Streaming Complexity of Spanning Tree
Computation

Yi-Jun Chang
ETH Ziirich, Switzerland
yi-jun.chang@eth-its.ethz.ch

Martin Farach-Colton
Rutgers University, USA
farach@cs.rutgers.edu

Tsan-Sheng Hsu
Academia Sinica, Taipei City, Taiwan
tshsu@iis.sinica.edu.tw

Meng-Tsung Tsai
National Chiao Tung University, Hsinchu, Taiwan
mtsai@cs.nctu.edu.tw

—— Abstract

The semi-streaming model is a variant of the streaming model frequently used for the computation

of graph problems. It allows the edges of an n-node input graph to be read sequentially in p passes
using O(n) space. If the list of edges includes deletions, then the model is called the turnstile model;
otherwise it is called the insertion-only model. In both models, some graph problems, such as
spanning trees, k-connectivity, densest subgraph, degeneracy, cut-sparsifier, and (A + 1)-coloring,
can be exactly solved or (1 4 ¢)-approximated in a single pass; while other graph problems, such
as triangle detection and unweighted all-pairs shortest paths, are known to require Q(n) passes to
compute. For many fundamental graph problems, the tractability in these models is open. In this
paper, we study the tractability of computing some standard spanning trees, including BFS, DF'S,
and maximum-leaf spanning trees.
Our results, in both the insertion-only and the turnstile models, are as follows.

Maximum-Leaf Spanning Trees: This problem is known to be APX-complete with inapproximability
constant p € [245/244,2). By constructing an e-MLST sparsifier, we show that for every constant
€ > 0, MLST can be approximated in a single pass to within a factor of 1 4+ ¢ w.h.p. (albeit in
super-polynomial time for £ < p — 1 assuming P # NP) and can be approximated in polynomial
time in a single pass to within a factor of p, 4+ ¢ w.h.p., where p,, is the supremum constant
that MLST cannot be approximated to within using polynomial time and O(n) space. In the
insertion-only model, these algorithms can be deterministic.

BFS Trees: It is known that BFS trees require w(1) passes to compute, but the naive approach
needs O(n) passes. We devise a new randomized algorithm that reduces the pass complexity to
O(y/n), and it offers a smooth tradeoff between pass complexity and space usage. This gives a
polynomial separation between single-source and all-pairs shortest paths for unweighted graphs.

DFS Trees: It is unknown whether DF'S trees require more than one pass. The current best algorithm
by Khan and Mehta [STACS 2019] takes O(h) passes, where h is the height of computed DFS
trees. Note that h can be as large as Q(m/n) for n-node m-edge graphs. Our contribution is
twofold. First, we provide a simple alternative proof of this result, via a new connection to sparse
certificates for k-node-connectivity. Second, we present a randomized algorithm that reduces the
pass complexity to O(y/n), and it also offers a smooth tradeoff between pass complexity and
space usage.

2012 ACM Subject Classification Theory of computation — Streaming, sublinear and near linear
time algorithms

Keywords and phrases Max-Leaf Spanning Trees, BFS Trees, DFS Trees

© Yi-Jun Chang, Martin Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai; L)

oY licensed under Creative Commons License CC-BY V"
37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). m I_
Editors: Christophe Paul and Markus Bléser; Article No. 34; pp. 34:1-34:19 4 S1

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:yi-jun.chang@eth-its.ethz.ch
mailto:farach@cs.rutgers.edu
mailto:tshsu@iis.sinica.edu.tw
mailto:mtsai@cs.nctu.edu.tw
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2

Streaming Complexity of Spanning Tree Computation

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.34
Related Version A full version of the paper is available at https://arxiv.org/abs/2001.07672.

Funding Martin Farach-Colton: This research was supported in part by NFS grants CSR-~1938180,
CCF-1715777, and CCF-1724745.

Tsan-Sheng Hsu: This research was supported in part by the Ministry of Science and Technology of
Taiwan under contract MOST Grant 108-2221-E-001-011-MY3.

Meng-Tsung Tsai: This research was supported in part by the Ministry of Science and Technology
of Taiwan under contract MOST grant 107-2218-E-009-026-MY 3.

Acknowledgements We thank the anonymous reviewers for their helpful comments, and Eric Allender

and Meng Li for their insightful discussions.

1 Introduction

Spanning trees are critical components of graph algorithms, from depth-first search trees
(DFS) for finding articulation points and bridges [44], computing st-numbering [13], chain
decomposition [41], and coloring signed graphs [18], to breadth-first search trees (BFS)
for finding separators [33], computing sparse certificates of k-node-connectivity [8, 12],
approximating diameters [10, 40], and characterizing AT-free graphs [5], and to maximum-
leaf spanning trees (MLST) for connected dominating sets [35, 42] and connected maximum
cuts [26, 21].

In the semi-streaming model, the tractability of spanning tree computation, except
arbitrary spanning trees [3, 43, 39], is less studied. The semi-streaming model [37, 3] is a
variation of streaming model frequently used for the computation of graph problems. It allows
the edges of an n-node input graph to be read sequentially in p passes using O(n)1 space. If
the list of edges includes deletions, then the model is called the turnstile model; otherwise it
is called the insertion-only model. In both models, some graph problems, such as spanning
trees [3], k-connectivity [25], densest subgraph [36], degeneracy [15], cut-sparsifier [29], and
(A + 1)-coloring [4], can be exactly solved or (1 + ¢)-approximated in a single pass, while
other graph problems, such as triangle detection and unweighted all-pairs shortest paths [7],
are known to require Q(n) passes to compute. For many fundamental graph problems,
e.g., standard spanning trees, the tractability in these models is open. BFS computation is
known to require w(1) passes [17], but only the naive O(n)-pass algorithm is known. It is
unknown whether DFS computation requires more than one passes [14, 30], but the current
best algorithm needs O(h) passes [30] where h is the height of the computed DFS trees, so
h = O(n) for dense graphs. The tractability of maximum-leaf spanning trees (MLST) is
unknown even allowing O(n?) space, since it is APX-complete [34, 20].

Due to the lack of efficient streaming algorithms for spanning tree computation, for
some graph problems that are traditionally solved using spanning trees, such as finding
articulation points and bridges, people had to look for alternative methods when designing
streaming algorithms for these problems [16, 14]. The alternative methods, even if they
are based on known results in graph theory, may still involve the design of new streaming
algorithms. For the problems mentioned above, the alternative methods use newly-designed
sparse connectivity certificates [12, 25] that are easily computable in the semi-streaming

L We write O(k) to denote O(k poly logn) or O(k/poly log n) where n is the number of nodes in the input

graph. Similarly, Q(k) denotes Q(k poly logn) or Q(k/poly logn).

https://doi.org/10.4230/LIPIcs.STACS.2020.34
https://arxiv.org/abs/2001.07672

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

model, rather than the classical one due to Nagamochi and Ibaraki [38]. Hence establishing
the hardness of spanning tree computation helps to explain the need of the alternative
methods.

In this paper, we study the tractability of computing standard spanning trees for connected
simple undirected graphs, including BFS trees, DFS trees, and MLST. Unless otherwise
stated, our upper bounds work in the turnstile model (and hence also in the insertion-only
model), and our lower bounds hold for the insertion-only model (and hence also in the
turnstile model). The space upper and lower bounds are in bits. Our results are as follows.

