Generalized Assignment via Submodular
Optimization with Reserved Capacity

Ariel Kulik
Computer Science Department, Technion, Haifa, Israel
kulik@cs.technion.ac.il

Kanthi Sarpatwar
IBM Research, Yorktown Heights, NY, USA

sarpatwa@us.ibm.com

Baruch Schieber
Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
sbar@njit.edu

Hadas Shachnai
Computer Science Department, Technion, Haifa, Israel
hadas@cs.technion.ac.il

—— Abstract

We study a variant of the generalized assignment problem (GAP) with group constraints. An instance
of Group GAP is a set I of items, partitioned into L groups, and a set of m uniform (unit-sized)
bins. Each item ¢ € I has a size s; > 0, and a profit p; ; > 0 if packed in bin j. A group of items
is satisfied if all of its items are packed. The goal is to find a feasible packing of a subset of the
items in the bins such that the total profit from satisfied groups is maximized. We point to central
applications of Group GAP in Video-on-Demand services, mobile Device-to-Device network caching
and base station cooperation in 5G networks.

Our main result is a é—approximation algorithm for Group GAP instances where the total size
of each group is at most . At the heart of our algorithm lies an interesting derivation of a
submodular function from the classic LP formulation of GAP, which facilitates the construction of a
high profit solution utilizing at most half the total bin capacity, while the other half is reserved for
later use. In particular, we give an algorithm for submodular maximization subject to a knapsack
constraint, which finds a solution of profit at least % of the optimum, using at most half the knapsack
capacity, under mild restrictions on element sizes. Our novel approach of submodular optimization
subject to a knapsack with reserved capacity constraint may find applications in solving other group
assignment problems.

2012 ACM Subject Classification Theory of computation — Packing and covering problems; Theory
of computation — Submodular optimization and polymatroids; Mathematics of computing — Linear
programming; Mathematics of computing — Approximation algorithms

Keywords and phrases Group Generalized Assignment Problem, Submodular Maximization, Knap-
sack Constraints, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2019.69
Related Version A full version of the paper is available at https://arxiv.org/abs/1907.01745.

Acknowledgements H. Shachnai’s work was conducted during a visit to DIMACS partially supported
by the National Science Foundation under grant number CCF-1445755.

© Ariel Kulik, Kanthi Sarpatwar, Baruch Schieber, and Hadas Shachnai;
37 licensed under Creative Commons License CC-BY

27th Annual European Symposium on Algorithms (ESA 2019).

Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman; Article No. 69; pp. 69:1-69:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kulik@cs.technion.ac.il
mailto:sarpatwa@us.ibm.com
mailto:sbar@njit.edu
mailto:hadas@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ESA.2019.69
https://arxiv.org/abs/1907.01745
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2

Generalized Assignment via Submodular Optimization

1 Introduction

With the rapid adoption of cloud computing, wireless networks, and other modern platforms,
resource allocation problems of various flavors have regained importance. One classic example
is the generalized assignment problem (GAP). We are given a set of n items and m bins,
[m] = {1,2,...,m}. Each item ¢ € [n] has a size s;; > 0 and a profit p; ; > 0 when
packed into bin j € [m]. The goal is to feasibly pack in the bins a subset of the items
of maximum total profit. GAP has been widely studied, with applications ranging from
grouping and loading in manufacturing systems to land use optimization in regional planning
(see, e.g., [2, 10]). In discrete optimization, GAP has received considerable attention also
as a special case of the separable assignment problem and submodular mazimization (see,
e.g., [23, 14, 4, 5]). We consider a variant of GAP with group constraints. An instance of
Group GAP consists of a set I = {1,2,...,n} of n items and m uniform (unit-sized) bins
M ={1,...,m}. Bach item ¢ € I has a size s; > 0 and a profit p; ; > 0 when assigned to
bin j € [m]. The items in I are partitioned into L > 1 groups, G = {G1,...,Gr}. Given an
assignment of items to bins, we say that a group is satisfied if all of its items are assigned. The
goal is to find a feasible assignment of a subset of the items to bins such that the total profit
from satisfied groups is maximized. Formally, a feasible assignment is a tuple (Uy,...,Upn,),
such that UjﬂUk:(Z)foralllgj<k§m, U; € I and Ziersigl, foralll1 <j <m.
Let I(U) = U;U;. Then, G, € G is satisfied if G, C I(U). Let Gs = {GYy,,... Gy, } be the
set of satisfied groups and I(Gs) = Ug,cg.G¢. Then we seek an assignment (Uy, ..., U,,) for
which 377" 32 e, (g, Pij IS maximized.

The following scenario suggests a natural application for Group GAP. Consider a Video-
on-Demand (VoD) service where each video is given as a collection of segments. The system
has a set of m servers of uniform capacity distributed over multiple locations. To obtain
revenue from a video the system must store all of its segments (possibly on different servers).
The revenue from a specific video also depends on the servers which store the segments.
This is due to the content delivery costs resulting from the distance between the servers
and the predicted location of the video audience. The objective of the VoD service provider
is to select a subset of segments and an allocation of these segments to servers so as to
maximize the total revenue. In [16] we describe central applications of Group GAP in mobile
Device-to-Device network caching and in base station cooperation in 5G networks.

1.1 Prior Work

We note that a Group GAP instance in which each group consists of a single item yields
an instance of classic GAP where each item takes a single size across the bins, and all the
bins have identical capacities. GAP is known to be APX-hard already in this case, even if
there are only two possible item sizes, and each item can take one of two possible profits [8].
Thus, most of the previous research focused on obtaining efficient approximate solutions.
Fleischer et al. [14] obtained a (1 — e~!)-approximation for GAP, as a special case of the
separable assignment problem. Feige and Vondrak [12] obtained the current best known ratio

of 1 — e~ ! 4 ¢, for some absolute constant £ > 0.

