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Abstract
String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern.
We study the complexity of this problem in three settings.

Communication complexity. For small k, we provide near-optimal upper and lower bounds
on the communication complexity of string matching. For large k, our bounds leave open an
exponential gap; we exhibit some evidence for the existence of a better protocol.
Circuit complexity. We present several upper and lower bounds on the size of circuits with
threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our
bounds are near-optimal for small k.
Learning. We consider the problem of learning a hidden pattern of length at most k relative to
the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds
on the VC dimension and sample complexity of this problem.
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1 Introduction

One of the most fundamental and frequently encountered tasks by minds and machines is
that of detecting patterns in perceptual inputs. A basic example is the string matching
problem, where given a string x ∈ {0, 1}n and a pattern y ∈ {0, 1}k, k ≤ n, the goal is to
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decide whether x contains y as a substring. Formally, denoting by x[i, j] the bits of x in the
interval [i, j] := {i, i+ 1, . . . , j}, we define a Boolean function by

SMn,k(x, y) := 1 iff x[i, i+ k − 1] = y for some i ∈ [n− k + 1].

String matching is well-studied in the context of traditional algorithms: it can be computed
in linear time [7, 25, 15] (with some lower bounds given by [40]). It has also been studied
in more modern algorithmic frameworks such as streaming [37], sketching [3], and property
testing [5]. See Section 2 for more related work.

In this work we study the SMn,k problem in three models of computation, where it
appears to have received relatively little attention.
1. Communication complexity: How many bits of communication are required to compute

SMn,k when the input (x, y) is adversarially split between two players?
2. Circuit complexity: How many gates are needed to compute SMn,k by DeMorgan circuits

(possibly in low depth)? How about threshold circuits?
3. Learning: How many labeled samples of strings must be observed in order to (PAC) learn

a classifier assigning 1 to a string if and only if it contains a (fixed) hidden pattern y?
What is the VC dimension of this problem?

1.1 Results: Communication Complexity
We first show bounds on the randomized two-party communication complexity of SMn,k. (For
standard textbooks on communication complexity, see [26, 22].) The only related prior work
we are aware of is Bar-Yossef et al. [3] who studied the one-way communication complexity
of string matching; our focus is on two-way communication. Our bounds are near-optimal for
small k, but for large k ≥ Ω(n), we leave open a mysterious exponential gap. Our protocols
work regardless of how the input bits (x, y) are bipartitioned between the players, whereas
our lower bound is proved relative to some fixed hard partition.

I Theorem 1 (Communication Complexity). For the SMn,k(x, y) problem:
Upper bound: Under any bipartition of the input bits, there is a protocol of cost
Deterministic: O(log k · n/k) if k ≤

√
n ;

Randomized: O(log n ·
√

n) if k ≥
√

n.
Lower bound: For k ≥ 2 there is a bipartition of the input bits such that every randomized
protocol requires Ω(log log k ·n/k) bits of communication, even for the fixed pattern y = 1k.

I Remark 2. Note that the most natural bipartition, where Alice gets x and Bob gets y,
is easy. Indeed, for such partition there is a randomized O(logn)-bit protocol, where Bob
sends to Alice a hash of y, and Alice compares it with the hashes of the substrings x[1, k],
x[2, k+1],. . . , x[n−k+1, n]. Under this bipartition, by setting k = n, one can also recover the
usual equality problem, which is well-known to have deterministic communication complexity
Ω(n). This explains why nontrivial protocols for large k need randomness.

A better protocol?

For simplicity of discussion, consider the case k = n/2.

What is the randomized communication complexity of SMn,n/2?

Our bounds, Ω(log logn) and O(logn ·
√
n), leave open a huge gap. We conjecture that the

answer is closer to the lower bound. As formal evidence we show that problems closely related
to SMn,n/2 admit efficient “unambiguous randomized” (aka U·BPP) communication protocols.
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A classic result [51] says that any “unambiguous deterministic” (aka U·P) protocol can be
efficiently simulated by a deterministic one, that is, U·P = P in communication complexity.
A randomized analogue of this, U·BPP = BPP, turns out to be false as a consequence of the
recent breakthrough of Chattopadhyay et al. [9]. One can nevertheless interpret our U ·BPP
protocols as evidence for the existence of improved randomized protocols.

Techniques

Our lower bound in Theorem 1 requires proving a tight randomized lower bound for composed
functions of the form OR ◦GT (where GT is the greater-than function), which answers a
question of Watson [50]. We observe that the lower bound follows by a minor modification
of existing information complexity techniques [8]. For upper bounds, the role of periods
in strings plays a central role (Section 3.1). We go on to discuss a natural period finding
problem, and conjecture that it is easy for randomized protocols. See Section 3.4 for details.

The communication complexity and circuit complexity of SMn,k are related. As we soon
demonstrate, our study of the communication complexity of SMn,k results with circuit lower
bounds for threshold circuits computing SMn,k.

1.2 Results: Circuit Complexity
Threshold circuits

A threshold circuit is a circuit whose gates compute linear threshold functions (LTFs). Recall
that an LTF outputs 1 on an m-bit input x if and only if

∑
i∈[m] aixi ≥ θ for some fixed

coefficient vector a ∈ Rm, and θ ∈ R. The study of threshold circuits is often motivated
by its connection to neural networks [17, 36, 35, 32, 33]. The case of low-depth threshold
circuits is also interesting. In particular, one line of work [47, 38, 46] has focused on
efficient low-depth threshold implementations of arithmetic primitives (addition, comparison,
multiplication). As for lower bounds, [17] show an exponential-in-n lower bound for the
mod-2 inner-product function against depth-2 threshold circuits of low weight (see [12] for an
extension). Superlinear lower bounds on the number of gates of arbitrary depth-2 as well as
low-weight depth-3 threshold circuits were proven recently by Kane and Williams [24].

It is important that we measure the size of a threshold circuit as the number of gates
(excluding inputs), in which case even superconstant lower bounds are meaningful. For
example, it is easy to implement the equality function (namely SMn,n) using three threshold
gates (albeit, with exponential weights). Thus, in contrast to the case of bounded fanin
circuits, proving linear or even nonconstant lower bounds on the number of gates is not
straightforward. Indeed, there are few explicit examples of functions with superconstant
lower bounds [16], and proving them is considered challenging [43]. Indeed, Jukna [22] writes
“even proving non-constant lower bounds . . . is a nontrivial task”.

