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—— Abstract

Given a Boolean function f : {—1,1}" — {—1,1}, define the Fourier distribution to be the
distribution on subsets of [n], where each S C [n] is sampled with probability f(.5)?. The Fourier
Entropy-Influence (FEI) conjecture of Friedgut and Kalai [24] seeks to relate two fundamental

measures associated with the Fourier distribution: does there exist a universal constant C' > 0 such
that ]HI(fQ) < C - Inf(f), where H(fQ) is the Shannon entropy of the Fourier distribution of f and
Inf(f) is the total influence of f?

In this paper we present three new contributions towards the FEI conjecture:

(i) Our first contribution shows that H(f?) < 2-aUC®(f), where aUC®(f) is the average un-
ambiguous parity-certificate complexity of f. This improves upon several bounds shown by
Chakraborty et al. [16]. We further improve this bound for unambiguous DNFs.

(i) We next consider the weaker Fourier Min-entropy-Influence (FMEI) conjecture posed by
O’Donnell and others [43, 40] which asks if Hoo(f?) < C - Inf(f), where Hoo(f?) is the
min-entropy of the Fourier distribution. We show Huo (f?) < 2- CE, (f), where C2._(f) is
the minimum parity certificate complexity of f. We also show that for all € > 0, we have
Hoo (f2) < 210g(\|ﬂ|1,5/(1 —¢)), where Hﬂ 1,c is the approximate spectral norm of f. As a
corollary, we verify the FMEI conjecture for the class of read-k DNFs (for constant k).

(iii) Our third contribution is to better understand implications of the FEI conjecture for the
structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We
pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same
magnitude) of degree d and sparsity 2¢@ can 1 /3-approximate a Boolean function. This
conjecture is known to be true assuming FEI and we prove the conjecture unconditionally (i.e.,
without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing
connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which
has been extensively studied in functional analysis.
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1 Introduction

Boolean functions f : {—1,1}" — {—1,1} naturally arise in many areas of theoretical
computer science and mathematics such as learning theory, complexity theory, quantum
computing, inapproximability, graph theory, extremal combinatorics, etc. Fourier analysis
over the Boolean cube {—1,1}" is a powerful technique that has been used often to analyze
problems in these areas. For a survey on the subject, see [40, 54]. One of the most important
and longstanding open problems in this field is the Fourier Entropy-Influence (FEI) conjecture,
first formulated by Ehud Friedgut and Gil Kalai in 1996 [24]. The FEI conjecture seeks to
relate the following two fundamental properties of a Boolean function f: the Fourier entropy
of f and the total influence of f, which we define now.

For a Boolean function f:{—1,1}" — {—1,1}, Parseval’s identity relates the Fourier

o~

coefficients { f(S)}s and the values {f(z)}, by

S F8)? = Blf@)?] = 1,
SCln]

where the expectation is taken uniformly over the Boolean cube {—1,1}". An immediate
implication of this equality is that the squared Fourier coefficients {f($)2 : S C [n]} can
be viewed as a probability distribution over subsets S C [n], which we often refer to as
the Fourier distribution. The Fourier entropy of f (denoted H(f?)) is then defined as the
Shannon entropy of the Fourier distribution, i.e.,

N ~ 1
H(f?) := F(S)*log ——.
( SCZM %)

The total influence of f (denoted Inf(f)) measures the expected size of a subset S C [n],
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where the expectation is taken according to the Fourier distribution, i.e.,

Inf(f) =" [S] F($)2.

SC[n]

Combinatorially Inf(f) is the same as the average sensitivity as(f) of f. In particular, for
1 € [n], define Inf;(f) to be the probability that on a uniformly random input flipping the
i-th bit changes the function value. Then, Inf(f) is defined to be > Inf;(f).

Intuitively, the Fourier entropy measures how “spread out” the Fourier distribution is
over the 2" subsets of [n] and the total influence measures the concentration of the Fourier
distribution on the “high” level coefficients. Informally, the FEI conjecture states that
Boolean functions whose Fourier distribution is well “spread out” (i.e., functions with large
Fourier entropy) must have significant Fourier weight on the high-degree monomials (i.e.,
their total influence is large). Formally, the FEI conjecture can be stated as follows:

» Conjecture 1.1 (FEI Conjecture). There exists a universal constant C > 0 such that for
every Boolean function f:{-1,1}" — {-1,1},

H(f?) < C - Inf(f). (1)

The original motivation of Friedgut and Kalai for the FEI conjecture came from studying
threshold phenomena of monotone graph properties in random graphs [24]. For example,
resolving the FEI conjecture would imply that every threshold interval of a monotone graph
property on n vertices is of length at most c¢(logn)~2 (for some universal constant ¢ > 0).
The current best upper bound, proven by Bourgain and Kalai [11], is c.(logn)~2¢ for
every € > 0.

Besides this application, the FEI conjecture is known to imply the famous Kahn-Kalai-
Linial theorem [30] (otherwise referred to as the KKL theorem). The KKL theorem was one
of the first major applications of Fourier analysis to understanding properties of Boolean
functions and has since found many application in various areas of theoretical computer
science.

» Theorem 1.2 (KKL theorem). For every f: {—1,1}" — {—1,1}, there exists an i € [n]
such that Inf;(f) > Var(f) - Q(lofi")

See Section 2 for the definitions of these quantities. Another motivation to study the FEI
conjecture is that a positive answer to this conjecture would resolve the notoriously hard
conjecture of Mansour [37] from 1995.

» Conjecture 1.3 (Mansour's conjecture). Suppose f: {—1,1}" — {=1,1} is computed by
a t-term DNF.Y Then for every e > 0, there exists a family T of subsets of [n] such that
|T| < t90/9) (i.e., size of T is polynomial in t) and Srer F(T)? >1—e.

A positive answer to Mansour’s conjecture, along with the query algorithm of Gopalan et
al. [26], would resolve a long-standing open question in computational learning theory of
agnostically learning DNFs under the uniform distribution in polynomial time (up to any
constant accuracy).

