weighted
information content on its sufficiently large initial segments. In the final Section 6 we study
what happens when Z is replaced by a measure p that is Martin-Lof a.c. with respect to
p and we take the p-average of the information contents at the same length. Here we only
obtain a partial result. However, in a similar vein, we establish an analog for measures of the
effective Brudno’s theorem [6, 7] that the entropy of p is given as the limit of K(Z,)/n, for
any Z that is p-ML random. Obtaining a measure version of the effective Birkhoff ergodic
theorem would be interesting as well.

For general background on recursion theory and algorithmic randomness we refer the
readers to the textbooks of Calude [2], Downey and Hirschfeldt [5], Li and Vitanyi [10], Nies
[17], Odifreddi [21, 22|, and Soare [25]. Lecture notes on recursion theory are also available
online, e.g. [26].

2 Measures and Randomness

In this section we formally define our main notion (Definition 3), and collect some basic facts
concerning it. In particular, we verify that the well-known equivalence of Martin-Lof test and
Solovay tests extends to measures. We begin by briefly discussing algorithmic randomness
for bit sequences [5, 17]. We use standard notation: letters Z, X, ... denote elements of the
space of infinite bit sequences {0, 1}V, o, 7 denote finite bit strings, and [o0] = {Z: Z = o} is
the set of infinite bit sequences extending o. Z [,, denotes the string consisting of the first
n bits of Z. For quantities r, s depending on the same parameters, one writes r <t s for
r < s+ O(1). A subset G of {0,1}" is called effectively open if G = |J,[o;] for a computable
sequence (0;), .y of strings. A measure p on {0,1}" is computable if the map {0,1}<% — R
given by o — p[o] is computable.

» Definition 1. Let p be a computable measure on {0,1}N. A p-Martin-Léf test (p-ML-test,
for short) is a sequence (Gr,) of uniformly effectively open sets such that pG,, < 2™™ for
each m. A bit sequence Z fails the test if Z € (,, Gm, otherwise it passes the test. A bit
sequence Z is p- Martin-Lof random (ML-random) if Z passes each p-ML-test.

By A one denotes the uniform measure on {0, 1}". So A[¢] = 27°! for each string o. If no
measure p is provided it will be tacitly assumed that p = A\, and we will use the term ML-
random instead of A-ML-random etc. Let K (z) denote the prefix free version of descriptive
(i.e., Kolmogorov) complexity of a bit string x.

» Theorem 2 (Levin [9], Schnorr [23]). Z is ML-random < IvnK(Z1,) > n—b.

Using the notation of [17, Ch. 3], let R, denote the set of bit sequences Z such that
K(Z1,) <n —b for some n. It is easy to see that (Ry),y forms a Martin-Lof test. The
Levin-Schnorr theorem says that this test is universal: Z is ML-random iff it passes the test.
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Unless otherwise stated, all measures will be probability measures. We use the letters
w, v, p for probability measures (and recall that A denotes the uniform measure). We now
provide the formal definition of our weak randomness notion for measures.

» Definition 3 (Main). A measure p is called Martin-Lof absolutely continuous in p (p-ML
a.c., for short) if inf,,, 1(Gm) = 0 for each p-Martin-Léf test (Gum),,cn- We write pp <arr p.

If inf,, u(Gy,) = 0 we say that p passes the test. If inf,, u(G,,) > d where 6 > 0 we say u
fails the test at level §.

Martin-Lof absolute continuity is a weakening of the usual notion of absolute continuity
p < p. In fact, u < p iff p is p-M LX-a.c. for each oracle X.

In the definition it suffices to consider p-ML tests (G,,) such that G,, 2 G,,41 for
each m, because we can replace (G,,) by the p-ML test Gy = Uksm Gk, and of course
inf,,, 1(Gp) = 0 implies inf,, 1(Gy) = 0. So we can change the definition above, replacing
the condition inf,, G,, = 0 by the only apparently stronger condition lim,, G,, = 0.

The intersection of a universal p-ML test consists of the non-ML random sequences. Since

such a test exists, we have:
» Fact 4. p < rp p iff the sequences which are not p-ML random form a p-null set.
We have already mentioned the two diametrically opposite types of examples:

» Example 5. (a) p < p.
(b) For a Dirac measure 0z, we have §z <, p iff Z is p-ML random.