We show that SMn,k admits a linear-size implementation at low depth. Thereafter we
focus on its fine-grained complexity, seeking to establish lower bounds as close to Ω(n)
as possible.

I Theorem 3 (Threshold circuits). For the SMn,k(x, y) problem:
Upper bound: There is a depth-2 threshold circuit of size O(n− k).
Lower bound for unbounded depth: Any threshold circuit must be of size

Ω( n log log k
k log n

) if k > 1;
Ω(
√

n/k) if k ≥ 2.1 · log n.

APPROX/RANDOM 2019
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The second lower bound is stronger than the first one in the regime k = Ω(n · ( log logn
logn )2).

We note that for k ≤ polylog(n), we have nearly linear lower bounds for unbounded-depth
threshold circuits computing SMn,k. We stress that there are no restrictions on the weights
of the threshold gates in these lower bounds. We are not able to prove Ω(n) lower bounds
even for depth-2 threshold circuits. Proving such lower bounds (or constructing a threshold
circuit of size o(n)) remains open. We can prove strong lower bounds for depth-2 circuits in
some special cases (see Section 4.3).

Techniques

In Section 4.2 we obtain lower bounds for threshold circuits from the lower bounds on
communication complexity of SMn,k using a connection between threshold complexity and
circuit complexity outlined by [34]. We also prove lower bounds for threshold circuits by
reducing the problem of computing a “sparse hard” function to computing SMn,k. Perhaps
surprisingly, we show that the string matching problem can encode a truth table of an
arbitrary sparse (few preimages of 1) Boolean function.

DeMorgan circuits

We consider usual DeMorgan circuits (AND, OR, NOT gates) of unbounded fan-in and show
upper and lower bounds on the circuit complexity of SMn,k. We emphasize again that we
measure the size of a circuit as the number of gates (excluding inputs). For example, the
n-bit AND can be computed with a circuit of size 1.

We start by analyzing the case of low-depth circuits.

I Theorem 4 (Depth-2 DeMorgan circuits). For the SMn,k(x, y) problem:
Depth-2 upper bound: There is a depth-2 DeMorgan circuit of size O(n · 2k).
Depth-2 lower bound: Any depth-2 DeMorgan circuit must be of size

Ω(n · 2k) if 1 < k ≤
√

n ;
Ω(22

√
n−k+1) if k ≥

√
n.

For k ≤
√
n, our depth-2 results are optimal (up to a constant factor). For large k, say

k = n/2, there is (similarly as for communication) a huge gap in our bounds: 2Ω(
√
n) versus

2O(n). We do not know what bound to conjecture here as the correct answer.
For DeMorgan circuits, the celebrated Håstad’s switching lemma [19] established expo-

nential lower bounds for bounded depth circuits computing explicit functions (e.g., majority,
parity). We note that in contrast to the parity function, the string matching function admits
a polynomial size circuit of depth 3. It is unclear (to us) how to leverage known tools for
proving lower bounds for small depth circuits (such as the switching lemma) towards proving
super linear lower bounds for small depth DeMorgan circuits computing SMn,k. Whether
the string matching problem can be computed by a depth 3 (or even unrestricted) DeMorgan
circuit of size O(n) remains open.

Next, we prove that the circuit complexity of SMn,k for general DeMorgan circuits (unres-
tricted depth and fan-in) must be Ω(n). We also include a relatively straightforward upper
bound (which may have been discovered before; [14] claims an upper bound O(n log2 n)
without a proof).

I Theorem 5 (General DeMorgan circuits). For the SMn,k(x, y) problem:
Upper bound: There is a DeMorgan circuit of size O(nk) and depth 3.
Lower bound: Any DeMorgan circuit must be of size at least n/2.
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Techniques

We prove the lower bound on DNF by exhibiting an explicit set of inputs to SMn,k each of
which requires a separate clause in any DNF. Our lower bound for CNF involves estimating
the size of maxterms of SMn,k. For the lower bound against circuits of unrestricted depth, we
adjust the gate elimination technique to the case of unbounded fan-in circuits. See Section 5
for details.

1.3 Results: Learning

Finally, we seek to understand the sample complexity of PAC-learning the string matching
function SMn,`(x, σ), where x is an arbitrary string of length n and σ is a fixed pattern of
length ` ≤ k. Towards this goal we prove (almost) tight bounds on the VC dimension of the
class of these functions. The VC dimension essentially determines the sample complexity
needed to learn the pattern σ from a set of i.i.d. samples in the PAC learning framework.
We formalize these notions below.

Let Σ be a fixed finite alphabet of size |Σ| ≥ 2.1 By Σn we denote the set of strings over
Σ of length n, and by Σ≤k we denote the set of strings of length at most k. We study the
VC dimension of the class of functions, where each function is identified with a pattern of
length at most k, and outputs 1 only on the strings containing this pattern. Recall that
the length of the pattern k = k(n) ≤ n can be a function of n. We now define the set of
functions we wish to learn:

I Definition 6. For a fixed finite alphabet Σ and an integer k > 0, let us define the class
of Boolean functions Hk,Σ over Σn as follows. Every function hσ ∈ Hk,Σ is parameterized
by a pattern σ ∈ Σ≤k of length at most k. Hence, |Hk,Σ| = |Σ|k+1−1

|Σ|−1 . For a string s ∈ Σn,
hσ(s) = 1 if and only if s contains σ as a substring.

To analyze the sample complexity required to learn a function from Hk,Σ we first define
VC dimension.

I Definition 7. Let F be a class of functions from a set D to {0, 1}, and let S ⊆ D. A
dichotomy of S is one of the possible labellings of the points of S using a function from F .
S is shattered by F if F realizes all 2|S| dichotomies of S. The VC dimension of F , VC(F),
is the size of the largest set S shattered by F .

In particular, VC(Hk,Σ) = d if and only if there is a set S of d strings of length n such
that for every S′ ⊆ S, there exists a pattern PS of length at most k occurring in all the
strings in S′ and not occurring in all the strings in S \ S′.

A class of functions F is PAC-learnable2 with accuracy ε and confidence 1 − δ in
Θ
(

VC(F)+log(1/δ)
ε

)
samples [6, 11, 18], and is agnostic PAC-learnable in Θ

(
VC(F)+log(1/δ)

ε2

)
samples [2, 44]. Thus, tight bounds on the VC dimension of a class of functions give tight
bounds on its sample complexity.