More generally, the FEI conjecture implies that every Boolean function can be approxim-
ated (in f2-norm) by sparse polynomials over {—1,1}. In particular, for a Boolean function

1" A t-term DNF is a disjunction of at most ¢ conjunctions of variables and their negations.
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f and € > 0, the FEI conjecture implies the existence of a polynomial p with 20Unf(/)/)
monomials such that E,[(f(z) — p(z))?] < e. The current best known bound in this direction
is 20Unf()*/e*) proven by Friedgut [23].2

Given the inherent difficulty in answering the FEI conjecture for arbitrary Boolean
functions, there have been many recent works studying the conjecture for specific classes of
Boolean functions. We give a brief overview of these results in the next section. Alongside the
pursuit of resolving the FEI conjecture, O’Donnell and others [43, 40] have asked if a weaker
question than the FEI conjecture, the Fourier Min-entropy-Influence (FMEI) conjecture can
be resolved. The FMEI conjecture asks if the entropy-influence inequality in Eq. (1) holds
when the entropy of the Fourier distribution is replaced by the min-entropy of the Fourier
distribution (denoted Hyo(f2)). The min-entropy of {f(S)2}s is defined as

R 1
2\ . .
Heo (f) = fmdg]: {10g 7?(5)2}
Fs)#0

and thus it is easily seen that He(f2) < H(f2). In fact, Heo(f2) could be much smaller
compared to H(f?2). For instance, consider the function f(z) := 1 V IP(21,...,2,); then
Hoo(f2) = O(1) whereas H(f2) = Q(n). (IP is the inner-product-mod-2 function.) So the
FMEI conjecture could be strictly weaker than the FEI conjecture, making it a natural
candidate to resolve first.

» Conjecture 1.4 (FMEI Conjecture). There exists a universal constant C > 0 such that for
every Boolean function f: {—1,1}" — {—1,1}, we have H(f?) < C - Inf(f).

Another way to formulate the FMEI conjecture is, suppose f : {—1,1}" — {—1,1}, then
does there exist a Fourier coefficient f(S) such that |f(S)| > 270nf(f)? By the granularity
of Fourier coefficients it is well-known that every Fourier coefficient of a Boolean function f
is an integral multiple of 2-98(/) see [40, Exercise 1.11] for a proof of this. (Here the deg(f)
refers to the degree of the unique multilinear polynomial that represents f.) The FMEI
conjecture asks if we can prove a lower bound of 2~9(nf(
even this remains open. Proving the FMEI conjecture seems to require proving interesting
structural properties of Boolean functions. In fact, as observed by [43], the FMEI conjecture
suffices to imply the KKL theorem.

Understanding the min-entropy of a Fourier distribution is important in its own right too.
It was observed by Akavia et al. [2] that for a circuit class C, tighter relations between min-
entropy of f € C and f4 defined as f4(x) := f(Axz), for an arbitrary linear transformation
A, could enable us to translate lower bounds against the class C to the class C o MODs,.

) on any one Fourier coefficient, and

In particular, they conjectured that min-entropy of f4 is only polynomially larger than
f when f € AC°[poly(n), O(1)]. (AC°[s,d] is the class of unbounded fan-in circuits of size
at most s and depth at most d.) It is well-known that when f € AC[s,d], Hoo(f2) is at
most O((logs)4~1 - loglog s) [35, 10, 51]. Depending on the tightness of the relationship

between Hao (f2) and Heog (f;ﬁ), one could obtain near-optimal lower bound on the size of
AC°[s, d]oMOD; circuits computing IP (inner-product-mod-2). This problem has garnered
a lot of attention in recent times for a variety of reasons [48, 46, 2, 18, 17]. The current
best known lower bound for IP against AC%[s, d]oMOD, is quadratic when d = 4, and only
super-linear for all d = O(1) [17].

2 Friedgut’s Junta theorem says that f is e-close to a junta on 20Unf(£)/€) variables. We refer to [0,
Section 9.6, page 269, Friedgut’s Junta Theorem)] for details.
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Organization. We end this introduction with an overview of prior work on the FEI and
FMEI conjecture in Section 1.1. We then describe our contributions and sketch the proofs in
Section 3. We conclude in Section 4. Due to lack of space the proofs have been omitted. We
refer to the full version [5] for any omission from this version.

1.1 Prior work

After Friedgut and Kalai [24] posed the FEI conjecture in 1996, there was not much work
done towards resolving it, until the work of Klivans et al. [33] in 2010. They showed that
the FEI conjecture holds true for random DNF formulas. Since then, there have been many
significant steps taken in the direction of resolving the FEI conjecture. We review some
recent works here, referring the interested reader to the blog post of Kalai [31] for additional
discussions on the FEI conjecture.

The FEI conjecture is known to be true when we replace the universal constant C
with logn in Eq. (1). In fact we know H(f2) < O(Inf(f) - logn) for real-valued functions
f:{-1,1}" - R (see [43, 32] for a proof and [16] for an improvement of this statement).?
If we strictly require C to be a universal constant, then the FEI conjecture is known to be
false for real-valued functions. Instead, for real-valued functions an analogous statement
called the logarithmic Sobolev Inequality [28] is known to be true. The logarithmic Sobolev
inequality states that for every f:{—1,1}" — R, we have Ent(f?) < 2 Inf(f), where Ent(f)
is defined as Ent(f) = E[f In(f)] — E[f] In(E[f]), where the expectation is taken over uniform
xe{-1,1}™

Restricting to Boolean functions, the FEI conjecture is known to be true for the “standard”
functions that arise often in analysis, such as AND, OR, Majority, Parity, Bent functions and
Tribes. There have been many works on proving the FEI conjecture for specific classes of
Boolean functions. O’Donnell et al. [43] showed that the FEI conjecture holds for symmetric
Boolean functions and read-once decision trees. Keller et al. [32] studied a generalization of
the FEI conjecture when the Fourier coefficients are defined on biased product measures on the
Boolean cube. Then, Chakraborty et al. [16] and O’Donnell and Tan [41], independently and
simultaneously, proved the FEI conjecture for read-once formulas. In fact, O’Donnell and Tan
proved an interesting composition theorem for the FEI conjecture (we omit the definition of
composition theorem here, see [41] for more). For general Boolean functions, Chakraborty et
al. [16] gave several upper bounds on the Fourier entropy in terms of combinatorial quantities
larger than the total influence, e.g., average decision tree depth, etc., and sometimes even
quantities that could be much smaller than influence, namely, average parity-decision tree
depth.

