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Abstract
Given a hypergraph H, the conflict-free colouring problem is to colour vertices of H using minimum
colours so that in every hyperedge e of H, there is a vertex whose colour is different from that of all
other vertices in e. Our results are on a variant of the conflict-free colouring problem considered by
Cheilaris et al.[4], known as the 1-Strong Conflict-Free (1-SCF) colouring problem, for which they
presented a polynomial time 2-approximation algorithm for interval hypergraphs. We show that
an optimum 1-SCF colouring for interval hypergraphs can be computed in polynomial time. Our
results are obtained by considering a different view of conflict-free colouring which we believe could
be useful in general. For interval hypergraphs, this different view brings a connection to the theory
of perfect graphs which is useful in coming up with an LP formulation to select the vertices that
could be coloured to obtain an optimum conflict-free colouring. The perfect graph connection again
plays a crucial role in finding a minimum colouring for the vertices selected by the LP formulation.
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1 Introduction

A vertex colouring function C : V → {0, 1, 2, . . . , k} of a hypergraph H = (V, E) using k
non-zero colours is a 1-SCF colouring of H, if for every hyperedge e ∈ E there exists a
non-zero colour j ∈ {1, 2, · · · , k} such that |e ∩ C−1(j)| = 1. This problem was first studied
by Cheilaris et al. [4] and is a variant of a well-studied hypergraph colouring problem
known as the Conflict-Free colouring problem. A Conflict-Free (CF, in short) colouring is
a vertex colouring of a hypergraph that colours every vertex of the hypergraph such that
every hyperedge e has at least one vertex whose colour is different from that of every other
vertex in e. The CF colouring problem seeks to find a CF colouring using minimum number
of colours. The number of colours used in any optimum CF colouring of a hypergraph H is
called the CF colouring number of H. In the 1-SCF colouring, the algorithm is presented
with an input in which all vertices are initially coloured with colour 0, and the goal is to
modify the colour of some vertices to a non-zero colour such that the resulting colouring is a
1-SCF colouring. We observe that a 1-SCF colouring can be used to find a CF colouring
of a given hypergraph by adding one interval of length 1 for each vertex in H (this simple
transformation ensures that each vertex must be given a non-zero colour). We refer to the
number of non-zero colours used in any optimum 1-SCF colouring of a hypergraph H as
the 1-SCF colouring number of H. Observe that the CF colouring number of a hypergraph
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52:2 Perfect Resolution of Conflict-Free Colouring of Interval Hypergraphs

H is at most one more than the 1-SCF colouring number of H. Our main result is an
algorithm that solves the 1-SCF colouring problem optimally in polynomial time for interval
hypergraphs, thus solving one part of an open problem posed by Cheilaris et al. [4].

I Theorem 1. The 1-SCF colouring problem in interval hypergraphs can be optimally solved
in polynomial time.

As a corollary the 1-SCF colouring number of a given interval hypergraph can be computed
in polynomial time.

Past Work in CF colouring. The survey due to Smorodinsky [17] presents a general
framework for CF colouring that involves finding a proper colouring in every iteration
and giving the largest colour class a new colour. Smorodinsky [17] showed that if for
every induced sub-hypergraph H ′ ⊆ H, the chromatic number of H ′ is at most k, then
χcf (H) ≤ log1+ 1

k−1
n = O(k logn), where n = |V|. Pach and Tardos [15] showed that if

|E(H)| <
(
s
2
)
for some positive integer s, and ∆ is the maximum degree of a vertex in H,

then χcf (H) < s and χcf (H) ≤ ∆ + 1. The CF colouring problem has also been studied
on different types of hypergraphs. Even et al. [8] have studied a number of hypergraphs
induced by geometric regions on the plane including discs, axis-parallel rectangles, regular
hexagons, and general congruent centrally symmetric convex regions in the plane. Let D
be a set of n finite discs in R2. For a point p ∈ R2, define r(p) = {D ∈ D : p ∈ D}.
The hypergraph (D, {r(p)}p∈R2), denoted by H(D), is called the hypergraph induced by
D. Smorodinsky showed that χcf (H(D)) ≤ log4/3 n [16, 17]. Similarly, if R is a set of n
axis-parallel rectangles in the plane, then, χcf (H(R)) = O(log2 n). There have been many
studies on hypergraphs induced by neighbourhoods in simple graphs. Given a simple graph
G = (V,E), the open neighbourhood (or simply neighbourhood) of a vertex v ∈ V is defined
as follows: N(v) = {u ∈ V | uv ∈ E}. The set N(v)∪ v is known as the closed neighbourhood
of v. Pach and Tardos [15] have shown that the vertices of a graph G with maximum degree
∆ can be coloured with O(log2+ε ∆) colours, so that the closed neighbourhood of every
vertex in G is CF coloured. They also showed that if the minimum degree of vertices in
G is Ω(log ∆), then the open neighbourhood can be CF coloured with at most O(log2 ∆)
colours. Abel et al. [1] gave the following tight worst-case bound for neighbourhoods in
planar graphs: three colours are sometimes necessary and always sufficient. Keller and
Smorodinsky [14] studied conflict-colourings of intersection graphs of geometric objects. They
showed that the intersection graph of n pseudo-discs in the plane admits a CF colouring
with O(logn) colours, with respect to both closed and open neighbourhoods. Ashok et al.
[2] studied an optimization variant of the CF colouring problem, namely Max-CFC. Given a
hypergraph H = (V, E) and integer r ≥ 2, the problem is to find a maximum-sized subfamily
of hyperedges that can be CF coloured with r colours. They have given an exact algorithm
running in O(2n+m) time. The paper also studies the problem in the parametrized setting
where one must find if there exists a subfamily of at least k hyperedges that can be CF
coloured using r colours. They showed that the problem is FPT and gave an algorithm with
running time 2O(k log log k+k log r)(n+m)O(1).

CF colouring in Interval Hypergraphs. A hypergraph Hn = ([n], In), where [n] =
{1, . . . , n} and In =

{
{i, i + 1, . . . , , j} | i ≤ j and i, j ∈ [n]

}
is known as a complete

interval hypergraph [4]. A hypergraph such that the set of hyperedges is a family of intervals
I ⊆ In is known as an interval hypergraph. One can view the CF colouring problem in
interval hypergraphs as modelling the frequency assignment problem in a chain of units discs
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[4, 8]. In the case of hypergraphs induced by arbitrary unit discs in the plane, the problem
is known to be NP-complete [13]. It was shown in [8] that a complete interval hypergraph
can be CF coloured using Θ(logn) colours. Chen et al.[5] presented results on an online
variant of CF colouring problem in complete interval hypergraphs. In the online variant,
points arrive online and a point has to be assigned a colour upon its arrival such that the
resulting colouring is conflict-free with respect to all intervals. Chen et al.[5] gave a greedy
algorithm that uses Ω(

√
n) colours, a deterministic algorithm that uses Θ(log2 n) colours

and a randomized algorithm that uses O(logn) colours. There have been some studies [4, 13]
on CF colouring in interval hypergraphs (instead of complete interval hypergraphs), in which
case a subset of intervals in In is given as part of the input.

