
Better Approximations for General Caching and
UFP-Cover Under Resource Augmentation
Andrés Cristi
Universidad de Chile, Chile
andres.cristi@ing.uchile.cl

Andreas Wiese
Universidad de Chile, Chile
awiese@dii.uchile.cl

Abstract
In the Unsplittable Flow on a Path Cover (UFP-cover) problem we are given a path with a demand
for each edge and a set of tasks where each task is defined by a subpath, a size and a cost. The
goal is to select a subset of the tasks of minimum cost that together cover the demand of each
edge. This problem models various resource allocation settings and also the general caching problem.
The best known polynomial time approximation ratio for it is 4 [Bar-Noy et al., STOC 2000]. In
this paper, we study the resource augmentation setting in which we need to cover only a slightly
smaller demand on each edge than the compared optimal solution. If the cost of each task equals
its size (which represents the natural bit-model in the related general caching problem) we provide
a polynomial time algorithm that computes a solution of optimal cost. We extend this result to
general caching and to the packing version of Unsplittable Flow on a Path in their respective natural
resource augmentation settings. For the case that the cost of each task equals its “area”, i.e., the
product of its size and its path length, we present a polynomial time (1 + ε)-approximation for
UFP-cover. If additionally the edge capacities are in a constant range we compute even a solution
of optimal cost and also obtain a PTAS without resource augmentation.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases General caching, unsplittable flow cover, approximation algorithm, resource
augmentation

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.44

Funding Andrés Cristi: Supported by CONICYT-PFCHA/Doctorado Nacional/2018-21180347.
Andreas Wiese: Partially supported by FONDECYT Regular grant 1170223.

1 Introduction

Caching is one of the most classical problems in computer science. We are given a value
M ∈ N that denotes the size of the cache and we are given a set of unit size pages P. Also,
we are given a set of requests R where each request j ∈ R is characterized by a time tj ≥ 0
and a page qj ∈ P meaning that at time tj the page qj has to be present in the cache. The
goal is to decide at what times we bring each page into the cache in order to minimize
the total number of these transfers, assuming that initially the cache is empty. Caching
is a very well-studied problem in computer science with research on it dating back to the
1960s, see e.g., [8, 16, 9] and references therein. It admits a polynomial time algorithm in
the offline setting [14] and in the online case there are several deterministic M -competitive
algorithms [21, 9] and a randomized O(logM)-competitive algorithm [15].

A natural generalization is the general caching problem where additionally each page
i ∈ P has a (not necessarily unit) size pi ∈ N and additionally a cost wi ∈ N that we have to
pay each time we bring i into the cache, the goal being to minimize the total cost. General
caching can be modeled by a covering problem which turns out to be the natural covering

© Andrés Cristi and Andreas Wiese;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1227-2092
mailto:andres.cristi@ing.uchile.cl
mailto:awiese@dii.uchile.cl
https://doi.org/10.4230/LIPIcs.STACS.2020.44
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Better Approximations for UFP-Cover

variant of the well-studied Unsplittable Flow on a Path problem (UFP) [13, 6, 1, 18]. We
denote this covering problem by UFP-cover. Its input consists of a path G = (V,E) and a set
of tasks T . Each task i ∈ T is characterized by a start vertex si ∈ V , an end vertex ti ∈ V , a
size pi ∈ N and a cost wi ∈ N. For each edge e ∈ E we are given a demand ue and we denote
by Te ⊆ T the set of tasks i such that e lies on the path Pi between si and ti. Our goal is to
select a subset of the tasks T̄ ⊆ T such that p(T̄ ∩ Te) ≥ ue for each edge e where for any
set of tasks T ′ ⊆ T we define p(T ′) :=

∑
i∈T ′ pi and w(T ′) :=

∑
i∈T ′ wi. Our objective is to

minimize w(T̄). When we reduce general caching to UFP-cover each time tj of some request
j is represented by an edge of G and there is a task i for each two consecutive requests of a
page i′ where intuitively selecting i represents loading i′ again into the cache at the time of
the second request and pi = pi′ and wi = wi′ ; see [6, 1] for details. Hence, if we restrict the
sizes and costs in the considered instances of general caching then this restricts the sizes and
costs of the resulting instance of UFP-cover in the same way. Additionally, UFP-cover is
motivated by resource allocation settings where, e.g., the edge demands represent minimum
requirements for energy, bandwidth, or workers and the tasks represent possibilities to satisfy
a part of this demand during some given time interval at a certain cost.

General caching and UFP-cover are NP-hard which motivates studying approximation
algorithms for them. The best known polynomial time approximation ratio for both problems
is 4 [6] and there has been no improvement on this in almost 20 years. In this paper, we
study the resource augmentation setting in which we are given a value δ > 0 such that for
each edge e we need to cover only a demand of (1− δ)ue while the compared optimum needs
to cover ue. No better algorithm is known for this setting.

1.1 Our Contribution

We first study the case of UFP-cover where pi = wi for each task i for which the best known
result is still the mentioned 4-approximation for the general case [6]. We present a polynomial
time algorithm that computes a solution (that is feasible under resource augmentation) whose
cost is at most the cost of the optimal solution (without resource augmentation). Hence,
intuitively we solve the problem optimally under resource augmentation. We consider first
the special case where the edge demands are in a constant range. We prove that there are
solutions of cost at most OPT that are feasible under resource augmentation and which have
the following structure: we can partition E into subpaths where on each subpath there are
constantly many special edges such that each task of relatively small size (small task) in the
solution uses one of these edges. This drastically simplifies the computations for the small
tasks: we design an algorithm that guesses the partition of E into subpaths and then on each
subpath it approximately guesses the small tasks crossing the constantly many special edges
in OPT . After that, it additionally selects tasks with relatively large sizes (large tasks) via a
dynamic program. For the case of arbitrary edge demands we consider for each edge e the
amount by which the optimal solution covers e and partition the edges according to ranges
of these values. For each range we show that there is a partition of E into subpaths with
constantly many special edges for the small tasks, like in the case of a constant range of
edge demands. Then, we design a dynamic program that intuitively patches the solutions for
these ranges together.

I Theorem 1. For any constant δ > 0 there is a polynomial time algorithm for the case of
UFP-cover where wi = pi for each task i, that computes a solution with optimal cost that is
feasible under (1− δ)-resource augmentation.