L Given an algorithm A, let A(I), OPT(I) denote the profit of the solution output by A and by an optimal

solution for a problem instance I, respectively. For p € (0,1], we say that A is a p-approximation

algorithm if, for any instance I, % > p.

A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai

Chen and Zhang [9] studied the problem of group packing of items into multiple knapsacks
(GMKP), a special case of Group GAP where the profit of each item is the same across
the bins. Let GMKP(4) be the restriction of GMPK to instances in which the total size of
items in each group is at most dm (that is, a factor ¢ of the total capacity of all bins). For
o> %, the paper [9] rules out the existence of a constant factor approximation for GMKP(4),
unless P= NP. For % <0< %, the authors show that there is no (% + 5)—approximation for
GMKP(§), unless P= NP, and derive a nearly matching (% — 5)—approximation, for any € > 0.
The paper presents also approximation algorithms and hardness results for other special
cases of GMPK.

There has been earlier work also on variants of Group GAP with the added constraint
that in any feasible assignment there is at most one item from Gy in bin j, for any 1 < ¢ < L,
j € [m]. Adany et al. [1] considered this problem, called all-or-nothing GAP (AGAP).
They presented a (%
approximation for the special case where the profit of an item is identical across the bins,

— ¢)-approximation algorithm for general instances, and a (3 — ¢)-

called the group packing (GP) problem. Sarpatwar et al. [20] consider a more general setting
for AGAP, where each group of items is associated with a time window in which it can
be packed. The paper shows that this variant of the problem, called x-AGAP, admits an
Q(1)-approximation, assuming the time windows are large enough relative to group sizes.
Specifically, for a group G, having a time window of m slots (= m bins), it is assumed
that s(Ge) < 55.

1.1.1 Submodular Maximization

Given a finite set , a function f : 2% — IR is submodular if for every S,T C Q we have
FES)+ () 2 F(SUT) + f(SNT).

An equivalent definition of submodularity refers to its diminishing returns: for any
TCSCQ andueQ\S,

fSU{u}) = £(S) < fF(TU{u}) — f(T).

A set function f is monotone if for every S C T C € it holds that f(S) < f(T'). Submodular
functions arise naturally in a wide variety of optimization problems, ranging from coverage
problems and graph cut problems to welfare problems (see [6] for a survey on submodular
functions). Submodular optimization under various constraints has been widely studied in
the past four decades (see, e.g., [22, 7, 13] and [6] and the references therein).

The problem of maximizing a monotone submodular function subject to a knapsack
constraint is defined as follows. We are given an oracle to a monotone, non-negative
submodular function f : 2% — IR>o. Each element i € 2 is associated with a size s; > 0.
We are also given a capacity B > 0. The objective is to find a subset S C € such that
>ics s < Band f(S) is maximized. The best known result is a (1 — e~!)-approximation
algorithm due to Sviridenko [22]. The ratio of (1 — e~!) cannot be improved even when f is
a coverage function and element sizes are uniform, unless P= NP [11]. A matching lower
bound of (1 —e~!) is known also for the oracle model with no complexity assumption [19].

1.2 Contribution and Techniques

Our main result is a %—approximation algorithm for Group GAP instances where the total size

of each group is at most . We note that when group sizes can be arbitrary in (0,m], Group
GAP cannot be approximated within any bounded ratio, even if item profits are identical

69:3

ESA 2019

69:4

Generalized Assignment via Submodular Optimization

across the bins, and m = 2, unless P= NP. Indeed, in this case, deciding whether a single
group of items of total size 2 and total profit 1 can be packed in the bins yields an instance
of PARTITION, which is NP-complete [15]. Furthermore, even if group sizes are restricted
to be no greater than dm, for some § > %, then Group GAP still cannot be approximated
within a constant factor, as it generalizes GMKP(§), for which the paper [9] shows hardness
of approximation. Similarly, as we consider in this paper a generalization of GMKP(%), it
follows from [9] that our problem cannot be approximated within ratio better than %

In solving Group GAP we combine the framework of Adany et al. [1] with the rounding
technique of Shmoys and Tardos [21]. The framework of [1] uses submodular maximization
to select a collection of groups for the solution. It then finds a feasible assignment for the
selected groups.

At the heart of our algorithm lies an interesting derivation of a submodular function
from the classic LP formulation of GAP, which facilitates the construction of a high profit
solution utilizing at most half the total bin capacity. In particular, we give an algorithm for
submodular maximization subject to a knapsack constraint, which finds a solution occupying
at most half the knapsack capacity, while the other half is reserved for later use.? We show
that this algorithm achieves an approximation ratio of % relative to an optimal solution that
may use the whole knapsack capacity. We note that this ratio is tight. Indeed, it is easy
to construct an instance for which the best solution with half the knapsack capacity has
only % the profit of the optimal solution with full knapsack capacity. We also note that a
naive application of the algorithm of Sviridenko [22] with half the knapsack capacity will
1_571 ~ --approximation.

To obtain an integral solution, given a fractional assignment of the selected groups, we
apply the rounding technique of Shmoys and Tardos [21], followed by a filling phase. We
show that if the total size of the items in the selected groups is at most 3, the rounding
procedure yields a feasible assignment of the selected groups, whose profit is at least half the
value of the submodular function. Our novel approach of submodular optimization subject
to a knapsack with reserved capacity constraint may find applications in solving other group

only guarantee a

assignment problems.

2 Approximation Algorithm

In this section we present an approximation algorithm for Group GAP. We first introduce
several definitions and tools that will be used as building blocks of our algorithm.