1-SCF colouring in Interval Hypergraphs. Katz et al.[13] gave a polynomial-time approx-
imation algorithm for 1-SCF colouring an interval hypergraph with approximation ratio 4.
Cheilaris et al.[4] improved this result in their paper on k-Strong CF colouring (k-SCF )
problem. The k-SCF problem seeks to find a vertex colouring of the hypergraph such that in
every hyperedge e, there are at least min{|e|, k} vertices that are uniquely coloured. Cheilaris
et al.[4] gave a polynomial-time approximation algorithm with approximation ratio 2 for
k = 1 and 5− 2

k for k ≥ 2. Further, they presented a quasi-polynomial time algorithm for
the decision version of the k-SCF problem. This clearly ruled out the possibility of the
decision version being NP-complete, unless NP-complete problems have quasi-polynomial
time algorithms. The main result in this paper is a polynomial time optimum 1-SCF colour-
ing algorithm for interval hypergraphs. We achieve this by observing a natural connection
between the 1-SCF colouring problem and the problem of solving an exact hitting set problem
with some constraints. We then formulate this exact hitting set problem as a linear program
(LP) for interval hypergraphs, and show that this LP can be solved in polynomial time, and
the LP solution can be rounded to an integer solution in polynomial time. For the rest of
the paper, since we work entirely on 1-SCF colouring, we refer to non-zero colours as simply
“colours”.

Our Approach. We outline the approach towards proving our main result which is Theorem 1.
The initial steps of our approach are simple observations regarding a different view of 1-SCF
colouring which we present as Theorem 2 and Theorem 3. We present these observations as
theorems because they bring a different perspective on 1-SCF colouring which turns out to
be surprisingly useful for interval hypergraphs. However, in spite of the positive result with
interval hypergraphs, we do not know of other hypergraphs for which our approach yields a
better understanding of the 1-SCF colouring problem and the 1-SCF colouring number.
Theorem 2 brings into our perspective that 1-SCF colouring is actually the problem of
computing a special type of colouring of the vertices of an exact hitting set. We observe that
1-SCF colouring of a hypergraph can be naturally seen as the proper colouring of a related
simple graph which we call a co-occurrence graph. A co-occurrence graph is obtained from a
1-SCF colouring based on a function defined on E , and we call this function a representative
function. For a representative function t, the co-occurrence graph is denoted by Γt. We
show that the search for the co-occurrence graph with the minimum chromatic number is
equivalent to the search for the corresponding representative function.

I Theorem 2. Let H = (V, E) be a hypergraph. Let χcf (H) be the number of colours used
in any optimal 1-SCF colouring of H. Let χmin(H) be the minimum chromatic number over
all possible co-occurrence graphs of H. Then, χcf (H) = χmin(H).

STACS 2020
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We then show that the search for an appropriate representative function is answered by
finding an exact hitting set of some cliques in a graph Ĝ called the conflict graph of H. We
identify two sets of cliques in Ĝ, namely hyperedge cliques denoted by Q1 and colour cliques
denoted by Q2. These cliques are defined in Definition 7. The conflict graph is designed in
such a way that there exists an exact hitting set S of cliques in Q1 that hits every maximal
clique in Q2 at most q times if and only if there exists a 1-SCF colouring of H with q colours
(Lemma 9). We establish the relation between the conflict graph and a co-occurrence graph
of a hypergraph in the theorem below. Theorem 3 gives us a framework for searching for an
appropriate exact hitting set of the given hypergraph.

I Theorem 3. Let H = (V, E) be a hypergraph. Let t be a representative function of H and
let Ĝ be the conflict graph of H. Then, the set S = {(e, u) | (e, u) ∈ Ĝ, t(e) = u} is an exact
hitting set of cliques in Q1, ω(Ĝ[S]) ≤ ω(Γt), and χ(Ĝ[S]) ≤ χ(Γt).

We next state the following important structural properties of co-occurrence graphs and
conflict graphs specific to interval hypergraphs in Section 3.

I Theorem 4. Each co-occurrence graph of an interval hypergraph is perfect.

I Theorem 5. Let H = (V, I) be an interval hypergraph. Then the conflict graph Ĝ(H) is
perfect.

In order to find an optimal co-occurrence graph for interval hypergraphs, we formulate a
Linear Program (LP) for a constrained exact hitting set of a set of cliques of Ĝ in Section
4. We show that the LP can be solved in polynomial time using the ellipsoid method. The
ellipsoid method uses a separation oracle that we design specifically for interval hypergraphs,
and this oracle crucially relies on the fact that the conflict graph is perfect. Further, an
optimum fractional solution obtained from the LP is rounded to give an integer feasible
solution. This integer feasible solution naturally gives a representative function for the
given interval hypergraph, and we show that the corresponding co-occurrence graph has the
minimum chromatic number over all co-occurrence graphs of the given interval hypergraph.
The minimum colouring of the co-occurrence graph can also be computed in polynomial
time using known algorithms for minimum colouring of perfect graphs. We believe that
this technique can be used to design an optimal polynomial time algorithm for the k-SCF
problem of Cheilaris et al.[4]. The perfectness of co-occurrence graphs and conflict graphs in
the 1-SCF colouring are not dependent on k and hence we conjecture that the same approach
will work for the k-SCF problem with minimal tuning to the rounding procedure for the LP.
Finally, we have not been able to prove any other computationally useful structure on the
co-occurrence graphs and conflict graphs of interval hypergraphs. In particular, we know that
both these graphs can have induced cycles of length 4, and thus we cannot use techniques
from chordal graph colouring or interval graph hitting set (which uses the consecutive ones
property of the clique-vertex incidence matrix) algorithms.

1.1 Preliminaries
In an interval I = {i, i+ 1, . . . , j}, i and j are the left and right endpoints of I respectively,
denoted by l(I) and r(I), respectively. Since an interval is a finite set of consecutive integers,
it follows that |I| is well-defined. Throughout the paper, we assume that the hypergraph H
has n vertices and m hyperedges.
If vertex v ∈ e has been assigned a colour c that is different from the colour of all other
vertices in e, then we say that e is 1-SCF coloured by vertex v and by colour c. Note that
in our convention, we use colour 0 to indicate that a vertex with colour 0 does not 1-SCF
colour any hyperedge.
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For a set S of vertices in a simple graph G, G[S] denotes the induced subgraph of G on S.
Perfect graphs [9] are very well-studied and many hard problems are tractable on perfect
graphs. We use four well known properties of perfect graphs.
P1 Let G = (V,E) be a perfect graph. For a given subset V ′ ⊆ V , let G[V ′] = (V ′, EV ′) be

the subgraph induced by V ′, where EV ′ = {uv ∈ E | u, v ∈ V ′}. Then, it is known from
[9] that ω(G[V ′]) = χ(G[V ′]), where ω(G[V ′]) and χ(G[V ′]) are, respectively, the clique
number and the chromatic number of G[V ′]. Recall that the clique number of a simple
graph G is the size of its largest clique and the chromatic number of G is the number of
colours needed in an optimal proper colouring of G.