For p # 1/2, a Bernoulli measure on {0, 1}, that independently gives probability p to a 0
in each position, is not Martin-Lof a.c. To see this, note that each ML-random sequence Z
satisfies the law of large numbers

liml|{i <n:Z@G)=1}=1/2;
non

see e.g. [17, Prop. 3.2.19]. So if p is Martin-Lof a.c., then u-almost surely, Z satisfies the law
of large numbers. This is not the case for such Bernoulli measures.
For a measure v and string o with v[o] > 0 let v, be the localisation:

vs(A) =v(AN|o])/v]o].

Clearly if v is Martin-Lof a.c. then so is v,.

A set S of probability measures is called convex if u; € S for i < k implies that the
convex combination p = Y, a;p; is in S, where the o; are reals in [0,1] and ), a; = 1. The
extreme points of S are the ones that can only be written as convex combinations of length 1
of elements of S.

» Proposition 6. The Martin-Lof a.c. probability measures form a convex set. Its extreme
points are the Martin-Léf a.c. Dirac measures, i.e. the measures 0 z where Z is a ML-random
bit sequence.

Proof. Let yp =), o;p; as above where the p1; are Martin-Lof a.c. measures. Suppose (G.,)
is a Martin-Lof test. Then lim,, u;(G,,) = 0 for each 4, and hence lim,, u(G,,) = 0.

Suppose that p is Martin-Lof a.c. If p is a Dirac measure then it is an extreme point of
the Martin-Lof a.c. measures. Conversely, if y is not Dirac, there is a least number ¢ such
that the decomposition

p= > plolpo
|o|=t,ulo]>0

is nontrivial. Hence p is not an extreme point. <
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Recall that a Solovay test is a sequence (Sk) ;o of uniformly X9 sets such that =, A\(Sy) < oc.
A bit sequence Z passes such a test if Z ¢ Sy, for almost every k. (Each ML-test is a Solovay
test, but the passing condition is stronger for Solovay tests). A basic fact from the theory
of algorithmic randomness (e.g. [17, 3.2.9]) states that Z is ML-random iff Z passes each
Solovay test.

The following characterises the Martin-Lof a.c. measures with countable support.

» Fact 7. Let p =), ci0z, where V[0 < cx < 1] and >, cx = 1. Then p is Martin-Lof
a.c. iff all the Z;, are Martin-Léf random.

Proof. The implication from left to right is immediate. For the converse implication, given
a Martin-Lof test (G,,), note that the Zj pass this test as a Solovay test. Hence for each r,
there is M such that Z; € G, for each k < r and each m > M. This implies that
(Gm) <D 4, ek for each m > M. So lim,, u(G.y,) = 0. <

We say that a measure p passes a Solovay test (Sk),cy if limg p(Sx) = 0. The fact that
passing all Martin-Lof tests is equivalent to passing all Solovay tests generalises from bit
sequences to measures. We note that Tejas Bhojraj (in preparation) proved such a result in
even greater generality in the setting of quantum states, where the proof is more involved.

» Proposition 8. A measure p is Martin-Lof a.c. iff p passes each Solovay test.

Proof. Each Martin-Lof test is a Solovay test, and the passing condition lim,, u(G,,) =0
works for both types of tests by the remark after Definition 3. This yields the implication
from right to left.

For the implication from left to right, let x be Martin-Lof a.c. and let (Sk), .y be a
Solovay test. By lim sup,, Sk one denotes the set of bit sequences Z such that I3k Z € Sy,
that is, the sequences that fail the test. By the basic fact (e.g. [17, 3.2.9]) mentioned above,
the set of ML-random sequences is disjoint from lim sup,, S;. By hypothesis on p we have
p(limsup,, Sk) = 0. By Fatou’s Lemma, limsupy, p(Sk) < p(limsup,, Si). So u passes the
Solovay test. |

3 Initial segment complexity of a measure u

Let K(p [n) = >2j4=n K(z)p[z] be the praverage of all the K(x) over all strings x of
length n. In a similar way we define C(u[,). Note that for a Dirac measure dz, we have
K0z [n) = K(Zn)-

In this section we use standard inequalities such as C(x) <* K(z), K(z) <* |z|+2log |z|
and K(0™) <* 2logn. We also use that for each r there are at most 2" — 1 strings such that
C(z) < r. See e.g. [17, Ch. 2]. Recall that A denotes the uniform measure on {0, 1}".