A. Cristi and A. Wiese 44:3

Using our techniques, we derive an algorithm for the case of general caching where pi = wi
for each page i ∈ P which is known as the bit-model [20], meaning that the cost wi of bringing
a page i into the cache is proportional to its size pi (which is a natural assumption). Our
algorithm computes a solution that is feasible for a slightly increased cache of size (1 + δ)M
and whose cost is at most the cost of the optimal solution for a cache of size M . The
notions of resource augmentation for UFP-cover and general caching are not equivalent w.r.t.
the known reduction from general caching to UFP-cover, i.e., an algorithm for UFP-cover
under resource augmentation does not imply an algorithm for general caching under resource
augmentation. Therefore, we derive a reduction from general caching to UFP (instead of
UFP-cover) in which we have the same input as for UFP-cover but we want to select a set of
tasks T̄ of maximum total weight such that on each edge e the tasks T̄ do not exceed the
capacity, i.e., p(T̄ ∩ Te) ≤ ue. We argue that if we increase the size of the cache in a general
caching instance by a factor 1 + δ then in the reduced UFP instance the capacity of each
edge increases by at least a factor 1 + δ. We adapt our new techniques for UFP-cover above
to UFP and obtain an algorithm for UFP that computes a solution of value OPT if we can
increase the capacity of each edge by a factor 1 + δ and if pi = wi for each task i. This yields
an algorithm for general caching under resource augmentation for the case that pi = wi for
each page i, computing again a solution of cost at most OPT .

I Theorem 2. For any constant δ > 0 there are algorithms with polynomial running time
for the cases of general caching and UFP where wi = pi for each page/task i that compute
solutions with optimal cost that are feasible under (1 + δ)-resource augmentation.

Then we study the case of UFP-cover in which the cost wi of each task i equals its
“area”, i.e., its size pi multiplied by the length of its path Pi. We first prove that if the
edge capacities are in a constant range then we can compute a (1 + ε)-approximation under
resource augmentation by extending techniques from [17]. Then we turn this routine into a
PTAS without resource augmentation for the same setting. To this end, we prove that there
are (1 + ε)-approximate solutions in which for each edge e either all small input tasks using
it are selected or e is covered to an extent of at least (1 + δ2)ue which yields some slack.
We intuitively guess the edges e of the former type, select all input tasks using them, and
then apply our algorithm for resource augmentation on the remaining edges. With similar
ideas, we construct an algorithm that computes a solution with optimal cost under resource
augmentation for a constant range of edge capacities.

Then we present a polynomial time (1 + ε)-approximation under resource augmentation
for arbitrary edge demands, under the same assumption on the task’s costs. To construct this
algorithm, we provide a reduction that essentially turns a polynomial time α-approximation
for the special case of a constant range of edge capacities into a polynomial time (1 + ε)α-
approximation algorithm for arbitrary edge capacities under resource augmentation. We
apply this reduction to the previous algorithm which yields a (1 + ε)-approximation under
resource augmentation. The reduction works for arbitrary cost functions and in particular
it might be useful for future work. To derive such a reduction, it might seem natural to
split the overall problem into subproblems corresponding to the different ranges of the edge
capacities. However, in UFP-cover there can be an edge e with very small demand which in
the optimal solution is covered by tasks whose total size is very large. Hence, the demand
of an edge might not give us a good estimate for how much the optimal solution covers it.
Therefore, our reduction is guided by the (unknown) amount by which the optimal solution
covers each edge, instead of the edge demands themselves. The resulting algorithm is a
dynamic program which makes repeated calls to the given algorithm for a constant range of
edge capacities and in which solutions of some DP-cells yield input tasks of other cells.

STACS 2020

44:4 Better Approximations for UFP-Cover

I Theorem 3. Consider the case of UFP-cover where wi = |Pi| · pi for each task i. For any
constants ε, δ > 0 there is a polynomial time algorithm that computes

a (1 + ε)-approximate solution that is feasible under (1− δ)-resource augmentation,
a (1 + ε)-approximate solution without resource augmentation, if the edge capacities are
in a constant range,
a solution with cost at most OPT that is feasible under (1− δ)-resource augmentation, if
the edge capacities are in a constant range.

Due to space constraints almost all proofs are deferred to the full version of the paper.

1.2 Other related work

UFP-cover is a generalization of the knapsack-cover problem. For the latter, an LP-
formulation with a constant integrality gap is known [10] based on the knapsack-cover
inequalities which are also used in other settings [12, 5, 11]. On the other hand, UFP-cover
is a special case of the capacitated set cover problem, e.g., [11, 4], in which we are given a
set of elements with demands and a family of sets where each set has a size and one seeks to
select sets such that each element is covered by sets whose total size is at least the demand
of the element.

For UFP-cover there is a QPTAS if the input data is quasi-polynomially bounded [19] and
with the reduction in [6, 1] the same holds for general caching. A related problem is the general
scheduling problem on one machine without release dates in which we are given a set of jobs
where for each job we have to pay a cost that depends on its completion time. The best known
approximation algorithm for this problem is a (4 + ε)-approximation [12] that generalizes the
4-approximation for UFP-cover in [6] and there is a QPTAS for quasi-polynomially bounded
input data [2].

For UFP (packing) the best known polynomial time approximation ratio is 5/3 + ε [18]
and there is a QPTAS [3, 7]. For the cases that the weight of each task is proportional to
its size or to its “area” even PTASs are known [7, 17]. In this paper we extend the PTAS
for the latter case to UFP-cover under resource augmentation for bounded edge demands.
However, for the case where pi = wi for each task i we need a completely different approach.

2 Task costs proportional to size

Given a constant δ > 0, we present a polynomial time algorithm for UFP-cover for the
case that pi = wi for each task i. Our algorithm computes a solution that is feasible under
(1− δ)-resource augmentation whose cost is at most the cost of the optimal solution without
resource augmentation.

By adding edges with demand 0 we can assume w.l.o.g. that the start and end vertices
of the input tasks of any considered instance are pairwise distinct. First, we describe an
algorithm for the special case that there is a value U such that ue ∈ [δU, U) for each edge e
and later we extend this algorithm to the general case.

We start by showing that there is a well-structured solution whose cost is at most w(OPT).
Our algorithm will later compute a solution with this structure. We classify tasks into large
and small tasks. A task i is large if pi ≥ δ3U and small otherwise. We denote by TL and
TS the large and small input tasks, respectively. First, we establish some properties of the
optimal solution OPT that in fact hold for arbitrary task costs (assuming that ue ∈ [δU, U)
for each edge e).

A. Cristi and A. Wiese 44:5

I Lemma 4. Let OPT be an optimal solution. For each edge e it holds that p(OPT ∩ TS ∩
Te) ≤ (2 + 2δ3)U and |OPT ∩ TL ∩ Te| ≤ O(1/δ3).

We want to cut the given instance into simpler subinstances via a partition of E into
subpaths E = E1∪̇E2∪̇...∪̇Ek such that intuitively we can compute an optimal solution for
each subpath Ej separately and then output the union. For each subpath Ej we require that
there are 9/δ special edges ej,1, ej,2, ..., ej,j′ ∈ Ej and that there is a set T ′j ⊆ TS such that
each task in T ′j uses at least one of the edges ej,1, ej,2, ..., ej,j′ and the tasks in T ′j , together
with a global set of large tasks T ′L ⊆ TL, form a feasible solution for Ej under resource
augmentation. Then we define a solution T ′ to be the union of the sets T ′j together with
T ′L. Note that a small task i might be contained in several sets T ′j and in this case we add it
several times to T ′, i.e., we allow T ′ to be a multiset. Formally, we look for solutions T ′ that
are nice. Figure 1 gives some intuition on how such a solution looks like.