Maximum-Leaf Spanning Trees: We show, by constructing an e-MLST sparsifier (The-
orem 6), that for every constant e > 0, MLST can be approximated in a single pass to
within a factor of 1+ ¢ w.h.p.2 (albeit in super-polynomial time for e < p — 1 since it is
APX-complete [34, 20] with inapproximability constant p € [245/244,2) [9]) and can be
approximated in polynomial time in a single pass to within a factor of p,, + ¢ w.h.p., where
Pn is the supremum constant that MLST cannot be approximated to within using polynomial
time and O(n) space. In the insertion-only model, these algorithms are deterministic. We
also show a complementary hardness result (Theorem 17) that for every k € [1, (n — 5)/4],
to approximate MLST to within an additive error k, any single-pass randomized streaming
algorithm that succeeds with probability at least 2/3 requires 2(n?/k?) bits. This hardness
result excludes the possibility to have a single-pass semi-streaming algorithm to approximate
MLST to within an additive error n'/2=() Our results for MLST shows that intractability
in the sequential computation model (i.e., Turing machine) does not imply intractability in
the semi-streaming model.

Our algorithms rely on a new sparse certificate, the e-MLST sparsifier, defined as
follows. Let G be an n-node m-edge connected simple undirected graph. Then for any given
constant € > 0, H is an e-MLST sparsifier if it is a connected spanning subgraph of G with
|[E(H)| < f(e)|[V(G)] and leaf(H) > (1 — £) leaf(G), where leaf(G) denotes the maximum
number of leaves (i.e. nodes of degree one) that any spanning tree of G can have and f is
some function independent of n. We show that an e-MLST sparsifier can be constructed
efficiently in the semi-streaming model.

» Theorem 1. In the turnstile model, for every constant € > 0, there exists a randomized
algorithm that can find an e-MLST sparsifier with probability 1 — 1/n®*Y) using a single
pass, O(f(e)n) space, and O(n + m) time, and in the insertion-only model a deterministic
algorithm that uses a single pass, O(f(e)n) space, and O(n +m) time.

Combining Theorem 1 with any polynomial-time RAM algorithms for MLST that uses
O(n + m) space, e.g, [34, 35, 42], we obtain the following result.

» Corollary 2. In the turnstile model, for every constant € > 0, there exists a randomized
algorithm that can approximate M LST for any n-node connected simple undirected graph with
probability 1 — 1/n®Y) to within a factor of p, + € using a single pass, O(f()n) space, and
polynomial time, where p, is the supremum constant that MLST cannot be approximated to
within using polynomial time and O(n) space, and in the insertion-only model a deterministic
algorithm that uses a single pass, O(f(e)n) space, and polynomial time.

Using Corollary 2, we show that approximate connected maximum cut can be computed
in a single pass using O(n) space for unweighted regular graphs (Corollary 7).

2 W.h.p. means with probability 1 — 1/n9<1).

34:3

STACS 2020

34:4

Streaming Complexity of Spanning Tree Computation

BFS Trees: It is known that BFS trees require w(1) passes to compute [17], but the naive
approach needs O(n) passes. We devise a randomized algorithm that reduces the pass
complexity to O(y/n) w.h.p., and give a smooth tradeoff between pass complexity and space
usage.

» Theorem 3. In the turnstile model, for each p € [1,\/n], there exists a randomized
algorithm that can compute a BES tree for any n-node connected simple undirected graph with
probability 1 — 1/n*Y) in p passes using O((n/p)?) space, and in the insertion-only model a
deterministic algorithm that uses O(n?/p) space.

This gives a polynomial separation between single-source and all-pairs shortest paths
for unweighted graphs because any randomized semi-streaming algorithm that computes
unweighted all-pairs shortest paths with probability at least 2/3 requires Q(n) passes.

We extend Theorem 3 and obtain that multiple BFS trees, each starting from a unique
source node, can be computed more efficiently in pass complexity in a batch than individually
(see Theorem 13). We show that this batched BFS has applications to computing a 1.5-
approximation of diameters for unweighted graphs (Theorem 15) and a 2-approximation of
Steiner trees for unweighted graphs (Corollary 14).

DFS Trees: It is unknown whether DFS trees require more than one passes [14, 30], but
the current best algorithm needs O(h) passes due to Khan and Mehta [30], where & is the
height of computed DFS trees. We devise a randomized algorithm that has pass complexity
O(y/n) w.h.p., and give a smooth tradeoff between pass complexity and space usage.

» Theorem 4. In the turnstile model, for each p € [1,4/n], there exists a randomized
algorithm that can compute a DFS tree for any n-node connected simple undirected graph
with probability 1 — 1/n9(1) in p passes that uses O(n3/p4) space, and in the insertion-only
model a deterministic algorithm that uses O(n?/p®) space.

For dense graphs, our algorithms improves upon the current best algorithms for DFS
due to Khan and Mehta [30] which needs Q(m/n) passes for n-node m-edge graphs in the
worst case because of the existence of (m/n)-cores, where a k-core is a maximal connected
subgraph in which every node has at least k neighboring nodes in the subgraph.

1.1 Technical Overview

Maximum-Leaf Spanning Trees: We construct an e-MLST sparsifier by a new result that
complements Kleitman and West’s lower bounds on the maximum number of leaves for graphs
with minimum degree § > 3 [31]. The lower bounds are: if a connected simple undirected graph
G has minimum degree § for some sufficiently large 0, then leaf(G) > (1—(2.51n6)/6)|V(G)|
and the leading constant can be larger for § € {3,4}. Our complementary result (Lemma 5),
without the restriction on the minimum degree, is: any connected simple undirected graph
G, except the singleton graph, has

1
leaf(G) > E(\V(Gﬂ — inode(G)), (1)
where inode(G) denotes the number of nodes whose degree is two and whose neighbors both
have degree two. Equation (1) implies that, if one can find a connected spanning subgraph
H of G so that |leaf(G) — leaf(H)| < e(V(G) — inode(G)), then one gets an (10¢)-MLST

sparsifier.

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

Our sparsification technique is general enough to obtain a (¢ + ¢)-approximation for
MLST in a single pass using O(n) space by combining any t-approximation O(n)—space RAM
algorithm for MLST with our e-MLST sparsifier. On the other hand, since in linear time one
can find an e-MLST sparsifier of O(n) edges, any t-approximation RAM algorithm for MLST
with time complexity O(f(n,m)) can be reduced to O(f(n,n) + n + m) if a small sacrifice
on approximation ratio is allowed. This reduces the time complexity of RAM algorithms for
MLST that need superlinear time on the number of edges, such as the local search approach
from O(m*n*+2) for k > 1 to O(n?**2) and the leafy forest approach from O((m + n)a(n))
to O(m + na(n)), both due to Lu and Ravi [34, 35].

BFS Trees: We present a simple deterministic algorithm attaining a smooth tradeoff
between pass complexity and space usage. In particular, in the insertion-only semi-streaming
model, the algorithm finishes in O(n/polylogn) passes. The algorithm is based on an
observation that the sum of degrees of nodes in any root-to-leaf path of a BFS tree is
bounded by O(n) (Lemma 8).

Our more efficient randomized algorithm (Theorem 3) constructs a BFS tree by combining
the results of multiple instances of bounded-radius BFS. To reduce the space usage, the
simulation of these bounded-radius BF'S are assigned random starting times, and the algorithm
only maintains the last three layers of each BFS tree. These ideas are borrowed from results
on shortest paths computation in the parallel and the distributed settings [11, 22, 27, 45].

DFS Trees: We present a simple alternative proof of the result of Khan and Mehta [30] that
a DFS tree can be constructed in [h/k] passes using O(nk) space, for any given parameter
k, where h is the height of the computed DFS tree. The new proof is based on the following

connection between the DFS computation and the sparse certificates for k-node-connectivity.

We show in Lemma 16 that the first k layers of any DFS tree of a such a certificate H can
be extended to a DF'S tree of the original graph G.

