
An Adaptive Version of Brandes’ Algorithm for
Betweenness Centrality

Matthias Bentert
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
matthias.bentert@tu-berlin.de

Alexander Dittmann
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
alexander.dittmann@campus.tu-berlin.de

Leon Kellerhals1

Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
leon.kellerhals@tu-berlin.de

André Nichterlein
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
andre.nichterlein@tu-berlin.de

Rolf Niedermeier
Algorithmics and Computational Complexity, Faculty IV, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

Abstract
Betweenness centrality – measuring how many shortest paths pass through a vertex – is one of
the most important network analysis concepts for assessing the relative importance of a vertex.
The well-known algorithm of Brandes [2001] computes, on an n-vertex and m-edge graph, the
betweenness centrality of all vertices in O(nm) worst-case time. In follow-up work, significant
empirical speedups were achieved by preprocessing degree-one vertices and by graph partitioning
based on cut vertices. We further contribute an algorithmic treatment of degree-two vertices,
which turns out to be much richer in mathematical structure than the case of degree-one vertices.
Based on these three algorithmic ingredients, we provide a strengthened worst-case running time
analysis for betweenness centrality algorithms. More specifically, we prove an adaptive running
time bound O(kn), where k < m is the size of a minimum feedback edge set of the input graph.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases network science, social network analysis, centrality measures, shortest
paths, tree-like graphs, efficient pre- and postprocessing, FPT in P

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2018.36

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.06701.

1 Supported by DFG project FPTinP, NI 369/16.

© Matthias Bentert, Alexander Dittmann, Leon Kellerhals, André Nichterlein, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY

29th International Symposium on Algorithms and Computation (ISAAC 2018).
Editors: Wen-Lian Hsu, Der-Tsai Lee, and Chung-Shou Liao; Article No. 36; pp. 36:1–36:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.bentert@tu-berlin.de
mailto:alexander.dittmann@campus.tu-berlin.de
mailto:leon.kellerhals@tu-berlin.de
mailto:andre.nichterlein@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de
https://doi.org/10.4230/LIPIcs.ISAAC.2018.36
https://arxiv.org/abs/1802.06701
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 An Adaptive Version of Brandes’ Algorithm for Betweenness Centrality

1 Introduction

One of the most important building blocks in network analysis is to determine a vertex’s
relative importance in the network. A key concept herein is betweenness centrality as
introduced in 1977 by Freeman [6]; it measures centrality based on shortest paths. Intuitively,
for each vertex, betweenness centrality counts the (relative) number of shortest paths that pass
through the vertex. A straightforward algorithm for computing the betweenness centrality on
undirected (unweighted) n-vertex graphs runs in Θ(n3) time, and improving this to O(n3−ε)
time for any ε > 0 would break the so-called APSP-conjecture [1]. In 2001, Brandes [3]
presented the to date theoretically fastest algorithm, improving the running time to O(nm)
for graphs with m edges. As many real-world networks are sparse, this is a far-reaching
improvement, having a huge impact also in practice. Newman [9] presented a high-level
description of an algorithm for a variant of betweenness centrality running in O(nm) time.

Our work is in line with numerous research efforts concerning the development of algo-
rithms for computing betweenness centrality. Formally, we study the following problem:

Betweenness Centrality
Input: An undirected graph G.
Task: Compute the betweenness centrality CB(v) :=

∑
s,t∈V (G)

σst(v)
σst

for each ver-
tex v ∈ V (G).

Herein, σst is the number of shortest paths in G from vertex s to vertex t, and σst(v) is the
number of shortest paths from s to t that additionally pass through v.2

Extending previous, more empirically oriented work of Baglioni et al. [2], Puzis et al. [12],
and Sariyüce et al. [13] (see Section 2 for a description of their approaches), our main result
is the mathematically rigorous analysis of an algorithm for Betweenness Centrality that
runs in O(kn) time, where k denotes the feedback edge number of the input graph G. The
feedback edge number of G is the minimum number of edges to be deleted from G in order
to make it a forest.3 Clearly, k = 0 holds on trees, and k ≤ m holds in general. Thus our
algorithm is adaptive, i.e., it interpolates between linear time for constant k and the running
time of the best unparameterized algorithm for k approaching m. Obviously, by depth-first
search one can compute k in linear time; however, k ≈ m− n, so we provide no asymptotic
improvement over Brandes’ algorithm for most graphs. When the input graph is very tree-like
(m = n+ o(n)), however, our new algorithm improves on Brandes’ algorithm. Real-world
networks showing the relation between PhD candidates and their supervisors [4, 8] or the
ownership relation between companies [11] typically have a feedback edge number that is
smaller than the number of vertices or edges by orders of magnitude [10]. For roughly half of
their networks, m− n is smaller than n by at least one order of magnitude.