2.1 Basic Definitions and Tools

2.1.1 The Submodular Relaxation

For simplicity, we assume that all the numbers are rational. For a subset of elements I’ C I,
let s(I') =) ;. si be the total size of the elements in I’. We assume throughout the
discussion that every G, € G satisfies s(G¢) < 5. We define below a function ¢ : 2 — Rxo.
Let z;; € {0,1} be an indicator for the assignment of item ¢ to bin j, for 1 < i < n,
1 < 7 < m. The following is a linear program associated with a subset S C I, in which
x;; > 0 for all 4, 5.

2 'We assume throughout the discussion that the size of each element is at most half the knapsack capacity.

A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai

LP(S): maximize Z Tij Dij

iel,jeM

subject to: Z zi; <1 Viel (1)
JjeEM
in’j -5, <1 Vj eM (2)
el
xi,j:() VZEI\S,]GM
zi,jZO ViGI,jEM

Note that, by the above constraints, all solutions for the LP have the same dimension,
regardless of the size of S. We define ¢(S) as the optimal value of LP(S).

We denote the profit of a solution x for the linear program by p-x =3, ; jem i+ Dij-

In Section 3 we prove the next result.
» Theorem 1. The function ¢ is submodular.

We note that ¢ is also monotone and non-negative. We use ¢ to define the group function
¥ :29 = Rso. For any G* C G let I(G*) = Ug,eq- Ge and 9(G*) = ¢(1(G")). As ¢ is
submodular, monotone and non-negative, it is easy to see that ¢ is submodular, monotone
and non-negative as well. We optimize 1 subject to a knapsack (budget) constraint, using
the next general result.

» Theorem 2 (Submodular optimization with reserved capacity). Let Q = {1,...,n} be a
ground set, and m > 0 a knapsack capacity. Fach i € Q is associated with non-negative
size s; < 5. Let f: 22 — Rx¢ be a non-negative monotone submodular function, and
OPT = max{f(S)|S € Q,),cq8: < m}. Then Algorithm 2 (in Section 4) finds in polynomial

time® a subset S C Q satisfying f(S) > %ﬂ and) g8 < G

The proof of Theorem 2 is given in Section 4.

2.1.2 Solution Types

Our algorithm uses a few types of intermediate solutions for Group GAP, as defined below.

Given G* C G, we say that a solution x for LP(I(G*)) is a fractional solution. Let
U = (Uy,...,Un) be an assignment of elements to bins, where U; is the set of elements
assigned to bin j. Then I(U) = U;nzl U; is the subset of elements packed in the bins. We
say that U is feasible if for each bin 1 < j < m we have s(U;) < 1. We say that U is almost
feasible if for each bin 1 < j < m there is an element u} such that s(U; \ {u}}) < 1. We also
define the profit of an assignment as p(U) = >_1 <<y, 2 e, Pis-

Our algorithm first obtains a fractional solution, which is then converted to an almost
feasible solution. Finally, the algorithm converts this solution to a feasible one. We now
state the results used in these conversion steps.

3 The explicit representation of a submodular function might be exponential in the size of its ground
set. Thus, it is standard practice to assume that the function is accessed via a value oracle. Then the
number of operations and oracle calls is polynomial in the size of {2 and the maximum length of the
representation of f(.5).

69:5

ESA 2019

69:6

Generalized Assignment via Submodular Optimization

» Theorem 3. Given G* C G, such that s(I1(G*)) < m, and a fractional solution x for
LP(I(G*)), it is possible to construct in polynomial time an almost feasible assignment U
such that p(U) > p -z, and I(U) = I(G*).

The theorem easily follows by applying a rounding technique of [21] to a fractional solution
in which every element in I(G*) is fully assigned (fractionally, in multiple bins). We note
that such a solution always exists, since s(I(G*)) < m. We give the proof in the full version
of the paper [16]. To convert an almost feasible solution to a feasible one we use the following
result (we give the proof in Section 5).

» Theorem 4. Let U = (Uy,...,Uy) be an almost feasible assignment such that s(I(U)) < &
then U can be converted in polynomial time to a feasible assignment U', with I(U') =1
and p(U") = 1p(U).

2.2 The Algorithm

Our approximation algorithm for Group GAP follows easily from the tools presented in
Section 2.1. Initially, we solve the problem of maximizing a submodular function subject
to a knapsack with reserved capacity constraint for the set function . Then we solve the
linear program and convert the solution to a feasible assignment. We give the pseudocode in
Algorithm 1.

Algorithm 1 Group GAP Algorithm.

1: Solve the submodular optimization problem: maXgcg 3

Algorithm 2. Let S* be the solution found.
: Find a (fractional) solution x for LP(I(S*)) that realizes t(S™*).
: Use Theorem 3 to convert x to an almost feasible assignment U with I(U) = I(S*).
4: Use Theorem 4 to convert U into a feasible solution; return this solution.

s(Goyzm/2y ¥(S) using

Gpes

w N

» Theorem 5. Algorithm 1 is a polynomial time %-approximation algorithm for Group GAP
when the total size of a single group is bounded by 7 ; that is, VG, € G : ZZ—GG@ 5 < .

Proof. It is easy to see that the algorithm runs in polynomial time. By Theorem 2, we have
that ¢(S*) > OPT/3, where OPT is the value of the optimal solution for the original instance.