I Definition 5. A multiset T ′ is nice if there exists a partition of E into subpaths E =
E1∪̇E2∪̇...∪̇Ek and partition of T ′ into sets T ′ = T ′L∪̇T ′1∪̇T ′2∪̇...∪̇T ′k such that

T ′L = T ′ ∩ TL,
for each j we have that T ′j ⊆ TS and T ′j contains each task at most once,
for each subpath Ej there are at most most 9/δ edges ej,1, ej,2, ..., ej,j′ ∈ Ej such that each
task i ∈ T ′j uses at least one of them, and for each e ∈ Ej we have that p(Te∩ (T ′j ∪T ′L)) ≥
(1− δ/2)ue.

I Lemma 6. There exists a nice multiset T ′ with a corresponding partition T ′ = T ′L∪̇T ′1∪̇T ′2∪̇
...∪̇T ′k such that w(T ′L) +

∑k
k′=1 w(T ′k′) ≤ w(OPT).

Proof sketch. We define T ′L := OPT ∩TL. For any two vertices u, v ∈ V denote by Pu,v the
path between u and v. We define the partition E = E1∪̇E2∪̇...∪̇Ek and the corresponding
sets T ′j inductively. Suppose that we have already defined k′−1 paths E1∪̇E2∪̇...∪̇Ek′−1. Let
v0 denote the rightmost vertex of Ek′−1 and for the case that k′ = 1 let v0 be the leftmost
vertex of V . We define ek′,1 = {u1, v1} to be the leftmost edge such that the total size of
small tasks TS ∩ OPT whose path is contained in Pv0,u1 is at least δ2U/4. The total size
of those tasks is at most δ2U/3 since pi ≤ δ3U for each small task i and the end vertices
of the input tasks are pairwise distinct. Inductively, suppose that we have defined j′ edges
ek′,1, ek′,2, ..., ek′,j′ in this way and let ek′,j′ = {uj′ , vj′}. We define ek′,j′+1 = {uj′+1, vj′+1}
to be the leftmost edge on the right of ek′,j′ such that the total size of small tasks TS ∩OPT
whose path is contained in Pvj′ ,uj′+1 is at least δ2U/4 (and hence at most δ2U/3). We stop
after defining ek′,9/δ2 = {u9/δ2 , v9/δ2} and define Ek′ := Pv0,v9/δ2 . We define T ′k′ to be all
tasks in TS ∩OPT whose path contains one of the edges ek′,1, ek′,2, ..., ek′,9/δ2 . Note that the
total cost of tasks in OPT ∩TS \T ′k′ that use an edge of Ek′ (i.e., small tasks of OPT that we
did not add to T ′k′) is at least 9

δ2 · δ
2U
4 ≥ (2+δ)U . This justifies that tasks in OPT ∩TS using

the rightmost edge of Ek′ might be added to T ′k′ and to T ′k′+1 and hence we have to pay twice
for them (their total size and hence their total cost is at most (2 + 2δ3)U by Lemma 4). We
stop if during some iteration k we cannot find a next edge ek,j′+1 = {uj′+1, vj′+1} according
to our definition. In this case we define Ek to be the path between v0 and the rightmost
vertex of V and stop the construction procedure. One can show that the set T ′L ∪

⋃
k′ T

′
k′

is feasible under resource augmentation, i.e., that p(Te ∩ (T ′L ∪ T ′j)) ≥ (1− δ/2)ue for each
e ∈ Ej for each j and that w(T ′) = w(OPT ∩ TL) +

∑
k′ w(T ′k′) ≤ w(OPT). J

STACS 2020

44:6 Better Approximations for UFP-Cover

Figure 1 Some of the tasks of a nice solution covering a subpath Ej . The vertical lines are the
boundaries of Ej and the shaded columns represent the few special edges ej,1, ej,2, ..., ej,j′ ∈ Ej . All
small tasks (depicted in light gray) cross one of those edges. The demand covered by the solution
(dashed curve) might be by a factor (1− δ/2) smaller than the demand of the edges (thick curve).
Note that the complete nice solution contains many more tasks covering Ej than the ones shown
above.

The algorithm

We present now an algorithm that intuitively computes a nice solution T̄ whose cost is
at most w(T ′). We first present such an algorithm for the case that for the partition
E = E1∪̇E2∪̇...∪̇Ek of T ′ it holds that k = 1 and then extend it later to the case that k > 1.

Assume that k = 1. We guess the at most 9/δ2 edges e1,1, e1,2, ..., e1,j′ in time nO(1/δ2),
i.e., we enumerate all possibilities. We guess an estimate for the capacity needed by the
tasks in T ′1 on each edge. To this end, for each edge e ∈ E let f1(e) := p

(
T ′1 ∩ Te ∩ Te1,1

)
denote the total size of the tasks in T ′1 ∩ Te1,1 that use e. Intuitively, we would like to guess
the function f1, however, there are too many possibilities for it. Therefore, instead we guess
the estimate f̂1(e) :=

⌊
f1(e)
δ4U/36

⌋
δ4U/36. Using that f1 is non-decreasing on the left of e1,1

and non-increasing on the right of e1,1, we will show that f̂1(e) has only O(1/δ4) many
steps. We define inductively functions f̂2, ..., f̂j′ where each function f̂j′′ is an estimate for
the size of the tasks in T ′1 that use e1,j′′ but not e1,j′′−1. Formally, we define fj′′(e) :=
p
((
T ′1 ∩ Te ∩ Te1,j′′ ∩ TS

)
\ Te1,j′′−1

)
and f̂j′′(e) :=

⌊
fj′′ (e)
δ4U/36

⌋
δ4U/36 for each j′′ = 2, ..., j′.

I Lemma 7. For each j′′ ∈ {1, ..., j′} the function f̂j′′ is a step function with only O(1/δ4)
many steps whose values are all integral multiples of δ4U/36 bounded by (2 + 2δ3)U . Also,
for each edge e ∈ E we have that

∑
j′′ f̂j′′(e) ≥

∑
j′′ fj′′(e)− δ2U/4.

We guess each function f̂j′′ with j′′ ∈ {1, ..., j′} in time nO(1/δ4) which gives nO(1/δ6)

many guesses in total. For each function f̂j′′ we invoke a polynomial time algorithm that
computes a set of tasks T̄1,j′′ that essentially covers f̂j′′ and that is at most as costly as the
tasks T ′1 ∩ Te1,j′′∩TS \ Te1,j′′−1 (that define the profile fj′′).