Our algorithmic contribution is to complement the works of Baglioni et al. [2], Puzis et
al. [12], and Sariyüce et al. [13] by, roughly speaking, additionally dealing with degree-two
vertices. These vertices are much harder to cope with and to analyze since, other than degree-
one vertices, they may lie on shortest paths between two vertices. Recently, Vella et al. [14]
used a heuristic approach to process degree-two vertices for improving the performance of
their Betweenness Centrality algorithms on several real-world networks.

2 To simplify our matters, we set σst(v) = 0 if v = s or v = t. This is equivalent to Brandes [3] but differs
from Newman [9], where σst(s) = 1.

3 Notably, Betweenness Centrality computations have also been studied when the input graph is a
tree [15], hinting at the practical relevance of this special case.

M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Niedermeier 36:3

Our work is purely theoretical in spirit. Our most profound contribution is to analyze the
worst-case running time of the proposed betweenness centrality algorithm based on degree-
one-vertex processing [2], usage of cut vertices [12, 13], and our degree-two-vertex processing.
To the best of our knowledge, this provides the first proven worst-case “improvement” over
Brandes’ upper bound in a relevant special case.

Notation. We use mostly standard graph notation. Given a graph G, V (G) and E(G)
denote the vertex respectively edge set of G with n = |V (G)| and m = |E(G)|. We denote the
vertices of degree one, two, and at least three by V =1(G), V =2(G), and V ≥3(G), respectively.
A cut vertex or articulation vertex is a vertex whose removal disconnects the graph. A
connected component of a graph is biconnected if it does not contain any cut vertices, and
hence, no vertices of degree one. A path P = v0 . . . vq is a graph with V (P) = {v0, . . . , vq}
and E(P) = {{vi, vi+1} | 0 ≤ i < q}. The length of the path P is |E(P)|. Adding the
edge {vq, v0} to P gives a cycle C = v0 . . . vqv0. The distance dG(s, t) between vertices s, t ∈
V (G) is the length of the shortest path between s and t in G. The number of shortest
s-t–paths is denoted by σst. The number of shortest s-t–paths containing some vertex v is
denoted by σst(v). We set σst(v) = 0 if s = v or t = v (or both). Lastly, for j ≤ k we set
[j, k] := {j, j + 1, . . . , k}.

2 Algorithm overview

In this section, we review our algorithmic strategy to compute the betweenness centrality
of each vertex. Before doing so, since we build on the works of Brandes [3], Baglioni et
al. [2], Puzis et al. [12], and Sariyüce et al. [13], we first give the high-level ideas behind
their algorithmic approaches. Then, we describe the ideas behind our extension. We remark
that we assume throughout our paper that the input graph is connected. Otherwise, we can
process the connected components one after another.

Existing algorithmic approaches. Brandes [3] developed an O(nm)-time algorithm which
essentially runs modified breadth-first searches (BFS) from each vertex of the graph. In
each of these modified BFS, Brandes’ algorithm computes the “effect” that the starting
vertex s of the modified BFS has on the betweenness centrality values of all other vertices.
More formally, the modified BFS starting at vertex s computes

∑
t∈V (G) σst(v)/σst for each

vertex v ∈ V (G).
Reducing the number of performed modified BFS in Brandes’ algorithm is one way to

speed up Brandes’ algorithm. To this end, a popular approach is to remove in a preprocessing
step all degree-one vertices from the graph [2, 12, 13]. By repeatedly removing degree-one
vertices, whole “pending trees” can be deleted. Considering a degree-one vertex v, observe
that in each shortest path P starting at v, the second vertex in P is the single neighbor u
of v. Hence, after deleting v, one needs to store the information that u had a degree-one
neighbor. To this end, one uses for each vertex w a counter which we call Pen[w] that stores
the number of vertices in the subtree pending on w that where deleted before. In contrast
to e. g. Baglioni et al. [2], we initialize for each vertex w ∈ V the value Pen[w] with one
instead of zero (so we count w as well). This simplifies most of our formulas. See Figure 1
for an example of the Pen[·]-values of the vertices at different points in time. This yields the
following (weighted) problem variant.

ISAAC 2018

36:4 An Adaptive Version of Brandes’ Algorithm for Betweenness Centrality

(1.)
1

1

1

1

1

1

1

1

(2.)
1 1

2

1

1

1

1

(3.)

4

1

1

1

1

(4.)

4

1

3 6

1

1

Figure 1 An initial graph where the Pen[·]-value of each vertex is 1 (top left) and the same graph
after deleting one (top right) or both (bottom left) pending trees using Reduction Rule 1. The labels
are the respective Pen[·]-values. Subfigure (4.) shows the graph of (3.) after applying Lemma 2 to
the only remaining cut vertex of the graph.

Weighted Betweenness Centrality
Input: An undirected graph G and vertex weights Pen: V (G)→ N.
Task: Compute for each vertex v ∈ V (G) the weighted betweenness centrality

CB(v) :=
∑

s,t∈V (G)

γ(s, t, v), (1)

where γ(s, t, v) := Pen[s] · Pen[t] · σst(v)/σst.

