
Indexing the Bijective BWT
Hideo Bannai
Department of Informatics, Kyushu University, Fukuoka, Japan
bannai@inf.kyushu-u.ac.jp

Juha Kärkkäinen
Helsinki Institute of Information Technology (HIIT), Finland
juha.karkkainen@cs.helsinki.fi

Dominik Köppl
Department of Informatics, Kyushu University, Japan Society for Promotion of Science (JSPS)
dominik.koeppl@inf.kyushu-u.ac.jp

Marcin Pia̧tkowski
Nicolaus Copernicus University, Toruń, Poland
marcin.piatkowski@mat.umk.pl

Abstract
The Burrows-Wheeler transform (BWT) is a permutation whose applications are prevalent in data
compression and text indexing. The bijective BWT is a bijective variant of it that has not yet
been studied for text indexing applications. We fill this gap by proposing a self-index built on the
bijective BWT. The self-index applies the backward search technique of the FM-index to find a
pattern P with O(|P | lg |P |) backward search steps.

2012 ACM Subject Classification Theory of computation; Mathematics of computing → Combina-
torics on words

Keywords and phrases Burrows-Wheeler Transform, Lyndon words, Text Indexing

Digital Object Identifier 10.4230/LIPIcs.CPM.2019.17

Funding This research received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 690941.
Dominik Köppl: JSPS KAKENHI Grant Number JP18F18120.

1 Introduction

The Burrows-Wheeler transform (BWT) [6] is a transformation permuting all symbols of a
given string T . It is obtained by sorting all cyclic rotations (conjugates) of T with respect to
the lexicographical order and writing the last character of the i-th sorted cyclic rotation in a
linear manner from i = 1 to i = |T |. The BWT tends to group identical characters together.
All cyclic rotations of a given string share the same BWT. However, there are strings that are
not the BWT of any string (e.g., bccaab cannot be reversed). A variant, called the bijective
BWT [15], is a bijective transformation. It is based on the Lyndon factorization [7] of the
input string. In this variant, the output consists of the last symbols of the lexicographically
sorted cyclic rotations of all Lyndon factors of the input. Since the Lyndon factorization of a
string is uniquely defined, the bijective BWT induces a bijection between strings of a given
length n and multisets of Lyndon words of total length n.

In the following, we call the BWT traditional to ease the distinguishability of both
transformations. It is well known that the traditional BWT has many applications in data
compression [1] and text indexing [9, 10, 11]. For the latter, the algorithms for pattern
searching are based on the backward search [20]: given a pattern P and the traditional BWT

© Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Pia̧tkowski;
licensed under Creative Commons License CC-BY

30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019).
Editors: Nadia Pisanti and Solon P. Pissis; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6856-5185
mailto:bannai@inf.kyushu-u.ac.jp
mailto:juha.karkkainen@cs.helsinki.fi
https://orcid.org/0000-0002-8721-4444
mailto:dominik.koeppl@inf.kyushu-u.ac.jp
https://orcid.org/0000-0001-5636-9497
mailto:marcin.piatkowski@mat.umk.pl
https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Indexing the Bijective BWT

of T , the occurrences of P in a text T can be computed with O(|P |) backward search steps.
In this light, one may ask whether it is possible to build similar index data structures by
exchanging the traditional BWT with the bijective BWT.

In this article, we answer affirmatively the above question: We show that searching a
pattern P on the bijective BWT can be conducted with O(|P |p̂) backward search steps, where
p̂ is the number of distinct factors in the Lyndon factorization of the longest pre-Lyndon
suffix of P , where p̂ is known to be in O(lg |P |) [13]. Thus, we can reduce the number of
backward search steps to O(|P | lg |P |).

Our results are based on combinatoric properties of Lyndon words and the bijective BWT.
They may have applications in distributed implementations of the BWT index [14] or in
practical database systems storing dynamic yet compressed data [4, 5].

2 Preliminaries

Our computational model is the word RAM model with word size Ω(lgn). Accessing a word
costs O(1) time. We write [b(I)..e(I)] = I for an interval I of natural numbers.

2.1 Strings
Let Σ denote a finite alphabet. We call an element T ∈ Σ∗ a string. Its length is denoted
by |T |. Given an integer j with 1 ≤ j ≤ |T |, we access the j-th character of T with T [j].
Concatenating a string T ∈ Σ∗ k times is abbreviated by T k. A bit vector is a string on the
binary alphabet {0, 1}.

When T is represented by the concatenation of X,Y, Z ∈ Σ∗, i.e., T = XYZ, then X, Y
and Z are called a prefix, substring and suffix of T , respectively; A prefix X, substring Y , or
suffix Z is called proper if X 6= T , Y 6= T , or Z 6= T , respectively. For two integers i, j with
1 ≤ i ≤ j ≤ |T |, let T [i..j] denote the substring of T that begins at position i and ends at
position j in T . If i > j, then T [i..j] is the empty string. In particular, the suffix starting at
position j of T is called the j-th suffix of T , and denoted with T [j..]. An occurrence of a
substring S in T is treated as a sub-interval of [1..|T |] such that S = T [b(S)..e(S)].

The longest common prefix (LCP) of two strings S and T is the longest string that
is a prefix of both S and T . The length of the LCP of two strings S and T is given
by the function lcp(S, T) returning an integer ` such that T [1..`] = S[1..`] and either (a)
T [`+ 1] 6= S[`+ 1] or (b) ` = min(|T |, |S|) holds.