P2 A Berge graph is a simple graph that has neither an odd hole nor an odd anti-hole as an
induced subgraph [3, 6, 7, 9]. An odd hole is an induced cycle of odd length that has at
least 5 vertices and an odd anti-hole is the complement of an odd hole. It is known from
Theorem 1.2 in [7] that a graph is perfect if and only if it is Berge.

P3 The chromatic number of a perfect graph can be found in polynomial time [11].
P4 The maximum weighted clique problem can be solved in polynomial time in perfect

graphs [10],[11].
We use linear programming and combinatorial optimization concepts from [12] and [10]. All
other definitions and notations used in this paper are from West [19] and Smorodinsky [17].

2 Co-occurrence Graphs, Conflict Graphs and 1-SCF colouring

We define two types of simple graphs associated with a hypergraph H = (V, E). We also
establish the relationship between a proper colouring of these graphs and a 1-SCF colouring
of H. For a 1-SCF colouring function C defined on V, let t : E → V be a function such
that for each e ∈ E , t(e) is that vertex v in e such that the colour given to v by C is not
given to any other vertex in e. We refer to t as a representative function obtained from the
colouring C. Further, each function t : E → V such that for each edge e, t(e) ∈ e is referred
to as a representative function of H. We now define the Co-occurrence Graph, Γt(H), given
a representative function t of H. Let R ⊆ V denote the image of E under the function t.
The vertex set of the co-occurrence graph Γt(H) is R, and for u, v ∈ R, uv is an edge in
Γt(H) if and only if for some e ∈ E , u ∈ e and v ∈ e and t(e) is either u or v. Further, given
a representative function t of H, a proper colouring of the graph Γt(H) defines a 1-SCF
colouring of H for which t is a representative function obtained from the 1-SCF colouring.
Note that in this 1-SCF colouring, the vertices which are not present in Γt(H) get the 0
colour. Wherever H is implied, we use Γt to denote Γt(H). Define χmin(H) = min

t
χ(Γt)

where χ(Γt) is the chromatic number of the co-occurrence graph Γt and the minimum is
taken over all representative functions t of the hypergraph H.
We prove the equivalence stated in Theorem 2.

Proof of Theorem 2. Let t be a representative function such that χ(Γt) = χmin(H). We
extend a proper colouring C of Γt to a vertex colouring function C ′ of V(H) by assigning
the colour 0 to those vertices in V(H) \ R. C ′ is a 1-SCF colouring of H since for each
e ∈ E , the colour assigned to the vertex t(e) by C ′ is different from the colour assigned to
every other vertex in e. The reason for this is as follows: let v ∈ e be a vertex different
from t(e). If C ′(v) = 0, then definitely its colour is different from C ′(t(e)). On the other
hand, if C ′(v) 6= 0, then it implies that there is an e′ such that v = t(e′). Consequently,
v ∈ V (Γt), and since v ∈ e, {v, t(e)} is an edge in Γt by the definition of Γt. Further, since
C ′ is obtained from a proper colouring C of Γt it follows that C ′(v) is different from C ′(t(e)).

STACS 2020
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Thus χcf ≤ χmin(H). We prove that χmin(H) ≤ χcf (H) as follows: since a minimum
1-SCF colouring of H gives a representative function t as defined above, it follows that
χcf (H) ≥ χ(Γt) ≥ χmin(H). Therefore, it follows that χcf (H) = χmin(H). J

As a consequence of Theorem 2, to find a 1-SCF colouring with the least number of colours,
we need to find a co-occurrence graph for which the chromatic number is the least over all
co-occurrence graphs. This entails first computing the representative function corresponding
to the co-occurrence graph which has the minimum chromatic number, and then computing
a minimum colouring of the co-occurrence graph. We pose the problem of finding the
candidate representative function as a hitting set problem on a graph called the Conflict
Graph associated with a hypergraph. Given a hypergraph H = (V, E), we use Ĝ(H) = (V,E)
to denote the conflict graph of H. Wherever H is implied, we use Ĝ to denote Ĝ(H). The
elements of V (Ĝ) and V(H) are referred to as nodes and vertices, respectively. The node
set of Ĝ(H) is V =

{
(e, v) | e ∈ E , v ∈ e

}
. In a node (e, v), we refer to e as the hyperedge

coordinate and v as the vertex coordinate. Conceptually, a node (e, v) in Ĝ represents the
logical proposition that hyperedge e is 1-SCF coloured by vertex v ∈ e. E(Ĝ) is defined such
that each edge encodes a constraint to be satisfied by any 1-SCF colouring of H. The edge
set of Ĝ is E = Eedge ∪ Ecolour, where Eedge and Ecolour are defined as follows:
1. Eedge =

{(
(e, v), (e, u)

)
| {v, u} ⊆ e, u 6= v

}
. For each hyperedge e in H, the nodes in Ĝ

with e as the hyperedge coordinate form a clique.
2. Ecolour =

{(
(e, v), (g, u)

)
| {v, u} ⊆ e or {v, u} ⊆ g, u 6= v, e 6= g

}
. These edges encode

the proposition that if two vertices co-occur in a hyperedge, they must get two different
colours, irrespective of other hyperedges to which any of these vertex may belong to.

The following structural property of a conflict graph is crucial in the proof of Lemma 11.

I Observation 6. Given a hypergraph H = (V, E), for each vertex v ∈ V, the set of nodes
{(e, v) | e ∈ E , v ∈ e} in Ĝ forms an independent set.

We identify the following sets of “useful” cliques in a conflict graph.

I Definition 7 (Hyperedge Cliques and Colour Cliques). Hyperedge Clique is a clique in a
conflict graph formed by nodes having the same hyperedge coordinate. The set of hyperedge
cliques in a conflict graph is denoted by Q1. Colour Clique is a maximal clique in a conflict
graph that has at least one edge from Ecolour. The set of colour cliques in a conflict graph is
denoted by Q2.

We now prove Theorem 3 that states the relationship between the clique sizes of the co-
occurrence graph and the conflict graph.