Our main result is a tight bound on the VC dimension of Hk,Σ (up to low order terms).
That is:

1 In contrast to the circuit and communication setting, for the learning problem we consider nonbinary
alphabets.

2 For a precise definition of PAC learning, see Definition 36.

APPROX/RANDOM 2019
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I Theorem 8. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) = min(log |Σ|(k −O(log k)), logn+O(log logn)) .

It follows that the sample complexity of learning patterns is O(logn). We also show that
there are efficient polynomial time algorithms solving this learning problem. See Corollary 37
for details.

Techniques

We prove our upper bound on the VC dimension by a double counting argument. This
argument uses Sperner families to show that shattering implies a “large” family of non-
overlapping patterns, which, on the other hand, is constrained by the length n of the
strings that we shatter. The lower bound is materialized by the idea to have 2d patterns
P = {p0 . . . p2d−1} and d strings such that the ith string is a concatenation of all patterns
with the binary expansion of their index having the ith bit equal 1. We construct a family of
patterns T with the property that for any pair of distinct strings α, β ∈ T , their concatenation
αβ does not contain a string γ ∈ T, γ 6= α, β. Using this family (with some additional technical
requirements) we are able to show that P shatters a set of d strings implying our lower bound
on the VC dimension.

2 More related work

Circuit complexity

Upper bounds on the circuit complexity of 2D image matching problem under projective
transformations was studied in [42]. In this problem, which is considerably more complicated
than the pattern matching problems we study, the goal is to find a projective transformation
f such that f(A) “resembles”3 B for two images A,B. Here, images are 2D square arrays of
dimension n containing discrete values (colors). In particular, it is proven that this image
matching problem is in TC1 (it admits a threshold circuit of polynomial size and logarithmic
depth in n). These results concern a different problem than the string matching considered
here, and do not seem to imply the upper bounds we obtain for circuits solving the string
matching problem.

The idea to lower bound the circuit complexity of Boolean functions that arise in feature
detection was studied in [29, 30]. These works assumed a setting with two types of features,
a and b, with detectors corresponding to the two types situated on a 1D or 2D grid. The
binary outputs of these features are represented by an array of n positions: a1, ..., an (where
ai = 1 if the feature a is detected in position i, and ai = 0 otherwise) and an array b1, ..., bn
which is analogously defined with respect to b. The Boolean function PnLR outputs 1 if there
exist i, j with i < j such that ai = bj = 1, and 0 otherwise. This function is advocated in
[30] as a simple example of a detection problem in vision that requires to identify spatial
relationship among features. It is shown that this problem can be solved by O(logn) threshold
gates. A 2-dimensional analogue where the indices i = (i1, i2) and j = (j1, j2) represent
two-dimensional coordinates and one is interested whether there exist indices i and j such that
ai = bj = 1 and j is above and to the right of the location i is studied in [30]. Recently, the
two-dimensional version was studied in [48] where a O(

√
n)-gate threshold implementation

3 We refer to [42] for the precise definition of distance used there.
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was given along with a lower bound of Ω(
√
n/ logn) for the size of any threshold circuit for

this problem. We remark that the problem studied in [29, 30, 48] is different from ours, and
different proof ideas are needed for establishing lower bounds in our setting.

Learning patterns

The language of all strings (of arbitrary length) containing a fixed pattern is regular and can
be recognized by a finite automaton. There is a large literature on learning finite automata
(e.g., [1, 13, 41]). This literature is mostly concerned with various active learning models
and it does not imply our bounds on the sample complexity of learning Hk,Σ.

Motivated by computer vision applications, several works have considered the notion of
visual concepts: namely a set of shapes that can be used to classify images in the PAC-learning
framework [27, 45]. Their main idea is that occurrences of shapes (such as lines, squares etc.)
in images can be used to classify images and that furthermore the representational class of
DNF’s can represent occurrences of shapes in images. For example, it is easy to represent
the occurrence of a fixed pattern of length k in a string of size n as a DNF with n− k clauses
(see e.g., Lemma 24). We note that these works do not study the VC dimension of our
pattern matching problems (or VC bounds in general). We also observe that no polynomial
algorithm is known for learning DNF’s and that there is some evidence that the problem of
learning DNF is intractable [10]. Hence the result in [27, 45] do not imply that our pattern
learning problem (represented as a DNF) can be done in polynomial time.

3 Communication Complexity

In this section we prove Theorem 1, and also discuss the possibility of a better upper bound.

I Theorem 1 (Communication Complexity). For the SMn,k(x, y) problem:
Upper bound: Under any bipartition of the input bits, there is a protocol of cost
Deterministic: O(log k · n/k) if k ≤

√
n ;

Randomized: O(log n ·
√

n) if k ≥
√

n.
Lower bound: For k ≥ 2 there is a bipartition of the input bits such that every randomized
protocol requires Ω(log log k ·n/k) bits of communication, even for the fixed pattern y = 1k.

3.1 Periods in strings
We say a string x ∈ {0, 1}n has period p ∈ {0, 1}i of order i if x is a prefix of a high enough
power pm (for somem ≥ 1). Equivalently, x has a period of order i iff x[i+1, n] = x[1, n−i−1].
A classic lemma characterizes the orders of short periods in a string.

I Lemma 9 ([31]). If x has periods of orders i, j, i + j ≤ |x|, then there is one of order
gcd(i, j).
In particular, all periods of order ≤ n/2 are powers of some primitive period (shortest period
of order ≤ n/2). It is natural to ask: how many bits of communication are required to decide
whether a string has a primitive period? We will discuss this in Section 3.4.

3.2 Upper bound
We start by describing an O(log k · n/k)-bit deterministic protocol for SMn,k assuming
the pattern y is fixed (known to both players). This immediately gives a protocol of cost
O(k + log k · n/k) when y is not fixed: Alice and Bob simply exchange all bits of the k-bit
pattern and then run the protocol that assumes y is fixed. When k ≤

√
n this yields the first

upper bound claimed in Theorem 1.

APPROX/RANDOM 2019
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I Lemma 10. For every fixed pattern y ∈ {0, 1}k the function x 7→ SMn,k(x, y) admits a
deterministic protocol of cost O(log k · n/k) under any bipartition of the input x.

Next we supply the protocol for the second upper bound in Theorem 1.