Lexicographic Order. We denote the lexicographic order with ≺. Given two string S and
T , then S ≺ T if S is a prefix of T or there exists an integer ` with 1 ≤ ` ≤ min(|S|, |T |) such
that S[1..`− 1] = T [1..`− 1] and S[`] < T [`]. We write S ≺ω T if the infinite concatenation
Sω := SSS · · · is lexicographically smaller than Tω := TTT · · · . For instance, ab ≺ aba but
aba ≺ω ab.

Support Data Structures. Given a string T ∈ Σ∗, a character c ∈ Σ, and an integer j, the
rank query T.rankc(j) counts the occurrences of c in T [1..j], and the select query T.selectc(j)
gives the position of the j-th c in T . We stipulate that rankc(0) = selectc(0) = 0.

2.2 Lyndon Words
Given a string T = T [1..n], its i-th conjugate conji(T) is defined as T [i+ 1..n]T [1..i] for an
integer i with 0 ≤ i ≤ n − 1. We say that T and every of its conjugates belongs to the
conjugate class conj(T) := {conj0(T), . . . , conjn−1(T)}. If a conjugate class contains exactly

H. Bannai, J. Kärkkäinen, D. Köppl, and M. Pia̧tkowski 17:3

one conjugate that is lexicographically smaller than all other conjugates, then this conjugate
is called a Lyndon word [16]. Equivalently, a string T is said to be a Lyndon word if and only
if T ≺ S for every proper suffix S of T . A consequence is that a Lyndon word is border-free,
i.e., there is no Lyndon word T = SUS with S ∈ Σ+ and U ∈ Σ∗. A pre-Lyndon word is a
string that is a prefix of a Lyndon word.

The Lyndon factorization [7] of T ∈ Σ+ is the factorization of T into a sequence of
lexicographically non-increasing Lyndon words T1 · · ·Tt, where (a) each Tx ∈ Σ+ is a Lyndon
word, and (b) Tx ≥ Tx+1 for each 1 ≤ x < t.

I Lemma 1 ([8, Algo. 2.1]). The Lyndon-factorization of a string can be computed in
linear time.

Each Lyndon word Tx is called a Lyndon factor. We denote the multiset of T ’s Lyndon
factors by LynF(T) := {T1, . . . , Tt}. There is a bijection between LynF(T) and T in such a
sense that LynF(T) uniquely defines T . That is because we can restore T by
1. sorting the Lyndon factors of LynF(T) in lexicographically descending order, and
2. subsequently concatenating them.

The last factor Tt is special, as it has the following property:

I Lemma 2 ([8, Prop. 1.9]). The last Lyndon factor of a string T is the smallest suffix of T .

We borrow from [13, Sect. 2.2] the notation lfsT (j) := Tj · · ·Tt for the suffix of T starting
with the j-th Lyndon factor. For what follows, we fix a string T [1..n] over an alphabet
Σ with size σ. We use the string T := acababdababcababbab as our running example.
Its Lyndon factorization is LynF(T) = {ac, ababd, ababc, ababb, ab}. The suffix lfsT (4) is
T4T5 = ababbab.

2.3 Bijective Burrows-Wheeler transform

We denote the bijective BWT of T by BBWT, where BBWT[i] is the last character of the
i-th string in the list storing the conjugates of all Lyndon factors T1, . . . , Tt of T sorted with
respect to ≺ω. Figure 1 shows BBWT for our running example.

Gill and Scott [12] and Mantaci et al. [19] postulated that BBWT can be built in linear
time. However, we could only verify an algorithm running in O(n lgn/ lg lgn) time in the
word RAM model with σ = nO(1), provided by Bonomo et al. [3]. This algorithm processes
all Lyndon factors in their lexicographical order, starting with the largest one. Since the
algorithm processes all Lyndon factors in text order, we can use it to build BBWT online,
i.e., we can build BBWT up to the Lyndon factor of a string T that starts with the longest
pre-Lyndon suffix of the currently read T . That is because all previous Lyndon factors cannot
change when appending characters to T .

I Theorem 3. The BBWT can be constructed online in O(n lgn/ lg lgn) time for a string
of length n.

This is an interesting property, since the only known online technique [23, 22] for
computing the traditional BWT needs the text to be given in reversed order (starting with
the last character).

CPM 2019

17:4 Indexing the Bijective BWT

T
=

ac
ab

ab
da

ba
bc

ab
ab

ba
b

↓
Ly

nd
on

Fa
ct
or
iz
at
io
n
↓

ac
|a

ba
bd

|a
ba

bc
|a

ba
bb

|a
b

↓
So

rt
fa
ct
or
s
an

d
co
nj
ug

at
es

in
≺
ω
-o
rd
er
↓ ab

ababb
ababc
ababd
abbab
abcab
abdab
ac
ba
babab
babba
babca
babda
bbaba
bcaba
bdaba
cabab
ca
dabab

↓
Se

t
F

[i]
an

d
BB

W
T[
i]
to

fir
st

an
d
la
st
↓

↓
ch
ar
ac
te
r
of
i-t

h
st
rin

g,
re
sp
ec
tiv

el
y
↓ i F BBWT

1 a b
2 a b
3 a c
4 a d
5 a b
6 a b
7 a b
8 a c
9 b a
10 b b
11 b a
12 b a
13 b a
14 b a
15 b a
16 b a
17 c b
18 c a
19 d b

↓
R
es
to
re

Ly
nd

on
fa
ct
or
s
↓ ab

ababb
ababc
ababd
ac

↓
So

rt
in

le
xi
co
gr
ap

hi
ca
lly

re
ve
rs
ed

or
de

r
↓

T
=

ac
ab

ab
da

ba
bc

ab
ab

ba
b

Figure 1 Constructing BBWT and restoring the original input. The Lyndon factors are colored
in dark yellow. Middle: Restoring the Lyndon factor ab with the backward search, where the array
F is defined by F [i] := c if C[c− 1] + 1 ≤ i ≤ C[c]. Right: Lyndon factors of T restored by visiting
all cycles of BBWT.