3.1 A fast growing initial segment complexity implies being ML-a.c.

Recall that C(z) <t |z| and K(z) < |z| + K(]z|). The following says that the uniform
measure A has the fastest growing initial segment complexity that is possible in both sense
of C' and of K.

» Fact 9.
(@) C(A\In) =T n.
(b) K(Aln) 21 n+ K(n).

55:5
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Proof. Chaitin [3] showed that there is a constant ¢ such that, for all d, there are at most
2nte=d gtrings o € {0, 1}" with C(z) < n — d. Similarly, among the strings of length n, there
are at most 2"+¢~9 strings with K (x) < n+ K(n) —d. In other words, the fraction of strings
of length n where, for (a), C'(z) < n —d, and, for (b), K(z) < n+ K(n) — d, respectively, is
in each case at most 2°~. Now for each d, from the estimated lower bound n and n + K (n),
respectively, one subtracts the fraction of the strings of length n for which the Kolmogorov
complexity is at least d below the average in order to correct the lower bound. For, if = is a
string of length n such that C'(z) < n —r (resp, K(z) < n+ K(n) —r), then in computing
C(Aln) (resp, K(X],)) a correction of 27" has to be subtracted r times, for d =1,...,7.

Let ¢4 be the fraction of strings of length n with C(z) < n —d, and let k4 be the fraction
of strings with K(x) < n+ K(n) — d. Then as argued above,

C(ATn) Zn—ch and K(\[,) Zn—i—K(n)—de.

d>0 d>0

Using Chaitin’s bounds gives then the corrected estimates on the averages of

C(A rn) >n— ZQCid and K()\ [n) > n+K(n) _ 2207(1.
d>0 =

Now one uses that ) 450 2¢=d < 2¢+1 and that 2¢t! is a constant independent of n and only
dependent on the universal machine in order to get that C(A [,) > n and K(A[,) >7
n+ K(n). <

Recall [10] that a bit sequence Z € {0,1}" is called Kolmogorov random if there is 7 such
that C(Z],) > n — r for infinitely many n; Z is strongly Chaitin random if there is r such
that K(Z [,) > n+ K(n) — r for infinitely many n. For bit sequences these notions are
equivalent to 2-randomness by [19] and [13], respectively; also see [17, 8.1.14] or [5].

We may extend these notion to measures. We show that a measure satisfying either of
the notions is Martin-Lof a.c.:

» Theorem 10.

(a) Suppose that u is a measure such that there is an r with C(u[,) > n —r for infinitely
many n. Then u is Martin-Lof a.c.

(b) The same conclusion holds under the hypothesis that K (i [,) > n+K(n)—r for infinitely
many n.

Proof. Suppose that u is not Martin-Lof a.c. So there is a Martin-Lof test (Gq) ey and
d > 0 such that pu(Gy) > 6 for each d. We view G4 as given by an enumeration of strings,
uniformly in d; thus G4 = (J;[o4] for a sequence (o), that is computable uniformly in d.
Let Gf" denote the clopen set generated by the strings in this enumeration of length at
most n. (Note that this set is not effectively given as a clopen set, but we effectively have a
description of it as a X{ set). Let ¢ be a constant such that, for each z of length n, one has
C(z) <n+cincase (a), and K(x) <n+ K(n)+ c in case (b).

» Lemma 11. If x is a string of length n such that [x] C G5" then C(x | d) <T n —d and
K(z|n,d) <t n-—d.

To verify this, we first consider the case of plain complexity C. Let N be a fixed plain
machine that on input y and auxiliary input d prints out the y-th string « of length n = |y|+d
such that our enumeration of G?" asserts that [z] C G?". (Here we view y as the binary
representation of a number, with leading zeros allowed.) Since AG4 < 2%, sufficiently many
strings are available to print all such z. This machine shows that C(z | d) <T n — d for any
z such that [z] C G5, as required.
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For the case of prefix free complexity K, let N’ be the slightly modified machine where
both n and d are auxiliary inputs. The machine N provides for a string x of length n a
description of length n — d. So for N’, for the same pair n,d, the descriptions of different
strings form a prefix free set. This verifies the lemma.

