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—— Abstract

The VERTEX COVER problem plays an essential role in the study of polynomial kernelization in
parameterized complexity, i.e., the study of provable and efficient preprocessing for NP-hard problems.
Motivated by the great variety of positive and negative results for kernelization for VERTEX COVER
subject to different parameters and graph classes, we seek to unify and generalize them using
so-called blocking sets. A blocking set is a set of vertices such that no optimal vertex cover contains
all vertices in the blocking set, and the study of minimal blocking sets played implicit and explicit
roles in many existing results.

We show that in the most-studied setting, parameterized by the size of a deletion set to a
specified graph class C, bounded minimal blocking set size is necessary but not sufficient to get a
polynomial kernelization. Under mild technical assumptions, bounded minimal blocking set size is
showed to allow an essentially tight efficient reduction in the number of connected components.

We then determine the exact maximum size of minimal blocking sets for graphs of bounded
elimination distance to any hereditary class C, including the case of graphs of bounded treedepth.
We get similar but not tight bounds for certain non-hereditary classes C, including the class Crp of
graphs where integral and fractional vertex cover size coincide. These bounds allow us to derive
polynomial kernels for VERTEX COVER parameterized by the size of a deletion set to graphs of
bounded elimination distance to, e.g., forest, bipartite, or Cr,p graphs.
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1 Introduction

In the VERTEX COVER problem we are given an undirected graph G = (V, E) and an
integer k; the question is whether there exists a set S C V of at most k vertices such that
each edge of G is incident with a vertex of S, or, in other words, such that G — S is an
independent set. Despite VERTEX COVER being NP-complete, it is known that there are
efficient preprocessing algorithms that reduce any instance (G, k) to an equivalent instance
with O(k?) or even at most 2k vertices (and size polynomial in k). The existence or non-
existence of such preprocessing routines for NP-hard problems has been studied intensively in
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the field of parameterized complexity under the term polynomial kernelization,! and VERTEX
COVER has turned out to be one of the most fruitful research subjects with a variety of
upper and (conditional) lower bounds subject to different parameters (see, e.g., [2]).

In the present work, we seek to unify and generalize existing results by using so-called
blocking sets. A blocking set in a graph G = (V, E) is any set Y C V that is not a subset of
any minimum cardinality vertex cover of G, e.g., the set V itself is always a blocking set. Of
particular interest are minimal blocking sets, i.e., those that are minimal under set inclusion.
Several graph classes have constant upper bounds on the size of minimal blocking sets, e.g.,
in any forest (or even in any bipartite graph) every minimal blocking set has size at most two.
On the other hand, even restrictive classes like outerplanar graphs have unbounded minimal
blocking set size, i.e., for each d there is a graph in the class with a minimal blocking set of
size greater than d. As a final example, cliques are the unique graphs for which V is the only
(minimal) blocking set because all optimal vertex covers have form V' \ {v} for any v € V; in
particular, any graph class containing all cliques has unbounded minimal blocking set size.

For ease of reading, the introduction focuses mostly on hereditary graph classes, i.e., those
closed under vertex deletion; the later sections give more general results modulo suitable
technical conditions, where appropriate. Apart from that, throughout the paper, we restrict
study to graph classes C that are robust, that is, they are closed under disjoint union and
under deletion of connected components. In other words, a graph G is in C if and only if
all of its connected components belong to C. Most graph classes studied in the context of
kernels for VERTEX COVER are robust, and a large number of them are also hereditary.
A particular non-hereditary graph class of interest for us is the class Cpp of graphs whose
minimum vertex cover size equals the minimum size of a fractional vertex cover (denoted LP
as it is also the optimum solution value for the vertex cover LP relaxation).

1.1 Blocking sets and kernels for Vertex Cover

Most known polynomial kernelizations for VERTEX COVER are for parameterization by the
vertex deletion distance to some fixed hereditary graph class C that is also robust, e.g., for C
being the class of forests [13], graphs of maximum degree one or two [18], pseudoforests [§]
(each component has at most one cycle), bipartite graphs [17], d-quasi forests/bipartite
graphs [10] (at most d vertex deletions per component away from being a forest/bipartite),
cluster graphs of bounded clique size [18], or graphs of bounded treedepth [2]. Concretely,
the input is of form (G, k, X), asking whether G has a vertex cover of size at most k, where
X C V such that G — X € C; the size £ = | X| of the modulator X is the parameter. Blocking
sets have been implicitly or explicitly used for most of these results and we point out that all
the mentioned classes have bounded minimal blocking set size.

As our first result, we show that this is not a coincidence: If C is closed under disjoint
union (or, more strongly, if C is robust) then bounded size of minimal blocking sets in graphs
of C is necessary for a polynomial kernel to exist (Section 3.1). Moreover, the maximum size
of minimal blocking sets in C yields a lower bound for the possible kernel size.