Proof of Theorem 3. By our premise, t is a representative function and hence the set S,
obtained from t as defined above, hits every hyperedge clique exactly once. Therefore, it
follows from definition of an exact hitting set that S is indeed an exact hitting set of the
set of hyperedge cliques. Now, we show that ω(Γt) ≥ ω(Ĝ[S]). Let

{
(e, u), (f, v)

}
be an

edge in Ĝ[S] such that e 6= f . By definition of set S, t(e) = u and t(f) = v. Since e 6= f ,
the edge

{
(e, u), (f, v)

}
belongs to Ecolour of Ĝ. Hence u and v are both present together in

either e or f . Without loss of generality, let u, v ∈ e. Since (e, u) ∈ Ĝ[S], we have t(e) = u

by construction of S. Hence, {u, v} is an edge in Γt.
Therefore, for every edge

{
(e, u), (f, v)

}
in Ĝ[S], there exists an edge {u, v} in Γt. It follows

that for every clique in Ĝ[S], there exists a clique of same size in Γt. Hence, ω(Γt) ≥ ω(Ĝ[S]).
Given a proper colouring of Γt, let the colour given to the node (e, u) be the colour given to
vertex u in the proper colouring of Γt. From Observation 6, we know that there are no edges
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between two nodes with the same vertex coordinate. Further, for each edge
{

(e, u), (f, v)
}

in Ĝ[S], the edge {u, v} is in Γt, and hence it follows that the colouring of Ĝ[S] is a proper
colouring. Thus χ(Γt) ≥ χ(Ĝ[S]). J

As a consequence of Theorem 3, it follows that a representative function for H could be
computed by finding an exact hitting set S of hyperedge cliques in Ĝ such that the chromatic
number of Ĝ[S] is the minimum over all such exact hitting sets. We apply this approach to
find an optimum 1-SCF colouring in polynomial time for interval hypergraphs by showing
that such a hitting set can be computed in polynomial time for intervals. We show that
this hitting set indeed gives the representative function whose co-occurrence graph has the
minimum chromatic number. Further for interval hypergraphs, we show that the minimum
vertex colouring of the co-occurrence graph can be computed efficiently. These results rely
on the results in Section 3 which show that the co-occurrence graphs and the conflict graph
of interval hypergraphs are perfect graphs.

3 Perfectness of Co-occurrence graphs and Conflict graphs of
Interval Hypergraphs

We now prove two perfectness results when the given hypergraph is an interval hypergraph.
The perfectness of co-occurrence graphs proved in Theorem 4 enables us to find a proper
colouring of Γt in polynomial time. The perfectness of conflict graphs proved in Theorem 5
is used to prove Lemma 10. Lemma 10 is crucial in finding a hitting set of hyperedge cliques
in Ĝ. We first prove Theorem 4.

Proof of Theorem 4. We use property P2 of perfect graphs given in Section 1.1 to prove
this result. By property P2, we know that an induced odd cycle and its complement are
forbidden induced subgraphs for perfect graphs. Given an interval hypergraph H, let t be a
representative function and let Γt be the resulting co-occurrence graph. We first show that Γt
does not have an induced cycle of length at least 5. Note that we prove a stronger statement
than required by property P2 of perfect graphs which states that there are no induced odd
cycles of length at least 5. Our proof is by contradiction. Assume that F = {p1, p2 . . . pr} is
an induced Cr-cycle for r ≥ 5. Let the sequence of nodes in F be p1, p2 . . . pr, p1. Let pi be
the rightmost point of F on the line. In what follows, the arithmetic among the indices of p
is mod r. Observe that, due to cyclicity of Cr, if i = 1, then i− 1 = r. Similarly, if i = r,
then i + 1 = 1 and i + 2 = 2. Without loss of generality, let us assume that pi−1 < pi+1,
which are the two neighbours of pi in F . Therefore, pi−1 < pi+1 < pi. Since edge {pi−1, pi}
is in F , it follows that there exists an interval I for which t(I) = pi−1 or t(I) = pi. We claim
that t(I) is pi: if t(I) is pi−1, then {pi−1, pi+1} is an edge in Γt by definition. Therefore,
{pi−1, pi+1} is a chord in F , a contradiction to the fact that F is an induced cycle. Therefore,
t(I) = pi. Further, we claim that the point pi+2 < pi−1: if pi+2 > pi−1, then pi+2 belongs to
the interval I and by the definition of the edges in Γt, {pi, pi+2} is an edge in Γt. Therefore,
{pi, pi+2} is a chord in F . This contradicts the fact that F is an induced cycle. Therefore,
pi+2 < pi−1. At this point in the proof we have concluded that pi+2 < pi−1 < pi+1 < pi and
t(I) = pi. Since {pi+1, pi+2} is an edge in F , it follows that there exists an interval J such
that both pi+1 and pi+2 belong to J and t(J) = pi+1 or t(J) = pi+2, and therefore pi−1 ∈ J .
Since F is an induced cycle of length at least 5, {pi−1, t(J)} is an edge in Γt by definition.
Therefore, {pi−1, t(J)} is a chord in either case, that is when t(J) = pi+1 or t(J) = pi+2.
This contradicts the assumption that F is an induced cycle of length at least 5. Thus, Γt
cannot have an induced cycle of size at least 5. Next, we show that Γt does not contain the
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complement of an induced cycle of length ≥ 5, (Cr, r ≥ 5) as an induced subgraph. Again,
our proof is by contradiction. Assume that F is an induced Cr, r ≥ 5 in Γt. Let q1, q2, . . . , qr
be the nodes of F . Also, let q1 < q2 < . . . < qr be the left to right ordering of points on
the line corresponding to vertices of F . Since deg(qi) = r − 3 for all qi in F , it follows that
no interval I, such that t(I) ∈ F , contains more than r − 2 vertices from F . Otherwise, if
there exists an interval I such that t(I) ∈ F contains more than r − 2 vertices from F , then
deg(t(I)) ≥ r − 2 in F which is a contradiction. Therefore, there does not exist any interval
that contains both q1 and qr. Similarly, there does not exist any interval that contains both
q1 and qr−1 and any interval that contains both q2 and qr. Since deg(q1) = r − 3, it follows
that q1 must be adjacent to all vertices in {q2, q3, . . . , qr−2}. Similarly, qr must be adjacent
to all vertices in {q3, q4, . . . , qr−1}. Next, we consider the degrees of vertices q2 and qr−1 in F .
Since they are in F , q2 is adjacent to q1 and qr−1 is adjacent to qr. Now, q2 must be adjacent
to r− 4 more vertices. We show that q2 is not adjacent to qr−1. Suppose not, that is, if q2 is
adjacent to qr−1, then there exists an interval I that contains both q2 and qr−1 and t(I) = q2
or t(I) = qr−1. Then t(I) is adjacent to all points in the set {{q2, q3, . . . , qr−1} \ t(I)}. Thus,
by considering the one additional edge incident on t(I) depending on whether t(I) = q2 or
qr−1, it follows that deg(t(I)) ≥ r − 2, a contradiction to the fact that the degree of each
vertex inside F is r − 3. Therefore, the edge {q2, qr−1} does not exist in F . It follows that
in F , which we know is an induced cycle of length at least 5, there is an induced cycle
q1, qr−1, q2, qr, q1 of length 4. This contradicts the structure of an induced cycle of length at
least 5. Hence, we conclude that Γt does not have an induced cycle of length 5 or more or its
complement. Therefore Γt is a perfect graph. J

We now prove that for an interval hypergraph H, Ĝ(H) is perfect. In this proof, µ(H)
denotes the number of vertices in Ĝ. Note that µ(H) =

∑
I∈I |I|.