Later Wan et al. [53] used Shannon’s source coding theorem [49] (which characterizes
entropy) to establish the FEI conjecture for read-k decision trees for constant k. Using their
novel interpretation of the FEI conjecture they also reproved O’Donnell-Tan’s composition
theorem in an elegant way. Recently, Shalev [47] improved the constant in the FEI inequality
for read-k decision trees, and further verified the conjecture when either the influence is
too low, or the entropy is too high. The FEI conjecture is also verified for random Boolean
functions by Das et al. [20] and for random linear threshold functions (LTFs) by Chakraborty
et al. [15].

3 For Boolean functions, the logn-factor was improved by [27] to log(s(f)) (where s(f) is the sensitivity
of the Boolean function f).
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There has also been some work in giving lower bounds on the constant C' in the FEI
conjecture. Hod [29] gave a lower bound of C' > 6.45 (the lower bound holds even when
considering the class of monotone functions), improving upon the lower bound of O’Donnell
and Tan [41].

However, there has not been much work on the FMEI conjecture. It was observed
in [43, 15] that the KKL theorem implies the FMEI conjecture for monotone functions and
linear threshold functions. Finally, the FMEI conjecture for “regular” read-k DNFs was
recently established by Shalev [47].

2 Preliminaries

Notation. We denote the set {1,2,...,n} by [n]. A partial assignment of [n] is a map
7 :[n] = {=1,1,%}. Define |7| = |[77}(1) U7~1(=1)|. A subcube of the Boolean cube
{=1,1}" is a set of x € {—1,1}" that agrees with some partial assignment 7, i.e., { €
{=1,1}" : x; = 7(i) for every ¢ with 7(¢) # *}.

Fourier Analysis. We recall some definitions and basic facts from analysis of Boolean
functions, referring to [40, 54] for more. Consider the space of all functions from {—1,1}" to
R equipped with the inner product defined as

(f9) =Elf@e@] = 5n Y f@la).

ze{-1,1}n

For S C [n], the character function xs : {—1,1}" — {—1,1} is defined as x5(z) = [[;cq ®i-
Then the set of character functions {xs}sc[n) forms an orthonormal basis for the space of
all real-valued functions on {—1,1}". Hence, every real-valued function f:{-1,1}" - R
has a unique Fourier expansion

f@)="Y" F(S)xs(x).

SCln]

o~

The degree of f, denoted deg(f), is defined as max{|S|: f(S) # 0}. The spectral norm of

~

[ is defined to be Y o |f(S)|. The Fourier weight of a function f on a set of coefficients

o~

S C 2" is defined as > ses f(S)2. The approzimate spectral norm of a Boolean function f
is defined as

HJ?”LE = min { Z ID(S)| : |p(x) — f(x)| < € for every x € {—1, 1}"}.
S

We note a well-known fact that follows from the orthonormality of the character functions.

» Fact 2.1 (Plancherel's Theorem). For any f,g: {—1,1}" — R,

E.[f(@)g(x)] = > F(9)3(S).
S

In particular, if f: {-1,1}" — {=1,1} is Boolean-valued and g = f, we have Parseval’s
Identity > g F(8)? = E[f(z)?], which in turn equals 1. Hence Y ¢ F($)2 =1 and we can
view {f(S)Q}S as a probability distribution, which allows us to discuss the Fourier entropy
and min-entropy of the distribution {f(S)2}s, defined as



S. Arunachalam, S. Chakraborty, M. Koucky, N. Saurabh, and R. de Wolf

» Definition 2.2. For a Boolean function f : {—1,1}" — {—1,1}, its Fourier entropy
(denoted H(f?)) and min-entropy (denoted Ho(f?)) are

A ~ 1 A 1
H(f?) == f(S)?log = , and Hy(f?) = min {log — .
SCZM TG o 18 7 )
= F(8)#0
Similarly, we can also define the Rényi Fourier entropy.
» Definition 2.3 (Rényi Fourier entropy). For f: {-1,1}" — {-1,1}, a > 0 and o # 1, the
Rényi Fourier entropy of f of order a is defined as

1 ~
2\ . 2a
Ho(f?) = 1——log | > IF(S)]
SCn]

It is known that in the limit as a — 1, Hy(f2) is the (Shannon) Fourier entropy H(f2)
(see [19, Chapter 17, Section 8]) and when o — oo, observe that H, (f?) converges to H, (f?).
It is easily seen that H.(f?) < H(f?) < H%(fQ) < Hy(f?).

For f: {—1,1}" — {—1,1}, the influence of a coordinate ¢ € [n], denoted Inf;(f), is
defined as

Infi(f) = _ Pr [f(@) # f)] =E, |(

ze{-1,1}"

fla) - f(x(”)ﬂ
2 )
where the probability and expectation is taken according to the uniform distribution on
{—1,1}" and 2 is  with the i-th bit flipped. The total influence of f, denoted Inf(f), is

Inf(f) = Infi(f).

1€[n]

In terms of the Fourier coefficients of f, it can be shown, e.g., [30], that Inf;(f) = > g, f(S)Z,
and therefore

Inf(f) = [SIF(S)2
]

SCln

The variance of a real-valued function f is given by Var(f) = 3 g f(S)Q. It easily
follows that Var(f) < Inf(f). We will also need the following version of the well-known KKL
theorem.

» Theorem 2.4 (KKL Theorem, [30]). There exists a universal constant ¢ > 0 such that for
every f: {—=1,1}" = {—1,1}, we have
1

Inf(f) >c-V -log ——————.

() > - Var(f) log s

We now introduce some basic complexity measures of Boolean functions which we use
often, referring to [13] for more.