I Lemma 11. For k ≥
√
n the function SMn,k admits a randomized protocol of cost

O(logn ·
√
n) under any bipartition of the input (x, y).

I Remark 12. For k ≥
√
n logn the above protocol can be optimized to have cost O(

√
n logn).

Namely, consider a prefix p (and intervals) of length Θ(
√
n logn) rather than Θ(

√
n).

3.3 Lower bound
Next we prove a lower bound of Ω(log log k · n/k), for every k ≤ n, on the randomized
communication complexity of SMn,k. As a warm-up, we first observe that a reduction from
the ubiquitous set-disjointness function yields a randomized lower bound of Ω(n/k) for SMn,k.
We then show how to improve this by a factor of log log k.

Recall that in the m-bit set-disjointness problem, Alice is given a ∈ {0, 1}m, Bob is given
b ∈ {0, 1}m, and their goal is to compute Disjm(a, b) := (ORm◦AND2)(a, b) =

∨
i∈[m](ai∧bi).

It is well known that this function has communication complexity Ω(m) even against
randomized protocols [23, 39, 4].

I Observation 13. DisjΩ(n/k) reduces to SMn,k (under some bipartition of input bits).

To improve the above, we give a reduction from a slightly harder function, ORm ◦
GT` : [`]m × [`]m → {0, 1}, which maps (a, b) 7→

∨
i∈[m] GT(ai, bi) where GT` : [`] × [`] →

{0, 1} is the greater-than function given by GT`(a, b) := 1 iff a ≥ b. The claimed lower bound
Ω(log log k · n/k) for SMn,k follows from the following two lemmas. As mentioned in the
introduction, Lemma 15 was conjectured by [50].

I Lemma 14. ORΩ(n/k) ◦GTΩ(k) reduces to SMn,k (under some bipartition of input bits).

I Lemma 15. ORm ◦ GT` has randomized communication complexity Ω(m · log log `) for
any m, `.

3.4 A better protocol?
As bonus results, we give some evidence for the existence of an improved randomized protocol
for SMn,k when k is large. We first define what unambiguous randomized (aka U ·BPP,
or unambiguous Merlin–Arthur) protocols are; they generalize the notion of unambiguous
deterministic protocols (aka U ·P) introduced by Yannakakis [51].

I Definition 16 (U ·BPP protocols). An unambiguous randomized protocol Π computes a
function F (x, y) as follows. In the first phase the players nondeterministically guess a witness
string z ∈ {0, 1}c1 , and then in the second phase they run a randomized (error ≤ 1/3) protocol
of cost c2 to decide whether to accept the witness z. The correctness requirement is that
for every (x, y) ∈ F−1(1) there needs to be a unique witness that is accepted; for every
(x, y) ∈ F−1(0) no witness should be accepted. The cost of Π is defined as c1 + c2.

Unambiguous randomized protocols have not been studied before in communication
complexity. However, the recent breakthrough of Chattopadhyay et al. [9] (who disproved
the log-approximate-rank conjecture of [28]) is closely related. It is not hard to see that the
function F (x, y) they study (of the form Sink◦XOR) admits an O(logn)-cost U ·BPP protocol.
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The authors proved that the usual randomized (aka BPP) communication complexity of F
is high, nΩ(1). Consequently, there is no generic simulation of a U ·BPP protocol by a BPP
protocol. By contrast, Yannakakis [51, Lemma 1] showed that U ·P protocols can be made
deterministic efficiently.

Our first bonus result is an efficient U ·BPP protocol for determining if a given string has
a primitive period. We do not know whether there is an efficient randomized protocol.

I Lemma 17. Suppose the bits of x ∈ {0, 1}n are split between two players. There is an
U ·BPP protocol of cost O(log2 n) for deciding whether x has a primitive period (and to
compute its order).

If we let Rpf denote the randomized communication complexity of the above period finding
problem, then we can interpret Lemma 17 as evidence that Rpf ≤ polylog(n). Assuming
period finding is indeed easy, we can then provide similar evidence for the easiness of SMn,k

for large k.

I Lemma 18. SMn,0.9n admits an U ·BPP protocol of cost O(logn) +Rpf .

4 Threshold Circuits

In this section we prove Theorem 3.

I Theorem 3 (Threshold circuits). For the SMn,k(x, y) problem:
Upper bound: There is a depth-2 threshold circuit of size O(n− k).
Lower bound for unbounded depth: Any threshold circuit must be of size

Ω( n log log k
k log n

) if k > 1;
Ω(
√

n/k) if k ≥ 2.1 · log n.

In Section 4.1 we prove the upper bound, in Section 4.2 we give the lower bounds. Finally,
in Section 4.3 we study the complexity of SMn,k in the models of restricted threshold circuits.

4.1 Upper bound
We start with a construction giving the upper bound of Theorem 3.

I Lemma 19. There is a depth-2 threshold circuit of size O(n− k) computing SMn,k.

4.2 Lower bounds
In order to prove the first lower bound of Ω(n log log k

k logn ) we use the classical result on communic-
ation complexity of threshold gates [34], and the lower bound on communication complexity
of SMn,k from Theorem 1.

Nisan and Safra [34] proved that for any bipartition of the n input bits, the ε-error
randomized communication complexity of a threshold gate (with arbitrary weights) has
communication complexity O(logn/ε). From this they concluded that for any function f , a
lower bound of m on the randomized communication complexity for some bipartition of the
input implies a lower bound of Ω(m/ logn) on the threhold complexity of f . Now the lower
bound of Ω(n log log k/k) from Theorem 1 implies the lower bound of Ω(n log log k

k logn ) on the
size of an unbounded depth threshold circuit computing SMn,k.

Below we prove the second lower bound stated in Theorem 3. The lower bound is shown
via a reduction from a hard function f : {0, 1}k/2−1 → {0, 1} which has n/k preimages of
1: |f−1(1)| = n/k. First, we prove the desired lower bound for the case where k is even

APPROX/RANDOM 2019
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and n is a multiple of k. In the end of this section we explain how to adjust the proof
to the remaining cases. Let ` and t be integers such that k = 2` + 2 and n = t · k. Let
F`,t = {f : {0, 1}` → {0, 1} : |f−1(1)| = t} be the class of Boolean functions of ` inputs which
have exactly t preimages of 1.