Proof of Theorem 5. By property P2 of perfect graphs given in Section 1.1, we know that
for each p > 1, induced odd cycle C2p+1 and its complement denoted by C2p+1 are forbidden
induced subgraphs for perfect graphs. We now show that for an interval hypergraph, the
graph Ĝ is perfect. Our proof is by starting with the hypothesis that the claim is false
and deriving a contradiction. Let H = (V,J ) be an interval hypergraph for which Ĝ is
not perfect, and among all such interval hypergraphs, H minimizes µ(H). Since Ĝ is not
perfect, let us consider a minimal induced subgraph of Ĝ, denoted by, say F for which
ω(F ) 6= χ(F ). We claim that for every interval I ∈ J such that |I| > 1, both the nodes
(I, l(I)) and (I, r(I)) belong to F . The proof of this claim is by contradiction to the fact that
H is an interval hypergraph that minimizes µ(H) and for which Ĝ is not perfect. Let I be
an interval in J such that |I| > 1 and the node (I, r(I)) /∈ V (F ). Consider the hypergraph
H ′ = (V,J ′) where J ′ = (J \ I)∪ (I \r(I)). Let Ĝ′ denote the conflict graph of H ′. Observe
that V (Ĝ′) = V (Ĝ) \ {(I, r(I))}. Since (I, r(I)) /∈ V (F ) and (I, r(I)) /∈ V (Ĝ′), it follows
that F is an induced subgraph of Ĝ′ also. Hence it follows that Ĝ′ is imperfect. Further,
µ(H ′) < µ(H). This contradicts the hypothesis that H is the interval hypergraph with
minimum µ(H) for which Ĝ is imperfect. Therefore, it follows that for each interval I ∈ J ,
(I, r(I)) is a node in F . An identical argument shows that for each interval I ∈ J , (I, l(I))
is also a node in F . Hence it follows that ∀I ∈ J such that |I| > 1, both the nodes (I, l(I))
and (I, r(I)) belong to F . We now consider two exhaustive cases to obtain a contradiction
to the known structure of F which we know is either a C2p+1 or a C2p+1 for some p > 1.
Case 1- When F is an induced odd cycle Cj , j ≥ 5: In the following proof we consider
different cases, and in each case we conclude that three nodes of Cj form a K3 in Ĝ. This is
a contradiction to the fact that induced cycles of length at least 4 do not have a K3, and we
refer to this as a contradiction.
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We know that all the intervals I such that |I| > 1 have both the nodes (I, l(I)) and (I, r(I))
in F . Therefore, if (I ′′, q) is a node such that for some I ′, q is in interval I ′ and q is different
from r(I ′) and l(I ′), then from the definition of Eedge and Ecolour, we know that the 3 nodes
(I ′, l(I ′)), (I ′, r(I ′)), (I ′′, q) form a K3, a contradiction. As a consequence of this observation,
it also follows that for any two nodes (I1, q1) and (I2, q2) in Cj for which |I1| > 1 and |I2| > 1,
l(I1) and l(I2) are different, and r(I1) and r(I2) are different. Therefore, for each node (I, q)
in Cj , q is either l(I) or r(I) or |I| = 1, and q is the left end point (right end point) of at
most one interval, and for each interval I ′, q is not an element of I ′ \ {l(I ′), r(I ′)} (we call
this set as the strict interior of I ′).
From the conclusions above, the intervals of length more than 1 contribute an even number
of distinct nodes to the cycle Cj . Since Cj is an induced odd cycle, it follows that in
Cj there is at least one more node (I ′′, q) for which |I ′′| = 1. It follows that I ′′ contains
only the point q. Let (I1, q1) and (I2, q2) be the two neighbours of (I ′′, q) in Cj . From
Observation 6, it follows that q is different from q1 and q2. From the analysis above, it
follows that q and q1 are end points of I1, and q and q2 are end points of I2. Again from the
conclusions above, since l(I1) and l(I2) are different, and since r(I1) and r(I2) are different,
without loss of generality, let us consider q = l(I1) = r(I2) and l(I2) = q2 < q < q1 = r(I1).
Therefore, the three nodes (I1, r(I1)), (I ′′, q), (I2, l(I2)) form a path in F . We know that
(I1, l(I1)) and (I2, r(I2)) are also vertices in Cj which is an induced (that is, chordless) cycle.
Therefore, (I1, l(I1)), (I1, r(I1)), (I ′′, q), (I2, l(I2)), (I2, r(I2)) is a path in Cj . In other words,
(I1, q), (I1, q1), (I ′′, q), (I2, q2), (I2, q) is an induced path of length 5 in Cj , since (I1, q) and
(I2, q) are not adjacent, by Observation 6. Since Cj is a cycle, it has at least one another
node, say (I3, q3), which is the second neighbour of (I1, l(I1)) in Cj . We now show that all
the points in I3 are at least r(I1), and thus they are all larger than q. By the definition of
E(Ĝ) we know that I3 ∩ I1 6= ∅. Further, q3 is an endpoint of I3, and q3 is not in the strict
interior of I1, and since q is in I1 and I2, and as per our convention each interval corresponds
to a single hyperedge in H, it follows that q3 is different from q. Consequently, it follows
that l(I3) = r(I1) and q3 is r(I3). Note that this argument includes the case when |I3| = 1,
in which case r(I1) = q3. It follows that I3 is an interval such that each point in I3 is at least
r(I1) which is larger than q.
Therefore from the conclusions made thus far, each node in Cj is one of two types: either
the hyperedge coordinate is such that all the points in the corresponding interval are at
most q or the hyperedge coordinate is such that all the points in the corresponding interval
are more than q. In particular, I2 is such that all the points are at most q and I3 is such
that all points are more than q. Since Cj is an induced cycle, it follows that there are two
adjacent nodes (Il, ql) and (Ir, qr) such that all points in Il are at most q, and all points
in Ir are more than q. In other words, Il and Ir are two disjoint intervals, and we have
concluded that (Il, ql) and (Ir, qr) are adjacent. This is a contradiction to the definition of
E(Ĝ) = Ecolour ∪ Eedge. This contradiction has been arrived at due to the assumption that
there is a Cj of odd length at least 5. Hence, in this case our hypothesis that there is a
minimal H for which Ĝ is not perfect is wrong.
Case 2- When F is the complement of an odd cycle, say Cj , j ≥ 5: Here we order the nodes in
non-decreasing order of their vertex coordinate. Let the order be (I1, p1), (I2, p2), . . . , (Ij , pj).
Since each node is adjacent to exactly j − 3 vertices in F , it follows that (I1, p1) is not
adjacent to (Ij−1, pj−1) and (Ij , pj) in Ĝ. Similarly, (Ij , pj) is not adjacent to (I1, p1) and
(I2, p2). The reason is that if there is an edge between (I1, p1) and (Ij−1, pj−1) then one of
the two nodes is adjacent to all the nodes whose vertex coordinates are between p1 and pj−1.
Such a node will have degree j − 2 which contradicts the fact that all the nodes in F have
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degree j − 3. Since the degree of each vertex is j − 3, it follows that (I1, p1) is adjacent to all
nodes from (I2, p2) to (Ij−2, pj−2). Similarly, (Ij , pj) is adjacent to all nodes from (I3, p3) to
(Ij−1, pj−1). Now, let us consider (I2, p2) and (Ij−1, pj−1). If these two nodes are adjacent in
F , then one of the two will have degree at least j − 2. Such a case cannot happen. Therefore,
the nodes (I1, p1), (Ij , pj), (I2, p2), (Ij−1, pj−1), (I1, p1) forms an induced 4-cycle in F . F is
an induced cycle Cj , j ≥ 5, and by definition does not contain an induced cycle of length 4.
Thus our hypothesis that Ĝ contains F is false.
In either case the assumption of the existence of a minimal H for which Ĝ is not perfect
leads to a contradiction to the known structure of perfect graphs. Hence, it follows that for
an interval hypergraph Ĝ is perfect. J

4 Computing the Optimal Co-occurrence Graph of Interval
Hypergraphs using Conflict Graphs

We present the algorithm to compute an optimal co-occurrence graph of a given interval
hypergraph from a constrained exact hitting set of hyperedge cliques in the conflict graph.