The proof of Theorem 4 is based on the parallel DFS algorithm of Aggarwal and
Anderson [2]. In this paper we provide an efficient implementation of their algorithm
in the streaming model, also via the sparse certificates for k-node-connectivity, which allows
us to reduce the number of passes by batch processing.

We note that in a related work, Ghaffari and Parter [23] showed that the parallel DFS
algorithm of Aggarwal and Anderson can be adapted to distributed setting. Specifically,
they showed that DFS can be computed in the CONGEST model in O(v/Dn + n3/4) rounds,
where D is the diameter of the graph.

1.2 Paper Organization

In Section 2, we present how to construct an e-MLST sparsifier and apply it to devise
single-pass semi-streaming algorithms to approximate MLST to within a factor of (1 + €) for
every constant € > 0. Then, in Section 3, we show how to compute a BFS tree rooted at a

given node by an O(y/n)-pass O(n)-space algorithm w.h.p. and its applications to computing
approximate diameters and approximate Steiner trees. In Section 4, we have a similar result

for computing DFS trees; that is, O(y/n)-pass O(n)-space algorithm that succeeds w.h.p.

Lastly, we prove the claimed single-pass lower bound in Section 5.

34:5

STACS 2020

34:6

Streaming Complexity of Spanning Tree Computation

2 Maximum-Leaf Spanning Trees

In this section, we will show how to construct an e-MLST sparsifier in the semi-streaming
model; that is, proving Theorem 1. We recall the notions defined in Section 1 before
proceeding to the results. By ignorable node, we denote a node x whose degree is two and
whose neighbors © and v have degree two as well. Note that u # v for simple graphs. Let
leaf(G) be the maximum number of leaves (i.e. nodes of degree one) that a spanning tree of
G can have. Let inode(G) denote the number of ignorable nodes in G. Let degq(x) denote
the degree of node z in graph G. Let Si(G) denote any subgraph of G so that S (G) contains
all nodes in G' and every node x in Si,(G) has degree degg, (z) > min{degg(x), k}. Let T(G)
be any spanning tree of a connected graph G.

We begin with a result that complements Kleitman and West’s lower bounds on the
number of leaves for graphs with minimum degree § for any § > 3. Our lower bound does
not rely on the degree constraint. The constant 1/10 in Lemma 5 may be improved, but the
subsequent lemmata and theorems only require it to be Q(1).

» Lemma 5. Fvery connected simple undirected graph G, except the singleton graph, has
1
leaf(G) > E(W(GH — inode(G)).

Proof. Our proof is a generalization of the dead leaf argument due to Kleitman and West [31].
Let T be a tree rooted at s with N(s) as leaves for some arbitrary node s € G initially, where
N(s) denotes the neighbors of s, and then grow T iteratively by a node expansion order,
defined below. By expanding T' at node z, we mean to select a leaf node = of T and add all of
2’s neighbors in G\ T, say y1, V2, - - - , Y4, and their connecting edges, (z,v1), (z,y2),---, (%, yq),
to T. In this way, every node outside 7' cannot be a neighbor of any non-leaf node in 7. We
say a leaf node in T is dead if it has no neighbor in G\ T. Let (An); denote the number
of non-ignorable nodes in G that joins T while the i-th operation is applied. Let (Af);
denote the change of the number of leaf nodes in T" while the i-th operation is applied. Let
(Am); denote the change of the number of dead leaf nodes in T while the i-th operation is
applied. The subscript ¢ may be removed when the context is clear. We need to secure that
Al + Am > An/5 holds for each of the following operations and the initial operation.

Operation 1: If T has a leaf node = that has d > 2 neighbors outside T, then expand T at
. In this case, An < d, Al >d— 1, and Am > 0.

Operation 2: If every leaf node in T has at most one neighbor outside 7" and some node
x ¢ T has d > 2 neighbors in T, then expand T at one of 2’s neighbors in 7". In this case,
An <1, Al=0,and Am=d — 1.

Operation 3: This operation is used only when the previous two operations do not apply.
Let ¢ be some leaf in T that has exactly one neighbor z; not in T'. For each ¢ > 1, if
x; is defined and all neighbors of x; other than z;_; are outside T and z; has degree
two in G, then define x;41 to be the neighbor of x; other than z;_;. Suppose that x; for
1 < k are defined and xy41 is not defined, then we expand T at x; for each ¢ < k in order.
Though & can be arbitrarily large, An < 2+ degq (k). If zx41 is not defined and z;, has
d > 0 neighbors other than xzx_; in T (thus k£ > 2 in this case otherwise Operation 2
applies), then we discuss in subcases:

Subcase 1 (degqs (k) = 1): It is impossible to have degq(x) = 1 for this case.
Subcase 2 (degz (k) = 2): Then Al =0 and Am = 2.
Subcase 3 (degqa (k) > 3): Then Al = degq(xr) —d — 2 and Am > d.

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

If 2441 is not defined and xy, has 0 neighbor other than zj_; in T, then degg(zy) is either
1 or > 3. For deg:(xx) =1, Al =0 and Am = 1. For degq(xr) > 3, Al = degq(zy) — 2
and Am > 0.

It is clear that one can expand T to get a spanning tree of G by a sequence of the
above operations. Because all leaves are eventually dead, > Am = > Af. Consequently,

2leaf(G) > 2> Al => AL+ Am > (3" An)/5 = (V(G) — inode G) /5, as desired. <

Given Lemma 5, our goal is, for every constant ¢ > 0, find a sparse subgraph H of the
input graph G so that:

1. The nodes incident to the edges in T* \ H can be dominated by a small set S of at most
e(|]V(G)| — inode(@)) nodes, i.e. either in S or has at least one neighbor node in S using
the edges in H, where T™ is any optimal MLST of G.

2. H is connected.

Because of the existence of the small dominating set S, one can obtain a forest F' from
T* N H by adding some edges in H so that the number of leaves in F' is no less than that in

T* by |S| and the number of connected components in F' is no more than that in 7* by |S].

Since H is connected, one can further obtain a spanning tree T' from F by adding at most
|S| edges in H, so the number of leaves in T is no less than that in F' by 2|S|. Pick an H
associated with a sufficiently small ¢, by Equation (1) H is an e-MLST sparsifier. A formal
proof is given below.

» Theorem 6. For every integer k > 186, every connected simple undirected graph G has

leaf(S¢(G) UT(Q)) > <1 30 (W)) leaf(G).

Proof. Let T* be a spanning tree of G that has leaf(G) leaves. Let k be some fixed integer at
least 3 and let H = Si(G) UT(G). Let L = {z € V(G): x is incident to some e € T* \ H}.
Note that every node = € L has deg,(z) > k, so x and all neighbors of = are not ignorable
nodes in G.

First, we show that L can be dominated by a small set S of size at most £(|V(G)| —
inode(G)) using some edges in H. We obtain S from two parts, S; and S3. S; is a random
node subset sampled from the non-ignorable nodes in G, in which each node is included
in S with probability p independently, for some p € (0,1) to be determined later. Thus,
E[|51]] = p(|IV(G)| —inode(G)). Since every node x € L is adjacent only to the non-ignorable
nodes in G, the probability that x € L is not dominated by any node in S is

Pr[z is not dominated] = (1 — p)l+deen(®) < (1 — p)r+1,

Let Sy be the set of nodes in L that are not dominated by any node in S using the edges in
H. Thus,

E[|SI] = E[lS1] +[S2[] < (p+ (1 = p)" ™) ((V(G)] — inode(G)).

Then, we obtain a forest F' from T* N H by adding some edges in H as follows. Initially,
F=T*NH.

Operation 1: For each x € L, if z is an isolated node in 7* N H and = ¢ S, then add an
edge e from x to some node in S to F. Such an edge e must exist because S dominates L.