I Lemma 8. Let j′′ ∈ {1, ..., j′}. There is an algorithm with a running time of nO(1/δ4) that
computes a set of tasks T̄1,j′′ ⊆ TS ∩ Te1,j′′ \ Te1,j′′−1 with p(T̄1,j′′ ∩ Te) ≥ f̂j′′(e) − δ4U/36
for each edge e, and w(T̄1,j′′) ≤ w(T ′1 ∩ Te1,j′′ \ Te1,j′′−1).

We define T̄1 :=
⋃
j′′ T̄1,j′′ to be the small tasks that we select in order to cover E1. It

remains to select the large tasks. Due to Lemma 4 each edge is used by at most O(1/δ3)
tasks in T ′L. Therefore, we can use a dynamic program that computes the cheapest set of
large tasks T̄L that covers the demand that is not already covered by T̄1 (taking into account
that we have resource augmentation). Intuitively, it sweeps the path from left to right and
for each edge e it guesses the at most O(1/δ3) many large tasks in T ′L ∩ Te. Finally, we
output T̄ := T̄1 ∪ T̄L.

A. Cristi and A. Wiese 44:7

I Lemma 9. There is an algorithm with a running time of nO(1/δ3) that computes a set of
tasks T̄L ⊆ TL such that p((T̄L∪T̄1)∩Te) ≥ (1−δ)ue for each edge e ∈ E and w(T̄L) ≤ w(T ′L).

For the case that k > 1 we define a dynamic program that intuitively guesses the partition
E = E1∪̇E2∪̇...∪̇Ek step by step and the large tasks at the boundaries of the subpaths. After
guessing a subpath Ej and the large tasks using its boundary edges it invokes the algorithm
for k = 1 as a subroutine on Ej and then continues with the guessing.

Formally, our DP has a cell (E′′, T ′′) for each combination of a subpath E′′ of E that
contains the rightmost edge of E and a set of at most O(1/δ3) large tasks T ′′ that use the
leftmost edge of E′′, denoted by e′′L. The reader may imagine that E′′ = Ej ∪Ej+1 ∪ ...∪Ek
for some j (where the subpaths Ej correspond to the nice solution T ′) and that T ′′ are the
large tasks in T ′ that use the leftmost edge of Ej . The goal is to compute a set T̄ ′′ of tasks
of low cost such that T̄ ′′ ∪ T ′′ forms a feasible solution for E′′ under resource augmentation,
i.e., p(Te ∩ (T̄ ′′ ∪ T ′′)) ≥ (1− δ)ue. Given a cell (E′′, T ′′) we intuitively guess Ej+1 ∪ ...∪Ek,
i.e., we try all subpaths Ē′′ ⊆ E′′ that contain the rightmost edge of E and all sets T̄ ′′ of
O(1/δ3) large tasks that use the leftmost edge of Ē′′, denoted by ē′′L, such that T ′′ and T̄ ′′
are compatible, i.e., T ′′ ∩ Tē′′

L
⊆ T̄ ′′ and T̄ ′′ ∩ Te′′

L
⊆ T ′′. Let Ẽ′′ := E′′ \ Ē′′ (the reader may

imagine that Ẽ′′ = Ej). On Ẽ′′ we apply the procedure above for the case of k = 1 and
we slightly change the algoritm due to Lemma 9 such that we require that the large tasks
T ′′ ∪ T̄ ′′ are included in the computed set T̄L. Let T̂ denote the resulting tasks. With the
guess (Ē′′, T̄ ′′) we associate the solution T̂ ∪ (T̄ ′′ \ T ′′) ∪ DP (Ē′′, T̄ ′′) where DP (Ē′′, T̄ ′′)
denotes the solution stored in the cell (Ē′′, T̄ ′′). We store in the cell (E′′, T ′′) the solution of
minimum cost among all guesses. Assume for convenience that we append an edge on the
left of E with zero demand. We output the solution stored in the cell (E, ∅).

Arbitrary demands

We generalize the above algorithm to the case of arbitrary edge demands. First, we change
the definition of large and small tasks and in particular make it dependent on the (unknown)
optimal solution. For each edge e ∈ E we define ûe := p(OPT ∩ Te) and we define its level
`(e) to be the integer ` such that ûe ∈ [(1/δ)`, (1/δ)`+1). For each task i ∈ T we define its
level `(i) by `(i) := mine∈Pi `(e). We say that a task i ∈ T is large if pi ≥ δ3(1/δ)`(i)+1 and
small otherwise. For each level ` we define T `S and T `L to be the small and large tasks of level
`, respectively, and T ` = T `S ∪ T `L. We extend the notion of a nice multiset T ′ to the case of
arbitrary demands. Again, we have a partition of E into subpaths E = E1∪̇E2∪̇...∪̇Ek and
a partition of T ′ into sets T ′ = T ′1∪̇T ′2∪̇...∪̇T ′k but now for each subpath Ej there can be up
to 18/δ2 special edges for each level `. Similarly as before, for each edge e ∈ Ej the small
tasks in T ′j crossing one of these edges cover e together with the large tasks in T ′ (assuming
that we have resource augmentation). Due to the resource augmentation we can even require
that already the tasks in T ′ of levels `(e)− 1 and `(e) are sufficient for covering e.

I Definition 10. A multiset T ′ ⊆ T is nice-by-levels if there exists a partition into subpaths
E = E1∪̇...∪̇Ek and sets T ′ = T ′1∪̇...∪̇T ′k with the property that each set T ′j contains each
task i at most once and for each subpath Ej and each level ` there is a set of at most 18/δ2

edges ej,1,`, ej,2,`, ... ∈ Ej of level ` such that T ′j ∩ T `S ⊆
⋃
j′ Tej,j′,` ∩ T

`
S. Moreover, for each

edge e ∈ Ej of some level ` we have that p(Te ∩ T ′j ∩ (T ` ∪ T `−1)) ≥ (1− 3δ)ûe ≥ (1− 3δ)ue
and |T ′ ∩ Te ∩ T `L| ≤ 1/δ3.

I Lemma 11. There is a set T ′ that is nice-by-levels with
∑
k′ w(T ′k′) ≤ w(OPT).

STACS 2020

44:8 Better Approximations for UFP-Cover

Proof sketch. Assume that we already defined a set of vertices V ′ and a set of special
vertices for each level `′ ∈ {0, ..., `− 1} such that the vertices V ′ separate E into subpaths
Ej such that for each level `′ ∈ {0, ..., `− 1} each subpath Ej contains at most 18/δ2 special
edges of level `′. For each subpath Ej we consider its edges of level ` and apply a slight
adaptation of the procedure from the proof of Lemma 6. Let v0 be the leftmost vertex of
Ej . We define ej,1,` = {u1, v1} to be the leftmost edge such that the total size of the small
tasks of level ` ending in Pv0,u1 is at least δ2(1/δ)`+1/4 and hence at most δ2(1/δ)`+1/3.
Inductively, we define special edges {ej,j′,`}j∈[k],j′∈N in this way. If an edge e of level `′ > `

is selected as a special edge we replace it by the two closest edges of level `. We do this
operation for each level `. If we defined more than 18/δ2 special edges of level `, then we add
to V ′ the right vertex of one in every 18/δ2 special edges, so we partition Ej into subpaths
such that each subpath contains at most 18/δ2 special edges of level `.