4.1 Representative Function from a Hitting Set of Hyperedge Cliques
In Lemma 8 below, we strengthen Theorem 3 for interval hypergraphs by proving the equality
of the chromatic number of the conflict graph and the co-occurrence graph. This plays a
crucial role in formulating an LP relaxation to compute a constrained exact hitting set of
hyperedge cliques. Let H = (V, I) be the given interval hypergraph and let Ĝ be its conflict
graph. Let qmin be the smallest positive integer such that there exists an exact hitting
set of hyperedge cliques that hits every maximal clique in the colour cliques at most qmin
times. Let Smin ⊆ V (Ĝ) be such an exact hitting set of hyperedge cliques that hits every
maximal clique in the colour cliques at most qmin times. Clearly, |Smin| = m since there are
m hyperedge cliques, each corresponding to an interval. Define the representative function
t : I → V as follows: t(I) = u if (I, u) ∈ Smin. We show that the chromatic number of the
co-occurrence graph Γt is upper bounded by qmin. Note that Theorem 3 proves the opposite
inequality for all hypergraphs.

I Lemma 8. Let t : I → V be the function as defined above. Then t is a representative
function obtained from some 1-SCF colouring and χ(Γt) ≤ qmin.

Proof. Since Smin is an exact hitting set of hyperedge cliques, it follows that for every
hyperedge I ∈ I, there exists exactly one node in Smin whose hyperedge coordinate is I.
Hence, t is indeed a function. Since every interval is assigned a unique representative by t, it
follows from the proof of Theorem 2 that any proper colouring of Γt is a 1-SCF colouring
of H. Therefore, t is a representative function obtained from such a 1-SCF colouring of H.
Now, we show that χ(Γt) ≤ qmin. In Theorem 4, we show that Γt is a perfect graph. It
follows from property P1 of perfect graphs in Section 1.1 that the clique number ω and the
chromatic number χ of every induced subgraph of Γt are equal. Hence it suffices to show that
ω(Γt) ≤ qmin. To prove this, we show that ω(Γt) is at most the size of the maximum clique
in Ĝ[Smin], and by assumption ω(Ĝ[Smin]) ≤ qmin. In particular, for each clique in Γt we
identify a clique of the same size in Ĝ[Smin]. The proof is by induction on the size of a clique
in Γt. The base case is for a clique of size 1 in Γt. Clearly, there is a clique of size 1 in Ĝ[Smin].
By the induction hypothesis, corresponding to a clique comprising of u1, u2, . . . , uq−1 in
Γt, there is a clique containing nodes (I1, u1), (I2, u2), . . . , (Iq−1, uq−1) in Ĝ[Smin]. Now, we
prove the claim when there are q vertices in a clique in Γt. Let u1, u2, . . . , uq be the set
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of vertices in the clique. Without loss of generality, assume that u1, u2, . . . , uq−1, uq is the
left to right ordering of points on the line. Since {u1, uq} ∈ E(Γt), there exists an interval,
say I ′ such that u1 and uq belong to I ′ and t(I ′) ∈ {u1, uq}. We prove the claim for the
case when t(I ′) is u1. It follows that the node (I ′, u1) ∈ Smin. Since both u1 and uq belong
to the interval I ′, it follows that u2, . . . , uq−1 also belong to interval I ′. By the induction
hypothesis, for the q − 1 sized clique u2, u3, . . . , uq in Γt, there is a clique containing the
nodes (I2, u2), (I3, u3), . . . , (Iq, uq) in Ĝ[Smin]. Therefore, it follows that (I ′, u1) is adjacent
to all the nodes (I2, u2), (I3, u3), . . . , (Iq, uq) in Ĝ. It follows that corresponding to the clique
u1, . . . , uq in Γt, there is a clique (I ′, u1), (I2, u2), . . . , (Iq, uq) in Ĝ[Smin]. In case t(I ′) is uq,
an identical argument is applied to the clique u1, . . . , uq−1 in Γt to prove the claim. Hence
the lemma is proved. J

We next show that finding a 1-SCF colouring using minimum colours is equivalent to finding
an exact hitting set of hyperedge cliques such that colour cliques are hit as few times as
possible.

I Lemma 9. There exists a set S ⊆ V (Ĝ) such that for each Q ∈ Q1, |S ∩Q| = 1 and for
each Q′ ∈ Q2, |S ∩Q′| ≤ q if and only if there is a 1-SCF colouring of H with q colours.

Proof. Let S be a subset of V (Ĝ) such that for each Q ∈ Q1, |S ∩ Q| = 1 and for each
Q′ ∈ Q2, |S ∩ Q′| ≤ q. Then by Lemma 8, there exists a representative function t such
that χ(Γt) ≤ q. It further follows from Theorem 2 that a proper colouring of Γt is a 1-SCF
colouring of H using χ(Γt) ≤ q colours. This completes the forward direction of the claim.
Next we prove the reverse direction. Let C be a 1-SCF colouring of H using q colours.
Then by Theorem 2, C gives a representative function t with the property q ≥ χ(Γt). Since
co-occurrence graphs are perfect by Theorem 4, it follows that q ≥ χ(Γt) = ω(Γt). Define
S , {(I, u) | I ∈ I, t(I) = u}. By Theorem 3, the set S is an exact hitting set of cliques
in Q1 and ω(Ĝ[S]) ≤ ω(Γt) ≤ q. Thus we conclude that if there is a 1-SCF colouring of H
using q colours, then there exists an exact hitting set of cliques in Q1 that intersects every
maximal clique in Q2 at most q times. J

4.2 Linear Program for Exact Hitting Sets of Hyperedge Cliques
From Lemma 9, it is clear that an optimal 1-SCF colouring of an interval hypergraph H can
be found by computing an exact hitting set of hyperedge cliques of Ĝ(H) such that each
colour clique is hit as few times as possible. We present an LP formulation for this exact
hitting set problem. In this LP, there is one variable corresponding to each node of Ĝ and
integer valued variable q. Define X , {xI,u | (I, u) ∈ Ĝ} to be the set of variables in the LP,
where

xI,u =
{

1, if node (I, u) hits hyperedge clique corresponding to I
0, otherwise

LP Formulation. Find values to variables {xI,u | u ∈ I, I ∈ I} subject to

(P.1)