Now such z satisfy (after increaing x, if necessary) that C'(z) < n —d+ 2logd + ¢ and
K(z) <n+ K(n)—d+ 2logd+ c. We complete the proof separately for (a) and (b).

(a) For each d, n, letting  range over strings of length n, we have

Clul) = Y Cl@ula] = S Culsl+ Y Claulal.

lzl=n [z]cGy" [ ZG3"

The first summand is bounded above by ,u(G?")(n —d+ 2logd+ ¢) via the lemma, the
second by (1 — u(G5™))(n + ¢). We obtain

Clln) <n+c—p(G5")d/2.

Now for each d, for sufficiently large n we have u(G’;”) > 4. So given r let d = 2r/9;

then for large enough n we have C(ul,) <n+c—r.
(b) For each d,n, letting = range over strings of length n, we have

Kph) = 3 K@l = Y K@uld+ Y K@l

|z|=n [€]cG5™ [z]gG5™

The first summand is bounded above by u(G?")(n + K(n) —d+2logd + ¢), the second
by (1 — u(G3™)(n + K(n) + ). We obtain

K(uln) <n+ K(n)+c— u(G3")d/2.
Now for each d, for sufficiently large n we have u(G%”) > §. As before, given 7 let
d = 2r/é; then for large enough n we have K(ul,) <n+ K(n)+c—r. <
It would be interesting to know whether the above-mentioned coincidences of randomness
notions for bit sequences lift to measures; for instance, do the conditions in the theorem
above actually imply that the measure is ML-a.c. relative to the halting problem ('?

3.2 Both implications of the Levin-Schnorr Theorem fail for measures

We will show that both implications of the analog of the Levin-Schnorr Theorem 2 fail for
measures. One implication would say that a Martin-Lof a.c. measure cannot have initial
segment complexity in the sense of K growing slower than n —O(1). This can be disproved by
a simple example of a measure with countable support. On the other hand, by Proposition 25
below, we have lim,, K(u [,)/n = 1 for each Martin-Lof a.c. measure u, which provides a
lower bound on the growth.

» Example 12. Let 6 € (0,1). There is a Martin-Lof a.c. measure p such that K(ul,) <t
0

n-—n-.

Proof. We let u = Y ¢;dz, where Zj, is Martin-Lof random and 0™ < Z, for a sequence
(ck) of reals in [0, 1] that add up to 1, and a sufficiently fast growing computable sequence
(nk) to be determined below. Then p is Martin-Lof a.c. by Fact 7.

55:7
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For n such that ny <n < ng4; we have

k 00
K(ula) <t O a)-(n+2logn)+( D «)-2logn
1=0 I=k+1
<t (1 —cry1)n+2logn.

Hence, to achieve K (u[,) <t n — n? it suffices to ensure that Ck+1Mk > nZH + 2log ng41

for almost all k. For instance, we can let ¢, = m and ny = 2F+4, |

To disprove the converse implication, we need to provide a measure p such that K(u],) > n
yet p is not Martin-Lof a.c. This will be immediate from the following fact on the growth of
initial segment complexity for certain bit sequences.

» Theorem 13. There are a Martin-Lif random bit sequence X and a non-Martin-Lof
random bit sequence Y such that, for alln, K(X [,) + K(Y [,) >T 2n.

Proof. Let X be a low Martin-Lof random set (i.e., X' = 0'). We claim that there is a
strictly increasing function f such that the complement of the range of f is a recursively
enumerable set E, and K(X [,,) > m + 3n for all m > f(n). To see this, recall that
lim,, K(X [,) —n = oo. Since X is low there is a computable function p such that for all n,
limg p(n, s) is the maximal m such that K(X [,,) < m + 3n.