» Theorem 1. Let C be a graph class that is closed under disjoint union. If C contains any
graph with a minimal blocking set of size d then VERTEX COVER parameterized by the size
of a modulator X to C does not have a kernelization of size O(|X|~¢) for any e > 0 unless
NP C coNP/poly and the polynomial hierarchy collapses.

1A polynomial kernelization is an efficient algorithm that given any instance with parameter value ¢
returns an equivalent instance of size polynomial in £. In the initial VERTEX COVER example we have
parameter £ = k. For more information on the topic, see [4, 7]
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To the best of our knowledge, this theorem captures all known kernel lower bounds for
VERTEX COVER parameterized by deletion distance to any union-closed graph class C, e.g.,
ruling out polynomial kernels for C being the class of mock forests (each vertex is in at most
one cycle) [8], outerplanar graphs [12], or any class containing all cliques [1]; and getting
kernel size lower bounds for graphs of bounded treedepth [2] or cluster graphs of bounded
clique size [18]. To get lower bounds of this type, it now suffices to prove (or observe) that C
has large or even unbounded minimal blocking set size.

It is natural to ask whether the converse holds, i.e., whether a bound on the minimal
blocking set size directly implies the existence of a polynomial kernelization. Unfortunately,
we show that this does not hold in a strong sense: There is a class C such that all graphs in C

have minimal blocking sets of size one, but there is no polynomial kernelization (Section 3.2).

More strongly, solving VERTEX COVER on C is not in RP O P unless NP = RP.

» Theorem 2. There exists a graph class C such that all graphs in C have minimal blocking
set size one and such that VERTEX COVER on C is not solvable in polynomial time, unless
NP = RP.

In light of this result, one could ask what further assumptions on C, apart from the

necessity of bounded minimal blocking set size, are required to allow for polynomial kernels.

Clearly, polynomial-time solvability of VERTEX COVER on the class C is necessary and (as
we implicitly showed) not implied by C having bounded blocking set size. If, slightly stronger,
we require that blocking sets in graphs of C can be efficiently recognized? then we show that
there is an efficient algorithm that reduces the number of components of G — X for any
instance (G, k, X) of VERTEX COVER parameterized by deletion distance to C to O(| X|9)
(Section 3.3). This is a standard opening step for kernelization and can be followed up by
shrinking and bounding the size of those components. Note that this requires that deletion
of any component yields a graph in C (e.g., implied by C being robust), which here is covered
already by C being hereditary.

» Theorem 3. Let C be any hereditary graph class with minimal blocking set size d on which
VERTEX COVER can be solved in polynomial time. There is an efficient algorithm that given
(G, k,X) such that G— X € C returns an equivalent instance (G', k', X) such that G' =X € C
has at most O(|X|?) connected components.

We point out that the number O(|X|?) of components is essentially tight (assuming that
NP & coNP/poly) because the lower bound underlying Theorem 1 creates instances where
components have a constant ¢ = c(d) many vertices. Reducing to O(|X|9~¢)
for any € > 0, would violate the kernel size lower bound.

components,

1.2 Minimal blocking set size relative to elimination distances

Recently, Bougeret and Sau [2] presented a polynomial kernelization for VERTEX COVER
parameterized by the size of a modulator X such that G — X has treedepth at most d; here d
is a fixed constant and the degree of the polynomial in the kernel size depends exponentially
on d. To get the kernelization, they prove (in different but equivalent terms) that the size
of any minimal blocking set in a graph of treedepth d is at most 2%, and they give a lower
bound of 2473, As our first result here, we determine the exact maximum size of minimal
blocking sets in graphs of treedepth d (see below, and see Section 4 for all these results).

2 This condition holds for all hereditary C on which VERTEX COVER can be solved in polynomial time:
Given G = (V,E) and Y C V it suffices to compute solutions for G and G — Y. Clearly, the set Y is a
blocking set if and only if OPT(G) < OPT(G —-Y) +|Y|.
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Bulian and Dawar [3] introduced the notion of elimination distance to a class C, generalizing
treedepth, which corresponds to elimination to the empty graph (see Section 2 for a formal
definition). This is defined in the same way as treedepth except that all graphs from C
get value 0 rather than just the empty graph. (Note that here it is convenient that C is
robust because the definition assigns value 0 to disjoint unions of graphs from C.) Intuitively,
elimination distance to C can be pictured as having a tree-like deletion of vertices (as for
treedepth) but being allowed to stop when the remaining connected components belong to
C (rather than continuing to the empty graph). For hereditary C, we determine the exact
maximum size of minimal blocking sets in graphs of elimination distance at most d to C,
denoted B¢ (d), depending on the maximum minimal blocking set size be in the class C.

» Theorem 4. Let C be a robust hereditary graph class where be is bounded. For every
integer d > 1 it holds that

{2d—1+1 L ifbe =1,

fe(d) = (be —1)29 41 , ifbe>2.