We prove this lower bound via a reduction from a hard function f ∈ F`,t. Specifically, we
show that if SMn,k can be solved by a circuit of size s, then every function f ∈ F`,t also has
a circuit of size s computing it. Then, we show that there are functions in F`,t that require
large threshold circuits, which implies the corresponding lower bound for the SMn,k function.

The reduction

Given a string a ∈ {0, 1}` define dup(a) ∈ {0, 1}k to be the string obtained from a by
repeating each bit of a twice, and concatenating it with 01 in the end. (Note that 2`+ 2 = k

by the choice of `). For example dup(010) = 00110001.

I Observation 20. Given a function f ∈ F`,t define xf ∈ {0, 1}tk to be the concatenation
of dup(a) for all a ∈ f−1(1) in the lexicographic order on {0, 1}`. Note that |xf | = tk = n.
Then, for any y ∈ {0, 1}` it holds that f(y) = 1 if and only if SMn,k(xf , dup(y)) = 1.

Indeed, it is immediate to see that if f(y) = 1 then SMn,k(xf , dup(y)) = 1. Duplicating
every bit in a and adding 01 to the end of the resulting pattern are done to ensure that if
f(y) = 0 there will not be a copy of dup(y) in xf .

Given the observation above, it is not difficult to see that any lower bound on the size of
a circuit computing f ∈ F`,t implies a lower bound on SMn,k.

I Proposition 21. Let C be a threshold circuit computing SMn,k. Then for every f ∈ F`,t,
there exists a threshold circuit C ′ computing f such that |C ′| ≤ |C|.

In order to complete the proof of Theorem 3, we need to show that there exists a function
f ∈ F`,t that requires large threshold circuits. For this, we compare the number of small
threshold circuits (see, for example, [22, 24]) with the number of functions in F`,t.

I Proposition 22. Let ` ∈ N be sufficiently large, and let t ∈ N. There exists a function
f ∈ F`,t such that any threshold circuit (with no restrictions on its depth) computing f must
be of size at least Ω(

√
t− t log t/`).

We now derive the desired lower bound on the size of threshold circuits computing the
string matching function. Plugging in k = 2` + 2 and n = tk, we get the lower bound of
s ≥ Ω

(√
n
k −

2n
k2 · log(nk )

)
= Ω(

√
n
k ) assuming k ≥ Ω(logn).

Now we describe how this proof can be adopted for the case when n is not a multiple of
k and the case of odd k. First, in order to handle the case of pattern of odd length, one can
add the string 010 (instead of 01) to the end of dup(a). If n is not a multiple of k, then in
the reduction above we can pad the string xf with zeros in the end, and the reduction still
satisfies the property that f(y) = 1 if and only if SMn,k(xf , dup(y)) = 1 as in Observation 20,
and the same lower bound holds (up to a constant factor in the asymptotics).

4.3 Depth-2 Circuits
In Theorem 23 we prove lower bounds for some restricted classes of depth-2 circuits computing
SMn,k. These results should be contrasted with the upper bounds of Theorem 3 and
Theorem 5. Namely, there exists an LTF◦LTF circuit of size O(n−k) and an OR◦AND◦OR
circuit of size O(nk) computing SMn,k.
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We recall a few definitions. Let ELTF denote the class of exact threshold functions (that
is, the functions which output 1 on an m-bit input x if and only if

∑
i∈[m] aixi = θ for some

fixed coefficient vector a ∈ Rm, and θ ∈ R). Similarly, EMAJ denotes the class of exact
majorities which output 1 if and only if the sum of their m Boolean inputs is exactly m/2.
By SYM we denote the class of all symmetric Boolean functions. For two classes of functions
C1 and C2, by C1 ◦ C2 we denote the class of depth-2 circuits where the output gate is from
C1 and the gates of the first layer are from C2. For a class of circuits C and a function f , be
C(f) we denote the minimal size of a circuit from C computing f .

In proving lower bounds for SMn,k a simple yet useful property is that Observation 13
can be applied to circuits as well. This allows to reduce the disjointness problem to string
matching, and get lower bounds for SMn,k via known circuit lower bounds for disjointness.
The point is that a circuit C with strings of length roughly mk for SMn,k (and patterns of
length k) can be used to solve disjointness on strings of length m by feeding C with the
string x := a1b11k−20a2b21k−20 . . . anbn1k−20 and the pattern y = 1k. Hence a lower bound
of s(n) for circuits computing disjointness implies a lower bound of Ω(s(n/k)) for circuits
computing SMn,k.

I Theorem 23. For every 1 < k ≤ n,
1. OR ◦ LTF(SMn,k) ≥ Ω(n− k);
2. AND ◦ LTF(SMn,k) ≥ 2Ω(n/k);
3. AND ◦OR ◦XOR(SMn,k) ≥ 2Ω(n/k);
4. ELTF ◦ SYM(SMn,k) ≥ 2Ω(n/k);
5. EMAJ ◦ ELTF(SMn,k) ≥ 2Ω(n/k).

5 DeMorgan Circuits

In this section we prove Theorem 4 and Theorem 5.

I Theorem 4 (Depth-2 DeMorgan circuits). For the SMn,k(x, y) problem:
Depth-2 upper bound: There is a depth-2 DeMorgan circuit of size O(n · 2k).
Depth-2 lower bound: Any depth-2 DeMorgan circuit must be of size

Ω(n · 2k) if 1 < k ≤
√

n ;
Ω(22

√
n−k+1) if k ≥

√
n.

I Theorem 5 (General DeMorgan circuits). For the SMn,k(x, y) problem:
Upper bound: There is a DeMorgan circuit of size O(nk) and depth 3.
Lower bound: Any DeMorgan circuit must be of size at least n/2.

In Section 5.1 we give upper bounds for both theorems, in Section 5.2 we prove lower
bounds for depth-2 circuits, and in Section 5.3 we provide a lower bound for the unbounded
depth case.

5.1 Upper Bounds
We first give a DNF with 2k(n− k + 1) clauses computing SMn,k, and in Lemma 26 we will
prove that this DNF is essentially optimal.

I Lemma 24. For any k ≤ n there exists a DeMorgan circuit of depth 2 and size (n− k +
1) · 2k + 1 computing SMn,k.

Now we show that already in depth 3, one can compute SMn,k by a much smaller circuit.
This Lemma is likely to have been discovered multiple times, we attribute it to folklore.
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I Lemma 25. There exists a DeMorgan circuit of depth 3 and size O(nk) computing SMn,k.