Define f(n,s) for n < s as follows. f(n,0) = n; for s > 0 let n be least such that
p(n,s) > f(n,s —1) or n =s. If m > n and n < s then let f(m,s) = s+ m —n else let
f<m>s) = f(m,s— 1)'

Note that for each n there are only finitely many s > 0 with f(n,s) # f(n,s — 1) and
that almost all s satisfy f(n,s) > p(n, s), as otherwise f(n,s) would be modified either at
n or some smaller value. Furthermore, f(n,s) # f(n,s — 1) can only happen if there is an
m < n with f(m,s — 1) < p(m,s) and that happens only finitely often, as all the p(m, s)
converge to a fixed value and every change of an f(m, s) at some time s leads to a value
above s. Furthermore, once an element is outside the range of f, it will never return, and
so the complement of the range of f is recursively enumerable. So f(n) = lim, f(n,s) is a
function as required, which verifies the claim. (The complement F of the range of f is called
a Dekker deficiency set in the literature [21].)

Now let g(n) = max{m : f(m) <n} (with the convention that max(@)) = 0). Since g is
unbounded, by a result of Miller and Yu [15, Cor. 3.2] there is a Martin-Lof random Z such
that there exist infinitely many n with K(Z[,) < n + g(n)/2; note that the result of Miller
and Yu does not make any effectivity requirements on g. Let

Y={n+g(n):neZz}

Note that K(Z[,) < K(Y I,) + g(n) + K(g(n)), as one can enumerate the set E until there
are, up to n, only g(n) many places not enumerated and then one can reconstruct Z [,, from
Y I, and g(n) and the last g(n) bits of Z [,,. As Z is Martin-Lof random, K(Z [,) >T n, so

K(Y o) 2" n—g(n) — K(g(n)) 2" n —2g(n).

The definitions of X, f, g give K (X [,) > n+3g(n). This shows that K(X [,,)+ K (Y [,) > 2n
for almost all n.

However, the set Y is not Martin-Lo6f random, as there are infinitely many n such that
K(Z1,) <t n+g(n)/2. Now Y [, 44(n) can be computed from Z [, and g(n), as one needs
only to enumerate F until the g(n) nonelements of E below n are found and they allow to see
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where the zeroes have to be inserted into the string Z [, in order to obtain Y [,, 4 4(,). Note
furthermore, that K(g(n)) < g(n)/4 for almost all n and thus K (Y [,4g4(n)) <T n+3/4-g(n)
for infinitely many n, so Y cannot be Martin-L6f random. <

3.3 Failing a restricted type of test implies non-complex initial
segments

We say that a Solovay test (S,), .y is strong if each S, is clopen and given by a strong
index for a finite set of strings X, such that [X,]~ = S,. For bit sequences, this means no
restriction: any Solovay test can be replaced by a strong Solovay test listing the strings
making up the X{ sets one-by-one. (We conjecture that this equivalence of test notions no
longer holds for measures.) The following is a weak version for measures of one implication
of the Miller-Yu theorem [14, Thm. 7.1.]. We use elements of the proof in Bienvenu et al. [1].
We note that the result is a variation on (the contrapositive of) Theorem 10(a), proving a
stronger conclusion from a stronger hypothesis.

» Proposition 14. Suppose that p fails a strong Solovay test (S,), .y at level §, namely
37 [u(Sy) > 8]. Then there is a computable function f such that Y, 275 (™ < oo and

FI*n[Clulnl n) < n—0df(n)).

Proof. Let (X,) be as in the definition of a strong Solovay test. We may assume that
>AS, <1/2, and all strings in X, have the same length n,.. Let f be computable such that

27f(77"r') > A(ST) > Q*f(’ﬂr)fl

and f(m) = 2~™ for m not of the form n,. There is a constant d such that each bit string «
in the set X, satisfies (where n =n,.)

Clx[n) <n—f(n)+d=:g(r) (1)

For, r can be computed from n = n,, and each string x € X, is determined by r and
its position i < 2"A(X,) in the lexicographical listing of X,. We can determine i by
log(2"A\(X,)) < n — f(n) + d bits for some fixed d. In fact we may assume the description
has exactly that many bits. Thus, there is a Turing machine L with two inputs such that for
each o € X, we have L(vy,;n) = o for some bit string v, of length g(r).

Let ¢ be a constant such that C(x) < |z| + ¢ for each string z. Now suppose that
wu(Sy) > 4. Then for n = n,,

Clplaln) <t Y (n=fm)ulol + Y (n+c)ulo]

oeX, ogX,
<t n—f(n) Y plo]
ceX,
<t n—df(n).
Since there are infinitely many such r by hypothesis, this completes the proof. <

4  K-triviality for measures

» Definition 15. A measure p is called K -trivial if K(u[,) <T K(n) for each n.