The lower bound holds as well for any non-hereditary class C but we only get a slightly
weaker upper bound for such classes (and also require a further technical condition called
f-robustness). In particular, we get such an upper bound for the class Crp mentioned above.
Note that if C has unbounded minimal blocking set size then the same is true for graphs of
any bounded elimination distance to C (irrespective of C being hereditary or not).

The bound for graphs of treedepth at most d is included in the theorem by using that
having treedepth at most d is equivalent to having elimination distance at most d — 1 to the
class of independent sets (i.e., graphs of treedepth one), for which all minimal blocking sets
have size 1. Concretely, for treedepth d we get 3(d) = 1 for d = 1 and 3(d) = 2972 + 1 for
d> 2.

1.3 Some consequences for kernels for Vertex Cover

Our bounds for the minimal blocking set size relative to elimination distances allow us to
generalize and combine previous polynomial kernelization results for VERTEX COVER. We
state this explicitly for elimination distances to hereditary graph classes.

» Theorem 5. Let C be a hereditary and robust graph class for which be is bounded, such
that VERTEX COVER has a (randomized) polynomial kernelization parameterized by the size
of a modulator to C. Then VERTEX COVER also has a (randomized) polynomial kernelization
parameterized by the size of a modulator to graphs of bounded elimination distance to C.

As an example, this combines known polynomial kernels relative (to the size of) modulators
to a forest [13] resp. to graphs of bounded treedepth [2] to polynomial kernels relative to
a modulator to graphs of bounded forest elimination distance. Similarly, the randomized
polynomial kernel for VERTEX COVER parameterized by a modulator to bipartite graphs
is generalized to a modulator to graphs of bounded bipartite elimination distance. The
approach to this result (also in the non-hereditary case) uses our bounds for minimal blocking
set size relative to elimination distances and, apart from that, is inspired by the result of
Bougeret and Sau [2]. Intuitively, these kernels are obtained by suitable reductions to the
known kernelizable cases, and thus carry over their properties (e.g., being deterministic or
randomized).

As an explicit example for the non-hereditary case, we state a new kernelization result
relative to the size of a modulator to the class of graphs of bounded elimination distance to
CLp, i.e., bounded elimination distance to graphs where optimum vertex cover size equals
optimum fractional vertex cover size.
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» Theorem 6. VERTEX COVER admits a randomized polynomial kernel parameterized by
the size of a modulator to graphs that have bounded elimination distance to Cpp.

This subsumes several polynomial kernels for VERTEX COVER (except for their size
bounds).

2 Preliminaries

For n € N we use [n] to denote {1,...,n}. We use standard graph notation [6]. We say
that a graph class C is robust if C is closed under disjoint union and deletion of connected
components. A set S C V(G) is a vertex cover of a graph G, if for each edge e € E(G), at
least one of its endpoints is contained in §. We will use OPT(G) to denote the size of a
minimum vertex cover of G. The linear program relaxation for VERTEX COVER for G is

LP(G) = min Z zy | V{u,v} € E(G):zy+2, > 1AV EV(G):0<2, <1
veV(G)

It is well known that there is always an optimal feasible solution such that x, € {0, %, 1} for
all v € V(G). We call a solution for which this holds a half-integral solution.

» Definition 7. Let C be a graph class and let G be a graph. We define the elimination
distance to C as

0 ifGeC,
edc(G) == { minyey (g ede(G —{v}) +1 if G ¢ C and G is connected,
max;epy ede (G) if G consists of connected components Gy, .. .,Gy.

The treedepth of a graph G is simply its elimination distance to the empty graph.

Let C be a graph class, let G be a graph and let X C V(G). We say X is a C-modulator
if G — X € C. We say that X is a (C,d)-modulator if ede(G — X) < d. When considering
VERTEX COVER parameterized by the size of a C-modulator or a (C, d)-modulator, we will
assume that this modulator is given on input. As such, inputs to the problem are triplets
(G, k, X) such that X is a modulator and the problem is to decide whether G has a vertex
cover of size at most k.

For a graph class C, let C + ¢ be the graph class consisting of all graphs that have a
C-modulator of size at most ¢, i.e,, C+¢:={G|3X CV(G),|X|<c: G- X €C}.

» Definition 8. Let G be a graph and let Y C V(G) be a subset of its vertices. We say
that Y is a blocking set in G if there exists no vertexr cover S of G such thatY C S and
|S| = OPT(G). In other words, there is no optimal vertex cover of G that contains Y. A
blocking set Y is minimal if no strict subset of Y is also a blocking set.

Let G be a graph, we use 8(G) to denote the size of the largest minimal blocking set in G.

For a graph class C, let be := maxgec B(G), let be := oo if the minimal blocking set size of

graphs in this graph class can be arbitrarily large. Define 8¢ (d) := max{5(G) | ed¢(G) < d}.