∑
u∈I

xI,u = 1,∀I ∈ I (1)∑
(I,u)∈Q

xI,u ≤ q, for each maximal clique Q in Q2. (2)

xI,u ≤ 1, q ≥ 0
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The LP relaxation has a set of equations, which are given in (P.1):(1) and a set of inequalities,
which are given in (P.1):(2). Logically, an equation corresponds to choosing exactly one
vertex per interval; that is, each equation corresponds to choosing exactly one node from
one hyperedge clique. On the other hand, an inequality corresponds to a maximal clique
in the set of colour cliques. Logically, the inequality means that we pick at most q nodes
from every maximal clique in Q2. Together, any integral solution to the LP relaxation is
an exact hitting set of hyperedge cliques such that each maximal clique in the set of colour
cliques is hit at most q times. This LP relaxation is solved using the ellipsoid method which
uses a polynomial time separation oracle that we next design. Let x denote an optimum
solution to the LP relaxation. In Section 4.4 we present a rounding technique that converts
the fractional solution x to a feasible integer solution for the LP in polynomial time.

4.3 Separation Oracle based LP Algorithm SPAlg

A separation oracle is a polyomial time algorithm that given a point in Rd, where d is the
number of variables in a linear program relaxation, either confirms that this point is a feasible
solution, or produces a violated constraint (See Section 12.3.1 in[18]). A polynomial time
separation oracle is used by the ellipsoid method to give a P-time algorithm for finding a
feasible solution to the LP. In this section, we describe a polynomial time separation oracle
SPMaxWtClique for our LP for a fixed positive integer value q. For each (I, v) ∈ V (Ĝ), let
xI,v be a real value assigned to the corresponding variable in the LP relaxation. Given
this as an input, for a fixed positive integer value q, the separation oracle SPMaxWtClique
considers the vertex-weighted graph Ĝw corresponding to Ĝ, where the weight of node (I, v)
is xI,v for all (I, v) ∈ V (Ĝ). The oracle then computes the maximum weight clique of Ĝw.
If the weight of the maximum weight clique of Ĝw exceeds q, then it follows that there is
some maximal clique Q′ whose weight is more than q. This implies that the given point
violates the inequality corresponding to Q′, and this inequality is returned by the oracle as
the violated inequality. If the weight of the maximum weight clique is at most q, then the
oracle checks if all equalities hold. If any equality is violated, then we have found a violated
constraint, and the oracle returns the appropriate inequality as the violated inequality. If all
the constraints are satisfied, then the oracle reports that the given point is feasible. This
completes the description of the separation oracle SPMaxWtClique. We show in Lemma 10
that SPMaxWtClique runs in polynomial time.

I Lemma 10. For an input interval hypergraph and for each integer value q ≥ 0 the separation
oracle SPMaxWtClique runs in polynomial time.

Proof. For an interval hypergraph we know that Ĝ is perfect by Theorem 5. From property
P4 of perfect graphs listed in Section 1.1, it is known that the maximum weighted clique
problem in perfect graphs can be solved in polynomial time. Thus we can find the maximum
weighted clique in the graph vertex-weighted graph Ĝw. Thus, finding an inequality in the
LP corresponding to a maximal clique whose weight exceeds q can be done in polynomial
time. Also, since there are only a polynomial number of hyperedge cliques, it follows that
the check of whether there is a violated equation can also be done in polynomial time. It
follows that SPMaxWtClique runs in polynomial time. J

Let B be an instance of the given LP. Algorithm SPAlg takes as inputs the LP instance B. It
uses the separation oracle SPMaxWtClique and iterates over integer values of q and outputs a
solution x and a value q that satisfies the system of equations and inequalities. Otherwise, it
reports that the system is infeasible. Let qmin be the smallest value of q for which Algorithm
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SPAlg finds a feasible solution of the instance B and let Bopt be the solution returned by
Algorithm SPAlg for the integer qmin. If Bopt is an integral solution, then we have an integer
solution in polynomial time. If Bopt is not integral, then we present steps in Section 4.4 to
round the fractional values in Bopt that results in a feasible integral solution for the value
qmin.

I Lemma 11. For an input interval hypergraph, the algorithm SPAlg runs in polynomial
time.

Proof. We have shown in Lemma 10 that the separation oracle in SPMaxWtClique runs in
polynomial time. Since there is a polynomial time separation oracle, using the ellipsoid
method, a feasible solution in the polytope of B can be found in polynomial time for each q.
The number of values of q is at most the number of points in the interval hypergraph H.
This is because, from Observation 6, for each vertex u ∈ V each clique in Ĝ can contain at
most one node whose vertex coordinate is u. Hence the lemma is proved. J

4.4 Rounding the LP solution
RoundingFrac is a recursive function which takes as input a fractional feasible solution of
the LP B for the value qmin on the intervals I and returns a feasible integer solution for B
for the value qmin.
In every iteration of the while loop in Algorithm 1, at least one variable in X is rounded to

Algorithm 1 RoundingFrac(Bopt, I′).

Output: Fractional solution Bopt rounded to integer solution BoptI

1 i← 0 ;
2 Bopt(0)← Bopt ;
3 while ∃xI,v ∈ Bopt(i) that does not belong to {0, 1} do
4 i← i+ 1 ;
5 Bopt(i)← Bopt(i− 1) ;
6 Ii ← Longest Interval in I ′ with the smallest left endpoint ;
7 r ← r(Ii) ;
8 r − 1← vertex to the immediate left of r(Ii) on the line ;
9 for each interval I ′ that contains r and r − 1 do

10 xI′,r−1 ← xI′,r−1 + xIi,r ;
11 xI′,r ← xI′,r − xIi,r ;
12 Modify entries in Bopt(i) corresponding to the values changed above ;
13 end
14 I ′ ← I ′ \ Ii ;
15 Ii ← Ii \ r ; . Remove right end point of Ii;
16 I ′ ← I ′ ∪ Ii ;
17 end
18 BoptI ← Bopt(i) ;
19 return BoptI ;

an integer value. In iteration i, let Ii be the interval with the smallest left end point among
all intervals of maximum length. Let l(Ii) and r(Ii) denote the left and right endpoints of
interval Ii respectively. Since r(Ii) is removed during iteration i, it follows that the total
number of points (in all the intervals) in iteration i+ 1 is one less than the total number of

STACS 2020



52:14 Perfect Resolution of Conflict-Free Colouring of Interval Hypergraphs

points in iteration i. Hence the conflict graph corresponding to intervals in iteration i+ 1
has strictly fewer number of nodes than the conflict graph corresponding to intervals in
iteration i. In Lemma 13, we show that for every i ≥ 0, the solution Bopt(i) is feasible for the
linear program B for the value qmin. We show in Lemma 12 that for some positive integer j,
Bopt(j) will be an all integer solution for B, at which time algorithm exits.