Sensitivity. For x € {—1,1}", the sensitivity of f at x, denoted s¢(z), is defined to be the
number of neighbors y of 2 in the Boolean hypercube (i.e., y is obtained by flipping exactly
one bit of z) such that f(y) # f(x). The sensitivity s(f) of f is max,{ss(x)}. The average
sensitivity as(f) of f is defined to be Ey[s¢(x)]. By the linearity of expectation observe that

Eufsy(x)] = Y _Pr{f(z) # f(@D)] = 3 Infi(f) = Inf(f),

so the average sensitivity of f equals the total influence of f. As a result, the FEI conjecture
asks if H(f?) < C - as(f) for every Boolean function f.

45:7
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Certificate complexity. For z € {—1,1}", the certificate complezity of f at x, denoted
C(f,z), is the minimum number of bits in z that needs to be fixed to ensure that the
value of f is constant. The certificate complexity C(f) of f is max,{C(f,z)}. The min-
imum certificate complexity of f is Cpin(f) = min,{C(f,z)}. The 0-certificate complexity
CO(f) of f is max,.s(z)=1{C(f,x)}. Similarly, the 1-certificate complexity C*(f) of f is
max,. r(z)=—1{C' (f,2)}. Observe that for every x € {—1,1}", s(f,x) < C(f, ). This gives
s(f) < C(f) and as(f) < aC(f) where aC(f) denotes the average certificate complexity of f.
As before, the average is taken with respect to the uniform distribution on {—1,1}".

Parity certificate complexity. Analogously, we define the parity certificate complezity
CP(f,z) of f at x as the minimum number of parities on the input variables one has
to fix in order to fix the value of f at z, i.e.,

C®(f,z) == min{co-dim(H) | H is an affine subspace on which f is constant and = € H},

where co-dim(H) is the co-dimension of the affine subspace H. It is easily seen that
CO(f,x) < C(f,z). We also define C®(f) := max,{C®(f,2)}, and C®. (f) := min, C®(f, ).
Unambiguous certificate complexity. We now define the unambiguous certificate complexity
of f. Let 7: [n] — {=1,1,+} be a partial assignment. We refer to S; = {z € {-1,1}":
z; = 7(i) for every i € [n]\77!(x)} as the subcube generated by 7. We call C' C {—1,1}"
a subcube of {—1,1}" if there exists a partial assignment 7 such that C = S, and the
co-dimension of C' is the number of bits fixed by 7, i.e., co-dim(C) = |{i € [n] : (i) # *}|. A
set of subcubes C = {C4,...,Cp} partitions {—1,1}™ if the subcubes are disjoint and they
cover {—1,1}", ie., C;NC; =0 for i # j and U;C; = {—1,1}".

An unambiguous certificate U = {C1,...,Cp} (also referred to as a subcube partition)
is a set of subcubes partitioning {—1,1}". We say U computes a Boolean function f :
{-1,1}" — {-1,1} if f is constant on each C; (i.e., f(z) is the same for all x € C;). For
an unambiguous certificate U, the unambiguous certificate complezxity on input = (denoted
UC(U, x)), equals co-dim(C;) for the C; satisfying = € C;. Define the average unambiguous
certificate complexity of f with respect to U as aUC(f,U) = E,[UC(U, z)]. Then, the average
unambiguous certificate complexity of f is defined as

aUC(f) = Hlljn aUC(f,U),

where the minimization is over all unambiguous certificates for f. Finally, the unambiguous
certificate complexity of f is

UC(f) = Hzljn max UC(U, x).

x

Note that since unambiguous certificates are more restricted than general certificates, we
have C(f) < UC(f).

An unambiguous @-certificate U = {C1,...,Cp,} for f is defined to be a collection of
monochromatic affine subspaces that together partition the space {—1,1}™. It is easily seen
that a subcube is also an affine subspace. Analogously, for an unambiguous @®-certificate
U, on an input z, UCT (U, z) := co-dim(C;) for the C; satisfying = € C;, and aUC® (f,U) :=
E,[UC®(U,z)]. Similarly, we define aUC®(f) and UC®(f).

DNFs. A DNF (disjunctive normal form) is a disjunction (OR) of conjunctions (ANDs) of
variables and their negations. An unambiguous DNF is a DNF that satisfies the additional
property that: on every (—1)-input, exactly one of the conjunctions outputs —1.
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Approximate degree. The e-approzimate degree of f : {—1,1}" — R, denoted deg_(f),
is defined to be the minimum degree among all multilinear real polynomials p such that
|f(z) — p(a)] <eforall z € {—1,1}". Usually ¢ is chosen to be 1/3, but it can be chosen to
be any constant in (0, 1), without significantly changing the model.

Deterministic decision tree. A deterministic decision tree for f: {-1,1}" — {-1,1} is a
rooted binary tree where each node is labelled by ¢ € [n] and the leaves are labelled with an
output bit {—1,1}. On input x € {—1,1}", the tree proceeds at the i-th node by evaluating
the bit z; and continuing with the subtree corresponding to the value of x;. Once a leaf is
reached, the tree outputs a bit. We say that a deterministic decision tree computes f if for
all z € {—1,1}" its output equals f(x).

A parity-decision tree for f is similar to a deterministic decision tree, except that each
node in the tree is labelled by a subset S C [n]. On input « € {—1,1}", the tree proceeds at
the i-th node by evaluating the parity of the bits x; for ¢ € S and continues with the subtree
corresponding to the value of ®;csx;. Note that if the subsets at each node have size |S| = 1,
then we get the standard deterministic decision tree model.

Randomized decision tree. A randomized decision tree for f is a probability distribution
R,, over deterministic decision trees for f. On input z, a decision tree is chosen according
to R,, which is then evaluated on z. The complexity of the randomized tree is the largest
depth among all deterministic trees with non-zero probability of being sampled according to
R,,. One can similarly define a randomized parity-decision tree as a probability distribution
Rf‘f over deterministic parity-decision trees for f.