3 Relation between minimal blocking sets and polynomial kernels

In this section, we show relations between the size of minimal blocking sets in C and
kernelization bounds for VERTEX COVER parameterized by a C-modulator.
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H, H, H
B By Bs

X U1 V2 U3 Vg U5 Vg

Figure 1 The VERTEX COVER instance G’ obtained in the proof of Theorem 1, corresponding to
instance (F,2) with F = {{v1,v2,v3},{v1,vs,vsa}, {va, v5,v6}}. Since F has a hitting set of size 2,
G’ has a vertex cover of size 2 + 3 - 3, indicated in white.

3.1 Polynomial kernel implies a bound on the minimal blocking set size

In this section we prove Theorem 1, showing that if C is a graph class where minimal blocking
sets can have size d, then this gives a kernelization lower bound for VERTEX COVER when
parameterized by the size of a C-modulator. This generalizes most existing lower bounds for
VERTEX COVER when parameterized by the size of a modulator to C for some graph class
C [8, 12, 14, 18]. Under the assumption that NP ¢ coNP/poly, the theorem shows that having
bounded blocking set size is necessary to obtain a polynomial kernel in the following sense.
For a graph class C closed under disjoint union, for which VERTEX COVER parameterized by
a modulator to C admits a polynomial kernel of size O(k?), it must hold that be < d.

» Theorem 1 (%3). Let C be a graph class that is closed under disjoint union. If C contains
any graph with a minimal blocking set of size d then VERTEX COVER parameterized by the
size of a modulator X to C does not have a kernelization of size O(|X|1~%) for any e > 0

unless NP C coNP/poly and the polynomial hierarchy collapses.

Proof sketch. The lower bound is obtained by a linear-parameter transformation from d-
HiTTING SET. An input to this problem consists of a set family F over a universe U and
integer k where every set in F has size exactly d. The problem is to decide whether F has a
hitting set of size at most k. A hitting set is a set X C U such that for every set S € F we
have SN X # (. The lower bound will then follow from the fact that for d > 2, d-HITTING
SET parameterized by the universe size n does not have a kernel of size O(n?=¢) for any
¢ > 0 unless NP C coNP/poly [5, Theorem 2].

Suppose we are given an instance (F, k) for d-HITTING SET. Choose H € C with a
minimal blocking set of size d. We construct G’ for VERTEX COVER starting with vertex
set X := U (note G’ — X € C), and adding a copy H; of graph H for each S; € F. The
vertices in X that correspond to vertices in S; are now each connected to a distinct vertex
in the size-d minimal blocking set of H;. This ensures that for any vertex cover S” of G', if
none of the vertices from S; is contained in S’, then |S" N H;| > OPT(H;). We can use this
to show that there exists a minimum vertex cover S’ of G’ such that S’ N X corresponds
to a hitting set of F. A sketch of the constructed instance (G, k" := k +m - OPT(H)) for
VERTEX COVER is shown in Figure 1. |

3.2 Bounded minimal blocking set size is not sufficient

Now that it is clear that, proving that a graph class has bounded blocking set size is essential
towards obtaining a polynomial kernel for VERTEX COVER parameterized by the size of a
modulator to this graph class, one may wonder whether this condition is also sufficient. It

3 For statements marked with a (3), the (full) proof can be found in the full version of the paper, which
is available at https://arxiv.org/abs/1905.03631.
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turns out that it is not. We show that there exists a graph class C for which all minimal
blocking sets have size 1, for which VERTEX COVER is not solvable in polynomial time unless
NP = RP. This implies that VERTEX COVER is unlikely to be FPT when parameterized by
the size of a C-modulator, immediately implying that it does not have a polynomial kernel
when parameterized by a C-modulator.

» Theorem 2. There exists a graph class C such that all graphs in C have minimal blocking
set size one and such that VERTEX COVER on C is not solvable in polynomial time, unless
NP = RP.

Proof. It is known that the UNIQUE-SAT problem cannot be solved in polynomial-time
unless NP = RP [19, Corollary 1.2]. An input to UNIQUE-SAT is a CNF-formula F that has
either exactly one satisfying solution or is unsatisfiable. The problem is to decide whether F
is satisfiable. It can be shown that the same result holds for UNIQUE-3-SAT [15, Example
26.7], where the input formula is further restricted to be in 3-CNF. We show that the following
polynomial-time reduction from UNIQUE-3-SAT to VERTEX COVER exists.

> Claim 9 (%). There is a polynomial-time reduction from UNIQUE-3-SAT to VERTEX
COVER, that given a formula F, outputs an instance (G, k) for VERTEX COVER such that:
If F has exactly one satisfying assignment, then G has a unique minimum vertex cover of
size k.
If F is unsatisfiable, then G has a unique minimum vertex cover of size k + 1.