5.2 Lower bounds for depth 2
We may assume wlog that every optimal circuit of depth 2 is either a CNF or a DNF. First,
we show that in the class of DNFs, the construction from Lemma 24 is optimal (up to a
constant factor).

I Lemma 26.
For every k > 2, the DNF-size of SMn,k is at least

DNF(SMn,k) ≥ 2k−2(n− k + 1) .

Now we will prove lower bounds for CNFs computing SMn,k. We will need the following
definition.

I Definition 27. A maxterm of a Boolean function f is a set of variables of f , such that
some assignment to those variables makes f output 0 irrespective of the assignment to the
other variables. The width of a maxterm is the number of variables in it.

First we find the minimal width of maxterms of SMn,k.

I Lemma 28. For any k ≤ n, every maxterm of SMn,k has width at least

2
√

n− k + 1 for all k ;
k + n−k+1

k
if k ≤

√
n− k + 1.

Next we prove tight bounds on the number of non-satisfying inputs of SMn,k.

I Lemma 29. For k ≤ n, let Z denote the set of preimages of 0 of SMn,k. That is,

Z = {(x, y) ∈ {0, 1}n+k : SMn,k(x; y) = 0}.

Then

|Z| = Θ
(
2n+k

)
if k ≥ log n + 1;

|Z| ≥ Ω
(
2n(1− 2−k)n

)
for all k.

I Lemma 30. For every k, the CNF-size of SMn,k is at least

CNF(SMn,k) ≥ Ω
(
2 n

10k

)
if 1 < k ≤ log n + 1;

CNF(SMn,k) ≥ Ω
(
2k+n/k

)
if log n + 1 ≤ k ≤

√
n;

CNF(SMn,k) ≥ Ω
(

22
√

n−k+1
)

if k ≥
√

n.

Discussion

Lemma 26 and Lemma 30 together give the lower bounds of Theorem 4. We observe a
curious behavior of CNFs and DNFs for SMn,k. For k ≤

√
n, an optimal depth-2 circuit

for SMn,k is a DNF. It can also be shown that for k ≥ n − O( n
logn ), an optimal circuit is

a CNF. (Indeed, in order to certify that SMn,k(x, y) = 0, it suffices to give mismatches for
each of the (n − k + 1) shifts of the pattern y in x. This amounts to kO(n−k+1) < n · 2k
clauses.) We leave the exact CNF complexity of SMn,k for the regime k >

√
n as an open

problem. One way to prove a stronger lower bound in this regime would be to give a lower
bound on the width of every maxterm. This approach does not lead to stronger lower bounds
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because there exist maxterms of width 2
√
n. To see this, consider an assignment where the

first
√
n characters of the pattern y are fixed to zeros, and all indices divisible by

√
n in the

text x are fixed to ones. While we cannot prove a stronger lower bound on the width of
“most” maxterms, we know that some maxterms must have width at least n− k + 1. Indeed,
consider the text x = 0n and pattern y = 10k−1. Every clause which outputs 0 on this pair,
must assign the first (n− k + 1) positions of x to 0.

We remark that weaker lower bounds of 2Ω(
√
n/k) and 20.08n/k on the size of CNF

computing SMn,k follow from the reduction from Disjointness in Observation 13 and the known
lower bound on the depth-3 complexity of Iterated Disjointness [20] and Disjointness [21].

5.3 Lower bound for unbounded depth
Now we prove the lower bound of Theorem 5. For circuits with fan-in 2, a linear lower bound
follows from the observation that SMn,k essentially depends on all of its inputs. In the next
lemma, we use an extension of the gate elimination technique to show that even in the class
of DeMorgan circuits with unbounded fan-in, SMn,k still requires linear size.

I Lemma 31. For k > 1, any DeMorgan circuit computing SMn,k has size at least n/2.

6 Learning

6.1 VC dimension
In this section we prove Theorem 8.

I Theorem 8. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) = min(log |Σ|(k −O(log k)), logn+O(log logn)) .

We begin by upper bounding the VC dimension. In the proof we will use the following
folklore construction of a Sperner system.

I Definition 32. A system F of subsets of {1, . . . , n} is called a Sperner system if no set in
F contains another one:

∀A,B ∈ F : A 6= B =⇒ A 6⊆ B .

For any n, there exists a Sperner system of size
(

n
bn/2c

)
. Indeed, one can take F to be the

family of all sets of size exactly bn/2c.

I Lemma 33. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) ≤ min(dk log |Σ|e, logn+ 0.5 log logn+ 2) .

To lower bound the VC dimension of Hk,Σ we need the following lemma.

I Lemma 34. Let m be an integer m ≥ 1, and Σ be an alphabet of size |Σ| ≥ 2. There exists
a set Tm of at least |Σ|m−1 strings from Σm+dlogme+2 with the following property. For any
two distinct strings τ1, τ2 ∈ Tm, their concatenation τ = τ1 ◦ τ2 doesn’t contain any string
from Tm \ {τ1, τ2} as a substring.

I Lemma 35. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) ≥ min((k − log k − 5) log |Σ|, logn− log logn) .

This concludes the proof of Theorem 8.
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6.2 Learning Hk,Σ

In this section we discuss an efficient algorithm for learning the hypothesis class Hk,Σ. For
completeness we state the definition of PAC learning:

Let D be a distribution over Σn. Suppose we are trying to learn hσ for σ ∈ Σ≤k. Given
τ ∈ Σ≤k, the loss of hτ with respect to hσ is defined as

LD,σ(τ) = Pr
x∼D

[hτ (x) 6= hσ(x)] .

Following the notion of PAC-learning [49, 44], we can now define what we mean by
learning Hk,Σ.

I Definition 36. An algorithm A is said to PAC-learn Hk,Σ if for every distribution D over
Σn and every hσ ∈ Hk,Σ for all ε, δ ∈ (0, 1/2) the following holds. Given m := m(ε, δ, n, k)
i.i.d. samples (x1, hσ(x1)), . . . , (xm, hσ(xm)) where each xi is sampled according to the
distribution D, A returns with probability at least 1 − δ a function hτ ∈ Hk,Σ such that
LD,σ(τ) ≤ ε. Here the probability is taken with respect to the m i.i.d. samples as well as the
possible random choices made by the algorithm A.