34:7

STACS 2020

34:8

Streaming Complexity of Spanning Tree Computation

Operation 2: For each x € L, if z is not an isolated node in 7% N H and the connected
component that contains z has an empty intersection with S, then add an edge e from x
to some node in S to F. Again, such an edge e must exist because S dominates L.

For each leaf £ € T, if degs(¢) < k, then ¢ is a leaf in T* N H (also in F unless ¢ € S);
otherwise deg(¢) > k, if £ is not a leaf in 7% N H, then ¢ must be an isolated node in T* N H,
and by Operation 1 ¢ is connected to some node in S unless ¢ € S. Hence, except those in 5,
every £ is a leaf node in F, so the number of leaves in F is no less than that in 7% by |S].
By Operation 2, the number of connected component is at most |S].

Lastly, since H is connected, one can obtain a spanning tree T' from F' by connecting the
components in F' by some edges in H. Thus, the number of leaves in T is no less than that
in T* by 3|S|. To obtain an e-MLST sparsifier, by Lemma 5 we need:

31|
T(V(G)| - inode(G))

<30 (p+ (1— p)F*1) < 30 (p+ e—W““)) <e

Setting p = (In(k + 1))/(k + 1) gives the desired bound, and the leading constant is positive
for k > 186. |

To find such a subgraph H, fetching a spanning tree of the input graph G and grabbing
k edges for each node in G suffices. Thus, we get a single-pass O(n)—space algorithm for the
insertion-only model. As for the turnstile model, we use O(k) fo-samplers [28] for each node
in G to fetch at least k neighbors of z w.h.p., and fetch a spanning tree by appealing to the
single-pass O(n)—spaee algorithm for spanning trees in dynamic streams [3]. This gives a

proof of Theorem 1.

Applications. In [21], Gandhi et al. show a connection between the maximum-leaf spanning
trees and connected maximum cut. Their results imply that, for any unweighted regular
graph G, the connected maximum cut can be found by the following two steps:

Step 1: Find a spanning tree T whose leaf(T) > (1/2 — ¢) leaf(G) for some constant & > 0.
Step 2: Randomly partition the leaves in T into two parts L and R so that each leaf is
included in L with probability 1/2 independently.

Then, outputting L and V(G) \ L yields an 8 4+ e-approximation for connected maximum
cut. Step 1 is the bottleneck and can be implemented by combining our e-MLST sparsifier
(Theorem 1) with the 2-approximation algorithm for MLST due to Solis-Oba, Bonsma, and
Lowski [42]. This gives Corollary 7.

» Corollary 7. In the turnstile model, for every constant € > 0, there exists a randomized
algorithm that can approzimate the connected mazximum cut for n-node unweighted regular
graphs to within a factor of 8 + & with probability 1 —1/n*M) in a single pass using O(f(e)n)
space.

3 Breadth-First Search Trees

A BFS tree of an n-node connected simple undirected graph can be constructed in O(n) passes
using O(n) space by simulating the standard BFS algorithm layer by layer. By storing the
entire graph, a BFS tree can be computed in a single pass using O(n?) space. In Section 3.1,
we show that it is possible to have a smooth tradeoff between pass complexity and space
usage. In Section 3.2, we prove Theorem 3, which shows that the above tradeoff can be

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

improved when randomness is allowed, even in the turnstile model. Then, in Section 3.3, we
show that multiple BFS trees, each starting from a distinct source node, can be computed
more efficiently in a batch than individually. Lastly, we demonstrate an application to
diameter approximation in Section 3.4.

In the BFS problem, we are given an n-node connected simple undirected graph G = (V, E)
and a distinguished node s, and it suffices to compute the distance dist(s,v) for each node
v € V\ {s}. To infer a BFS tree from the distance information {dist(s,v): v € V}, it
suffices to assign a parent to each node v € V'\ {s} the smallest-identifier node from the
set {u € N(v): dist(s,u) = dist(s,v) — 1} where N(v) is the set of v’s neighbors. This
can be done with one additional pass using O(n) space in the insertion-only model. In
the turnstile model, for p-pass streaming algorithms with p > logn, this can be done with
O(logn/loglogn) additional passes w.h.p. using O(logn) ¢p-samplers [28] for each node
v € V' \ {s}, and this costs O(n) space. For p < logn, the space bound is O(n?) and one

can use O(n) fp-samplers for each node, so this step can be done in one additional pass.

Hence in the subsequent discussion we focus on computing the distance from s to each node
veV\{s}.

3.1 A Simple Deterministic Algorithm

We present a simple deterministic p-pass 0(712 /p)-space algorithm in the insertion-only
model by an observation that every root-to-leaf path in a BFS tree cannot visit too many
high-degree nodes (Lemma 8). Then, one can simulate the standard BFS algorithm efficiently
layer-by-layer over high-degree nodes (Theorem 9).

» Lemma 8. Let P be a root-to-leaf path in some BFS tree of an n-node connected simple
undirected graph G. Then

Z dego(z) < 3n=0(n)

zEP
where deg(x) denotes the degree of x in G.

Proof. Suppose P = x1x3 - - -z comprises k nodes. Observe that if z; and x; have i = j
(mod 3), then z; and x; cannot share any neighbor node; otherwise P can be shorten, a
contradiction. Thus, for each ¢ € {0,1,2} the total contribution of all x;’s whose i = ¢
(mod 3) to), cpdegg(z;) is O(n). Summing over all possible ¢ gives the bound. <

We note that Lemma 8 is near-optimal. To see why, let H = (V, E') where V is the union of

disjoint sets Vo, Vi,...,V; and E = {(z,y) : * € V; and y € V; for any ¢, j that |[i — j| < 1}.

By setting k = [(n— 1)/t] for some parameter t, |Vp| = 1, |V;| =t for every i € [1,k — 1], and
1 < |Vi| < t, any BFS tree rooted at the node in V4 has a root-to-leaf path @ of length &,
and each node in @ N (Vo UV3U...UV;_s) has degree 3t — 1. Pick any ¢ such that k = w(1)
and ¢t = w(1). We have > o degy(z) = (3 —o(1))n.

» Theorem 9. Given an n-node connected simple undirected graph G with a distinguished
node s, a BFS tree rooted at s can be found deterministically in p passes using O(n?/p) space
for every p € [1,n] in the insertion-only model.

Proof. Given a parameter k, our algorithm goes as follows. In the first pass, keep arbitrary
n/k neighbors for each node v € G in memory and then use the in-memory edges to update
the distance dist(s,v) for each v € G by any single-source shortest path algorithm. The
set of the in-memory edges is an invariant after the first pass. Hence, the memory usage is

34:9

STACS 2020

34:10

Streaming Complexity of Spanning Tree Computation

O(n?/k). Then, in each of the subsequent passes, processing the edges (u,v) in the stream
one by one, without keeping them in memory after the processing, if dist(s,u)+1 < dist(s,v)
(resp. if dist(s,v) + 1 < dist(s, u)), then update dist(s,v) (resp. dist(s,u)). After the edges
in the stream are all processed, use the in-memory edges to update the distance dist(s,v)
for each v € G again by any single-source shortest path algorithm but with initial distances.
Our algorithm repeats until no distance has been updated in a single pass.