We say that a randomized decision tree computes f with bounded-error if for all €
{—1,1}" its output equals f(z) with probability at least 2/3. Ra(f) (resp. RS (f)) denotes
the complexity of the optimal randomized (resp. parity) decision tree that computes f with
bounded-error, i.e., errs with probability at most 1/3.

Information Theory. We now recall the following consequence of the law of large numbers,
called the Asymptotic Equipartition Property (AEP) or the Shannon-McMillan-Breiman
theorem. See Chapter 3 in the book [19] for more details.

» Theorem 2.5 (Asymptotic Equipartition Property (AEP) Theorem). Let X be a random
variable drawn from a distribution P and suppose X1, Xa,..., Xy are independently and
identically distributed copies of X, then

1
i log P(X1,Xo,...,Xy) — H(X)

in probability as M — oo.

» Definition 2.6. Fiz ¢ > 0. The typical set TE(M)(X) with respect to a distribution P is
defined to be the set of sequences (x1,22,...,xp) € X1 X Xg X -+ X X such that

2~ MERX)FE) < P(zy,19,...,12p) < 27 MEX)=),

The following properties of the typical set follows from the AEP.

» Theorem 2.7 ([19, Theorem 3.1.2]). Let e > 0 and TE(M)(X) be a typical set with respect
to P, then
(i) |T5(M) (X)| < 2MEX)+e),
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(ii) Suppose x1,...,xp are drawn i.i.d. according to X, then
Pri(ml, ce, X)) E TE(M)(X)} >1—¢ for M sufficiently large.
(iii) |TEM)(X)\ > (1 —g)2MEX)=¢) for M sufficiently large.

We also require the following stronger version of typical sequences and asymptotic
equipartition property.

» Definition 2.8 ([19, Chapter 11, Section 2]). Let X be a random variable drawn according
to a distribution P. Fix € > 0. The strongly typical set TE*(M) (X) is defined to be the set
of sequences p = (x1,22,...,xn) € X1 X Xg X -+ X X such that N(x;p) =0 if P(x) =0,
and otherwise

‘N(x;p)_ £

M
where N (z; p) is defined as the number of occurrences of x in p.

The strongly typical set shares similar properties with its (weak) typical counterpart which
we state now. See [19, Chapter 11, Section 2] for a proof of this theorem.

» Theorem 2.9 (Strong AEP Theorem). Following the notation in Definition 2.8, let T:(M)(X)
be a strongly typical set. Then, there exists 6 > 0 such that 6 — 0 as € — 0, and the following
hold:
(i) Suppose xz1,...,xp are drawn i.i.d. according to X, then
Pr[(z1,...,z0m) € TE*(M)(X)] >1—c¢ for M sufficiently large.
(i) If (x1,...,2Mm) € T (X), then

9~ MEX)+8) < Py . ) < 27 MEX)=6),

(iii) For M sufficiently large,

(1-— 6)21\/1(IHI(X)—5) < |TE*(M)(X)| < oM (H(X)+90)

3  Our Contributions

Our contributions in this paper are threefold, which we elaborate on below:

3.1 Better upper bounds for the FEI conjecture

Our first and main contribution of this paper is to give a better upper bound on the Fourier
entropy H(f2) in terms of aUC(f), the average unambiguous certificate complexity of f.
Informally, the unambiguous certificate complexity UC(f) of f is similar to the standard
certificate complexity measure, except that the collection of certificates is now required to be
unambiguous, i.e., every input should be consistent with a unique certificate. In other words,
an unambiguous certificate is a monochromatic subcube partition of the Boolean cube. By
the average unambiguous certificate complexity, aUC(f), we mean the expected number of
bits set by an unambiguous certificate on a uniformly random input.

There have been many recent works on query complexity, giving upper and lower bounds
on UC(f) in terms of other combinatorial measures such as decision-tree complexity, sensitivity,
quantum query complexity, etc., see [25, 4, 8] for more. It follows from definitions that UC(f)
lower bounds decision tree complexity. However, it is known that UC(f) can be quadratically
smaller than decision tree complexity [4]. Our main contribution here is an improved upper
bound of average unambiguous certificate complexity aUC(f) on H(f?2). This improves upon
the previously known bound of average decision tree depth on H(f?2) [16].
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» Theorem 3.1. Let f: {—1,1}" — {—1,1} be a Boolean function. Then,
H(f?) < 2-auC(f).

A new and crucial ingredient employed in the proof of the theorem is an analog of the law
of large numbers in information theory, usually referred to as the Asymptotic Equipartition
Property (AEP) theorem (Theorem 2.5). Employing information-theoretic techniques for the
FEI conjecture seems very natural given that the conjecture seeks to bound the entropy of a
distribution. Indeed, Keller et al. [32, Section 3.1] envisioned a proof of the FEI conjecture
itself using large deviation estimates and the tensor structure (explained below) in a stronger
way, and Wan et al. [53] used Shannon’s source coding theorem [49] to verify the conjecture
for bounded-read decision trees.

In order to prove Theorem 3.1, we study the tensorized version of f, fM: {-1,1}M" —
{—=1,1}, which is defined as follows,

fM(x17...,$M) = f(x%,7x;)f(x?,7mi)f(m{\4,,xflw)

Similarly we define a tensorized version CM of an unambiguous certificate C of f,* i.e., a direct
product of M independent copies of C. It is not hard to see that C* is also an unambiguous
certificate of fM. To understand the properties of CM we study C in a probabilistic manner.
We observe that C naturally inherits a distribution C on its certificates when the underlying
inputs x € {—1,1}" are distributed uniformly. Using the asymptotic equipartition property
with respect to C, we infer that for every § > 0, there exists My > 0 such that for all
M > My, there are at most 2M(QUC(/,0)+9) certificates in CM that together cover at least
1— 4 fraction of the inputs in {—1,1}*". Furthermore, each of these certificates fixes at most
M (aUC(f,C)+9) bits. Hence, a particular certificate can contribute to at most 2 (UC(f:€)+9)
Fourier coefficients of f. Combining both these bounds, all these certificates can overall
contribute to at most 22M@UC(f.)+9) Fourier coefficients of f™. Let’s denote this set of
Fourier coefficients by . We then argue that the Fourier coefficients of f that are not in
B have Fourier weight at most §. This now allows us to bound the Fourier entropy of f* as
follows,

—2
H(fM ) <log|B| + dnM + H(J),
—2 N
where H(§) is the binary entropy function. Since H(fM )= M - H(f?), we have

H(f?) < 2(aUC(f,C) + 6) + dn + %

By the AEP theorem, note that 6 — 0 as M — oo. Thus, taking the limit as M — oo we
obtain our theorem.