3 Backward Search Algorithm

For finding patterns, our index applies the same backward search as the FM-index [9], which
we briefly review. Prior to that, we define some necessary data structures:

Text Data Structures. Let SA and ISA denote the suffix array [18] and the inverse suffix
array of T , respectively. The entry SA[i] is the starting position of the i-th lexicographically
smallest suffix such that T [SA[i]..] ≺ T [SA[i + 1]..] for all integers i with 1 ≤ i ≤ n − 1.
The Burrows-Wheeler transform (BWT) [6] of T is the string BWT with BWT[i] = T [n] if
SA[i] = 1 and BWT[i] = T [SA[i]− 1] otherwise, for every i with 1 ≤ i ≤ n.

FM-Index. The FM-index uses BWT with the following auxiliary data structures:
an array C with σ lgn bits, where C[c] is the number of occurrences of those characters
in T that are smaller than c (for each character c with 1 ≤ c ≤ σ), and
a data structure that supports rank queries on BWT.

Given a pattern P whose characters are drawn from Σ, the occurrences of P in T are
represented by range(P) storing an interval of SA such that SA[i] is a starting position of an
occurrence of P for each i ∈ range(P). More formally, range(P) denotes the range in BWT
such that

T [SA[j]..SA[j] + |P | − 1] = P if and only if j ∈ range(P). (1)

H. Bannai, J. Kärkkäinen, D. Köppl, and M. Pia̧tkowski 17:5

U V
P

Tx Tx+1

U ′ V ′

Figure 2 Setting of the proof of Lemma 6.

We obtain Ri = range(P [i..]) from Ri+1 = range(P [i+ 1..]) with a backward search step

b(Ri) = C[P [i]]+BWT.rankP [i](b(Ri+1)+1) and e(Ri) = C[P [i]]+BWT.rankP [i](e(Ri+1)).
(2)

We stipulate that the range of the empty string is [1..n]. Starting with the range of the empty
string range(P [|P |+ 1..]) and applying Equation (2) iteratively, we can find all occurrences
of the pattern P in T with |P | rank operations.

If we exchange BWT with BBWT, we need to take special care of a so-called rewinding.
Suppose that we matched an occurrence of P [i+ 1..] starting at position j + 1 in T .

If both text positions j and j + 1 are contained in a Lyndon factor Tx for an integer x
with 1 ≤ x ≤ t, the backward search step

C[P [i]] + BBWT.rankP [i](ISA[i+ 1]) (3)

yields the occurrence of P [i..] starting at position j in T .
Otherwise, j and j + 1 are contained in two different Lyndon factors. Let Tx be the
Lyndon factor with b(Tx) = j + 1 (and hence the text position j is contained in Tx−1).
Then the backward search gives ISA[e(Tx)], i.e., the starting position of the last conjugate
of Tx (in SA-order, cf. the cycle representing the Lyndon factor ab in Figure 1).

We call the second case rewinding, as the backward search counts down from the i-th
conjugate to the (i− 1)-th conjugate, but rewinds from the zeroth-conjugate (i.e., Tx itself)
to the last conjugate. Whenever we expect that no rewinding will happen, we can find a
pattern with the backward search of the FM-index:

I Lemma 4. Given a text T and a pattern P such that each occurrence of P in T is contained
in a Lyndon factor of T , we can compute these occurrences with the backward search of the
FM-index on the BBWT with |P | rank operations.

Proof. Since all occurrences of P are contained in Lyndon factors of T , the backward search
finds no occurrence of P [i..] starting at the beginning b(Tx) of a Lyndon factor Tx in T ,
for 2 ≤ i ≤ |P | and 1 ≤ x ≤ t. J

3.1 Lyndon Patterns
We first focus on the special case that the pattern itself is a Lyndon word. Subsequently, we
show the general case (Section 3.2) by applying the Lyndon factorization to the pattern P
and introduce an enhancement to the backward search for obtaining range(P [i..]) from
range(P [i+ 1..]) in the case that the suffix P [i+ 1..] starts with a Lyndon factor of T . For
all this we need a little helper lemma:

I Lemma 5 ([8, Prop. 1.10]). The longest prefix of T that is a Lyndon word is the first
Lyndon factor T1 of T . Given LynF(T) = {T1, . . . , Tt}, LynF(T) = {T1} ∪ LynF(T2 · · ·Tt).

CPM 2019

17:6 Indexing the Bijective BWT

T1 · · · Tx · · · Ty · · · Tz · · · Tt

P [i..] P [i..] P [i..] P [i..] P [i..] P [i..]

Figure 3 Suffix P [i..] of pattern P matches the beginnings of some Lyndon factors of T . These
Lyndon factors Tx, . . . , Tz are all consecutive.

I Lemma 6. Let T be a string with LynF(T) = {T1, . . . , Tt}, and let P be a pattern. If P is
a Lyndon word, then there is no occurrence of P in T that crosses the border of two Lyndon
factors, i.e., each occurrence of P in T is contained in a Lyndon factor Tx (1 ≤ x ≤ t).

Proof. Assume to the contrary that P = UV , where U ∈ Σ+ is a suffix of Tx and V ∈ Σ+ is
a prefix of Tx+1 · · ·Tt for an integer x with 1 ≤ x < t. This setting is illustrated in Figure 2.