Let Ej be a subpath of the final partition, let {ej,j′,`}j′,`∈N be the special edges contained in
Ej , and let T ′j := OPT ∩

(
{i ∈ TL|Pi ∩ Ej 6= ∅} ∪

⋃
`

⋃
j′ Tej,j′,`

)
be the tasks corresponding

to Ej . With a similar reasoning as in Lemma 6 before we argue that for each edge e ∈ Ej
the tasks in T ′j that cross e and additionally at least one of the edges {ej,j′,`}j′,`∈N have a
total size of at least (1− δ)û(e), i.e., essentially cover e. One can show that the tasks of level
`(e)− 2 or smaller covering e have a total size of at most 2δûe, using that each of them must
use the closest edge on the left or on the right of e that is of level `(e)− 2 and each of them
is used by tasks in OPT of total size at most (1/δ)`−1 ≤ δûe. We define T ′ =

⋃k
j=1 T

′
j to

be the constructed multiset. With a similar argumentation as in Lemma 6 one can show
that

∑
k′ w(T ′k′) ≤ w(OPT), arguing that some tasks in OPT ∩ TS are not included in T ′

and that they compensate for the additional cost of tasks in OPT that are included several
times in T ′. J

We describe now a dynamic program that intuitively computes a nice-by-levels solution
T̄ with w(T̄) ≤ w(T ′). Consider first the case that k = 1 and let j = 1. Unlike the case
of a constant range of edge capacities, we cannot guess all edges {ej,j′,`}j′,`∈N in one step
since they can be more than constantly many. Instead, we start with ` := 0 we first guess all
O(1/δ2) special edges {ej,j′,`}j′∈N of level ` and for each of these edges ej,j′,` we guess the
large tasks in T ′ using ej,j′,`, i.e., T ′ ∩ T `L ∩ Tej,j′,` and an approximation of the profiles of
the small tasks that use ej,j′,` and no special edge ej,ĵ′,ˆ̀ with ˆ̀< ` or with ˆ̀= ` and ĵ′ < j′

(like in Section 2).
Formally, we define f1(e) := p

(
T ′j ∩ Te ∩ Tej,1,` \

⋃
`′<`

⋃
ĵ Tej,ĵ,`′

)
and for each j′ > 1

we define fj′(e) := p
(
T ′1 ∩ Te ∩ Tej,j′,` \

(
Tej,j′−1,` ∪

⋃
`′<`

⋃
ĵ Tej,ĵ,`′

))
. Then we define the

approximative profiles by f̂j′(e) :=
⌊

fj′ (e)
δ4(1/δ)`/36

⌋
(1/δ)`δ4/36 for each j′. Note that each

function f̂j′(e) has only O(1/δ5) many steps. Since there are at most 18/δ2 special edges
of each level, we can guess all functions f̂j′(e) in time nO(1/δ7). For each guessed profile we
compute small tasks that essentially cover it, like in Lemma 8.

I Lemma 12. For each j′ there is an algorithm with a running time of nO(1/δ5) that
computes a set of tasks T̄j,j′,` ⊆ Tej,j′,` \

(
Tej,`′−1,` ∪

⋃
`′<`

⋃
ĵ Tej,ĵ,`′ ∪

(
T ′ ∩ T `L ∩ Tej,j′,`

))
with p(T̄j,j′,` ∩ Te) ≥ f̂j′(e)− δ4(1/δ)`/36 for each edge e, and w(T̄j,j′,`) ≤ fj′(ej,j′,`).

Let E′ be a subpath between two consecutive special edges in {ej,j′,`}j′∈N. It might be
that E′ contains edges of level `. Denote these edges by E′`. We want to guess the large
tasks of level ` that use an edge in E′`. In order to do this we invoke a dynamic program that
intuitively sweeps in E′ from left to right and in each step guesses an edge e ∈ E′` together

A. Cristi and A. Wiese 44:9

with the tasks T ′∩Te∩T `L. We recurse in each subpath E′′ between two consecutive edges in
E′`, between the leftmost edge of E′ and the leftmost edge in E′`, and between the rightmost
edge of E′` and the rightmost edge of E′. In each recursive call, the arguments consists of the
subpath E′′, the next level `+ 1, and the guessed O(1/δ2) special edges of level ` and their
profiles, and the large tasks of level ` using the leftmost edge of E′′ or the rightmost edge of
E′′. In principle, by doing this we forget (and thus lose) the amount that tasks from levels
`− 1 and below cover on edges in E′′. However, T ′ is nice-by-levels and thus we have that on
each edge e of some level ` the tasks in T ′ ∩ (T ` ∪ T `−1) are sufficient to cover the demand
ue (under resource augmentation). For the arguments in our recursive call there is only a
polynomial number of options. Therefore, we can embed this recursion into a polynomial
time dynamic program. The base case is given when the path E′′ is empty or if the level ` is
so large that T `S = T `L = ∅, i.e., if maxe∈E ûe ≤

∑
i∈T pi < (1/δ)`.

Finally, if k > 1 then we use the same dynamic program as before in order to guess the
partition E = E1∪̇...∪̇Ek. Thus we have the following theorem. Its proof and the complete
description of the algorithm is deferred to the full version of the paper.

I Theorem 13. For any δ > 0 there is an algorithm with a running time of n(1/δ)O(1)

for the case of UFP-cover where wi = pi for each task i that computes a solution T ′ with
w(T ′) ≤ w(OPT) and that satisfies that p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

2.1 General caching and UFP
We use the techniques from the previous algorithm to obtain algorithms for UFP and general
caching under resource augmentation. First, we show how to reduce general caching to UFP.

I Lemma 14. Given an instance (P,R,M) of general caching such that pi = wi for each
page qi ∈ P. In polynomial time we can compute an instance (V,E, T, u) of UFP with
ue ≤M for each edge e ∈ E and pi = wi for each task i ∈ T such that
1. for any solution to (P,R,M) with cost C there is a solution T ′ ⊆ T to (V,E, T, u) with

w(T ′) = w(T)− C and vice versa,
2. for any solution to (P,R,M(1+δ)) with cost C there is a solution T ′ to (V,E, T, u+1δM)

with w(T ′) = w(T)− C and vice versa.