Looking finely into how certificates contribute to Fourier coefficients in the proof above,
we further strengthen Theorem 3.1 by showing that we can replace aUC(f) by the average
unambiguous parity-certificate complexity aUC®(f) of f. Here aUCP(f) is defined similar to
aUC(f) except that instead of being defined in terms of monochromatic subcube partitions
of f, we now partition the Boolean cube with monochromatic affine subspaces. (Observe that
subcubes are also affine subspaces.) This strengthening also improves upon the previously
known bound of average parity-decision tree depth on H( fz) [16]. Tt is easily seen that
auc® (f) lower bounds the average parity-decision tree depth.

4 Recall an unambiguous certificate is a collection of certificates that partitions the Boolean cube {—1,1}".
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» Theorem 3.2. Let f: {—1,1}" — {—1,1} be any Boolean function. Then,
H(f?) <2-auC®(f).

The proof outline remains the same as in Theorem 3.1. However, a particular certificate
in CM no longer fixes just variables. Instead these parity certificates now fix parities over
variables, and so potentially could involve all variables. Hence we cannot directly argue
that all the certificates contribute to at most 2M(@UC®(£:0)+3) Fourier coefficients of M.
Nevertheless, by the AEP theorem we still obtain that a typical parity-certificate fixes at
most M (aUC®(f,C) 4 §) parities. Looking closely at the Fourier coefficients that a parity-
certificate can contribute to, we now argue that such coefficients must lie in the linear span of
the parities fixed by the parity-certificate. Therefore, a typical parity-certificate can overall
contribute to at most 2M@UCY(£.0)
follows analogously.

+9) Fourier coefficients of f™. The rest of the proof now

» Remark 3.3. As a corollary to the theorem we obtain that the FEI conjecture holds for the
class of functions f with constant aUC®(f), and Inf(f) > 1. That is, for a Boolean function
f with Inf(f) > 1, we have

H(f?) < 2-aUC®(f) - Inf(f).

We note that the reduction in [53, Proposition E.2] shows that removing the requirement
Inf(f) > 1 from the above inequality will prove the FEI conjecture for all Boolean functions
with Inf(f) > logn. Furthermore, if we could show the FEI conjecture for Boolean functions
f where aUC®(f) = w(1) is a slow-growing function of n, again the padding argument in
[53] shows that we would be able to establish the FEI conjecture for all Boolean functions.

Further extension to unambiguous DNFs

Consider an unambiguous certificate C = {C1,...,Cs} of f. It covers both 1 and —1 inputs
of f. Suppose {C1,...,Cy, } for some t; < t is a partition of f~1(—1) and {Cy,41,...,C} is
a partition of f~1(1). To represent f, it suffices to consider \/21:1 C;. This is a DNF repres-
entation of f with an additional property that {Ci,...,Cy, } forms a partition of f=1(—1).
We call such a representation an unambiguous DNF. In general, a DNF representation need
not satisfy this additional property.

Using the equivalence of total influence and average sensitivity, one can easily observe
that

t1 t

Inf(f) < 2-min {Zco-dim(Ci) -7 dm@) N codim(C) - 2—c0-d‘m<ci>} < aUC(f,C),

i=1 i=t1+1

where co-dim(-) denotes the co-dimension of an affine space. Note that the quantity
221:1 co-dim(C;) - 27dm(C:) in a certain sense, is “average unambiguous l-certificate
complexity” and, similarly, Z;tlﬂ co-dim(C;) - 2~co-dim(C:)
0-certificate complexity”.

captures “average unambiguous

Building on our ideas from the main theorem in the previous section and using a stronger
version of the AEP theorem (Theorem 2.9) we essentially establish the aforementioned im-
proved bound of the smaller quantity between “average unambiguous 1-certificate complexity”
and “average unambiguous O-certificate complexity” on the Fourier entropy. Formally, we
prove the following.
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» Theorem 3.4. Let f : {—1,1}" — {—1,1} be a Boolean function andC = {C1,...,C;} be a
monochromatic affine subspace partition of {—1,1}"™ with respect to f such that {C1,...,Ct,}
for some t; <t is an affine subspace partition of f=1(—1) and {Cy,+1,...,Cy} is an affine
subspace partition of f~1(1). Further, p := Pr,[f(x) = 1]. Then,

ie{l,...,t1}

t1
2 (Z co-dim(Cy) - 27 dm(C) . max co—dim(C’i)> ,

t
2 ( Z co-dim(C;) - 27 dm(C) L (1 —p).  max co-dim(Ci)> .

P i€{t1+1,...,t}
We remark that to truly claim the bound of “average unambiguous 1-certificate complexity”
one would like to remove the additive term p-max;ec(1,... ¢} co-dim(C;) from the stated bound
in the above theorem. This is because when the max; co-dim(C;) term is not weighted by
p, it becomes a trivial bound on entropy. Ideally, one would like to get rid of this term
altogether, possibly at the expense of increasing the constant factor in the first summand.

We also note that a similar bound for the general DNF representation, i.e., when
{C4,...,C} is an arbitrary DNF representation of f where the C;s need not be disjoint,
suffices to establish Mansour’s conjecture (Conjecture 1.3). In fact, following the analogy,
Theorem 3.4 implies a bound of “average 1-certificate complexity” in the general case. In
this direction, we observe that a weaker bound of 1-certificate complexity, i.e., showing
H(fz) < O(Cy(f)), would already suffice to answer Mansour’s conjecture positively. We refer
to the full version [5] for a detailed discussion on this.