Since Tx is the longest Lyndon prefix of Tx · · ·Tt (see Lemma 5), it is not possible that
U = Tx (otherwise we could extend Tx to UV to form a longer Lyndon word). We conclude
that U is a proper suffix of Tx. Since Tx is a Lyndon word, we have Tx ≺ U ′ for every proper
suffix U ′ of Tx (including U). This implies that TxV ≺ U ′V , and in particular TxV ≺ UV .
Since the pattern P is a Lyndon word, we have V ′ � P = UV � TxV for every suffix V ′ of
V (including V itself).

Putting everything together, we have that TxV is lexicographically smaller than its proper
suffixes, and TxV thus is a Lyndon word. However, this again contradicts the setting that
Tx is the longest Lyndon prefix of Tx · · ·Tt. J

Combining this result with Lemma 4 yields:

I Corollary 7. Given a pattern P that is a Lyndon word, we can find all its occurrences
with |P | rank operations of the FM-index built on BBWT.

3.2 General Case
To find arbitrary patterns, we need to understand what happens during the rewinding.
Suppose that we matched P [i..] in T with the backward search. Further suppose that an
occurrence of P [i..] starts at position b(Ty) in T . Then we claim that Ty belongs to a
consecutive set of Lyndon factors Tx, . . . , Tz with x ≤ y ≤ z such that there is an occurrence
of P [i..] starting at position b(Ty′) in T for each Lyndon factor Ty′ with x ≤ y′ ≤ z. Figure 3
visualizes this setting. Assume that our claim is not true. Then there is an index y′ with
x ≤ y′ ≤ z and there is no occurrence of P [i..] starting at position b(Ty′) in T . This
contradicts Tx � Ty′ � Tz. We conclude our observation with the following lemma.

I Lemma 8. If a string P is a prefix of Tx and Tz, then P is a prefix of Ty for each integer y
with x ≤ y ≤ z.

Suppose that we matched P [i..] and that there are occurrences of P [i..] starting with
Lyndon factors of T . These Lyndon factors are consecutive according to Lemma 8. Let these
Lyndon factors be Tx, . . . , Tz. Moreover, P [i..] starts with a Lyndon factor of P according to
Lemma 6, i.e., P [i..] = lfsP (w) for an integer w with 1 ≤ w ≤ p. A further backward search
step causes a rewinding for all occurrences of P [i..] starting at b(Tx), . . . , b(Tz), where the
following cases can occur:

If T [e(Tz)] = P [i − 1], but T [b(Tz+1)..] does not have lfsP (w) as a prefix, then the
backward search carries on a false occurrence.
If T [b(Tx) − 1] = P [i − 1], we would expect that the backward search reports that an
occurrence of P [i − 1..] starts at T [b(Tx) − 1] (we assume that T [e(Tx)] = P [i − 1]).

H. Bannai, J. Kärkkäinen, D. Köppl, and M. Pia̧tkowski 17:7

However, this is not the case because of the rewinding, either reporting the text position
e(Tx) or dismissing this occurrence if e(Tx) 6= P [i− 1]. In either case, we say that there
is a missed occurrence of P [i− 1..] starting at b(Tx)− 1.
If T [e(Ty)] = P [i − 1] but T [e(Ty+1)] 6= P [i − 1] for an integer y with x ≤ y ≤ z − 1,
then the rewinding discards the occurrence of P [i..] starting at T [b(Ty+1)] although
T [b(Ty+1)− 1] = T [e(Ty)] = P [i− 1]. This looks like that the occurrence of P [i..] starting
at T [b(Ty+1)] becomes a missed occurrence. However, since T [b(Ty)] and T [b(Ty+1)] are
the starting positions of occurrences of P [i..], the occurrence of P [i..] starting at T [b(Ty)]
takes over the job from the occurrence starting at T [b(Ty+1)] after the rewinding, i.e.,
we obtain the starting position T [e(Ty)] = T [b(Ty+1)− 1] of the occurrence of P [i− 1..]
after rewinding it.
Similarly, the setting T [e(Ty)] 6= P [i− 1] but T [e(Ty+1)] = P [i− 1] for an integer y with
x ≤ y ≤ z − 1 seems to cause a false occurrence after rewinding the occurrence of P [i..]
starting at b(Ty), but actually this occurrence takes over the job from the occurrence
starting at T [b(Ty+1)].
In all other cases, for x+1 ≤ y ≤ z, T [e(Ty−1)]lfsP (w) = T [e(Ty)]lfsP (w), i.e., the rewound
positions are beginning positions of occurrences of P [i − 1..], where the occurrence of
P [i..] starting at b(Ty−1) takes the job from the occurrence starting at b(Ty) after the
rewinding.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

a c a b a b d a b a b c a b a b b a b

a b a b a b a b a b a b

P2 P3 P2 P3P2 P3 P2 P3

T1 T2 T3 T4 T5

rewind rewind rewind

T =

Figure 4 Backward search of a pattern P with LynF(P) = {P1, P2 = ab, P3 = ab} in our running
example T = acababdababcababbab after |P2P3| steps. The sub-pattern P2P3 has occurrences
starting at the starting positions of the Lyndon factors T2, T3, and T4 of the text. The effects of the
rewinding depend on P1. If P1 ends with c, then we derive a missed occurrence from lfsP (2) and T2.
If P1 ends with b, then we derive a false occurrence from lfsP (2) and T4.