By Theorems 3 and 4, we are guaranteed to find in Steps 3—4 a feasible assignment U of
all elements in I(S*), such that p(U) > 31(5*) > $OPT. <

3 Submodularity

In this section we show that the function ¢ is submodular. Our proof builds on the useful
relation of our problem to maximum weight bipartite matching. Let G = (AU B, E) be a
bipartite (edge) weighted graph, where |B| > |A|. Assume that the graph is complete (by
adding zero weight edges if needed). For e € E, let W (e) be the weight of edge e, and for
FCE, let W(F)=>..pW(e) be the total weight of edges in F. For S C A, define h(S)
to be the value of the maximum weight matching in G[S U B], the graph induced by S U B.
We call h the partial mazimum weight matching function. The next result was shown by
Bar-Noy and Rabanca [3].

» Theorem 6. If the edge weights are mon-negative then the function h is (monotone)
submodular.

A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai

We give a simpler proof in the full version of the paper [16]. We are now ready to prove our
main result.

Proof of Theorem 1. We first note that since all numbers are rational, for some N € ZT,
we can write s; = SN, where §; € ZT for all i € I.*

Now, set the capacity of each bin 1 < j < m to be b; = N, and let 0 < y; ; < 5; indicate
the size of item 7 assigned to bin j. For a subset of items S C I, we now write the following
linear program.

e 1
M(S): maximize Z % Z Yij * Dij

iel 7t jeM

subject to: Z Vi <8 Viel (3)
JjEM
> yij <N VjieM (4)
i€l
Yij =0 VZGI\S,]GM
Yij >0 Viel,jeM

Indeed, Constraint (3) ensures that the total size assigned for item i over the bins is upper
bounded by §;, and Constraint (4) guarantees that the capacity constraint is satisfied for
all the bins j € M. Given a subset of elements S C I, let n(S) be the value of an optimal
solution for M(SS).

Now, observe that any feasible solution for LP(.S) induces a feasible solution for M (.S) of
the same value, by setting y; ; = x; ;- 8; for all i € I and j € M. Similarly, a feasible solution
for M (S) induces a feasible solution for LP(.S) of the same value. Hence, ¢(S) = n(95) for
all § C I.

By the above discussion, to prove the theorem it suffices to show that 7 is submodular.
Given our Group GAP instance, we construct the following bipartite graph G. For each item
i € I, we define §; vertices, V; = {v;1,...,v;4,}. For each bin j € M, we define N vertices
Uj = {uj1,...,ujn}. For any ¢ € [n] and j € [m], there are edges (v; s, u;,) of weight
pij/8i, foralll <s <35, 1<r<N. Let Vi =U;e;V;, Uuw = UjemUj, and let E be the
set of edges. Consider the bipartite graph G = (V; U Uy, E). W.l.o.g we may assume that

|Unt| > |Vi]; otherwise, we can add new bins j = m + 1,m + 2,... with corresponding sets
of vertices U; = {uj1,...,u; v} and zero weight edges (v; s, u;,) for all i € [n], 1 <s < §;,
1<r<N.

We note that, given a subset of items S C I, M(S) is the linear programming relaxation
of the problem of finding a maximum weight matching in the subgraph G[Vs U U], where
Vs C V; is the subset of vertices in G that corresponds to S. Using standard techniques (see,
e.g., [17]), it can be shown that M (S) has an optimal integral solution. Hence, n(S) = h(Vs),
where h : 27 — R> is a partial maximum weight matching function in G. By Theorem 6,
h is (monotone) submodular. Hence, 7 is also (monotone) submodular. <

4 Note that N, which may be arbitrarily large, is used just for the proof. Our algorithm does not rely on
obtaining a solution (or an explicit formulation) for M (S).

69:7

ESA 2019

69:8

Generalized Assignment via Submodular Optimization

4 Submodular Optimization with Reserved Capacity

In this section we prove Theorem 2. We start with some definitions and notation. Assume
we are given a ground set Q = {1,...,n} and capacity m > 0, where each element i €
is associated with a non-negative size s; < . For S C €, let 5(S) = ;¢ 5. Also, for
S, T CQlet fs(T)= f(SUT)— f(S). We use throughout this section basic properties of
monotone submodular functions (see, e.g., [6]).

Algorithm 2 SUBMODULAROPT.

Input: A monotone submodular function f : 22 — R>o, sizes s; > 0 for all ¢ € Q, and
capacity m > 0.
Output: A subset of elements R C 2 such that s(R) < .

1: procedure GREEDY (g, m')

2 Set S =10, E=Q.

3 while £\ S # () do

4 Find i = arg max;c s\ g gsgi})
5: if s(S)+s; <m’ then set S =S5U {i}.
6 end if

7 Set E = E\ {i}.

8 end while

9 Return S

10: end procedure

11: Set R=10

12: for every set S, C Q, |S.| <6 do
13: for every set B C S,, s(B) < m/2 do

14: T = GREEDY(fs.,m/2 — s(B))

15: if f(BUT) > f(R) then Set R=BUT.
16: end if

17: end for

18: end for

19: Return R

In the following we give an outline of an algorithm for maximizing a monotone sub-
modular function f subject to a knapsack with reserved capacity constraint. Specifically,
assuming that the knapsack capacity is m for some m > 0, the algorithm solves the problem
max(sco.s(s)<=} f(S). The algorithm, SUBMODULAROPT, initially guesses the set of at
most six items of highest profits in some optimal solution (for the problem with knapsack
capacity m), and a subset of these profitable items, whose total size is at most m/2. Then
the algorithm calls a procedure which applies the Greedy approach as in [22] to find the
remaining items in the solution. We give a pseudocode of SUBMODULAROPT in Algorithm 2.
It is important to note that while the algorithm produces a solution of size at most m/2, the
analysis compares this solution against an optimal solution of size at most m.

The next lemma, which plays a key role in our analysis, follows from the technique
presented in [22].