Throughout, we refer to δ as the confidence parameter and ε as the accuracy parameter.
In Definition 36 we consider the realizable case. Namely there exists hσ ∈ Hk,Σ that

we want to learn. One can also consider the agnostic case. Consider a distribution D over
Σn × {0, 1}. We now define the loss of hτ as

LD(τ) = Pr
x∼D

[hτ (x) 6= y] ,

namely the measure under D of all pairs (x, y) ∈ Σn × {0, 1} with hτ (x) 6= y [44]. In the
agnostic case we wish to find, given m i.i.d. samples (x1, h(x1)), . . . , (xm, h(xm)), a pattern
σ′ ∈ Σ≤k such that LD(σ′) ≤ minτ LD(τ) + ε (where the minimum is taken over all τ ∈ Σ≤k).
Thus agnostically PAC-learning generalizes the realizable case where minτ LD(τ) = 0.

Recall that a function hσ ∈ Hk,Σ (parameterized by the pattern σ of length at most
k) can be learned with error ε and confidence δ by considering m = O(VC(Hk,Σ)) samples
(x1, hσ(x1)), . . . , (xm, hσ(xm)) (where the constant in the O term depends on ε, δ) and
following the ERM (expected risk minimization) rule: Finding σ′ that minimizes the loss

L(hσ′) := |{i ∈ [m] : hσ′(xi) 6= hσ(xi)}|
m

.

In words, to PAC learn hσ we simply look for a string σ′ of length at most k such that the
fraction of sample points that are misclassified by hσ′ is minimized (the ERM rule applies
both for the agnostic and realizable settings).

By Lemma 33, the number of samples needed to PAC-learn hσ is at most O(logn)
(ignoring the dependency on ε, δ). Clearly we can implement the ERM by considering all
possible substrings of length at most k that occur in the m = O(logn) strings x1 . . . xm
and finding the substring σ′ minimizing L(hσ′). The number of such substrings is at most
O(logn

∑k
i=1(n− k + 1)) ≤ O(kn logn). Since for every substring we can check whether it

occurs in a string of length n in time O(n), we can implement the ERM rule by going over
every substring η of length at most k and checking for every string xi (with i ∈ [m]) whether
η occurs in xi. By keeping track of the pattern which has minimal classification error with
respect to the sample (x1, hσ(x1)), . . . , (xm, hσ(xm)) we can thus implement the ERM rule
in time O(kn2 log2 n).
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We can do better if the number of substrings of length at most k which is upper bounded
by 2|Σ|k is smaller than (n−k+1) logn. Suppose for example, that k ≤ logn

log |Σ| . By Lemma 33,
the VC-dimension of Hk,Σ is then upper bounded by k log |Σ|. Hence in this case we can
assume the number of strings m in our sample is at most k log |Σ|, and we can implement
the ERM rule in time O(|Σ|kkn log |Σ|). When k, |Σ| are constants independent of n we can
thus learn hσ in time O(n).

We summarize this discussion with the following corollary:

I Corollary 37. The hypothesis class Hk,Σ is PAC-learnable in time O(kn2 log2 n), where
the O symbol contains constants depending on ε, δ but not on n, k. If k, |Σ| are constants
independent of n, then Hk,Σ can be learned in time O(n).
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A Learning – Extensions

Infinite alphabet

So far we have been considering the case of finite alphabet Σ. For an infinite Σ the VC
dimension is essentially logn for every value of k ≥ 1. Note that the upper bound of
VC(Hk,Σ) ≤ logn + 0.5 log logn + 2 from Lemma 33 holds even for infinite alphabets Σ.
Indeed, this upper bound counts the number of different patterns which have to occur in one
string and compares it to the length of the string n. In the following lemma we give a lower
bound of logn for all values of k ≥ 1.

I Lemma 38. Let Σ be an infinite alphabet, and k ≥ 1. Then

VC(Hk,Σ) = (1 + o(1)) logn .

Learning multiple patterns

In this section we make a few simple observations regarding the VC dimension of classifiers
defined by the occurrences of multiple patterns. The main observation is that learning a
constant number of patterns does not change the asymptotics of the VC dimension so long as
the number of patterns is upper bounded by the length of the pattern k. Let us consider two
natural classes Hand

k,Σ and Hor
k,Σ of multi-pattern Boolean functions over Σn. Each function

handσ ∈ Hand
k,Σ is parameterized by c > 0 patterns σ = (σ1, . . . , σc) ∈

(
Σ≤k

)c. Now, for an
s ∈ Σn, handσ (s) = 1 if and only if s contains each σi, 1 ≤ i ≤ c as a substring (for brevity we
omit from notation the dependence of Hand

k,Σ and Hor
k,Σ on c). Similarly, a function horσ ∈ Hor

k,Σ
takes the value one: horσ (s) = 1 if and only if s contains at least one σi as a substring. We
stress that we assume that the set of patterns σi, i ∈ [c] are distinct.
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An upper bound on the VC dimension of Hand
k,Σ and Hor

k,Σ follows at once from the following
Lemma proved in [6] (Lemma 3.2.3).

I Lemma 39. Let H1, . . . ,Hc be classes of functions of VC dimension at most ∀i : VC(Hi) ≤
d. Let

Hand = {fh1,...,hc
(x) = h1(x) ∧ . . . ∧ hc(x) : h1 ∈ H1, . . . , hc ∈ Hc} ,

Hor = {fh1,...,hc(x) = h1(x) ∨ . . . ∨ hc(x) : h1 ∈ H1, . . . , hc ∈ Hc} .

Then VC(Hand) = O(dc log c) and VC(Hor) = O(dc log c).

We now turn to the lower bound. Our result here is rather modest: We show that the
lower bound on the VC dimension of a single pattern also holds for Hand

k,Σ and Hor
k,Σ provided

that the number c of (distinct) patterns is not too large. Let us see that the lower bounds of
Lemma 35 hold for Hand

k,Σ and Hor
k,Σ. Indeed, for the class Hand

k,Σ , we use the construction from
Lemma 35, where for every pattern σ in that construction we consider a set of k patterns
{σ1, . . . , σk}. We define σi = σ1 . . . σi to be the prefix of length i of σ. For example, for the
pattern 11010 we take the patterns {1, 11, 110, 1101, 11010}. We remark that we obtain k
distinct subpatterns of σ. Since every string from the shattered set contains σ if and only if
it contains every pattern from {σ1, . . . , σk}, all dichotomies are realized by the “last” pattern
σk = σ. Since c ≤ k, we take c longest patterns {σk−c+1, . . . , σk}, and our construction gives
a shattered set of size

VC(Hand
k,Σ) ≥ min (log |Σ|(k −O(log k)), logn+O(log logn)) .