In what follows, we study ways to limit the number of false and missed occurrences.
We say that a false (resp. missed) occurrence of P is derived from Pw and Tz (resp. Tx)
if it emerges on the rewinding at T [b(Tz)] (resp. T [b(Tx)]). See Figure 4 for an example.
According to Lemma 6 there are at most p rewindings, and hence at most p false and missed
occurrences. (We lower this upper bound in the subsequent section). The false occurrences
can be easily maintained in a separate list, in which each element corresponds to a false
occurrence (more precisely, applying SA to such an element yields its corresponding starting
position in the text). Each element of the list is subject to the backward search (Equation (3))
like the range itself (Equation (2)). Whenever a backward search step of an element of
the list yields not an occurrence (e.g., we obtain the element ISA[j] by a backward search
step from P [i+ 1..] to P [i..], but find out that T [j] 6= P [i]), then the false occurrence will
also vanish from the range such that we no longer need to manage that element. Similarly,
we keep track of the missed occurrences. For that, we take advantage of the fact that the
entries of BBWT corresponding to Lyndon factors are lexicographically sorted (see the dark

CPM 2019

17:8 Indexing the Bijective BWT

yellow marked entries in Figure 1). To move from the beginning of a Lyndon factor to the
end of its preceding Lyndon factor, it suffices to locate the previously larger Lyndon factor
and apply a backward search step on it (to intentionally cause a rewinding). For that, we
add a bit vector BL marking the entries in BBWT corresponding to a Lyndon factor (and
not to one of its conjugates) with ‘1’. Then BL.select1(t − x + 1) corresponds to Tx and
the position ISA[b(Tx) − 1] = ISA[e(Tx−1)] is found by applying a backward search step
to BL.select1(t − x). Again, we keep the missed occurrences in a list whose elements are
(each individually) subject to the backward search. Finally, when we want to report all
occurrences of the complete pattern, we take the computed range range(P), add all elements
of the list of missed occurrences, and remove all elements of the list of the false occurrences.
By doing so, we can restore the property of Equation (1). With the lists for the missed and
false occurrences and the bit vector BL, we can state the following theorem generalizing the
backward search for arbitrary patterns.

I Theorem 9. Given a text T and a pattern P , we can compute all occurrences of P in T
with the FM-index built on BBWT with O(|P |p) rank operations, where p is the number of
Lyndon factors of P .

In the following, we improve the O(|P |p) bound on the number of rank operations. There
is a problem with matching a pattern whose Lyndon factorization consists of the same
Lyndon factor that is equal to some Lyndon factors of the text. An example for such a case is
given by T = P = an. Here, P has n Lyndon factors, and therefore our current upper bound
on the number of rank operations stated in Theorem 9 is only O(n2). Multiple occurrences
of the same Lyndon factors (a) in the text as well as (b) in the pattern make the matching
difficult. However, as we will see, we can cope with both individually.

First, we start with (a) the text; (b) is treated in Section 3.3. Our solution is to build the
bijective BWT on all distinct Lyndon factors of T (along with their conjugates), remembering
the number of occurrences of a Lyndon factor, such that the Lyndon factorization T = T1 · · ·Tt
becomes T = T̃ τ1

1 · · · T̃
τt′
t′ , where T̃1, · · · T̃t′ are distinct Lyndon words with T̃x ≺ T̃x+1 for

1 ≤ x ≤ t′ − 1 ≤ t − 1, and for every 1 ≤ x ≤ t′ it holds that (a) τj ≥ 1 and (b) there is
an integer y with y ≥ x such that T̃x = Ty. The set {T̃ τ1

1 , . . . , T̃
τt′
t′ } is called the composed

Lyndon factorization of T . Given T̃x = Ty, we stipulate that b(T̃x) is the starting position of
the leftmost Lyndon factor Ty−τx+1 with Ty−τx+1 = T̃x. For instance, the composed Lyndon
factorization of T = bbabababa is T = T̃ 2

1 T̃ 3
2 T̃3 with T̃1 = b, T̃2 = ab, and T̃3 = a. The

starting position b(T̃2) is 3.
Now suppose that the Lyndon factor Pw occurs kw times in LynF(P), and suppose that

Pw is the rightmost occurrence of them, i.e., Pw−kw
6= Pw−kw+1 = . . . = Pw−1 = Pw 6= Pw+1.

Whenever we match lfsP (w) with the beginning of the rightmost Lyndon factor Ty equal
to T̃x with |T̃x| ≤ |lfsP (w)| occurring τx times in T , we can directly match P kw−1

w lfsP (w)
if τx ≥ kw, skipping the backward search for P [b(Pw−kw+1)..b(Pw)] such that we directly
match P [b(Pw−kw+1)..] for one occurrence O starting at T [b(T̃x)]. For that, we assumed that
T̃x = Pw−j for every integer j with 0 ≤ j ≤ kw − 1. This is true due to the following lemma:

I Lemma 10. Given an occurrence of Pw that starts at position b(Tx) in T , lfsP (w) is not
a proper prefix of Tx if and only if Pw = Tx.

Proof. Assume that lfsP (w) is not a proper prefix of Tx. Switching the roles of P and T
in Lemma 6, we yield that Tx cannot cross the border between Pw and Pw+1. Since
|lfsP (w)| ≥ |Tx|, it holds that Pw = Tx (otherwise we could extend Tx to a longer Lyndon
factor). J

H. Bannai, J. Kärkkäinen, D. Köppl, and M. Pia̧tkowski 17:9

The further matching of the occurrence O is conducted separately to the backward search
with the range of occurrences range(P [b(Pw)..]). If τx < kw, then we cannot extend the
currently matched occurrence, and thus can ignore to follow this occurrence. We call this
technique of skipping consecutive Lyndon factors a composed jump.