The outline for the proof of Theorem 3.4 remains the same as before, but it differs in
implementation details. We sketch them now. Analogous to the proof of the main theorem
we consider a partition of inputs with respect to f and its tensorized version. Motivated
by the DNF representation, we study the following partition {Cy,...,Cy,, f~1(1)} which
naturally inherits a distribution C given by the uniform distribution on the underlying inputs.
Again we build a “small” set B of Fourier coefficients of f» based on the Fourier expansions
of strongly typical sequences. However, unlike before, the probability of observing a strongly
typical sequence doesn’t capture the number of coefficients it could contribute to B. Here,
we use stronger properties guaranteed by the strong AEP. In particular, it guarantees that
the empirical distribution of a typical sequence is close to the distribution of C. In contrast,
the (weak) AEP only guarantees that the empirical entropy of a typical sequence is close
to the entropy of C. Using the stronger property we can now lower bound the magnitude
of any non-zero Fourier coefficient in the Fourier expansion of the indicator function of a
strongly typical sequence. We then use Parseval’s Identity (Fact 2.1) to deduce an upper
bound on its Fourier sparsity, which in turn is used to bound the size of B. We also need to
argue that coefficients not in B have negligible Fourier weight, which can be done as before.
Using the two properties, we can now complete the proof.

3.2 New upper bounds for the FMEI conjecture

Given the hardness of obtaining better upper bounds on the Fourier entropy of a Boolean
function, we make progress on a weaker conjecture, the FMEI conjecture. The FMEI
conjecture is much less studied than the FEI conjecture. In fact, we are aware of only
one recent paper [47] which studies the FMEI conjecture for a particular class of functions.
Our second contribution is to give upper bounds on the min-entropy of general Boolean
functions in terms of the minimum parity-certificate complexity (denoted C®. (f)) and the

min
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approximate spectral norm of Boolean functions (denoted Hf”le) The minimum parity-
certificate complexity C®, (f) is also referred to as the parity kill number by O’Donnell et
al. [42] and is closely related to the communication complexity of XOR functions [56, 39, 52].
The approximate spectral norm HJ?Hle is related to the gquantum communication complexity
of XOR functions [34, 55]. In particular, it characterizes the bounded-error quantum
communication complexity of XOR functions with constant Fo-degree [55]. (By Fao-degree,

we mean the degree of a function when viewed as a polynomial over Fs.)
» Theorem 3.5. Let f:{-1,1}" — {—1,1} be a Boolean function. Then,
(1) For every e >0, Hoo(f2) < 2-log (||f 1:/(1— 5))

(2) Hao(f?) <2 CZ(h).
(3) Hoo(f?) < 2(1+1log,3) - RS (f).

The proof of Theorem 3.5 (1) expresses the quantity ||J?||1E as a (minimization) linear
program. We consider the dual linear program and exhibit a feasible solution that achieves
an optimum of (1 — ¢)/ maxg |f(S)| This proves the desired inequality. In order to prove
part (2) and (3) of the theorem, the idea is to consider a “simple” function ¢ that has “good”
correlation with f, and then upper bound the correlation between f and g using Plancherel’s
theorem (Fact 2.1) and the fact that ¢ has a “simple” Fourier structure. For part (2), g is
chosen to be the indicator function of an (affine) subspace where f is constant, whereas for
part (3) the randomized parity-decision tree computing f itself plays the role of g.6

As a corollary of this theorem we also obtain upper bounds on the Rényi Fourier entropy
H 45(f2) of order 1+ 6 for all § > 0. Recall that Hjs(f2) > Hao(f2) for every § > 0 and
as & — oo, Hy s(f2) converges to Hao(f2). Also Hi(f2) is the standard Shannon entropy of
the Fourier distribution. We refer to the full version [5] for a detailed treatment of it.

We believe that these improved bounds on min-entropy of the Fourier distribution give a
better understanding of Fourier coefficients of Boolean functions, and could be of independent
interest. As a somewhat non-trivial application of Theorem 3.5 (in particular, part (2)) we
verify the FMEI conjecture for read-k DNFs, for constant k. (A read-k DNF is a formula
where each variable appears in at most k terms.)

» Theorem 3.6. For every Boolean function f: {—1,1}" — {—1,1} that can be expressed
as a read-k DNF, we have

Heo(f?) < O(logk) - Inf(f).

This theorem improves upon a recent (and independent) result of Shalev [47] that
establishes the FMEI conjecture for “regular” read-k DNFs (where regular means each term
in the DNF has more or less the same number of variables, see [47] for a precise definition).
In order to prove Theorem 3.6, we essentially show that Inf(f) is at least as large as the
minimum certificate complexity Cpin(f) of f.

» Lemma 3.7. There exists a universal constant ¢ > 0 such that for all f: {—1,1}" —
{=1,1} that can be expressed as a read-k DNF, we have

Inf(f) > ¢ Var(f) - (Couin(f) — 1 — log k) .

> RP(f) is the randomized parity-decision tree complexity of f (we define this formally in Section 2).

5 We remark here that there exists simpler proof of part (1), along the lines of parts (2) and (3). However,
we believe that the linear-programming formulation of Hoo(fg) might help obtain better bounds, such
as fractional block sensitivity.
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The proof of this lemma is an application of the KKL theorem (Theorem 2.4). Now
the proof of Theorem 3.6 follows with an application of the lemma in conjunction with
Theorem 3.5 (2).

3.3 Implications of the FEI conjecture and connections to the
Bohnenblust-Hille inequality

Our final contribution is to understand better the structure of polynomials that e-approximate
Boolean functions on the Boolean cube. To be more specific, for simplicity we fix e = 1/3
and we consider polynomials p such that |p(z) — f(z)| < 1/3 for all x € {—1,1}", where
f is a Boolean function. Such polynomials have proved to be powerful and found diverse
applications in theoretical computer science. The single most important measure associated
with such polynomials is its degree. The least degree of a polynomial that 1/3-approximates
f is referred to as the approximate degree of f. Tight bounds on approximate degree have
both algorithmic and complexity-theoretic implications, see for instance Sherstov’s recent
paper [50] and references therein.