Observe a root-to-leaf path P = szj25--- 2 in some BFS tree rooted at s. Suppose
P contains exactly £ edges that appears only on tape, let them be (24,, 2y,), - - s (Zays 2y,)
where 1 < z; < y; < 41 < Yip1 < t for every ¢ € [1,£ — 1]. Let predp(z;) be the
predecessor of z; on P that is closest to z; among nodes in {s} U {z,, : y; < i}. By the
definition of the above construction, it is assured that deg(z,,) > n/k for each i € [1,4].
Thus by Lemma 8, ¢ = O(k). Then we appeal to the argument used for the analysis of
Bellman-Ford algorithm [19, 6]. For every ¢ € [1,¢], if i ¢ {y1,vy2,...,ye}, dist(s, z;) attains
the minimum possible value at the same pass when dist(s, predp(z;)) attains; otherwise
i = y; for some j € [1,], dist(s,y;) attains the minimum possible value at most one pass
after dist(s, z;) attains. Hence, O(k) passes suffices to compute dist(s, z;) for all 7 € [1,¢] and
this argument applies to all root-to-leaf paths. Setting k£ = p yields the desired bound. <«

3.2 A More Efficient Randomized Algorithm

In this section, we prove Theorem 3. Our BFS algorithm is based on the following generic
framework, which has been applied to finding shortest paths in the parallel and the distributed
settings [11, 22, 27, 45]. Sample a set U of approximately k distinguished nodes such that
each node v # s joins U independently with probability k/n, and s € U with probability
1. By a Chernoff bound, |U| = ©(k) with high probability. We will grow a local BFS tree
of radius O(n/k) from each node in U, and then we will construct the final BFS tree by
combining them. We will rely on the following lemma, which first appeared in [45].

» Lemma 10 ([45]). Let s be a specified source node. Let U be a subset of nodes such that
each node v # s joins U with probability k/n, and s joins U with probability 1. For any
given parameter C' > 1, the following holds with probability 1 — n=*(C). For each node t # s,
there is an s-t shortest path Ps. such that each of its C(nlogn)/k-node subpath P satisfies
P'NU #0.

For notational simplicity, in subsequent discussion we write h = C(nlogn)/k—1 = O(n/k).
Lemma 10 shows that for each node ¢t € V'\ {s},

dist(s,t) = ug(}glj&(ﬂ dist(s, u) + dist(u, t) (2)
with probability 1 —n~%() where N"(v) = {u: dist(u,v) < h}.

To see this, consider the s-t shortest path P;; specified in Lemma 10. If the number of
nodes in P is less than h, then the above claim holds because s € U N N"(t). Otherwise,
Lemma 10 guarantees that there is a node u € P, ; NU N N"(t) with probability 1 — n—SO),
Using Equation (2), a BFS tree can be computed using the following steps.

1. Compute dist(u,v) for each u € U and v € U N N”*(u). Using this information, we can

infer dist(s, u) for each u € U.

2. Compute dist(s, t) for each ¢ € V'\{s} by the formula dist(s,) = min,cynnn () dist(s, u)+

dist(u, t).

In what follows, we show how to implement the above two steps in the streaming model,
using O(n + k?) space and O(n/k) passes. By a change of parameter p = O(n/k), we obtain
Theorem 3.

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

Step 1. To compute dist(u,v) for each u € U and v € UN N"(u), we let each u € U initiate
a radius-h local BFS rooted at u. A straightforward implementation of this approach in the
streaming model costs h = O(n/k) passes and O(n - |U|) = O(nk) space, since we need to
maintain |U| search trees simultaneously.

We show that the space requirement can be improved to O(n + k?). Since we only need
to learn the distances between nodes in U, we are allowed to forget distance information
associated with nodes v ¢ U when it is no longer needed. Specifically, suppose we start
the BFS computation rooted at u € U at the 7,th pass, where 7, is some number to be
determined. For each 0 <1 < h — 1, the induction hypothesis specifies that at the beginning
of the (7, + i)th pass, all nodes in L;(u) = {v € V: dist(u,v) = i} have learned that
dist(u,v) = 4. During the (7, + 7)th pass, for each node v € V with dist(u,v) > 4, we check
if v has a neighbor in L;(u). If so, then we learn that dist(u,v) =i+ 1.

In the above BFS algorithm, if dist(u,v) = i for some 0 < i < h — 1, then we learn
the fact that dist(u,v) = 4 during the (7, + ¢ — 1)th pass. Observe that such information
is only needed during the next two passes. After the end of the (7, 4+ + 1)th pass, for
each v € V with dist(u,v) = 4, we are allowed to forget that dist(u,v) = ¢. That is, v
only needs to participate in the BFS computation rooted at u during these three passes
{ra+i—1, 7, +1i, 7y +i+1}.

For each u € U, we assign the starting time 7, independently and uniformly at random
from {1,2,...,h}. Lemma 11 shows that for each node v € V and for each pass 1 <t < 2h—1,
the number of BFS computations that involve v is 0(1) The idea of using random starting
time to schedule multiple algorithms to minimize congestion can be traced back from [32].
Note that 7, + dist(u,v) — 1 <t < 7, + dist(u,v) + 1 is the criterion for v to participate in
the BF'S rooted at u during the tth pass.

» Lemma 11. For each node v, and for each integer 1 < t < 2h — 1, with high probability,
the number of nodes u € U such that 1, + dist(u,v) — 1 <t < 7, + dist(u,v) + 1 is at most
O(max{logn, |U|/h}).

Proof. Given two nodes v € U and v € V, and a fixed number ¢, the probability that
Ty + dist(u,v) —1 < ¢t < 7, + dist(u,v) + 1 is at most 3/h. Let X be the total number
of w € U such that 7, + dist(u,v) — 1 <t < 7, + dist(u,v) + 1. The expected value of X
can be upper bounded by p = |U| - (3/h). By a Chernoff bound, with high probability,
X = O(max{logn, |U|/h}). <

Recall that |U| = O(k) with high probability, and h = O(n/k). By Lemma 11, we only
need [k?/n] - O(1) space per each v € V to do the radius-h BFS computation from all
nodes u € U. That is, the space complexity is O(n + k?). To store the distance information
dist(u, v) for each u € U and v € U N N"(u), we need O(k?) space. Thus, the algorithm for
Step 1 costs O(n + k?) space. The number of passes is 2h — 1 = O(k)

In the insertion-only model, the implementation is straightforward. In the turnstile
model, care has to be taken when implementing the above algorithm. We write x =
O(max{logn, |U|/h}) to be the high probability upper bound on the number of BFS compu-
tation that a node participates in a single pass. We write y = O(zlogn). Let Uy, Us, ..., U,
be random subsets of U such that each u € U joins each U; with probability 1/z, independ-
ently. Consider a node v € V' and consider the rth pass. Let S be the subset of U such that
ue Sifr =7, +dist(u,v) — 1, i.e., the BFS computation rooted at u hits v during the
rth pass. We know that with high probability |S| < z. By our choice of Uy, Us,...,U,, we
can infer that with high probability for each u € S there is at least one index j such that
SN U]‘ = {u}

34:11

STACS 2020

34:12

Streaming Complexity of Spanning Tree Computation

To implement the rth pass in the turnstile model, each node v € V virtually maintains y
edge set Zy,Zs, ..., Z,. For each insertion (resp., deletion) of an edge e = {w, v} satisfying
r = T, + dist(u, w) — 2 for some u € U;, we add (resp., remove) the edge from the set Z;.
After processing the entire data stream, we take one edge out of each edge set 21, Zs, ..., Z,.
In view of the above discussion, it suffices to only consider these edges when we grow the
BFS trees. This can be implemented using y £y-samplers per each node v € V| and the space
complexity is still O(ny) = O(n + k?).

Step 2. At this moment we have computed dist(s,u) for each u € U. Now we need to
compute dist(s,t) for each ¢ € V' \ {s} by the formula dist(s,?) = min,cynyn () dist(s, u) +
dist(u,t).