» Lemma 7. Given the knapsack capacity m > 0, let 0 <m’ < m* <m. Let S* CQ be a
non-empty subset of elements, such that s(S*) < m*. Also, let g : 2 — IR be a monotone
submodular function satisfying g(0) = 0, and let S = GREEDY(g,m’). Then, there is an
element i* € S* such that g(S) + g({i*}) > (1 — e ™/™")g(S*).

A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai

In the full version of the paper [16] we prove a more general result (see Lemma 12 therein).
Lemma 7 is obtained by setting 7' =) in Lemma 12 in [16].

Lemma 7 was applied in [22] in the special case where m’ = m*. It was applied in
conjunction with a guessing phase, used to ensure that the three most profitable elements in
an optimal solution are selected by the algorithm, thus bounding the value of g({i*}).

Several difficulties arise while attempting to apply a similar approach to the problem
with reserved capacity. The first one is that the most profitable elements in any optimal
solution may already exceed the reduced capacity, and therefore cannot be added to the
solution. Another difficulty is that even if these elements do fit in the smaller knapsack, one
can easily come up with a scenario in which it is better not to include them in the solution.

To overcome these difficulties we use the following main observation. Given Py, the set
of k = 6 most profitable elements in an optimal solution®, and a partition of this set into
two subsets By, Ba, each of size at most m/2 (if such a partition exists), adding elements to
either By or By using the greedy procedure leads to a solution of value at least one third
of the value of an optimal solution. This observation comes into play in Case 2.2 in the
proof of Theorem 2. The next technical lemma is used to prove this observation (we give the
proof below).

» Lemma 8. For k=6, pa,pp,Sa,Sp > 0 such that pa +pg <1 and Sp + Sp < 1, define

_PAtDB

__3-Sa_
hpa,pp,Sa,58) =pa+ (1 —pa—pp) <le 1—SA—SB) -

Then for p1,p2,S1,S2 such that 0 < py,ps < % and 0 < 51,55 < % it holds that

max (h(p17p27 517 S2)a h(anpla 527 Sl)) >

W =

Another main tool used in the proof of Theorem 2 is a simple partitioning procedure. It
shows that Py, can either be partitioned into two sets as required in the above observation,
or we reach a simple corner case (Case 2.1 in the proof) in which at least one third of the
optimal value can be easily attained. For the latter case, we use the following result, due
to [18].

» Lemma 9. Let g : 22 — IR be a non-negative and monotone submodular function.
Let OPT = max{g(S)|S € Q,> ,cqs: < m}, and S* = GREEDY(g,m). Then either
g(S*) > (1 — e~ Y/2)OPT, or there is an element i € Q such that g({i}) > (1 — e~ */2)OPT
and s; < m.

Proof of Theorem 2. (Submodular optimization with reserved capacity). It is easy to see
that the running time of the algorithm is polynomial. Let S C Q, s(S) <m, f(S) = OPT,
and k = 6.

Case 1: We first handle the case where |S| < k. We prove that in this case the algorithm
finds a set R such that f(R) > OPT/3. Start with A; = (), iterate over the elements
of S and add them to Ay, as long as s(41) < m/2. If S # Ay, let j € S\ 4y, and set
Ay = {j} and A3 = S\ (41 U Ay). Clearly, s(A2) < m/2, and since s(4; U A3) > m/2
and s(S) < m, we have that s(A43) <m/2. If S = A; set Ay = A3 = 0.

5 The value k = 6 is derived from Lemma 8. It may be possible to obtain the same approximation ratio
using smaller values of k, leading to a more efficient algorithm.

69:9

ESA 2019

69:10

Generalized Assignment via Submodular Optimization

By the submodularity of f, we have f(S) < f(41) + f(As) + f(A3). Hence, for some
re€{1,2,3}, f(4,) > f(S)/3 = OPT/3. We also have that |A4,| < 5; therefore, at some
iteration of the algorithm S, = B = A,., and following this iteration f(R) > OPT/3.

Case 2: Assume now that |S| > k. Let S = {i1, i2, ..., %} such that the elements are ordered
by their marginal profits: i; = argmax;<,<y f(i,,...i;_,} ({ir}). Set Pp = {i1,i2,... ,ix}.
Consider the following process. Start with By = () and B, = (). Iterate over the elements
i € Py in decreasing order by size. For each element i, let t = argmin;_,; , s(B;). If
s(B:) + 85 < m/2 then By = By U {i}; otherwise, Stop. We now distinguish between two
sub-cases for the termination of the process.

Case 2.1: Suppose that the process terminates due to an element ¢ which cannot be added
to any of the sets. Let B; and By be the sets in this iteration. Also, set By = {i},
U=ByUByUB3,and L =5\U. W.lo.g assume that s(B1) > s(B3). As the process
terminated, we have that s(Bs) + s(Bs) = s; + s(Bs2) > m/2. The sets By, By, B3 and
L form a partition of S, and s(S) < m. We conclude that s(B;1) + s(L) < m/2. Hence,
$(B2)+s(L) <m/2, and s(Bs)+s(L) < m/2 as well (it is easy to see that s(Bs) < s(By)).
By the submodularity of f, f(U) < f(B1) + f(B2) + f(Bs); thus, there is j € {1,2,3}
such that f(B;) > f(U)/3. As none of the sets By, Bs, B3 is empty, we have that
|Bj| < |Px| —2=4.

Let T' = GREEDY(fy,m/2 — s(B;)). By Lemma 9, either

fu(T) > (1 —e V) fu(L) > fu(L)/3,
or there is ¢ € L such that
fo{i}) = A = e) fu(L) > fu(L)/3.