To conclude the proof, let C be the graph class consisting of all graphs that are obtained
via the reduction given in the claim above, when starting from a formula F that has zero
or one satisfying assignments. As such, solving VERTEX COVER on C in polynomial time
corresponds to solving UNIQUE-3-SAT in polynomial time, implying NP = RP. Since any
graph in C has exactly one minimum vertex cover, we obtain that indeed be = 1, as any
vertex that is not part of the minimum vertex cover forms a (minimal) blocking set. |

Graphs in the graph class C constructed in the proof of Theorem 2 are always connected,
since they are the complement of a disconnected graph. As such, C is closed under removing
connected components. However, C is not robust because it is not closed under disjoint
union. We can however define C’ to contain all graphs for which all connected components
lie in C. Observe that C’ is robust, but that b = 1 and VERTEX COVER is not solvable in
polynomial time on C’ O C unless RP = NP.

3.3 Reducing the number of components outside the modulator

As mentioned in the previous subsections, bounded blocking set size is necessary to obtain
polynomial kernels for VERTEX COVER. Many papers that give polynomial kernels for
VERTEX COVER parameterized by the size of a C-modulator showed that their graph class
C has bounded blocking set size, see for example [2, 8, 10, 13, 18]. Some of them used the
blocking set size of class C to bound the number of connected components. More precisely,
given an instance (G, k, X) of VERTEX COVER with G — X € C they showed that one can
reduce the number of connected components of G — X to O(| X |*¢*+1). We will show that one
can reduce the number of connected components of G — X to | X | as a first step towards
proving Theorem 3. Here we assume that the class C is robust in order to guarantee that
deletion of connected components of G — X again results in a graph of C. At the end of
this section, we discuss suitable conditions so that this component reduction can be done
efficiently.
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Let (G, k, X) be an instance of VERTEX COVER parameterized by the size of a C-modulator.
First, we define the set X = {Z C X | Z is an independent set in G and 1 < |Z| < bc} as
the collection of chunks of X. The intuition of defining the set X of chunks is to find sets in
the modulator X for which at least one vertex must be contained in any optimum vertex
cover of G. The concept of chunks was first introduced by Jansen and Bodlaender [13].

To reduce the number of connected components of G — X, we use the following result
due to Hopcroft and Karp [11] which computes a certain crown-like structure in a bipartite
graph. The second part of the theorem is not standard (but well known).

» Theorem 10 ([11]). Let G be an undirected bipartite graph with bipartition Vi and Va,
on n vertices and m edges. Then we can find a mazimum matching of G in time O(m+/n).
Furthermore, in time O(m+/n) we can find either a mazimum matching that saturates Vi or
a set Z C Vi such that |Ng(Z)| < |Z| and such that there exists a mazimum matching M of
G — N¢|Z] that saturates V1 \ Z.

We construct a bipartite graph G to which we will apply Theorem 10 to find a set of
connected components in G — X that can be safely removed from G. We denote the set
of connected components in G — X by F. The two parts of the bipartite graph Gp are
the set X' of chunks and the set F of connected components in G — X. More precisely, for
every chunk Z € X and for every connected component H € F we add a vertex to the
bipartite graph. To simplify notation we denote the vertex of G that corresponds to a
connected component H € F resp. a chunk Z € X by H resp. Z. We add an edge between a
vertex H € F and a vertex Z € X when Ng(Z) NV (H) is a blocking set in H, i.e., when
OPT(H — Ng(Z))+ |Na(Z)NV(H)| > OPT(H). Observe that Gp can only be constructed
in polynomial time, if this condition can be tested in polynomial time, which is possible
under some additional assumptions on C, as we will see later.

It follows from Theorem 10 that there exists either a maximum matching M of Gpg
that saturates X or a set X’ C X such that |Ng,(X’)] < |X’| and such that there exists
a maximum matching M of G — Ng,[X’] that saturates X = X \ X’. If there exists
a maximum matching M of Gp that saturates X then let X' = 0 and let X = X. Let
Fp =F\ (Ng,(X")UV(M)) be the set of connected components in F that are neither in
the neighborhood of X’ nor endpoint of a matching edge of M.

» Reduction Rule 1. Delete all connected components in Fp from G and decrease the size
of k by OPT(Fp) the size of an optimum vertex cover in Fp.

Observe that Reduction Rule 1 deletes also all connected components H € F which have
the property that for all sets Z € X it holds that N(Z) NV (H) is not a blocking set of H
because these connected components correspond to isolated vertices in the bipartite graph
Gp. To show the correctness of Reduction Rule 1 we will use the following lemma which
guarantees us the existence of certain optimum vertex covers of G.

» Lemma 11 (). There exists an optimum vertex cover S of G with SNZ # 0 for all
ZelX.