In the insertion-only model, this task can be solved using h iterations of Bellman-Ford
steps. Initially, do(v) = dist(s, v) for each v € U, and dy(v) = oo for each v € V' \ U. During
the ith pass, we do the update d;(v) < min{d;_1(v), 14+min,en () di—1(u)}. By Equation (2),
we can infer that dp,(t) = dist(s,t) for each ¢t € V. A straightforward implementation of this
procedure costs O(n) space and h = O(n/k) passes.

In the turnstile model, we can solve this task by growing a radius-h BFS tree rooted
at u, for each w € U, as in Step 1. During the process, each node v € V maintains
a variable d(v) which serves as the estimate of dist(s,v). Initially, d(v) + oo. When
the partial BFS tree rooted at u € U hits v, we update d(v) to be the minimum of
the current value of d(v) and dist(s,u) + dist(u,v). At the end of the process, we have
d(v) = min,cynnn) dist(s, u) + dist(u, v) = dist(s, v) for each v € V. This costs O(n + k?)
space and O(n/k) passes in view of the analysis of Step 1.

3.3 Extensions

In this section we consider the problem of solving ¢ instances of BFS simultaneously for
some ¢ < n and a simpler problem of computing the pairwise distance between the ¢ given
nodes. Both of these problems can be solved via a black box application of Theorem 3. In
this section we show that it is possible to obtain better upper bounds.

» Theorem 12. Given an n-node undirected graph G, for any given parameters1 < ¢ <k <mn,
the pairwise distances between all pairs of nodes in a given set of ¢ nodes in G can be computed
with probability 1 — 1/n®*Y) using O(n/k) passes and O(n + k?) space in the turnstile model.

Proof. Let S be the input node set of size c¢. Consider the modified Step 1 of our algorithm
where each s € S is included in U with probability 1. Since |S| = ¢ < k, we still have
|U| = O(k) with high probability. Recall that Step 1 of our algorithm calculates dist(u, v) for
each v € U and v € UNN"(u) in O(n+ k?) space and O(n/k) passes. Applying Equation (2)
for each s € U, we obtain the pairwise distances between all pairs of nodes in U, which
includes S as a subset. There is no need to do Step 2. <

For example, if ¢ = n'/2, then Theorem 12 implies that we can compute the pairwise
distances between all pairs of nodes in a given set of ¢ nodes in O(n) space and O(n'/?)
passes.

» Theorem 13. Given an n-node undirected graph G, for any given parameters1 < ¢ <k <mn,
one can solve ¢ instances of BFS with probability 1 — 1/n*M) using O(n/k) passes and
O(cen + k?) space in the turnstile model.

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

Proof. Let S be the node set of size ¢ corresponding to the roots of the ¢ BFS instances.
Consider the following modifications to our BFS algorithm.

Same as the proof of Theorem 12, in Step 1, include each s € S in U with probability
1. The modified Step 1 still takes O(n + k?) space and O(n/k) passes, and it outputs the
pairwise distances between all pairs of nodes in U.

Now consider Step 2. In the insertion-only model, remember that a BFS tree rooted at
a node s € S can be constructed in O(n) space and h = O(n/k) passes using h iterations
of Bellman-Ford steps. The cost of constructing all ¢ BFS trees is then O(cn) space and
O(n/k) passes.

In the turnstile model, we can also use the strategy of growing a radius-h BFS tree rooted
at u, for each w € U. During the process, each node v € V maintains ¢ variables serving
as the estimates of dist(s,v), for all s € S. The complexity of growing radius-h BFS trees
is still O(n + k2) space and O(n/k) passes. The extra space cost for maintaining these cn
variables is O(cn). <

For example, if ¢ = n'/3, then Theorem 13 implies that we can solve ¢ instances of BFS
in O(n*/?) space and O(n'/?) passes. Note that the space complexity of O(n*/3) is necessary
to output ¢ = n'/3 BFS trees.

Theorem 13 immediately gives the following corollary.

» Corollary 14. Given an n-node connected undirected graph G with unweighted edges and a
c-node subset S of G, for any given parameters 1 < ¢ < k < n, finding a Steiner tree in G
that spans S can be approzimated to within a factor of 2 with probability 1 — 1/n9(1) ustng
O(n/k) passes and O(cn + k?) space in the turnstile model.

Note that if we do not need to construct a Steiner tree, and only need to approximate
the size of an optimal Steiner tree, then Theorem 12 can be used in place of Theorem 13.

3.4 Diameter Approximation

It is well-known that the maximum distance label in a BFS tree gives a 2-approximation
of diameter. We show that it is possible to improve the approximation ratio to nearly 1.5
without sacrificing the space and pass complexities.

Roditty and Williams [40] showed that a nearly 1.5-approximation of diameter can be
computed with high probability as follows.

1. Let S; be a node set chosen by including each node v € V to S; with probability

p = (logn)/y/n independently. Perform a BFS from each node v € Sj.

2. Let v* be a node chosen to maximize dist(v*,S1). Break the tie arbitrarily. Perform a

BFS from v*.

3. Let S5 be the node set consisting of the y/n nodes closest to v*, where ties are broken
arbitrarily. Perform a BFS from each node v € Ss.

Let D* be the maximum distance label ever computed during the BFS computations in the

above procedure. Roditty and Williams [40] proved that D* satisfies that (2D /3| < D* < D,

where D is the diameter of G.

The algorithm of Roditty and Williams [40] can be implemented in the streaming model
by applying Theorem 13 with ¢ = O(y/n), but we can do better. Note that when we perform
BFS from the nodes in S; and S5, it is not necessary to store the entire BFS trees. For
example, in order to select v*, we only need to let each node v know dist(v, S1), which is the
maximum distance label of v in all BFS trees computed in Step 1. Therefore, the O(cn) term
in the space complexity of Theorem 13 can be improved to O(n). That is, the space and

pass complexities are the same as the cost for computing a single BFS tree using Theorem 3.

We conclude the following theorem.

34:13

STACS 2020

34:14

Streaming Complexity of Spanning Tree Computation

» Theorem 15. Given an n-node connected undirected graph G, a diameter approximation
D* satisfying |2D/3] < D* < D, where D is the diameter of G, can be computed with
probability 1 — 1/n®*W) in p passes using O((n/p)?) space, for each 1 < p < O(y/n) in the
turnstile model.

4 Depth-First Search

A straightforward implementation of the naive DFS algorithm in the streaming model costs
cither n — 1 passes with O(n) space or a single pass with O(n?) space. Khan and Mehta [30]
recently showed that it is possible to obtain a smooth tradeoff between the two extremes.
Specifically, they designed an algorithm that requires at most [n/k] passes using O(nk)
space, where k is any positive integer. Furthermore, for the case the height A of the computed
DFS tree is small, they further decrease the number of passes to [h/k]. In Section 4.1,
we will provide a very simple alternative proof of this result, via sparse certificates for
k-node-connectivity.

In the worst case, the “space X number of passes” of the algorithms of Khan and
Mehta [30] is still O(n?). In Section 4.2, we will show that it is possible to improve this
upper bound asymptotically when the number of passes p is super-constant. Specifically, for
any parameters 1 < s < k < n, we obtain the following DFS algorithms.

A deterministic algorithm using O((n/k) + (k/s)) passes and O(ns) space in the insertion-

only model. After balancing the parameters, the space complexity is O(n?/p?) for p-pass

algorithms, for each 1 < p < O(yv/n).

A randomized algorithm using O((n/k) 4 (k/s)) passes and O(ns?) space in the turnstile

model. After balancing the parameters, the space complexity is O(n3 /p*) for p-pass

algorithms, for each 1 < p < O(y/n).

4.1 A Simple DFS Algorithm

In this section, we present a simple alternative proof of the result of Khan and Mehta [30] that
a DFS tree can be constructed in [h/k] passes using O(nk) space, for any given parameter
k, where h is the height of the computed DFS tree.