The composed jump allows us to proceed as follows: We only count missed occurrences O
that were not derived from a missed occurrence (i.e., an occurrence belonging to the range
and not part of the list of missed occurrences), which we call in the following freshly
missed occurrences. We do not count a missed occurrence O′ that is derived from a missed
occurrence O. Instead, we only update the position of O to O′ in the list of missed occurrences.
This is justified as we cannot create a freshly missed occurrence during a later backward
search step:

missed occurrence

Pw lfsP (w + 1)

T̃x−1 T̃x T̃x+1

Pw lfsP (w + 1)
Pw′ · · · Pw−1 Pw lfsP (w + 1)

deriving again a missed occurrence

Figure 5 Setting of the proof of Lemma 11 where a false occurrence from lfsP (w′) and T̃x is
derived after a false occurrence was derived from lfsP (w) and T̃x with w′ < w. However, this is not
possible since then T̃x−1 = T̃x.

I Lemma 11. Let an occurrence of lfsP (w) start at position b(T̃x) in T and let |T̃x| <
|lfsP (w)|. If there is a missed occurrence derived from lfsP (w) and T̃x, there is no w′ < w

such that lfsP (w′) and T̃x derive a freshly missed occurrence.

Proof. By Lemma 10, Pw = T̃x. Assume that there is a freshly missed occurrence derived
from lfsP (w′) and T̃x for the largest such w′ with w′ < w. Then Pw′ · · ·Pw−1 = Pw and
lfsP (w′) = PwlfsP (w) = PwPwlfsP (w + 1). Hence, Pw = T̃x is a suffix of T̃x−1 (cf. Figure 5).
Since T̃x−1 is a Lyndon word with T̃x � T̃x−1, T̃x−1 = T̃x = Pw = Pw−1 must hold. However,
this contradicts the distinctness of T̃x in the composed Lyndon factorization. J

3.3 Improving the Number of Ranks
In this section, we study the case of multiple occurrences of the same Lyndon factor in
the pattern to improve the bound to O(|P |p′) rank operations, where p′ is the number of
different Lyndon factors of P . For that we show two lemmas:

T̃x−1 T̃x T̃x+1

Pw Pw+1 Pw−1

lfsP (w)

T̃x−1 T̃x T̃x+1

Pw Pw+1

lfsP (w)

Figure 6 Setting of the proof of Lemma 12 that seems to derive a false occurrence. A necessary
condition to derive a false occurrence from lfsP (w) and T̃x is that T̃x is the last Lyndon factor having
lfsP (w) as a prefix (left). Since T̃x must be border-free, T̃x = Pw holds (right).

I Lemma 12. If Pw−1 = Pw = Pw+1, then a false occurrence derived from lfsP (w) disappears
after matching |Pw| characters.

CPM 2019

17:10 Indexing the Bijective BWT

Proof. Assume that there is a false occurrence derived from lfsP (w) and T̃x. Then (a) an
occurrence of lfsP (w) starts at position b(T̃x) in T and (b) Pw−1 is a suffix of T̃x. See
also Figure 6. Since a Lyndon word is border-free, T̃x = Pw. However, we derived a
false occurrence from lfsP (w) and T̃x such that T̃x+1 cannot start with Pw+1. This is a
contradiction, since we found an occurrence of lfsP (w) starting at position b(T̃x) in T ,
T̃x = Pw, and therefore T̃x+1 must start with Pw+1. J

T̃x−1 T̃x T̃x+1

Pw−1 Pw Pw−1

lfsP (w)

Figure 7 Setting of the proof of Lemma 13 that seems to derive a missed occurrence.

I Lemma 13. Given an occurrence of Pw starts at position b(T̃x) in T , a missed occurrence
derived from lfsP (w) and T̃x disappears after matching |Pw| characters if |lfsP (w)| ≤ |T̃x|
and Pw−1 = Pw.

Proof. Suppose that there is a missed occurrence derived from lfsP (w) and T̃x. We have the
following setting, which is sketched in Figure 7:

T̃x is the leftmost Lyndon factor of the composed Lyndon factorization of T that starts
with lfsP (w), and
Pw−1 is a suffix of T̃x−1.

Then Pw � lfsP (w) � T̃x (Pw is a prefix of lfsP (w) and lfsP (w) is a prefix of T̃x)
≺ T̃x−1 (Definition of the composed Lyndon factorization)
� Pw−1, (T̃x−1 is a Lyndon word and Pw−1 one of its suffixes)

contradicting the assumption Pw−1 = Pw. J

A conclusion is that all longest consecutive appearances of the same Lyndon factors
Pw = . . . = Pw+j for integers 1 ≤ w ≤ p and j ≥ 0 can cause at most one newly missed and
one false occurrence in total (which we need to keep track of). In other words, we know that
we only have to care about p′ freshly missed and false occurrences. Thus, we can improve
the number of rank operations to O(|P |p′).

3.4 Longest Pre-Lyndon Word
To obtain O(|P | lg |P |) rank operations, we need the notion of the longest pre-Lyndon
suffix λP , which is the smallest integer such that lfsP (w + 1) is a prefix of Pw for every
λP ≤ w ≤ p. In our running example (cf. Figure 1), λT = 4 since T5 is a prefix of T4, but T4
is not a prefix of T3.

lfsP (w)c|X|+1 = Pw lfsP (w + 1) c|X|+1

lfsP (w + 1) X

Figure 8 Setting of the proofs of Lemmas 14 and 18, where lfsP (w + 1)c|X|+1 is a Lyndon word
because lfsP (w + 1) is a prefix of Pw and c|X|+1 � X.

H. Bannai, J. Kärkkäinen, D. Köppl, and M. Pia̧tkowski 17:11

I Lemma 14. The string lfsP (w) is a pre-Lyndon word for every λP ≤ w ≤ p.