Lemma 14 implies that in order to obtain an algorithm for general caching under resource
augmentation it sufficies to provide an algorithm for UFP under (1+δ)-resource augmentation,
i.e., where the capacity of each edge e is increased to (1 + δ)ue. We construct an algorithm
for UFP of the latter type. We begin with the case of a constant range of edge capacities, i.e.,
ue ∈ [δU, U). We define a task i ∈ T to be large if pi ≥ δ3U and small otherwise. Denote by
TL and TS the set of large and small input tasks, respectively. Like in the case of UFP-cover
we are looking for solutions that are nice which in this case means that there is a partition
of E into subpaths E = E1∪̇E2∪̇...∪̇Ek such that we restrict ourselves to tasks i such that
Pi ⊆ Ej for some j ∈ {1, ..., k} and additionally for each set Ej there are some special edges
ej,1, ej,2, ..., ej,` such that we select each task i ∈ TS with Pi ⊆ Ej that does not use any of
these special edges.

I Definition 15. A set T ′ ⊆ T is nice if there exists a partition of E into subpaths E =
E1∪̇E2∪̇...∪̇Ek such that

for each task i ∈ T ′ we have that Pi ⊆ Ej for some j ∈ {1, ..., k},
for each Ej there are at most 4/δ2 edges ej,1, ej,2, ..., ej,` ∈ Ej such that {i ∈ TS : Pi ⊆
Ej} \

⋃`
`′=1 Tej,`′ ⊆ T

′ and for each edge e ∈ Ej we have that p(T ′ ∩ Te) ≤ ue + δ2U/2.

STACS 2020

44:10 Better Approximations for UFP-Cover

I Lemma 16. There is a nice set T ′ that satisfies w(T ′) ≥ w(OPT).

Our algorithm is now similar as the algorithm for UFP-cover above. If k > 1 then we
first invoke a dynamic program that guesses the partition E = E1∪̇E2∪̇...∪̇Ek. Let T ′j be the
tasks i ∈ T ′ with Pi ⊆ Ej . For each subpath Ej we guess the special edges ej,1, ej,2, For
each j′ we define the profile of the small tasks using ej,j′ and none of the edges ej,1, ..., ej,j′−1

by fj′(e) := p
(
T ′j ∩ TS ∩ Te ∩ Tej,j′ \ Tej,j′−1

)
and a corresponding overestimating profile

f̂j′(e) :=
⌈
fj′ (e)
δ4U/16

⌉
δ4U/16. The latter has O(1/δ4) many steps for each j′ so we guess all

profiles f̂j′(e) in time nO(1/δ6). We compute tasks for the profiles similarly as in Lemma 8.

I Lemma 17. Let j′ ∈ N. There is an algorithm with a running time of nO(1/δ4) that
computes a set of tasks T̄j,j′ ⊆ TS ∩ Tej,j′ \ Tej,j′−1 with p(T̄j,j′ ∩ Te) ≤ f̂j′(e) + δ4U/16 for
each edge e, and w(T̄j,j′) ≥ w(T ′j ∩ TS ∩ Tej,j′ \ Tej,j′−1).

Then we add all small tasks whose path is contained in Ej and that do not use any of
the special edges ej,1, ej,2, Let T̄j denote the selected small tasks. If all our guesses were
correct then one can show that on each edge e we have that p(T̄j ∩ Te) ≤ (1 + δ)ue. Finally,
we invoke a dynamic program that selects a maximum weight set of large tasks that fits in
the remaining edge capacities, similarly as in Lemma 9. We define T ′L = T ′ ∩ TL.

I Lemma 18. There is an algorithm with a running time of nO(1/δ3) that computes a set of
tasks T̄L ⊆ TL such that p((T̄L∪T̄j)∩Te) ≤ (1+δ)ue for each edge e ∈ E and w(T̄L) ≥ w(T ′L).

In fact, using Lemma 14 one can show that our algorithm for UFP for a constant range
of edge capacities is already sufficient for general caching under resource augmentation.

I Theorem 19. For any δ > 0 there is an algorithm with a running time of n(1/δ)O(1) for
general caching instances (P,R,M) where wi = pi for each page i ∈ P that computes a
solution whose cost is at most the cost of the optimal solution and that is feasible if the cache
has size (1 + δ)M .

For the case of arbitrary edge capacities in UFP we can use a similar generalization as
for UFP-cover to obtain the following theorem.

I Theorem 20. For any δ > 0 there is an algorithm with a running time of n(1/δ)O(1) for the
case of UFP where wi = pi for each task i, that computes a solution T ′ with w(T ′) ≥ w(OPT)
and that satisfies that p(Te ∩ T ′) ≤ (1 + δ)ue for each edge e.

3 Task costs proportional to area

In this section we study the case of UFP-cover in which wi = |Pi| · pi for each task i ∈ T .
For the respective case of UFP a PTAS is known [17] that uses a sparsification step. For
UFP-cover we cannot use this technique, however, in the next theorem we extend the
methodology in [17] to a (1 + ε)-approximation for UFP-cover under resource augmentation
if the edge capacities are in a constant range (its proof is deferred to the full version of the
paper). Suppose that ue ∈ [δU, U) for some global value U . We define a task i to be small if
pi ≤ δ3 · U and large otherwise, denote by TS and TL the respective sets of tasks.

I Theorem 21. Let ε, δ > 0 and U > 0. Given an instance of UFP-cover for the case that
wi = |Pi|·pi for each task i ∈ TS and ue ∈ {0}∪[δU, U) for each edge e. There is an algorithm
with a running time of nOε,δ(1) that computes a solution T ′ with p(T ′ ∩ Te) ≥ (1− δ)ue for
each edge e and such that w(T ′) ≤ w(TL ∩OPT) + (1 + ε)w(TS ∩OPT) ≤ (1 + ε)OPT .

A. Cristi and A. Wiese 44:11

Next, we construct a PTAS without resource augmentation for a constant range of edge
capacities. The PTAS will use the algorithm due to Theorem 21 as a black-box. Recall that
in OPT each edge is used by at most O(1/δ3) large tasks (see Lemma 4). We prove that
there is a solution OPT ′ with w(OPT ′) ≤ (1 +O(δ))w(OPT) such that for every edge e ∈ E
it holds that either OPT ′ contains all small tasks using e or OPT ′ covers e to an extent of
at least (1 + δ2)ue. Intuitively, we construct OPT ′ by taking OPT and adding tasks from
TS greedily until the property is satisfied. We show that in this way each edge is used by
additional tasks of size at most O(δ2). Hence, the total cost of these additional tasks is at
most O(δ2U)|E| while w(OPT) ≥ δU |E|.

I Lemma 22. There is a set OPT ′ such that w(OPT ′) ≤ (1 +O(δ))w(OPT) and on each
edge e ∈ E it holds that p(OPT ′ ∩ Te) ≥ (1 + δ2)ue or Te ∩ TS ⊆ OPT ′.