Sparse Certificate for s-Node-Connectivity. A strong s-VC certificate of a graph H is its
subgraph K such that for any supergraph G of H, for every pair of nodes s*,t* € G, if they
are c-node-connected in G, then they are ¢’-node-connected for some ¢’ > min{s, ¢} in the
graph obtained from G by replacing its subgraph H with K. A sparse strong s-VC certificate
of the graph G is exactly what we need here. Eppstein, Galil, Italiano, and Nissenzweig [12]
showed that such a sparse subgraph of O(ns) edges can be computed in a single pass with
O(ns) space deterministically in the insertion-only model. In the turnstile model, Guha,
McGregor, and Tench [25] showed that such a sparse subgraph of O(nsQ) edges can be
computed with high probability in a single pass using O(nsQ) space. This result can be
inferred from Theorem 8 of [25] with € = ©(1/s). In [25] the analysis only considers the case
G = H, but it is straightforward to extend the analysis to incorporate any supergraph G of
H.

If the subgraph K of the graph H satisfies the above requirement for the special case of
G = H, then K is said to be a s-VC certificate of H. Our simple DFS algorithm relies on
this tool.

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

» Lemma 16. Suppose K is a (k + 1)-VC certificate of H. Let T' be any DFS tree of K.
Consider any two nodes u and v such that the least common ancestor w of u and v are within
the top k layers of T. If w # u and w # v, then u and v are not adjacent in H.

Proof. Suppose u, v, and w violate the statement of the lemma. That is, u and v are adjacent
in H. Since T is a DFS tree, u and v are not adjacent in K, and each path connecting v and
v must pass through a node that is a common ancestor of u and v. Let ¢y (resp., cx) be
the u-v node-connectivity in H (resp., K). The above discussion implies that cx < k and
cg > ci + 1, contradicting the assumption that K is a (k + 1)-VC certificate of H. |

Algorithm. Using Lemma 16, we can construct a DFS tree of G recursively as follows. Pick
K as a (k+1)-VC certificate of G. Compute a DFS tree T of K. Let T” be the tree induced
by the top k + 1 layers of of T'. Let vq,va,...,v, be the leaves of T'. Denote S; as the set of
descendants of v; in T, including v;. By Lemma 16, there exists no edge in G that crosses
two distinct sets S; and S;. For each 1 < ¢ < 2, we recursively find a DFS tree T; of the
subgraph of G induced by S; rooted at v;. By the above observation, we can obtain a valid
DFS tree of G by appending Ty, Ts,...,T, to T".

Analysis. If the height of the final DFS tree is h, then the depth of the recursion is at most
[h/k]. The cost for computing a (k + 1)-VC certificate is 1 pass and O(nk) space, and the
resulting subgraph K has O(nk) edges. Therefore, the total number of passes is at most
[h/k], and the overall space complexity is O(nk).

4.2 Streaming Implementation of the Algorithm of Aggarwal and
Anderson

The bounds of Theorem 4 are attained via an implementation of the parallel DF'S algorithm of
Aggarwal and Anderson [2] in the streaming model, with the help of various tools, including
the strong sparse certificates for s-node-connectivity described above. Due to the page limit,
we only provide a sketch of the proof. The complete proof will be presented in the full version
of this paper.

At a high level, the DFS algorithm of Aggarwal and Anderson [2] works as follows. Start
with a maximal matching, and then merge these length-1 paths iteratively into a constant
number of node-disjoint paths such that the number of nodes not in any path is at most

|[V'|/2. The algorithm then constructs the initial segment of the DFS tree from these paths.

Each remaining connected component is solved recursively. The final DFS tree is formed by
appending the DF'S trees of recursive calls to the initial segment.

The bottleneck of this DFS algorithm is a task called MaximalPaths which is a variant of
the maximal node-disjoint paths problem between a set of source nodes S and a set of sink
nodes T'. In this variant, each member of S is a path instead of a node. Goldberg, Plotkin,

and Vaidya [24] gave a parallel algorithm for this problem. Their algorithm has two phases.

For any given parameter k, they showed that after k iterations of the algorithm of the first
phase, the number of sources in S that are still active is at most n/k. These remaining active
sources are processed one-by-one in the second phase. Using this approach with k = \/n,
MaximalPaths can be solved in the streaming model with O(y/n) passes and O(n) space. To
further reduce the pass complexity, we apply the sparse certificates for s-node-connectivity
of Eppstein, Galil, Ttaliano, and Nissenzweig [12] and Guha, McGregor, and Tench [25],
which allow us to process the remaining active sources in batches. In the insertion-only
model, we obtain a deterministic p-pass algorithm with space complexity O(n?/p?), for each
1 < p < O(y/n). For the more challenging turnstile model, we obtain a randomized algorithm
with a somewhat worse space complexity of O(n®/p*).

34:15

STACS 2020

34:16

Streaming Complexity of Spanning Tree Computation

5 Single-Pass Lower Bounds

In this section, we use the lower bound of the 1-way randomized communication complexity for
the INDEX problem [1] to show the single-pass space lower bound for computing approximate
MLST to within an additive error k. This gives a complementary result for Theorem 1.

» Theorem 17. In the insertion-only model, given a connected n-node simple undirected graph
G, computing a spanning tree of G that has at least leaf (G) —k leaves for any k € [1, (n—>5)/4]
requires Q(n?/k?) bits for any single-pass randomized streaming algorithm that can succeed
with probability at least 2/3.

Proof. We begin with a reduction from an n2-bit instance of the INDEX problem to computing
a spanning tree of (2n+3)-node graph G with leaf(G) leaves for any n > 1. Given Alice’s input
in the INDEX problem, i.e. a bit-array of length n2, we construct an n by n bipartite graph H,
as part of G, in which edge (z;,y;) for every 4, j € [1,n] corresponds to the ((¢ — 1)n + j)-th
bit in Alice’s array. Then, given Bob’s input, a tuple (4, j) for some 4, j € [1,n], we construct
the remaining part of G by adding three additional nodes s, ¢, and ¢, and

connecting an edge from s to z for every node z # y; in H, and
adding edge (¢, z;), (s,t), and (¢,y;).

It clear that G is connected and has

leaf () = { ;ZJr 1 if (ay,y;) € H

otherwise

Thus, having a single-pass streaming algorithm to compute leaf(G) suffices to decide the
n2-bit instance of the INDEX problem, i.e. for Bob to tell what the ((i — 1)n + j)-th bit in
Alice’s array is. This requires £2(n?) bits. To obtain the hardness result for MLST with
additive error k for any k > 1, one can duplicate H U {¢,t} into (k + 1) copies and let the
copies share the same s, so G is connected, has (k 4+ 1)(2n + 2) 4+ 1 nodes, and has

_ @n4+1)(E+1) i (z,y;) € H
leaf(G) = { 2n(k +1) otherwise

Hence, having a single-pass streaming algorithm to compute leaf(G) for G of (k+1)(2n+
2) + 1 nodes to within an additive error k suffices to decide the n?-bit INDEX problem.
Replace (k+1)(2n+2) + 1 =n' and n? = Q((n’/k)?) yields the desired bound. <

6 Conclusion

In this paper, we devised semi-streaming algorithms for spanning tree computations, including
max-leaf spanning trees, BFS trees, and DFS trees. For max-leaf spanning trees, despite
that any streaming algorithm requires (n?) space to compute the exact solution, we show
how to compute a (1 4 ¢)-approximation using a single pass and O(n) space, albeit in
super-polynomial time. For BFS trees and DFS trees, we show how to compute them using
O(y/n) passes and O(n) space, and offer a smooth tradeoff between pass complexity and
space usage.