Proof. Since lfsP (w+ 1) is a prefix of Pw, there is a suffix X of Pw with Pw = lfsP (w+ 1)X
(cf. Figure 8). Given a c ∈ Σ with c|X|+1 � X, lfsP (w)c|X|+1 = lfsP (w+1)XlfsP (w+1)c|X|+1

is a Lyndon word. J

We borrow the following facts from literature:

I Lemma 15 ([13, Lemma 11]). Pw is not a proper prefix of lfsP (w + 1) for every integer w
with 1 ≤ w ≤ λP − 1.

P [j..]X = lfsP (w) X
Pw lfsP (w + 1)

Y b Y a

` `

Figure 9 Setting of the proofs of Corollary 16 and Lemma 19, where a and b are characters with
a ≺ b, and Y = Pw[1..`] = lfsP (w + 1)[1..`]. There is no such string X that P [j..]X is a Lyndon
word.

I Corollary 16. lfsP (λP) is the longest pre-Lyndon suffix of P .

Proof. Assume that there is a longer pre-Lyndon suffix P [j..]. This suffix has to start with
a Lyndon factor Pw for an integer w with 1 ≤ w ≤ p, otherwise lfsP (w) ≺ P [j..] with w such
that b(Pw) < j ≤ e(Pw) (since every proper suffix of Pw is lexicographically larger than Pw),
and therefore lfsP (w) would be a longer pre-Lyndon suffix.

According to Lemma 15, there is an ` := lcp(Pw, lfsP (w+ 1)) with ` < min(|Pw|, |lfsP (w+
1)|). Then Pw[`+1] > lfsP (w+1)[`+1] and therefore conj|Pw|(lfsP (w)X) = lfsP (w+1)XPw ≺
PwlfsP (w + 1)X = lfsP (w)X, regardless of the choice of the string X (cf. Figure 9). J

I Lemma 17 ([13, Lemma 12]). p′ − λP = O(lg |P |) where p′ is the number of distinct
Lyndon factors of P .

The next lemmas show the usefulness of λP :

I Lemma 18. Given an integer w with 1 ≤ w ≤ λP − 1, lfsP (w + 1) is not a prefix of Pw.

Proof. Assume to the contrary that lfsP (w + 1) is a prefix of Pw, and Pw = lfsP (w + 1)X
for a string X ∈ Σ+. Given a character c ∈ Σ with c|X|+1 � X, lfsP (w)c|X|+1 = lfsP (w +
1)XlfsP (w + 1)c|X|+1 is a Lyndon word, contradicting the fact that lfsP (λP) is the longest
pre-Lyndon word of P (cf. Corollary 16 and Figure 8). J

I Lemma 19. Given an occurrence of lfsP (w) with w < λP that starts at position b(T̃x)
in T for an integer x with 1 ≤ x ≤ t′, we have T̃x = Pw.

Proof. Since lfsP (λP) is the longest pre-Lyndon suffix of P (see Corollary 16), lfsP (w) is
not a pre-Lyndon suffix of P . According to Lemma 18, lfsP (w + 1) is not a prefix of Pw.
Let ` := lcp(Pw, lfsP (w + 1)) < min(|Pw|, |lfsP (w + 1)|). Then Pw[`+ 1] > lfsP (w + 1)[`+ 1]
according to the Lyndon factorization of P , and therefore Pw is the longest Lyndon word
of T having an occurrence that starts at position b(T̃x) in T , i.e., T̃x = Pw. That is because
a longer Lyndon factor T̃x would contain PwlfsP (w + 1)[1..`+ 1], which is lexicographically
larger than conj|Pw|(PwlfsP (w + 1)[1..`+ 1]) = lfsP (w + 1)[1..`+ 1]Pw (cf. Figure 9). J

CPM 2019

17:12 Indexing the Bijective BWT

The above lemmas allow us to derive the following consequence:

I Corollary 20. There is no freshly missed occurrence derived from lfsP (w) for every integer w
with w < λP . If one of those lfsP (w) derives a false occurrence, then this false occurrence
disappears until the range range(P) is matched.

Proof. Suppose there is an occurrence of lfsP (w) starting at position b(T̃x) in T , for a
composed Lyndon factor T̃x with 1 ≤ x ≤ t′. According to Lemma 19, Pw = T̃x. Since
w < λP ≤ p, we have that |T̃x| = |Pw| < |lfsP (w)|. Then with Lemma 11 we obtain that
lfsP (w) and T̃x cannot derive a freshly missed occurrence. By Lemma 15, Pw−1 is not a
proper prefix of lfsw(P), such that after matching lcp(Pw−1, lfsw(P)) characters, a possibly
derived false occurrence will disappear, and thus does not need to be tracked. J

With Lemma 17 we obtain:

I Theorem 21. Given a text T and a pattern P , we can compute all occurrences of P in T
with the FM-index built on the bijective BWT of the composed Lyndon factors of T with
O(|P | lg |P |) rank operations.

Finally, we explain how to detect whether an occurrence of a suffix of the pattern starts
at the beginning of a Lyndon factor of the text. For that, after each backward search step, we
use the bit vector BL introduced in Section 3.2 marking now the entries corresponding to the
composed Lyndon factors in BBWT. If range(P [i..]) = [b..e] and BL.rank1(e)−BL.rank1(b−1)
is positive, then there is an occurrence of P [i..] starting at position b(T̃x) in T (after applying
a composed jump) for every x with t′ −BL.rank1(e) + 1 ≤ x ≤ t′ −BL.rank1(b− 1). In this
case, P [i..] = lfsP (w) for an integer w with 1 ≤ w ≤ p due to Lemma 6.

4 Construction and Outlook

Having the backward search technique of Theorem 21, we can construct and use an online
BBWT index data structure when combining the BBWT construction algorithm of Theorem 3
with a dynamic data structure for rank and select queries.