For Dirac measures d4 this is the same as saying that A is K-trivial in the usual sense. More
generally, any finite convex combination of such Dirac measures is K-trivial.

STACS 2020
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» Proposition 16. If i is K-trivial, then p is supported by its set of atoms.
In fact the weaker hypothesis that Ip3°n [K(ul,) < K(n) + p| suffices.

Proof. For a set R C {0,1}*, by [R]™ one denotes the open set {Z: InZ[,€ R}.

Assume for a contradiction that u gives a measure greater than € > 0 to the set of its
non-atoms. Note that there is a constant b such that K(z) > K(|z|) — b for each z. Fix ¢
arbitrary with the goal of showing that K(u[,) > K(n) — b+ ec/2 for large enough n.

There is d (in fact d = O(2°)) such that for each n there are at most d strings « of length
n with K(z) < K(n) + ¢ (see e.g. [17, 2.2.26]). Let S, = {z: |z| =n A plz] < €/2d}. By
hypothesis we have u[S,]™ > € for large enough n. Therefore by choice of d we have

wulSn N {x: K(z) > K(|z|) +c}]™ > ¢€/2.
Now we can give a lower bound for the p-average of K(x) over all strings « of length n:

Y K(@)ulz] > (1 - €/2)(K(n) = b) + (¢/2)(K(n) + ¢) > K(n) — b+ ec/2,
|z|=n

as required. Notice that we have only used the weaker hypothesis. |

Thus, if pu is K-trivial for constant p, then u has the form
each «, is positive and > o = 1.

renN @r0a, where N < oo and

r<N

» Fact 17. Each A, is K-trivial for constant (p + ¢)/ .., for some fized c.

Proof. Let ¢ be a constant such that K(x) > K(|x|) — ¢ for each string 2. We have

Kn)+p>K(uln) = ZO‘SK(AS [n) > ar K(Ar [n) + ZO‘S(K(TL) —c).
s S#T

Therefore o, K(n) +p+ ¢ > a,. K(A[,), as required. <

It would be interesting to characterise the countable convex combinations of K-trivials that
yield K-trivial measures. The following is easily checked.

» Fact 18. Suppose that A, is K-trivial with constant b, and ), a,b, < ¢ < oo where each
o, is positive and Y, = 1. Then =3 a,04, is K-trivial with constant c.

For instance, we can build a computable K-trivial measure with infinitely many atoms as
follows. Let A, = 0"t11°° so that K(A, [,) <t K(n) + 2logr. Let p = > 27"t14,. By
the above fact u is K-trivial. If we vary the construction by letting A, = 0"*'1B where B is
K-trivial but non-recursive, we obtain a K-trivial measure p with infinitely many atoms,
and none of them recursive.

On the other hand, the following example shows that not every infinite convex combination
uw= Zk ada, of K-trivial Dirac measures for constant by yields a K-trivial measure, even
if agby is bounded. Let Ay = {£: £ € QAL <k}, and ap = (k+1)"Y2 — (k+2)"Y/2. All
sets Ay are finite and thus K-trivial for constant 2k + O(1). Furthermore, the sum of all oy,
is 1 and ay, = O(1/k). We have

Kpl) =Y K@) > () am) KQn)>n+2)7"% (n+2)=vn+2
|z|=n m>n

for almost all n, and thus the average grows faster than K(n) + ¢. So the measure is not
K-trivial.
In a sense, an atomless measure can come arbitrarily close to being K-trivial.
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» Proposition 19. For each nondecreasing unbounded function f which is computably ap-
prozimable from above there is a non-atomic measure p such that K(p[,) <T K(n) + f(n).

Proof. There is a recursively enumerable set A such that, for all n, AN{0,...,n} has up
to a constant f(n)/2 non-elements. One lets p be the measure such that p(xr) =27 in
the case that all ones in = are not in A and p(x) = 0 otherwise, where m is the number of
non-elements of A below |z|. One can see that when u(z) = 27™ then x can be computed
from |z| and the string bob; ... by, —1 which describes the bits at the non-elements of A. Thus

K(z) < K(|z|) + K(boby - - - by—1) <7 K(|z]) + 2m.