Now, we show the correctness of Reduction Rule 1 using Lemma 11. Let (é,%, X) be
the reduced instance, i.e., G = G — Fp and k=k— OPT(Fp). Obviously, if (G, k,X) is a
yes-instance then (G, kX ) is a yes-instance. For the other direction, assume that (G, kX )
is a yes-instance. Observe that M is also a matching in G p that saturates X because we
delete no connected component that is an endpoint of a matching edge. Furthermore, it holds
that either X = X or |N55(X ") < |X’| because we delete no connected component that



E. C. Hols, S. Kratsch, and A. Pieterse

corresponds to a vertex in |N & (X")]. Thus, it follows from Lemma 11 that there exists an

optimum vertex cover S of G with SN Z # () for all sets Z € X. Note that every connected
component H € Fp is only adjacent to vertices in X in Gp. Since every set Z € X has a
non-empty intersection with the set S , it holds that there exists an optimum vertex cover Sy
of H which contains the set Ng(X \ §) NV (H). Let S be the set that results from adding
for each connected component H € Fp the optimum vertex cover Sy to the set S. By

construction, it holds that S is a vertex cover of G of size | S|+ OPT(Fp) < k+OPT(Fp) = k.

This proves that (G, k, X) is also a yes-instance. Overall, we showed that Reduction Rule 1
is safe.

» Theorem 12 (% ). Let (G, k, X) be an instance of VERTEX COVER parameterized by the
size of a C-modulator that is reduced under Reduction Rule 1. The graph G — X has at most
| X |’ connected components.

To use Theorem 12 to prove that we can efficiently reduce the number of connected
components in G — X when X is a C-modulator, we need to show that, under certain
assumptions, Reduction Rule 1 can be applied in polynomial time. We start by providing
two sufficient conditions in the next lemma.

» Lemma 13 (). If bc is bounded, if VERTEX COVER is solvable in polynomial time on
graphs of class C and if we can verify in polynomial time whether a given set'Y is a blocking
set in a graph of class C then we can apply Reduction Rule 1 in polynomial time.

We continue by providing two cases that satisfy the preconditions for the lemma above,
such that Reduction Rule 1 can be applied in polynomial time on these graph classes.

First of all, we consider the case that graph class C is hereditary. In this case, being
solvable in polynomial time on the class C is sufficient to also be able to verify whether a
given subset of the vertices is a blocking set, thus allowing us to apply Reduction Rule 1 in
polynomial time. As mentioned in Subsection 3.3 we also need that be is bounded. Overall,
we assume that C is a hereditary graph class on which VERTEX COVER is polynomial-time
solvable and where be is bounded.

» Lemma 14 (k). Let C be any hereditary graph class on which VERTEX COVER can be
solved in polynomial time and where b¢e is bounded. Then Reduction Rule 1 can be applied in
polynomial time.

Theorem 3 (restated below) now follows directly from Theorem 12 and Lemmas 13 and 14.

» Theorem 3. Let C be any hereditary graph class with minimal blocking set size d on which
VERTEX COVER can be solved in polynomial time. There is an efficient algorithm that given
(G, k, X) such that G— X € C returns an equivalent instance (G', k', X) such that G' =X € C
has at most O(|X|?) connected components.

We can actually further generalize Theorem 3 to some non-hereditary graph classes.
However, we have more problems to show that Lemma 13 holds for non-hereditary graph
classes, because after deleting vertices from a graph G that is contained in a non-hereditary
graph class C we do not know whether the resulting graph still belongs to the graph class C.
As such we need the additional assumption that VERTEX COVER is also polynomial-time
solvable on graph class C + 1. This additional assumption is not unreasonable, when our
goal is to obtain a kernelization algorithm for VERTEX COVER. In fact, in order to obtain
any kernel for VERTEX COVER parameterized by the size of a modulator to C it is necessary
to assume that the problem is FPT. From this, it immediately follows that we can solve
VERTEX COVER in polynomial time on C + 1.
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» Theorem 15 (% ). Let C be any robust graph class with minimal blocking set size d on
which VERTEX COVER can be solved in polynomial time. Furthermore, assume that VERTEX
COVER can be solved in polynomial time on graphs of graph class C + 1. There is an efficient
algorithm that given (G, k, X) such that G — X € C returns an equivalent instance (G', k', X)
such that G' — X € C has at most O(|X|%) connected components.

4 Minimal blocking sets in graphs of bounded elimination distance

As seen in the previous section, minimal blocking sets play an important role for VERTEX
COVER kernelization. In this section we try to combine different structural parameters by
considering the minimal blocking set size of graphs that have elimination distance d to some
graph class C that has bounded minimal blocking set size. We prove the following theorem.