I Theorem 22. Given a text T of length n whose characters are drawn from an alphabet of
size σ, we can build a text index on the bijective BWT of T online in O(n lgn/ lg lgn) time.
The text index supports searching for all occurrences of a pattern P in O(|P | lg |P | lgn/ lg lgn)
time. The index uses |B̃BWT|(H0(B̃BWT)+H0(BL))+o(n lg σ)+O(σ lgn) bits, where B̃BWT
is the bijective BWT of the composed Lyndon factorization. It returns a range and a list of
positions in SA corresponding to starting positions of suffixes having P as a prefix.

Proof. We use the dynamic representation of Navarro and Nekrich [21] for the wavelet tree
of the FM-index, as well as for the bit vector BL. This data structure can be constructed
in O(n lgn/ lg lgn) time and can answer each type of query in optimal O(lgn/ lg lgn) time.
Our space bound is due to this data structure. The array C is stored in a plain form using
σ lgn bits. J

To actually report the matched positions in the text, we can use the approach of Mäkinen
and Navarro [17] who apply run-length compression on the traditional BWT and store a
suffix array entry for each run in the BWT, thus achieving r lgn bits additional cost for this
suffix array sampling, where r is the number of runs in the BWT. It is straight-forward to
adapt this technique for the bijective BWT: For that, we keep BL, but run-length compress
BBWT. The time bounds remain the same if σ = O(lgO(1) n) [17].

H. Bannai, J. Kärkkäinen, D. Köppl, and M. Pia̧tkowski 17:13

Open Problems

We are unaware of an algorithm for which it is proven that it can build BBWT in linear time.
It seems hard to find a relation to suffix array construction algorithms, since the context of
the suffixes with respect to the lexicographic order and the context of the Lyndon words
with respect to ≺ω is different.

We are aware of a recently found redundancy [2] in the traditional BWT, and wonder
whether this result translates to the bijective variant.

References
1 Donald Adjeroh, Timothy Bell, and Amar Mukherjee. The Burrows-Wheeler Transform::

Data Compression, Suffix Arrays, and Pattern Matching. Springer, 2008.
2 Uwe Baier. On Undetected Redundancy in the Burrows-Wheeler Transform. In Proc. CPM,

volume 105 of LIPIcs, pages 3:1–3:15, 2018.
3 Silvia Bonomo, Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino.

Sorting conjugates and Suffixes of Words in a Multiset. Int. J. Found. Comput. Sci., 25(8):1161,
2014.

4 Stefan Böttcher, Alexander Bültmann, Rita Hartel, and Jonathan Schlüßler. Fast Insertion
and Deletion in Compressed Texts. In Proc. DCC, page 393, 2012.

5 Stefan Böttcher, Alexander Bültmann, Rita Hartel, and Jonathan Schlüßler. Implementing
Efficient Updates in Compressed Big Text Databases. In Proc. DEXA, volume 8056 of LNCS,
pages 189–202, 2013.

6 M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm. Technical
Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

7 Kuo Tsai Chen, Ralph H. Fox, and Roger C. Lyndon. Free differential calculus, IV. The
quotient groups of the lower central series. Annals of Mathematics, pages 81–95, 1958.

8 Jean-Pierre Duval. Factorizing Words over an Ordered Alphabet. J. Algorithms, 4(4):363–381,
1983.

9 Paolo Ferragina and Giovanni Manzini. Opportunistic Data Structures with Applications. In
Proc. FOCS, pages 390–398, 2000.

10 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005.

11 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Optimal-Time Text Indexing in BWT-runs
Bounded Space. In Proc. SODA, pages 1459–1477, 2018.

12 Joseph Yossi Gil and David Allen Scott. A Bijective String Sorting Transform. ArXiv
1201.3077, 2012. arXiv:1201.3077.

13 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster
Lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput. Sci.,
656:215–224, 2016.

14 Masaru Ito, Hiroshi Inoue, and Kenjiro Taura. Fragmented BWT: An Extended BWT for
Full-Text Indexing. In Proc. SPIRE, volume 9954 of LNCS, pages 97–109, 2016.

15 Manfred Kufleitner. On Bijective Variants of the Burrows-Wheeler Transform. In Proc. PSC,
pages 65–79, 2009.

16 R. C. Lyndon. On Burnside’s Problem. Transactions of the American Mathematical Society,
77(2):202–215, 1954.

17 Veli Mäkinen and Gonzalo Navarro. Succinct Suffix Arrays based on Run-Length Encoding.
Nord. J. Comput., 12(1):40–66, 2005.

18 Udi Manber and Eugene W. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM J. Comput., 22(5):935–948, 1993.

19 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. An extension
of the Burrows-Wheeler Transform. Theor. Comput. Sci., 387(3):298–312, 2007.

CPM 2019

http://arxiv.org/abs/1201.3077

17:14 Indexing the Bijective BWT

20 Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM Comput. Surv.,
39(1):2, 2007.

21 Gonzalo Navarro and Yakov Nekrich. Optimal Dynamic Sequence Representations. SIAM J.
Comput., 43(5):1781–1806, 2014.

22 Tatsuya Ohno, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. A Faster Im-
plementation of Online Run-Length Burrows-Wheeler Transform. In Proc. IWOCA, volume
10765 of LNCS, pages 409–419, 2017.

23 Alberto Policriti and Nicola Prezza. Computing LZ77 in Run-Compressed Space. In Proc.
DCC, pages 23–32, 2016.

	Introduction
	Preliminaries
	Strings
	Lyndon Words
	Bijective Burrows-Wheeler transform

	Backward Search Algorithm
	Lyndon Patterns
	General Case
	Improving the Number of Ranks
	Longest Pre-Lyndon Word

	Construction and Outlook