The pass complexities of our algorithms for BFS trees and DFS trees are still far from
the known lower bounds, w(1) passes for BFS trees [17] and the trivial 1 pass for DFS trees.
It is unclear whether our upper bounds can be further reduced or the known lower bounds
can be improved. We leave closing the gap to future work.

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

—— References

1

10

11

12

13

14

15

16

17

18

19
20

Farid M. Ablayev. Lower bounds for one-way probabilistic communication complexity and
their application to space complexity. Theor. Comput. Sci., 157(2):139-159, 1996.

Alok Aggarwal and Richard J. Anderson. A random NC algorithm for depth first search.
Combinatorica, 8(1):1-12, March 1988.

Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 459—467, 2012.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (A 4 1) vertex coloring.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 767—-786, 2019.

Jesse Beisegel. Characterising AT-free graphs with BFS. In Graph-Theoretic Concepts in
Computer Science - 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29,
2018, Proceedings, pages 1526, 2018.

Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87-90,
1958.

Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting triangles
in the streaming model? In Automata, Languages, and Programming - 40th International
Colloguium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 244-254,
2013.

Joseph Cheriyan and Ramakrishna Thurimella. Algorithms for parallel k-vertex connectivity
and sparse certificates. In Proceedings of the Twenty-third Annual ACM Symposium on Theory
of Computing, STOC 91, pages 391-401. ACM, 1991.

Miroslav Chlebik and Janka Chlebikova. Approximation hardness of dominating set problems
in bounded degree graphs. Inf. Comput., 206(11):1264-1275, 2008.

Derek G. Corneil, Feodor F. Dragan, and Ekkehard K&hler. On the power of BFS to determine
a graph’s diameter. Networks, 42(4):209-222, 2003.

M. Elkin. Distributed exact shortest paths in sublinear time. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 757-770, New York, NY,
USA, 2017. ACM.

David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification — a
technique for speeding up dynamic graph algorithms. JACM, 44(5):669-696, 1997.

Shimon Even and Robert Endre Tarjan. Computing an st-numbering. Theoretical Computer
Science, 2(3):339-344, 1976.

Martin Farach-Colton, Tsan-sheng Hsu, Meng Li, and Meng-Tsung Tsai. Finding articulation
points of large graphs in linear time. In Algorithms and Data Structures - 14th International
Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings, pages 363-372,
2015.

Martin Farach-Colton and Meng-Tsung Tsai. Tight approximations of degeneracy in large
graphs. In LATIN 2016: Theoretical Informatics - 12th Latin American Symposium, Ensenada,
Mexico, April 11-15, 2016, Proceedings, pages 429-440, 2016.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207-216, 2005.
Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM J. Comput., 38(5):1709-1727, 2008.

T. Fleiner and G. Wiener. Coloring signed graphs using DFS. Optimization Letters, 10(4):865—
869, April 2016.

L.R. Ford. Network Flow Theory. Paper P. Rand Corporation, 1956.

Giulia Galbiati, Francesco Maffioli, and Angelo Morzenti. A short note on the approximability
of the maximum leaves spanning tree problem. Inf. Process. Lett., 52(1):45-49, 1994.

34:17

STACS 2020

34:18

Streaming Complexity of Spanning Tree Computation

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Rajiv Gandhi, Mohammad Taghi Hajiaghayi, Guy Kortsarz, Manish Purohit, and Kanthi K.
Sarpatwar. On maximum leaf trees and connections to connected maximum cut problems.
Inf. Process. Lett., 129:31-34, 2018.

Mohsen. Ghaffari and Jason. Li. Improved distributed algorithms for exact shortest paths. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
2018.

Mohsen Ghaffari and Merav Parter. Near-optimal distributed DFS in planar graphs. In 31st
International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna,
Austria, pages 21:1-21:16, 2017.

A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-time parallel algorithms for
matching and related problems. JALG, 14(2):180-213, 1993.

Sudipto Guha, Andrew McGregor, and David Tench. Vertex and hyperedge connectivity in
dynamic graph streams. In Proceedings of the 34th ACM Symposium on Principles of Database
Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 241-247,
2015.

Mohammad Taghi Hajiaghayi, Guy Kortsarz, Robert MacDavid, Manish Purohit, and Kanthi K.
Sarpatwar. Approximation algorithms for connected maximum cut and related problems. In
Algorithms - ESA 2015 - 28rd Annual European Symposium, Patras, Greece, September 14-16,
2015, Proceedings, pages 693—-704, 2015.

Chien-Chung Huang, Danupon Nanongkai, and Thatchaphol Saranurak. Distributed exact
weighted all-pairs shortest paths in O(n®/4) rounds. In IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 168-179, 2017.

Hossein Jowhari, Mert Saglam, and Gabor Tardos. Tight bounds for ¢, samplers, finding
duplicates in streams, and related problems. In Proceedings of the Thirtieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS 11, pages 49-58,
New York, NY, USA, 2011. ACM.

Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. SIAM J. Comput., 46(1):456-477, 2017.
Shahbaz Khan and Shashank Mehta. Depth first search in the semi-streaming model. In 36th
International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Daniel J. Kleitman and Douglas B. West. Spanning trees with many leaves. STAM J. Discrete
Math., 4(1):99-106, 1991.

F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling in
O(Congestion + Dilation) steps. Combinatorica, 14(2):167-186, 1994.

R. Lipton and R. Tarjan. A separator theorem for planar graphs. SIAM Journal on Applied
Mathematics, 36(2):177-189, 1979.

Hsueh-I Lu and R. Ravi. The power of local optimization: Approximation algorithms for
maximum-leaf spanning tree. In In Proceedings, Thirtieth Annual Allerton Conference on
Communication, Control and Computing, pages 533—-542, 1992.

Hsueh-I Lu and R. Ravi. Approximating maximum leaf spanning trees in almost linear time.
J. Algorithms, 29(1):132-141, 1998.

Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph
in dynamic graph streams. In Mathematical Foundations of Computer Science 2015 - 40th
International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II,
pages 472-482, 2015.

S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends Theor. Comput.
Sci., 1(2):117-236, August 2005.

Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583-596, 1992.
Jelani Nelson and Huacheng Yu. Optimal lower bounds for distributed and streaming spanning
forest computation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete

Y.-J. Chang, M. Farach-Colton, T.-S. Hsu, and M.-T. Tsai

40

41

42

43

44

45

Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1844—-1860,
2019.

Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Proceedings 45th ACM Symposium on Theory of
Computing (STOC), pages 515-524, 2013.

Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Inf. Process. Lett.,
113(7):241-244, 2013.

Roberto Solis-Oba, Paul S. Bonsma, and Stefanie Lowski. A 2-approximation algorithm for
finding a spanning tree with maximum number of leaves. Algorithmica, 77(2):374-388, 2017.
Xiaoming Sun and David P. Woodruff. Tight bounds for graph problems in insertion streams. In
Approzimation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, pages 435-448, 2015.

Robert Endre Tarjan. A note on finding the bridges of a graph. Inf. Process. Lett., 2(6):160-161,
1974.

J. D. Ullman and M. Yannakakis. High-probability parallel transitive-closure algorithms.
SIAM Journal on Computing, 20(1):100-125, 1991.

34:19

STACS 2020

	Introduction
	Technical Overview
	Paper Organization

	Maximum-Leaf Spanning Trees
	Breadth-First Search Trees
	A Simple Deterministic Algorithm
	A More Efficient Randomized Algorithm
	Extensions
	Diameter Approximation

	Depth-First Search
	A Simple DFS Algorithm
	Streaming Implementation of the Algorithm of Aggarwal and Anderson

	Single-Pass Lower Bounds
	Conclusion