It follows that K(u [,) <T K(n) + f(n), as the p-average of strings z € {0,1}" with
K(z) <t K(n) + f(n) is at most K(n) + f(n) plus a constant. <

5 Full Martin-Lof randomness of measures

Let M ({0, 1}Y) be the space of probability measures on Cantor space (which is canonically
a compact topological space). A probability measure P on this space has been introduced
implicitly in Mauldin and Monticino [12]. Culver’s thesis [4] shows that this measure is
computable. So the framework of [8] yields a notion of Martin-Lof randomness for points in
the space M ({0, 1}1).

To define P, first let R be the closed set of representations of probability measures; namely,
R consists of the functions X : {0,1}* — [0, 1] such that Xy =1 and X, = X, + X, for
each string o. P is the unique measure on R such that for each string o and r, s € [0, 1], we
have P(X,0 <7 | Xy = s) = min(1,r/s). Intuitively, we choose X, at random w.r.t. the
uniformly distribution on the interval [0, X,;], and the choices made at different strings are
independent.

» Proposition 20. Fvery probability measure p that is Martin-Lof random wrt to P is
Martin-Laf absolutely continuous.

For the duration of this proof let u range over M({0,1}"). For an open set G C {0, 1} let

o= [ WGP,
Our proof of Prop. 20 is based on two facts.
» Fact 21. rg = A(G).
Proof. Clearly, for each n we have
3 o= | 3 nllohae(u) =1
|lol=n lo|=n

Furthermore, 7, = r,, whenever |o| = |n| = n because there is a P-preserving transformation
T of M({0,1}") such that p([o]) = T(11)([n]). Therefore 7y = 2-lel,

If o,n are incompatible then (5 ) = 7o) + 7y Now it suffices to write G = J;[0]
where the strings o; are incompatible, so that A\G =3, 2-loil, |

» Fact 22. Let p € M({0,1}Y) and let (Gy,),,cn be a ML-test such that there is § € QF
with Ym u(Gy,) > 0. Then p is not ML-random w.r.t. P.

55:11
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Proof. Observe that by the foregoing fact

5 P({: j1(Grn) > 8}) < / 1(Gon)dP(11) = N(Gi) < 27

Let G, = {p: u(Gpy) > 6} which is uniformly effectively open in the space of measures
M({0,1}). Fix k such that 27% < §. By the inequality above, we have P(G,,) < 27™/§ <
27 R Hence (Gimtk)men is & ML-test w.r.t. P that succeeds on p. <

This argument also works for randomness notions stronger than Martin-Lo6f’s. For instance, if
there is a weak-2 test (Gm),,, oy such that puGp, > ¢ for each m, then p is not weakly 2-random
with respect to P. The converse of Prop. 20 fails. Culver [4] shows that each measure p that
is Martin-Lof random w.r.t. IP is non-atomic. So a measure 6z for a Martin-Lof random bit
sequences Z is Martin-Lof a.c. but not Martin-Lof random with respect to P.

6 Being ML-a.c. relative to computable ergodic measures

We review some notions from the field of symbolic dynamics, a mathematical area closely
related to Shannon information theory. We will consider effective “almost-everywhere
theorems” related to that area in the framework of randomness for measures.

It can be useful to admit alphabets other than the binary one. Let A® denote the
topological space of one-sided infinite sequences of symbols in an alphabet A. Randomness
notions etc. carry over from the case of A = {0,1}. A dynamics on A is given by the
shift operator T', which erases the first symbol of a sequence. A measure p on A* is called
shift invariant if p(G) = p(T~1(G)) for each open (and hence each measurable) set G. The
empirical entropy of a measure p along Z € A is given by the sequence of random variables

1
hn(Z) = = logy, plZ In].

A shift invariant measure p on A is called ergodic if every p integrable function f with
foT = f is constant p-almost surely. The following equivalent condition can be easier to
check: for any strings u,v € A*,

n—1
1 k[T
lim = > p([u] N T*[v]) = plulplu].
k=0
For ergodic p, the entropy H(p) is defined as lim,, H,(p), where

Ho(p) =~ 3 plullog plu].

|lw|=n

Thus, H,(p) = E,h%, is the expected value with respect to p. One notes that H,1(p) <
H,(p) <1 so that the limit H(p) exists.