For the class Hor
k,Σ, we can take T ′m ⊆ Tm with |T ′m| = |Tm|/2 and shatter a set of

size d − 1. Now for every σ ∈ T ′m define a c-tuple of patterns by adding to σ c − 1
patterns in Tm \ T ′m (where c ≤ 2d−1 − 1 because c ≤ k). Since none of the strings in
the shattered set contains a pattern from Tm \ T ′m, all dichotomies are realized by the
“first” pattern σ1. Again, our construction from Lemma 35 gives a shattered set of size
min (log |Σ|(k −O(log k)), logn+O(log logn))− 1.

To conclude, we have proved:

I Theorem 40. Let 1 ≤ c ≤ k be a fixed constant. Then

V C(Hand
k,Σ ), V C(Hor

k,Σ) = Θ (min (log |Σ|(k −O(log k)), logn+O(log logn))) .

Patterns of length k

One can also consider learning patterns of length exactly k. We consider this case separately
since it seems that getting tight bounds on VC-dimension in this case is a harder task. In
particular, we are not able to get tight bounds for the regime k = n1−o(1) and leave this as
an open question.

For a fixed finite alphabet Σ and an integer k > 0, the class of functions Ek,Σ over Σn is
defined as follows. Every Boolean function hσ ∈ Ek,Σ is parameterized by a pattern σ ∈ Σk
of length exactly k. Therefore, |Ek,Σ| = |Σ|k. For a string s ∈ Σn, hσ(s) = 1 if and only if s
contains σ as a substring. We use a simple double counting argument to prove:

I Lemma 41. VC(Ek,Σ) ≤ min(k log |Σ|, log(n− k + 1) + 1).

Now we prove the following lower bound:
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I Lemma 42. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Ek,Σ) ≥ min((k − log k − 5) log |Σ|, logn− log k) .

We remark that for the case of patterns of length at most k, Lemma 33 and Lemma 35
give essentially tight bounds for all regimes of the parameters. Here, in the case of patterns of
length exactly k, we have a gap between lower and upper bounds for the regime k = n1−o(1).

2D patterns

Our bounds for learning one dimensional strings generalize to the 2D case. Here we have an
n× n image over an alphabet Σ and am m×m pattern σ where m ≤ k ≤ n. An image is
classified as 1 if and only if it contains σ.

I Definition 43. For a fixed finite alphabet Σ and an integer k > 0, let us define the class of
Boolean functions Gk,Σ over Σn×n as follows. Every function gσ ∈ Gk,Σ is parameterized by a
square 2D pattern σ ∈ Σm×m of dimension m ≤ k. For a 2D image s ∈ Σn×n of dimension
n, gσ(s) = 1 if and only if s contains σ as a consecutive sub-matrix (sub-image).

We give tight bounds (up to low order terms) on VC(Gk,Σ). Since the proofs are very
similar to the 1D case, we only sketch the arguments here.

Since |Gk,Σ| =
∑

1≤i≤k |Σ|i
2 + 1 ≤

∑
1≤i≤k |Σ|ik + 1 < 2|Σ|k2 , we have that VC(Gk,Σ) ≤

dk2 log |Σ|e. Suppose that Gk,Σ shatters a set of d 2D images from Σn×n. By considering a
Sperner system over {1, . . . , d− 1} of size D =

(
d−1

b(d−1)/2c
)
and adding the element d to each

subset, we get a family of D =
(

d−1
b(d−1)/2c

)
patterns all lying in a single n×n image such that

no pattern contains another one. We have that the bottom right corners of all these patterns
are distinct, and thus 2d−1√

2(d−1)
≤ D ≤ n2 implying that d ≤ 2 logn+ 0.5 log logn+ 3. Hence,

VC(Gk,Σ) ≤ min(dk2 log |Σ|e, 2 logn+ 0.5 log logn+ 3).

For the lower bound, the main observation is that we can generalize Lemma 34 to the two
dimensional case having a set Rm of (m+ 2dlogme+ 2)× (m+ 2dlogme+ 2) 2D patterns
of cardinality |Σ|m2−1 such that for any four distinct patterns α1, α2, α3, α4 from Rm, their
concatenation (fitting the four patterns into a 2(m+ 2dlogme+ 2)× 2(m+ 2dlogme+ 2)
square image in each of the 4! possible ways) does not contain any α5 6= αi for 1 ≤ i ≤ 4
from Rm. We achieve this by taking all m×m templates not containing the all 0 2D square
template of size (2dlogme+ 1)× (2dlogme+ 1), padding them by an all zero strip of width
2dlogme + 1 on the right and bottom, and then adding a boundary of ones on those two
sides. Similarly to Lemma 34, it can be verified that Rm satisfies the desired condition.

We now set

m =
⌊

min
(
k − 2 log k − 4,

√
2 logn
log |Σ| −

3 log logn
log |Σ|

)⌋
.

Let Rm be a set of |Σ|m2−1 templates whose construction was described in the paragraph
above and set d = b(m2 − 1) log |Σ|c. Since |Rm| = |Σ|m

2−1 ≥ 2d, we can choose 2d distinct
2D patterns q0 . . . q2d−1 from Rm. The dimension of each pattern qi is m + 2dlogme + 2
which by the choice of m is at most k.
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Define a set of n× n images Y := {y0 . . . yd−1} where yi is an image containing all the
patterns qj from Rm such that the binary expansion of j equals 1 in the ith location. This

way, each image from Y must contain at most 2d−1 patterns, while we can fit
⌊

n
m+2dlogme+2

⌋2

patterns into an image of size n× n. It can be verified that for the chosen values of m and
d, 2d−1 ≤

⌊
n

m+2dlogme+2

⌋2
. Thus, we have that each yi can be padded to an n× n image if

necessary by assigning 1 to all unassigned positions. Finally, it follows in a similar fashion to
the 1D case that the set of patterns q0 . . . q2d−1 shatters Y . Hence Rm shatters Y . Since
|Y | = d the VC dimension of the set of all 2D patterns of dimensions at most k is at least d.

We conclude this discussion with the following Theorem:

I Theorem 44.

VC(Gk,Σ) = min
(
(k −O(log k))2 log |Σ|, 2 logn−O(log logn)

)
.
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