Let E′ denote the set of edges e such that OPT ′ contains all small tasks using e. Using a
standard dynamic program we guess the edges E′ step by step (see the full version of the
paper for details). Then, for each edge e ∈ E′ we guess the O(1/δ3) large tasks in OPT ′ ∩Te
and we selects all small tasks in Te∩TS . Observe that in this way we select all tasks in OPT ′
that use some edge in E′. For each subpath E′′ between two consecutive edges e1, e2 ∈ E′ we
compute a set of tasks that cover the remaining demand on E′′ (i.e., the demand not covered
by the tasks in (Te1 ∪Te2)∩OPT ′). To this end, we invoke the algorithm due to Theorem 21
on an auxiliary instance defined as follows. We start with E and contract all edges that are
not in E′′. If for some edge e ∈ E′′ the tasks in (Te1 ∪ Te2) ∩OPT ′ already cover e, i.e., if
p(Te ∩ (Te1 ∪ Te2) ∩ OPT ′) ≥ ue, then we contract e as well. Otherwise, note that OPT ′
covers e to an extent of at least (1 + δ2)ue and therefore the tasks in OPT ′ \ (Te1 ∪ Te2)
cover e to an extent of at least ūe := (1 + δ2)ue − p (Te ∩ (Te1 ∪ Te2) ∩OPT ′). Therefore,
we define the demand of each edge e to be ūe. One can show that ūe ∈ [δ2U,U) (since we
did not contract e). Let T ′ denote the solution that we obtain if we apply the algorithm due
to Theorem 21 on this instance. One can show that then T ′ ∪ ((Te1 ∪ Te2) ∩OPT ′) covers
the original demand ue on each edge e ∈ E′′, i.e., p(Te ∩ T ′ ∪ ((Te1 ∪ Te2) ∩OPT ′)) ≥ ue for
each edge e ∈ E′′. We apply this routine on each subpath E′′ between two consecutive edges
in E′.

Above, we constructed OPT ′ by adding tasks to OPT in order to create some slack. If
instead we remove tasks from OPT we can construct a solution OPT ′′ which is cheaper
than OPT , feasible under resource augmentation, and in which on each edge e we removed
small tasks of total size δ2ue or we removed all small tasks using e. Being guided by OPT ′′
instead of OPT ′ we can construct an algorithm that computes a solution of cost at most
OPT that is feasible under resource augmentation.

I Theorem 23. Consider the case of UFP-cover where wi = |Pi| · pi for each task i and in
which the edge capacities are in a constant range. This case admits a PTAS and for any
δ > 0 there is an algorithm with a running time of n(1/δ)O(1) that computes a solution T ′

with w(T ′) ≤ w(OPT) and that satisfies that p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

4 Reducing to a constant range of edge demands

We describe a black-box procedure that intuitively turns an α-approximation algorithm for
the case of UFP-cover of a bounded range of edge demands (independently of the costs of
the tasks) into an α(1 + ε)-approximation algorithm under (1− δ)-resource augmentation
for arbitrary edge demands. As a technicality, we need that the former algorithm works on
instances with some normal tasks and some artificial huge tasks TH where each task i ∈ TH

STACS 2020

44:12 Better Approximations for UFP-Cover

has the property that it alone covers the complete demand on each edge of its path Pi and
we require that the algorithm loses the factor of α only on the cost of the normal tasks. Note
that any restriction on the set of normal tasks, like cost proportional to the area or to the
size, is preserved in the reduction.

I Lemma 24. Let ε, δ > 0 and given an instance (T,E, u) of UFP-cover. Suppose there is
a polynomial time approximation algorithm for instances of the form (T ∪ TH , E′, ū) where
E′ ⊆ E and there is a value U such that for each edge e ∈ E′ it holds that δ2U ≤ ūe ≤ U or
that ūe = M := 1+

∑
i∈T pi and that pi′ = M for each i′ ∈ TH and assume that this algorithm

computes solutions of cost at most w(OPT ∩TH)+αw(OPT ∩T). Then there is a polynomial
time algorithm that computes a solution T ′ ⊆ T for (T,E, u) with w(T ′) ≤ α(1 + ε)OPT and
p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

Proof sketch. Similarly as in the algorithm for UFP-cover in Section 2 we group the edges
into levels according to the extent by which they are covered in OPT . For each edge e ∈ E
we define ûe := p(OPT ∩ Te) and we define its level `(e) to be the integer ` such that
ûe ∈ [(1/δ)`, (1/δ)`+1). For each task i ∈ T we define its level `(i) := mine∈Pi `(e). Let
T (`) denote the tasks of level ` and let E(`) denote the edges of level `. We assign the
tasks into groups T (s) such that each group contains the tasks from 1/ε + 1 consecutive
levels, intuitively most tasks are contained in exactly one group and some few tasks are
contained in two groups. For an offset β ∈ {0, ..., 1/ε − 1} to be defined later we define
T (s) :=

⋃β+(s+1)/ε
`=β+s/ε T (`) for each s ∈ Z. In particular, for each s ∈ Z the tasks in T (β+(s+1)/ε)

are contained in two groups, T (s) and T (s+1). By a shifting argument there is a choice for
β such that

∑
s w(T (s) ∩OPT) ≤ (1 + ε)OPT . Similarly, we group the edges into groups.

However, now each edge will be contained in only one group. For each s ∈ Z we define
E(s) :=

⋃β+(s+1)/ε
`=β+s/ε+1E

(`). One key observation is that due to the resource augmentation the
tasks in T (s) ∩OPT are sufficient to cover the demand of all edges in E(s).

B Claim 25. Let s ∈ N. For each edge e ∈ E(s) it holds that Te∩T (s)∩OPT ≥ ûe(1−O(δ)).

Hence, if we knew the level of each edge then we could generate one subinstance for each
group s whose input contains only the edges E(s) and the tasks in T (s) and then take the
union of these solutions. Unfortunately, we do not know the levels of the edges. Instead,
we define a dynamic program. Our DP has a cell (E′, s) for each E′ ⊆ E and each level
s ∈ Z. For each s ∈ Z let P(s) denote (unknown) the maximal subpaths consisting of edges
in
⋃
s′:s′≥s E(s′).
Consider a cell (E′, s), where the reader may imagine that E′ ∈ P(s). The goal is to

compute a set of tasks that cover E′ where we restrict ourselves to solutions such that
each edge e ∈ E′ is covered to an extent of at least (1 − δ)(1/δ)β+s/ε+1 (even though
the real demand ue of e might be smaller). Note that if E′ ∈ P(s) then p(Te ∩ {i ∈
OPT ∩

⋃∞
s′=s T (s′)|Pi ∩E′ 6= ∅}) ≥ (1− δ)(1/δ)β+s/ε+1, for each e ∈ E′. Inductively, assume

that there is a value s such that for each E′ ∈ P(s′) with s′ > s the DP-cell (E′, s′) stores
a solution of cost at most α(1 + ε)w