A well-known result from the 1950s due to Shannon, McMillan and Breiman states that
for an ergodic measure p, for p-a.e. Z the empirical entropy along Z converges to the entropy
of the measure. See e.g. [24], but note that the result is called the Entropy Theorem there.

» Theorem 23 (SMB theorem, e.g. [24]). Let p be an ergodic measure on the space A>. For
p-almost every Z we have lim,, h?(Z) = H(p).
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A measure p on A is called computable if each real p[z] is computable, uniformly in x € A*.
For such a measure we can define Martin-Lof tests and Martin-Lof randomness with respect
to p (called p-ML randomness for short) as above. Recall from Fact 4 that a measure p is
Martin-Lof a.c. with respect to p iff u(C) = 0 where C is the class of sequences in A* that
are not ML-random with respect to p.

If a computable measure p is shift invariant, then lim, h2(Z) exists for each p-ML-
random Z by a result of Hochman [6]. Hoyrup [7, Thm. 1.2] gave an alternative proof for
ergodic p, and also showed that in that case we have lim, h2(Z) = H(p) for each p-ML
random Z. We extend this result to measures p that are Martin-Lof a.c. with respect to
p, under the additional hypothesis that the A% are uniformly bounded. This holds e.g. for
Bernoulli measures and the measures given by a Markov process. On the other hand, using a
renewal process it is not hard to construct an ergodic computable measure p over the binary
alphabet where this hypothesis fails. For instance, take a computable sequence of rationals
() with sum 1 which decreases quickly enough such that limy —k%rQ log, ), = 00, and let
p be a shift invariant measure such that p(10¥1 < Z | Zy = 1) = ay, for each k € N. This
method yields an example showing that the boundedness hypothesis in the proposition below
is necessary. See the Logic Blog 2020 posted from Nies’ website.

» Proposition 24. Let p be a computable ergodic measure on the space A such that for
some constant D, each h? is bounded above by D. Suppose the measure y is Martin-Lif a.c.
with respect to p. Then lim,, E,hf, = H(p).

Proof. By Hoyrup’s result, lim,, k%2 (Z) = H(p) for each p-ML random Z. Since the sequences
that are not ML-random w.r.t. p form a null set w.r.t. u, we infer that lim,, h2(Z) = H(p) for
p-a.e. Z. The exception set V' is measurable. Let Eg be the function obtained by changing
the value of h2 to 0 on this set. Then hf(Z) — H(p)1(a=\v)(z) for each Z. The Dominated
Convergence Theorem now shows that lim, E,h? = H(p), as required. |

The next observation shows that the asymptotic initial segment complexity of a ML-a.c.
measure relative to p obeys some lower bound. Note that H(A) = 1. So for p = A, this shows
that in Example 12 we cannot subtract, say, n/4 instead of n?.

» Proposition 25. Let p be a computable ergodic measure, and suppose i is a Martin-Lof
a.c. measure with respect to p. Then

lim ~ K (s ],0) = lim ~C(u 1) = H(p).
n n n n
Proof. We can use K and C interchangeably because C(z) <T K(z) <t C(z) + K(C(x))
[17, 2.4.1]. We choose K. Let k,(Z) = K(Z[,)/n. The argument is very similar to the one
in the theorem above, replacing the functions h,, by k,. Note that k, is bounded above
by a constant because K(z) <* |z| + 2log|z|. Hoyrup’s result [7, Thm. 1.2] states that
lim,, k,(Z) = H(p) for each p-ML random Z. Now we can apply the Dominated Convergence
Theorem as in the proof of the foregoing proposition. <

A further interesting direction to tackle in the measure case would be the effective Birkhoff’s
ergodic theorem. This says that for ergodic computable p, if £{0,1} — R is p-integrable and
lower semicomputable and Z is p-ML-random, then the limit of the usual ergodic averages
Anf(Z2) =13 (foT*)(Z) equals [ fdp. (For background see e.g. [16] which contains
references to original work.) If the A, f are bounded then an argument similar to the one
above shows that lim,, [ A, fdp = [ fdp for any p < p, but without this additional
hypothesis the question remains open.
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