I Lemma 12. Let Bopt be a fractional feasible solution returned by SPAlg(B, qmin). Then,
RoundingFrac returns an integer solution for B on the input Bopt in a polynomial number
of steps.

Proof. From the description of RoundingFrac, in each iteration i, xIi,r(Ii) becomes zero
and the variable xIi,r(Ii) does not become non-zero in any subsequent iteration. Then the
number of variables whose value is not 0 or 1 reduces in each iteration. Further, the rounding
is such that if a variable xI,r is reduced by a certain value then xI,r−1 is increased by the
exact same value. This ensures that after each iteration the equations in (P.1):(1) are all
satisfied, and in particular they add up to 1. Therefore, eventually in each equation there
will be a variable which is 1 and all others are 0. Further, it follows from Lemma 13 that the
inequalities in (P.1):(2) also hold after each iteration. It follows that the resulting values
are indeed a solution of the given LP and will be integral in at most µ(H) iterations, where
µ(H) is the number of nodes in Ĝ. J

Let BoptI be the integer solution returned by RoundingFrac. We show in Lemma 13 that
BoptI is feasible for the instance B for the value qmin. In other words, the values to the
variables in each inequality corresponding to the colour cliques add up to at most the same
value as it was adding up to in Bopt. We show that the solution returned on a smaller
instance after every iteration is feasible for B for the value qmin. In the proof of Lemma
13 below, we use r to denote r(Ii), where Ii is the longest interval with the smallest left
endpoint in iteration i. Similarly, denote the point to the immediate left of r on the number
line by r− 1. For every other interval I ′, denote its right endpoint and the point immediately
to the left of the right endpoint by r(I ′) and r(I ′)− 1, respectively.

I Lemma 13. Let Bopt be a fractional feasible solution returned by SPAlg(B, qmin). The
solution BoptI returned by RoundingFrac is a feasible solution for the LP instance B for the
value qmin.

Proof. The proof of correctness is by induction on the iteration number. We know that Bopt
is feasible for B for the value qmin. Let us assume that for an integer i ≥ 0 Bopt(i − 1) is
feasible for B for the value qmin. We show that Bopt(i) is also feasible for B for the value
qmin. From the description of the RoundingFrac, during iteration i, the value which is
subtracted from one variable from xI,r is added to the variable xI,r−1. This fact is crucial in
the analysis below. Hence all equations in (P.1):(1) are satisfied by Bopt(i). Now, we show
that the inequalities in (P.1):(2) corresponding to the maximal cliques are also satisfied by
Bopt(i). Let I ′ be an interval that contains the point r − 1 such that xI′,r−1 has increased
due to step 10 in Algorithm 1. By the choice of I ′ for which xI′,r−1 is increased, it follows
that xI′,r is reduced and thus I ′ contains the point r. It follows from the definition of the
edge set Ecolour that there is an edge between (I ′, r − 1) and (Ii, r) in Ĝ.

Let Q be a maximal clique that contains the node (I ′, r− 1). By Observation 6, all nodes
with the same vertex coordinate form an independent set. Hence Q does not contain any
node of the form (I ′′, r − 1), where I ′′ 6= I ′. Further, for any clique Q, there is at most one
node whose value increases. If Q contains the node (I ′, r), then xI′,r has reduced and hence
the inequality corresponding to Q is satisfied under Bopt(i). If Q does not contain the node
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(I ′, r) we now show that it must contain a node whose vertex coordinate is r. To prove this,
among all nodes in Q, consider two nodes - one for which the vertex coordinate is leftmost
and another for which the vertex coordinate is the rightmost on the line. We denote the
leftmost coordinate by λ and the rightmost coordinate by ρ. Let (J, λ) and (J ′, ρ) be two
nodes in Q.

First, we show that λ ≥ l(Ii). The proof is by contradiction. Suppose λ < l(Ii). Due to
the edge between nodes (J, λ) and (I ′, r− 1) in Q, it is clear that either J or I ′ contains both
λ and r − 1. Without loss of generality, assume that J contains both λ and r − 1. Since by
our assumption λ < l(Ii), it follows that J is at least as long as Ii and l(J) < l(Ii). This is a
contradiction to our choice of Ii being the longest interval with the smallest left endpoint. It
follows that λ ≥ l(Ii). We show using the following cases that the inequality corresponding
to Q is still feasible.
1. Case ρ < r − 1. We show that this case is not possible. Since (I ′, r − 1) belongs to Q,

and ρ is the rightmost vertex coordinate among all nodes in Q, it follows that ρ ≥ r − 1.
2. Case ρ = r− 1. Since λ ≥ l(Ii) and ρ = r− 1, it follows that all points from λ to ρ belong

to Ii. Therefore, by the definition of the edges of Ĝ, (Ii, r) is adjacent to all the nodes of
Q. This contradicts the premise that Q is a maximal clique that does not contain (Ii, r).
Therefore ρ = r − 1 is not possible.

3. Case ρ = r. Since (J ′, ρ), which is the same as (J ′, r) belongs to Q, it follows that the
inequality corresponding to Q is still feasible. Since the decrease in xJ′,r is exactly the
same as the increase in xIi,r−1.

4. Case ρ > r. Observe that there is an edge between nodes (J, λ) and (J ′, ρ) since they
are both in Q. It follows that either J or J ′ both contain λ and ρ. Without loss of
generality, let J be this interval. Since J contains all the points on the line from λ to ρ,
both included, it follows that the interval J contains both points r and r− 1. Further, by
the definition of the graph Ĝ, it follows that (J, r) is adjacent to all the nodes in Q whose
vertex coordinates which are different from r and lie between λ and ρ, both included.
Also, since there can be at most one node in a maximal clique with any particular vertex
coordinate, and since Q is a maximal clique, it follows that either (J, r) belongs to Q
or that Q contains a node (J ′′, r) where J 6= J ′′. Since xIi,r is reduced in iteration i,
follows that xJ,r and xJ′′,r are also reduced. Therefore, in the maximal clique Q the
increase in xI′,r−1 is compensated by a decrease in xJ,r or xJ′′,r whichever is present in
Q. Therefore, the inequality corresponding to Q is satisfied in by Bopt(i).

Therefore, in all the cases we have concluded the Bopt(i) satsfies B. This completes the proof
by induction. J

We show in Theorem 1 that the 1-SCF colouring problem in interval hypergraphs can be
solved in polynomial time. Finally, we prove the main result in this paper.

Proof of Theorem 1. By Lemma 11 the LP returns a feasible solution in polynomial time
using the separation oracle SPMaxWtClique. By Lemmas 12 and 13, a feasible integer
solution can be obtained from the fractional feasible solution in polynomial time. Further,
the representative function t and thereof, the co-occurrence graph Γt can also be obtained
in polynomial time. By Theorem 4, the co-occurrence graph Γt is perfect. Since a proper
colouring of a perfect graph can be found in polynomial time, it follows from Theorem 2 that
an optimal 1-SCF colouring of an interval hypergraph can be found in polynomial time. J
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