» Theorem 4 (%). Let C be a robust hereditary graph class where be is bounded. For every
integer d > 1 it holds that

24-1 11 Lifbe =1,
Be(d) = d )
(bc—1)2 +1 , Zfbczz

Proving the theorem consists of proving both the upper and the lower bound. The upper
bound for f¢(d) given above only holds when C is hereditary. When C is not hereditary, we
obtain an upper bound when C satisfies the following additional property:

» Definition 16. We say that a graph class C is f-robust, if bei. < f(c) = f(be,c) for a
computable function f.

» Theorem 17 (). Let C be an f-robust and robust graph class where be is bounded, and
let d > 0. It holds that

d_rq ‘ ]

Beseld) < (; (rern)-2t4

The lower bound given by Theorem 4 however extends to any robust graph class C. The
lower bound is proven by constructing for each graph class C where bc is bounded and
each integer d > 1 a graph G with ed¢(G) = d that contains a minimal blocking set of
size at least 2971 + 1 when be = 1, and of size at least (be — 1)2% 4+ 1 when be > 2. Since
Be(d) = max{B(G) | ed¢(G) < d} this gives the desired result. This result is obtained by
showing that, given a graph H, we can obtain a graph H’ such that ed¢(H') < edc¢(H) + 1
and B(H') > 28(H) — 1. For be = 1 we need an additional construction that, given a graph
H, allows us to obtain a graph H’ with ed¢(H') < ed¢(H)+1and S(H') > S(H)+ 1. A
depiction of both constructions is shown in Figure 2.

5 Kernelization results

In this section, we will combine the results from Sections 3.3 and 4 to obtain polynomial
kernelizations for VERTEX COVER parameterized by a C-modulator or a (C, d)-modulator.
In Section 3.3 we have seen necessary assumptions on a graph class C such that Reduction
Rule 1 can be applied efficiently. We can show that for hereditary graph classes, for which
VERTEX COVER is solvable in polynomial time, VERTEX COVER can also be solved efficiently
on graphs for which ed¢(G) is bounded. From that, we then obtain the following.

4 For a proof of the correctness of this construction, refer to Section 4.1 in the full version of the paper.
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=[Y], > [Y]|+1, =Y, H') >2lY] -1,
edc( )=d edc( )_d+1 edc( )=d edc(H)§d+1

Figure 2 This figure depicts the construction used to prove the lower bound on S¢(d) in Theorem 4.

White vertices form minimal blocking sets.

» Corollary 18 (). Reduction Rule 1 is applicable in polynomial time on graphs G with a
given (C,d)-modulator X, where C is a hereditary graph class on which VERTEX COVER is
solvable in polynomial time, and where be is bounded.

For non-hereditary graph classes C we also need that VERTEX COVER is solvable in
polynomial time on graph class C 4+ ¢ with ¢ constant. For the next corollary, observe that in
particular B¢ (d) is bounded if C is known to be either hereditary or f-robust, by Theorems 4
and 17.

» Corollary 19 (%). Reduction Rule 1 is applicable in polynomial time on graphs G with a
given (C,d)-modulator X, where C is a robust graph class with the properties that Bc(d) is
bounded for any constant d and that VERTEX COVER is polynomial-time solvable on graph
class C + ¢ for constant c.

5.1 General results

In this section, we show that VERTEX COVER parameterized by the size of a (C, d)-modulator
has a polynomial kernel when the graph class C fulfills some additional properties. The
assumptions that S¢(d) is bounded and that VERTEX COVER is polynomial-time solvable
on the considered graph class are necessary, if these assumptions fail a polynomial kernel is
unlikely to exist. The same holds for the assumption that VERTEX COVER parameterized by
a C-modulator has a polynomial kernel. We additionally require that C is a robust graph
class that is either hereditary, or has the property that VERTEX COVER is polynomial-time
solvable on C 4 ¢. These assumptions will ensure that our reduction rule can be applied in
polynomial time.

» Lemma 20 (%). Let C be a robust graph class for which Be(d) is bounded and on which
VERTEX COVER is polynomial-time solvable, such that C is hereditary or VERTEX COVER is
polynomial-time solvable on C + ¢ for all constants c.

Suppose VERTEX COVER parameterized by the size of a C-modulator X hasa (randomized)
polynomial kernel with g(|X|) vertices. Then VERTEX COVER parameterized by the size of a
(C,d)-modulator X has a (randomized) polynomial kernel with O(g(|X|?)) vertices, where

b =TI, Be(i).

The kernel is obtained by induction, by transforming an instance (G, k, X) of VERTEX

COVER parameterized by (C,d)-modulator to an instance parameterized by (C,d — 1)-

modulator. This is done by first reducing the number of connected components in G — X
using Reduction Rule 1, and then adding the root of the treedepth decomposition of each
connected component of G — X to the modulator. This method for kernelization is similar to
the kernelization for VERTEX COVER parameterized by the size of a d-treedepth modulator
(see [2]). One difference is that we do not introduce hyper-edges.
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Observe that in the above lemma statement, when VERTEX COVER parameterized by a C
modulator allows a polynomial kernel, the fact that VERTEX COVER is solvable in polynomial
time on graphs from C + ¢ is immediate: since the problem has a polynomial kernel, it must
be FPT in the parameter. Since in this case the size of a C-modulator is ¢, which is constant,
the result follows.