(
{i ∈ OPT ∩

⋃∞
s′=s+1 T (s′)|Pi ∩ E′ 6= ∅}

)
that covers

each edge e ∈ E′ to an extent of at least ue(1 − δ). Ideally, we would like to guess the
paths E′′ ⊆ E′ such that E′′ ∈ P(s + 1), take the solutions stored in the respective cells
(E′′, s+ 1), and then call the α-approximation on the remaining edges on E′′. However, the
number of such paths E′′ can be too large. Instead, for each solution in a cell (E′′, s+ 1)
with E′′ ⊆ E′ we introduce an artificial input task i(E′′, s + 1) with pi(E′′,s+1) = M and
the weight wi(E′′,s+1) of i(E′′, s+ 1) is defined as the cost of the solution stored in the cell
(E′′, s + 1). Let TH denote the set of all these (polynomially many) artifical tasks. We

A. Cristi and A. Wiese 44:13

define demand of the edges such that for each edge e ∈ E′ we define its demand ūe to be
ūe := (1− δ)(1/δ)β+s/ε+1 if ue < (1/δ)β+s/ε+1 (recall that we restrict ourselves to solutions
that cover at least this amount), ūe := (1 − δ)ue if (1/δ)β+s/ε+1 ≤ ue < (1/δ)β+(s+1)/ε+1,
and ūe := M if ue ≥ (1/δ)β+(s+1)/ε+1. Observe that if ue ≥ (1/δ)β+(s+1)/ε+1 then `(e) > s

and hence the tasks in OPT ∩ T (s) are not needed for covering e (due to the resource
augmentation). Note that one solution to this subproblem is to select the task i(E′′, s+ 1)
for each E′′ ∈ P(s+ 1) and the tasks in OPT ∩ T (s) that use E′. From Claim 25 we know
that the tasks in sets T (s′) with s′ < s are not needed to cover the demand in E′. We
invoke the α-approximation algorithm and store the solution in the cell (E′, s′). One can
show that the cell (E,−1) then stores a α(1 + ε)-approximative solution T ′ that satisfies
p(Te ∩ T ′) ≥ (1− δ)ue for each e ∈ E. J

I Corollary 26. Consider the case of UFP-cover where wi = |Pi| · pi for each task i.
For any ε, δ > 0 there is a polynomial time algorithm that computes a solution T ′ with
w(T ′) ≤ (1 + ε)w(OPT) and that satisfies that p(Te ∩ T ′) ≥ (1− δ)ue for each edge e.

5 Conclusion and open problems

In this paper we studied approximation algorithms for UFP-cover under resource augmenta-
tion. We gave algorithms for the cases where the task costs are proportional to their “areas”
or sizes, computing solutions whose costs are (1+ε)-approximate or even optimal, respectively.
It is an open question whether one can obtain such algorithms also for the general case under
resource augmentation. An interesting first step would be to get an algorithm for this setting
with a better approximation ratio than 4.

Our results imply that under resource augmentation UFP-cover is no longer NP-hard if
the cost of each task equals its size (unless P = NP), and the same holds for the respective
settings of UFP (packing) and general caching. This raises the question whether the general
case of these problems is still NP-hard in the resource augmentation setting or whether one
can compute a solution with optimal cost in polynomial time. Another natural open question
is whether one can obtain results like ours also without resource augmentation. We hope
that our new techniques help constructing such algorithms.

References
1 Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for general caching

problems. In SODA, volume 99, pages 31–40. Citeseer, 1999.
2 Antonios Antoniadis, Ruben Hoeksma, Julie Meißner, José Verschae, and Andreas Wiese.

A QPTAS for the General Scheduling Problem with Identical Release Dates. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International
Colloquium on Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 31:1–31:14, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2017.31.

3 Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A quasi-PTAS for
unsplittable flow on line graphs. In Proceedings of the 38th Annual ACM Symposium on
Theory of Computing (STOC 2006), pages 721–729. ACM, 2006.

4 Nikhil Bansal, Ravishankar Krishnaswamy, and Barna Saha. On capacitated set cover
problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 38–49. Springer, 2011.

5 Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM Journal on Computing,
43(5):1684–1698, 2014.

STACS 2020

https://doi.org/10.4230/LIPIcs.ICALP.2017.31

44:14 Better Approximations for UFP-Cover

6 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–
1090, September 2001. doi:10.1145/502102.502107.

7 Jatin Batra, Naveen Garg, Amit Kumar, Tobias Mömke, and Andreas Wiese. New ap-
proximation schemes for unsplittable flow on a path. In Proceedings of the 26th An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA 2015), pages 47–58, 2015.
doi:10.1137/1.9781611973730.5.

8 Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM
Systems journal, 5(2):78–101, 1966.

9 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 2005.

10 Robert D Carr, Lisa K Fleischer, Vitus J Leung, and Cynthia A Phillips. Strengthening
integrality gaps for capacitated network design and covering problems. In Proceedings of the
11th annual ACM-SIAM symposium on Discrete algorithms (SODA 2000), pages 106–115.
Society for Industrial and Applied Mathematics, 2000.

11 Deeparnab Chakrabarty, Elyot Grant, and Jochen Könemann. On column-restricted and
priority covering integer programs. In International Conference on Integer Programming and
Combinatorial Optimization, pages 355–368. Springer, 2010.

12 Maurice Cheung, Julián Mestre, David B Shmoys, and José Verschae. A primal-dual approxim-
ation algorithm for min-sum single-machine scheduling problems. SIAM Journal on Discrete
Mathematics, 31(2):825–838, 2017.

13 M. Chrobak, G. Woeginger, K. Makino, and H. Xu. Caching is hard, even in the fault model.
In ESA, pages 195–206, 2010.

14 Marek Chrobak, H Karloof, Tom Payne, and S Vishwnathan. New results on server problems.
SIAM Journal on Discrete Mathematics, 4(2):172–181, 1991.

15 Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator, and Neal E
Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

16 P. A. Franaszek and T. J. Wagner. Some distribution-free aspects of paging algorithm
performance. J. ACM, 21(1):31–39, January 1974. doi:10.1145/321796.321800.

17 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. To augment or not to
augment: Solving unsplittable flow on a path by creating slack. In Proc. of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), 2017. To appear.

18 Fabrizio Grandoni, Tobias Mömke, Andreas Wiese, and Hang Zhou. A (5/3+ε)-approximation
for unsplittable flow on a path: placing small tasks into boxes. In Proceedings of the 50th
Annual ACM Symposium on Theory of Computing (STOC 2018), pages 607–619. ACM, 2018.

19 Wiebke Höhn, Julián Mestre, and Andreas Wiese. How unsplittable-flow-covering helps
scheduling with job-dependent cost functions. Algorithmica, 80(4):1191–1213, 2018.

20 Sandy Irani. Page replacement with multi-size pages and applications to web caching. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages
701–710. ACM, 1997.

21 Daniel D Sleator and Robert E Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

https://doi.org/10.1145/502102.502107
https://doi.org/10.1137/1.9781611973730.5
https://doi.org/10.1145/321796.321800

	Introduction
	Our Contribution
	Other related work

	Task costs proportional to size
	General caching and UFP

	Task costs proportional to area
	Reducing to a constant range of edge demands
	Conclusion and open problems