In the former case, we can consider the iteration in which S = U, B = B;. In this
iteration, we have

FBUT) > [(B)) + ful(T) = L(f(U) + fu(L)) = SOPT.

wl

In the latter case, we can consider the iteration where S. = B = B; U {i}, and in which

FBUT) 2 (B)2 J(B,) + fu, (D) 2 J(By) + ful{i}) 2 5OPT.

Case 2.2: The process terminated with By, Bo satisfying By U By = Py, and s(B), s(Bs) <
m/2.
Let pP1 = f(Bl)/OPT, P2 = (f(Pk) - f(.Bl))/()Pr]:‘7 Sl = S(Bl), Sg = S(BQ) and
L=S\P. If pp > % (or po > %) we have that in the iteration where S, = Pj and
B = By (or B = By) the algorithm finds a solution of value at least OPT/3, and the
theorem holds. Thus, we may assume that pi,ps < %
For j = 1,2, let T; = GREEDY(fp,,m/2 — S;). Using Lemma 7 with §* = L, we have
that there is 7; € L for which

l_s

. B
fe (T + fr.({i}) = (1 —e =575 fp, (L).
By the selection of elements in Py, we have fp, ({i;}) < % f(P%). Thus,

1_g.

fi,(T)) 2 (1) > (1= & 755 fi (L) — 2 [(o)

A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai

Hence, in the iteration where S. = Py, B = B;, we obtain a solution satisfying

1l_g.

F(S.UT) = F(B;UT)) > f(By) + (1 - ¢ =553 f (L) — 1 /()

-5,
ZOPT(ZDJ‘Jr(l—mepz)(l—e =5i= 52)_p12p2)'

By Lemma 8, in one of these iterations we obtain a solution of value at least OPT/3,
implying the statement of the theorem. |

Proof of Lemma 8. Let pi,p2,S1,S2 be values that satisfy the conditions in the lemma.

,,S lfs
Denote p =p1+p2, d=p1—pandr =e - TS, Tt s easy to see that e” 7= S —e

Define Vi = h(p1,p2,S1,52) and Vo = h(ps,p1,S2,51). By the definition of h and above
definitions we get

_p+d RN
Vi="—+0-p(-r) -
and
p— 1 - p
=t ra-p (e -2

Let g1(z) = 2H% + (1 —p)(1 — 2) — £ and g2(z) = 25¢ + (1 — p) (1 —e~'2™!) — 2. Clearly,
Vi=g1(r) and Vo = go(r). It is also easy to see that g1 is decreasing and gs is 1ncreasmg
(for z > 0).

; * * * V e (=
> Claim 10. Tt holds that g1 (z*) = g2(2*) where z* = o dz;z;ip;(l iy
Proof. By rearranging terms we have g1 (z) = ga2(x) if and only if d = (1 — p)(z — e 2™ 1),
which holds for x > 0 if and only if 0 = (1 — p)z? — dz — e~ (1 — p). The latter is a quadratic
equation and z* > 0 is a root. <

If r > o*, since g is increasing, we have Vo = ga(r) > go(2*) = g1(2*), and if r < z*,
as g1 is decreasing, we have V3 = g1(r) > g1(a*). Therefore max(Vy, Vo) > g1(x*). By
rearranging terms and substituting k£ = 6 we have

. p VP +4e (1-p? p 2p \/d?+4e~1(1 —p)?
gy =1-2- -
2 2 6 3 2
Our goal is to show that for 0 < p < %, we have 1 — % — = \/cl2 +4e 1 (1—-p)2 > % or

2(1—p) — & -/d®+4e (1 —p)? > 0. By rearranging terms this is equivalent to showing

4 e~ L.

Wl N

4(1—p)?

Consider two cases:
Case 1: 0<p< % Since |d| < p we have

d72+671< L+efl< i—l—e g
4(1 = p)? “\11—p)? \ 16 =3

T s . . . 1
7= is increasing in the interval [0, 3].

The last inequality follows since the function

71,’,.71.

69:11

ESA 2019

69:12

Generalized Assignment via Submodular Optimization

Case 2: % <p< %, as %d, % < %7 we have that |d| < % — p. Therefore,
d? (2/3 —p)? 1 2
PSS SN B/ AN 2P I (S
\/4(1—p)2+e _\/4(1—p)2+€ SVt =3

2/3—x

1—z

The last inequality follows since the function is decreasing in the interval [%, %}

In both cases we get g1(z*) > %, and as max(Vy, V2) > g1(z*), the lemma follows. <«

5 Filling Phase

In this section we prove Theorem 4. Define the size of bin j in assignment U as sg-] = Zier Si.
We first divide the bins and items into types. We say that a bin j is full if sgj > 1, semi-full
if % < sy <1, and semi-vacant if sy < % An item ¢ € I(U) is big if s; > %; otherwise, i is
small. Clearly, there are no big items in semi-vacant bins.

Informally, we use in the proof several types of resolution steps. Each step takes as input
a full bin and possibly one or two semi-vacant bins, and reassigns some of the items into the
bins while evicting others. These resolution steps ensure that the new assignment has at
least half the profit of the original assignment, the assignment to any bin remains feasible,
and only small items are evicted.

We apply the resolution steps repeatedly, but once a bin participated in a resolution step
it may not participate in another one. We then prove that as long as there are full bins,
one of the steps can be applied. Hence, by applying the resolution steps, we have a new
assignment in which all bins are feasible, and the total profit is at least half the profit of the
original assignment. To handle the evicted items, we note that as s(I(U)) < m/2 and all the
evicted items are small, it is possible to assign the evicted items to bins without violating
the capacity constraints.