In the above lemma statement, we assume that S¢(d) is bounded to obtain the kernelization.
We observe that for hereditary graph classes, this assumption is not needed, it follows from
our results in Theorem 4 that it suffices to bound be. Furthermore, a bound on be often
comes naturally: if VERTEX COVER parameterized by a C-modulator has a polynomial
kernel, it follows from Theorem 1 that, unless NP C coNP/poly, there must exist a constant
d such that be < d.

» Theorem 5 (%). Let C be a hereditary and robust graph class for which be is bounded, such
that VERTEX COVER has a (randomized) polynomial kernelization parameterized by the size
of a modulator to C. Then VERTEX COVER also has a (randomized) polynomial kernelization
parameterized by the size of a modulator to graphs of bounded elimination distance to C.

Similarly, for non-hereditary graph classes, it suffices if C is f-robust to obtain a polynomial
kernel. The size of the kernel depends on f.

» Corollary 21 (%). Let C be a robust and f-robust graph class for which be is bounded and
for which VERTEX COVER parameterized by the size of a C modulator X has a (randomized)
polynomial kernel. Then VERTEX COVER parameterized by the size of a (C,d)-modulator has
a (randomized) polynomial kernel.

5.2 Kernel for modulator to bounded Cip elimination distance

In this section, we show how Theorem 6 follows from the general results in the previous
section, to have an explicit example for a non-hereditary base class C. That is, we show how
to get a randomized polynomial kernel for VERTEX COVER parameterized by the size of a
modulator X such that G — X has bounded elimination distance to the non-hereditary class
Crp of graphs where integral and fractional vertex cover size coincide. Towards proving this
result, we show the following relation between the value of £ = OPT(G) — LP(G) and the
size of a Cr,p-modulator in G.

» Lemma 22 (). Let G be a graph, and let £ = OPT(G) — LP(G). There exists a vertex
set X CV(Q) of size at most 2¢ such that OPT(G — X) = LP(G — X).

We can show that Cpp is f-robust® with f(c) = f(bc,c) = 2¢ + bey, = 2c¢ + 2. Using
Theorem 17 and Lemma 20 we can now generalize the kernelization for VERTEX COVER
parameterized by the size of a d-treedepth modulator and parameterized by the difference
between an optimum vertex cover and an optimum LP solution using the size of a (Cpp, d)-
modulator as the parameter. The following theorem subsumes Theorem 6.

» Theorem 23 (%). An optimum (Crp,d)-modulator of a graph G has at most the size of a
d-treedepth modulator of G and at most twice the size of OPT(G) — LP(G). Furthermore,
VERTEX COVER parameterized by the size of a (Crp,d)-modulator admits a randomized
polynomial kernel.

5 This is proven in the full version at the end of Section 4.2.
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6 Conclusion

In the first part (Section 3) we have showed that bounded minimal blocking set size in
C is necessary but not sufficient to get a polynomial kernel for VERTEX COVER when
parameterized by the size of a modulator X to a robust (or at least union-closed) class C. We
then showed that bounded minimal blocking set size suffices to efficiently reduce the number
of components of G — X assuming that C is robust (so deletion of components lets G — X
stay in C) and that we can efficiently compute optimum vertex covers and test blocking sets
in graphs of C. The obtained bound of O(|X|%) components is likely optimal because it
matches the size lower bound proved earlier, which requires only components of constant
size.

In the second part we first proved bounds for the minimal blocking set size relative
to elimination distances to classes C, motivated by the bounds that Bougeret and Sau [2]
obtained relative to treedepth (Section 4). We obtain the exact value for all hereditary classes
C and slightly weaker upper bounds for certain non-hereditary classes C. This enabled new
polynomial kernelization results for VERTEX COVER that effectively replace (the size of) a
modulator to a class C to modulators to graphs of bounded elimination distance to C, e.g.,
when C is the class of forests, bipartite graphs, or Cpp (where integral and fraction vertex
cover size coincide).

As future work it would be great to get a similar kernelization result when parameterized
by the size of a modulator to bounded elimination distance to the graph class Corp_nm
where OPT = 2LP — MM (i.e., minimum vertex cover size equals two times fractional cost
minus size of a maximum matching, cf. [9]), which relates to the randomized kernelization for
the corresponding above guarantee parameterization [16]. This would essentially subsume
and generalize all currently known polynomial kernelizations for VERTEX COVER (to which
we came close with the result for bounded elimination distance to Crp). It would also be nice
to have tight bounds for the maximum size of minimal blocking sets in the non-hereditary
case, and to get such bounds with fewest possible technical assumptions.
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