In this work we ask, suppose the FEI conjecture were true, what can be said about
approximating polynomials? For instance, are these approximating polynomials p sparse
in their Fourier domain, i.e., is the number of monomials in p, [{S: p(S) # 0}|, small? Do
approximating polynomials have small spectral norm (i.e., small )¢ |p(S5)[)? In order to
understand these questions better, we restrict ourselves to a class of polynomials called
flat polynomials over {—1,1}, i.e., polynomials whose non-zero coefficients have the same
magnitude.

We first observe that if a flat polynomial p 1/3-approximates a Boolean function f, then
the entropy of the Fourier distribution of f must be “large”. In particular, we show that
H( fz) must be at least as large as the logarithm of the Fourier sparsity of p.

> Claim 3.8. If p is a flat polynomial with sparsity T that 1/3-approximates a Boolean
function f, then

H(f?) = Q(log T).

It then follows that assuming the FEI conjecture, a flat polynomial of degree d and
sparsity 2¢(?) cannot 1 /3-approximate a Boolean function. However, it is not clear to us
how to obtain the same conclusion unconditionally (i.e., without assuming that the FEI
conjecture is true) and, so we pose the following conjecture.

» Conjecture 3.9. No flat polynomial of degree d and sparsity 2 can 1/3-approzimate a
Boolean function.

» Remark 3.10. We remark that there exists degree-d flat Boolean functions of sparsity 2¢.
One simple example on 4 bits is the function z1(z2 + 3)/2 + x4(x2 — 23)/2. By taking a
(d/2)-fold product of this Boolean function on disjoint variables, we obtain our remark.

Since we could not solve the problem as posed above, we make progress in understanding
this conjecture by further restricting ourselves to the class of block-multilinear polynomials.
An n-variate polynomial is said to be block-multilinear if the input variables can be partitioned
into disjoint blocks such that every monomial in the polynomial has at most one variable
from each block. Such polynomials have been well-studied in functional analysis since the
work of Bohnenblust and Hille [9], but more recently have found applications in quantum
computing [1, 38], classical and quantum XOR games [12], and polynomial decoupling [44].
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In the functional analysis literature block-multilinear polynomials are known as multilinear
forms. In an ingenious work [9], Bohnenblust and Hille showed that for every degree-d
multilinear form p : (R")? — R, we have

n dt1
(Y B ®™) T <C | omax et et (2)
= zl,. . zde[—1,1]"

where Cy is a constant that depends on d. In [9], they showed that it suffices to pick Cy to
be exponential in d to satisfy the equation above. For d = 2, Eq. (2) generalizes Littlewood’s
famous 4/3-inequality [36]. Eq. (2) is commonly referred to as the Bohnenblust-Hille (BH)
inequality and is known to have deep applications in various fields of analysis such as operator
theory, complex analysis, etc. There has been a long line of work on improving the constant
Cy in the BH inequality (to mention a few [22, 21, 3, 6, 45]). The best known upper bound
on Cy (we are aware of) is polynomial in d. It is also conjectured that it suffices to let Cy be
a universal constant (independent of d) in order to satisfy Eq. (2).

In our context, using the best known bound on Cj in the BH-inequality implies that a
flat block-multilinear polynomial of degree d and sparsity 2(¢1°29) cannot 1/3-approximate
a Boolean function. However, from the discussion before Conjecture 3.9, we know that the
FEI conjecture implies the following theorem.

» Theorem 3.11. If p is a flat block-multilinear polynomial of degree d and sparsity 2*(®
then p cannot 1/8-approximate a Boolean function.

Moreover, the above theorem is also implied when the BH-constant Cy is assumed to be a
universal constant. Our main contribution is to establish the above theorem unconditionally,
i.e., neither assuming Cy is a universal constant nor assuming the FEI conjecture. In order
to show the theorem, we show an inherent weakness of block-multilinear polynomials in
approximating Boolean functions. More formally, we show the following.

» Lemma 3.12. Let p be a block-multilinear polynomial of degree-d that 1/8-approximates a
Boolean function f. Then, deg(f) < d.

Now using the fact that Fourier entropy of f is at least as large as the logarithm of the
sparsity of p (Claim 3.8), we obtain Theorem 3.11.

4 Conclusion

We gave improved upper bounds on Fourier entropy of Boolean functions in terms of average
unambiguous (parity)-certificate complexity, and as a corollary verified the FEI conjecture for
functions with bounded average unambiguous (parity)-certificate complexity. We established
many bounds on Fourier min-entropy in terms of analytic and combinatorial measures,
namely minimum certificate complexity, logarithm of the approximate spectral norm and
randomized (parity)-decision tree complexity. As a corollary to this, we verified the FMEI
conjecture for read-k DNFs. We also studied structural implications of the FEI conjecture on
approximating polynomials. In particular, we proved that flat block-multilinear polynomials
of degree d and sparsity 2*(?) can not approximate Boolean functions.

We now list few open problems which we believe are structurally interesting and could
lead towards proving the FEI or FMEI conjecture. Let f: {—1,1}" — {—1,1} be a Boolean
function.

(1) Does there exist a Fourier coefficient S C [n] such that |f(S)| > 2701517 Thig

would show Hy (f2) < O(deg, 5(f))-
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(2) Can we show H(f2) < O(Q(f))? Or, Hao(f2) < O(Q(f))? (where Q(f) is the 1/3-error

quantum query complexity of f, which Beals et al. [7] showed to be at least deg; /3(f)/2).

(3) Does there exist a universal constant A > 0 such that H(f2) < X - min{C*(f), C°(f)}?

This would resolve Mansour’s conjecture.

In an earlier version of this manuscript we suggested that bounding the logarithm of the

approximate spectral norm by O(deg, /5(f)) or O(Q(f)) might be an approach to answer

Question (1) or (2) above. However, in a very recent work [14] it is shown that 10g(||fH176)
could be as large as Q(Q(f) - log n), thus nullifying the suggested approach.
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