Proof of Theorem 4. For any bin 1 < j <m and A C I, let p;(A) = > ;.4 pi,; be the total
profit gained from packing A into j. The first step is to resolve the violation of the capacity
constraint in each full bin. We do that using four types of resolution steps. Each step takes
a full bin and possibly one or two semi-vacant bins, modifies their contents and adds some
small elements to a set V' of evicted elements, that will be handled later. Throughout the
discussion, we consider for a full bin j a partition of the elements in U; into two feasible
subsets, given by {4;, B;}. We use the following resolution steps.

1. Consider a full bin j such that U; has no big elements. If p;(A;) > p;(B;) then set
Uj = Aj and evict B; (V := V' UBy); otherwise, set U = B; and evict Aj, (V := VUA;).
In both cases Uj is feasible and p;(U}) > 5 - p;(U;).

2. Now, suppose we have a full bin j such that U; has a single big element, and a semi-vacant
bin ¢. Let {A*, B*} = {A,, B;}, such that the big element is in A*.
If p;(A*) + pe(Ue) > p;j(B*), set Uj = A*, U; = U and evict the elements in B*
(V :=V U B*). We note that in this case p;(U;) + pe(Uy) = p;(A*) + pe(Up).
Otherwise, set U} = B* and U; = A*, and evict all the elements in Uy, (V := VUU,). In
this case we have p;(U}) + pe(Uy) > p;(B*).
Therefore, in both cases have p;(U}) + pe(Uy) > 5 - (p;(U;) + pe(Uy)) .

3. Consider a full bin j such that U; has two big elements, and a semi-vacant bin ¢, such
that one of the big elements has space in bin ¢; that is, there is a big element i* € U;
such that s;» +s¥ < 1.

A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai

Let {A*, B*} = {A;, B;} such that i* € A*. We note that there cannot be any other big
element in A* other that ¢*.

If p;(B*) + pe(Ue) > pj(A*) set U; = B* and U; = U, U {i*} (note that s < 1). Also,
evict all elements in A* \ {i*}. In this case we have p;(U}) + pe(U;) > p;j(B*) + pe(Us).
Otherwise, we set U; = A* and Uy = B*, and evict Uy (V := V UU,). In this case we
have p;(U;) + pe(Uy) > pj(A¥).

Thus, in both cases pj(U]’-) +pe(U}) > % ~(p;(U;) + pe(Uy)) .

4. Finally, consider a full bin j, such that U; has two big elements, and two semi-vacant

bins ¢; and ¢2. Recall A;, B; is a partition of the elements in U; into two feasible subsets.

If p;i(A;) + pe, (Ue,) > p;i(Bj) + pe, (Us,), set UJ’» = A; , Uy, = Uy, and Uy, = By, and
evict Up,. Thus, we have

pi(U}) + pe, (Uy,) + 0o, (Uy,) > pj(Aj) + pe, (Uy).

Otherwise, set U = B, U; = A; and Uy, = Uy, and evict Uy, . Here
pi(U;) +pe, (Ug,) + 0o, (Uy,) > pj(Bj) + pe, (Usy,)-

And finally, we always have

pi(US) +pe, (Ug,) +pe,(Uy,) > 5 - (p5(Uj) + pey (Uey) + pe, (Usy)) -

DN | =

Each time we execute a step we mark the bins used in this step as resolved, and we do
not consider them in the next steps. We first use Steps 1, 2, and 3, until none of them can
be applied.

Consider the average size of the unresolved bins. When we start, there are m bins of
average size no greater than half. Each of Steps 1, 2, and 3 reduces the size of the unresolved

bins by at least one (as a full bin is removed) and reduces the number of bins by at most two.

Therefore, the average size of the unresolved bins remains no more than half. Also, marking
all the semi-full bins as resolved will preserve the property.

Let a be the number of unresolved full bins and ¢ be the number of unresolved semi-vacant

a+c
2

full bin, there must be a semi-vacant bin as well. As we used Steps 1, 2, and 3 to exhaustion,
every full bin must have two big elements (no bin in U contains more than two big elements),
and none of these big elements can fit into one of the semi-vacant bins.

bins. Due to the average size of bins, we have a < , therefore a < ¢. Hence, if we have a

Denote the minimal size of a semi-vacant unresolved bin by r. Then each of the full bins
has two big elements of size greater than 1 —r. Hence, we have c-r +2a- (1 —r) < <,
which leads to 2a(1 —r) — % < c (3 —r), and

2—-2r—1 3—dr 2 —4r 1 1
c>a- =a =aqa- + =a- |2+ ——] > 2a,

T 1-2r \1-2r 12 1—2r
implying that we can now run Step 4, until there are no more unresolved full bins.

We use the resolution steps to eliminate all the full bins. Every time we run such a step
over a set of bins we lose at most half the profit of the bins participating in the step. As
the total size of items in the assignment is bounded by m/2, we are guaranteed that it is
possible to assign all the evicted elements to some bins. Thus, we are able to resolve the
capacity overflow while losing at most half of the profit. <

69:13

ESA 2019

69:14

Generalized Assignment via Submodular Optimization

6 Discussion and Future Work

In this paper we presented a %—approximation algorithm for Group GAP, using a mild
assumption on the size of each group. A key component in our result is an algorithm for
submodular maximization subject to a knapsack constraint, which finds a solution occupying
at most half the knapsack capacity, while the other half is reserved for later use. Our results
leave several avenues for future work.

As mentioned above, Group GAP with no assumption on group sizes cannot be approxim-
ated within any constant factor. Yet, the maximum group size that still allows to obtain a
constant ratio can be anywhere in [, %m] Thus, a natural question is: “Can our results be
applied to instances with larger group sizes?” We note that the ratio stated in Theorem 5
may not hold already for instances in which group sizes can be at most % (1 + ¢), for some
¢ > 0. Indeed, for such instances, it may be the case that no set of groups of total size at
most m/2 is “good” relative to the optimum. The existence of an algorithm that yields a
constant ratio for such instances remains open.

While our result for submodular optimization with reserved capacity (Theorem 2) gives
an optimal approximation ratio for the studied subclass of instances, we believe the result
can be extended to other subclasses. In particular, we conjecture that for instances where
each item has size at most § > 0, the approximation ratio approaches 1 — ez as § — 0.
Such result would immediately imply an improved approximation ratio for instances of Group
GAP in which the total size of each group is bounded by dm. We defer this line of work to
the full version of the paper.

Lastly, we introduced in the paper the novel approach of submodular optimization subject
to a knapsack with reserved capacity constraint. We applied the approach along with
a framework similar to the one developed in [1]. It would be interesting to investigate
whether the approach can be used to improve the approximation ratio obtained in [1] for

all-or-nothing GAP.

—— References

1 Ron Adany, Moran Feldman, Elad Haramaty, Rohit Khandekar, Baruch Schieber, Roy
Schwartz, Hadas Shachnai, and Tami Tamir. All-Or-Nothing Generalized Assignment with
Application to Scheduling Advertising Campaigns. ACM Trans. Algorithms, 12(3):38:1-38:25,
2016.

2 V. Balachandran. An Integer Generalized Transportation Model for Optimal Job Assignment
in Computer Networks. Operations Research, 24(4):742-759, 1976.

3 Amotz Bar-Noy and George Rabanca. Tight approximation bounds for the seminar assignment
problem. In International Workshop on Approximation and Online Algorithms, pages 170-182.
Springer, 2016.

4 Marco Bender, Clemens Thielen, and Stephan Westphal. Packing items into several bins
facilitates approximating the separable assignment problem. Inf. Processing Letters, 115(6-
8):570-575, 2015.

5 Niv Buchbinder and Moran Feldman. Deterministic Algorithms for Submodular Maximization
Problems. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016, pages 392-403, 2016.

6 Niv Buchbinder and Moran Feldman. Submodular Functions Maximization Problems — A Sur-
vey. In Teofilo F. Gonzalez, editor, Handbook of Approximation Algorithms and Metaheuristics
(2nd Edition), volume 1, chapter 42. Chapman and Hall/CRC, 2018.

7 Gruia Calinescu, Chandra Chekuri, Martin P4l, and Jan Vondrak. Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint. SIAM J. on Computing, 40(6):1740—
1766, 2011.

A. Kulik, K. Sarpatwar, B. Schieber, and H. Shachnai

10

11

12

13

14

15

16

17

18

19

20

21

22

23

C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem. SIAM J. on
Computing, 35(3):713-728, 2006.

Lin Chen and Guochuan Zhang. Packing Groups of Items into Multiple Knapsacks. In 33rd
Symposium on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016,
Orléans, France, pages 28:1-28:13, 2016.

Robert G. Cromley and Dean M. Hanink. Coupling land use allocation models with raster
GIS. Journal of Geographical Systems, 1(2):137-153, 1999.

Uriel Feige. A Threshold of Inn for Approximating Set Cover. J. ACM, 45(4), July 1998.
Uriel Feige and Jan Vondrak. Approximation algorithms for allocation problems: Improving
the factor of 1-1/e. In 47th Annual IEEE Symposium on Foundations of Computer Science,
FOCS’06, pages 667676, 2006.

M. Feldman, J. Naor, and R. Schwartz. A Unified Continuous Greedy Algorithm for Submodular
Maximization. In 52nd Annual IEEE Symposium on Foundations of Computer Science,
FOCS’11, pages 570-579, 2011.

Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight Ap-
proximation Algorithms for Maximum Separable Assignment Problems. Math. Oper. Res.,
36(3):416-431, 2011.

M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

Ariel Kulik, Kanthi K. Sarpatwar, Baruch Schieber, and Hadas Shachnai. Generalized
Assignment via Submodular Optimization with Reserved Capacity. CoRR, abs/1907.01745,
2019. arXiv:1907.01745.

Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial
optimization, volume 46. Cambridge University Press, 2011.

Hui Lin and Jeff Bilmes. Multi-document Summarization via Budgeted Maximization of
Submodular Functions. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, HLT’10, 2010.
G. L. Nemhauser and L. A. Wolsey. Best Algorithms for Approximating the Maximum of a
Submodular Set Function. Math. Oper. Res., 3(3):177-188, 1978.

Kanthi K. Sarpatwar, Baruch Schieber, and Hadas Shachnai. Generalized Assignment of Time-
Sensitive Item Groups. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, pages 24:1-24:18, 2018.

David B. Shmoys and Eva Tardos. An approximation algorithm for the generalized assignment
problem. Math. Program., 62:461-474, 1993.

Maxim Sviridenko. A Note on Maximizing a Submodular Set Function Subject to Knapsack
Constraint. Operations Research Letters, 32:41-43, 2004.

Jan Vondrék. Optimal approximation for the submodular welfare problem in the value oracle
model. In 40th Annual ACM Symposium on Theory of Computing, STOC, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 67-74, 2008.

69:15

ESA 2019

http://arxiv.org/abs/1907.01745

	Introduction
	Prior Work
	Submodular Maximization

	Contribution and Techniques

	Approximation Algorithm
	Basic Definitions and Tools
	The Submodular Relaxation
	Solution Types

	The Algorithm

	Submodularity
	Submodular Optimization with Reserved Capacity
	Filling Phase
	Discussion and Future Work