The effect of a degree-one vertex to the betweenness centrality value of its neighbor is
captured in the next data reduction rule.

I Reduction Rule 1 ([2, 12, 13]). Let G be a graph, let s ∈ V (G) be a degree-one vertex, and
let v ∈ V (G) be the neighbor of s. Then increase Pen[v] by Pen[s], increase the betweenness
centrality of v by Pen[s] ·

∑
t∈V (G)\{s,v} Pen[t], and remove s from the graph.

Hence, the influence of a degree-one vertex to the betweenness centrality of its neighbor can
be computed in constant time as

∑
w∈V (G) Pen[w] can be precomputed once in linear time.

A second approach to speed up Brandes’ algorithm is to split the input graph G into
smaller components and process them separately [12, 13]. This approach is a generalization
of the ideas behind removing degree-one vertices and works with cut vertices. The basic
observation for this approach is as follows: Consider a cut vertex v such that removing v
breaks the graph into exactly two connected components C1 and C2 (the idea generalizes
to more components). Obviously, every shortest path P in G that starts in C1 and ends
in C2 has to pass through v. For the betweenness centrality values of the vertices inside C1
(inside C2) it is not important where exactly P ends (starts). Hence, for computing the
betweenness centrality values of the vertices in C1, it is sufficient to know which vertices
in C1 are adjacent to v and how many vertices are contained in C2. Thus, in a preprocessing
step one can just add to C1 a copy of the cut vertex v with Pen[v] being increased by the
sum of Pen[·]-values of the vertices in C2 (see Figure 1 (bottom)). The same is done for C2.
Formally, this is done as follows.

I Lemma 2 ([12, 13]). Let G be a connected graph, let v be a cut vertex such that removing v
yields ` ≥ 2 connected components C1, . . . , C`, and let ξ := Pen[v]. Then remove v, add a
new vertex vi to each component Ci, make them adjacent to all vertices in the respective

M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Niedermeier 36:5

component that were adjacent to v, and set

Pen[vi] = ξ +
∑

j∈[1,`]\{i}

∑
w∈V (Cj)\{vj}

Pen[w].

Computing the betweenness centrality of each connected component independently, increasing
the betweenness centrality of v by

∑`
i=1
(
CCi

B (vi) + (Pen[vi]− ξ) ·
∑
s∈V (Ci)\{vi} Pen[s]

)
, and

ignoring all new vertices vi is the same as computing the betweenness centrality in G, that is,

CGB (u) =
{
CCi

B (u), if u ∈ V (Ci) \ {vi};∑`
i=1
(
CCi

B (vi) + (Pen[vi]− ξ) ·
∑
s∈V (Ci)\{vi} Pen[s]

)
, if u = v.

Applying the above procedure as preprocessing on all cut vertices and degree-one vertices
takes linear time [13] leaves us with biconnected components that we can solve independently.
Hence, we assume in the rest of the paper that we are given a vertex-weighted biconnected
component.

Our algorithmic approach. Starting with a vertex-weighted biconnected graph, our algo-
rithm focuses on degree-two vertices. In contrast to degree-one vertices, degree-two vertices
can lie on shortest paths between two other vertices. This difference makes degree-two
vertices harder to handle: Removing a degree-two vertex v in a similar way as done with
degree-one vertices (see Reduction Rule 1) affects many other shortest paths that neither
start nor end in v. Hence, we deal with degree-two vertices in a different manner. Instead of
removing vertices one-by-one, we process multiple degree-two vertices at once. To this end,
we use the following definition and exploit that adjacent degree-two vertices behave similarly.

I Definition 3. Let G be a graph. A path P = v0 . . . v` is a maximal induced path in G

if ` ≥ 2 and the inner vertices v1, . . . , v`−1 all have degree two in G, but the endpoints v0
and v` do not, that is, degG(v1) = . . . = degG(v`−1) = 2, degG(v0) 6= 2, and degG(v`) 6= 2.
Moreover, Pmax is the set of all maximal induced paths in G.

Note that if our biconnected graph is a cycle, then it does not contain any maximal
induced path. Our algorithm (see Algorithm 1 for the pseudocode) deals with this corner
case separately by using a linear-time dynamic programming algorithm for vertex-weighted
cycles. Note that the vertices in the cycle can have different betweenness centrality values as
they may have different Pen[·]-values.

I Proposition 4 (?4). Let C = x0 . . . xqx0 be a cycle. Then, the weighted betweenness
centrality of the vertices in C can be computed in O(q) time.

The remaining part of the algorithm deals with maximal induced paths. Note that if the
(biconnected) graph is not a cycle, then all degree-two vertices are contained in maximal
induced paths: If the graph is not a cycle and does not contain degree-one vertices, then
the endpoints of each chain of degree-two vertices are vertices of degree at least three. If
some degree-two vertex v was not contained in a maximal induced path, then v would be
contained on a cycle with exactly one vertex of degree at least three. This vertex would be a
cut vertex and the graph would not be biconnected; a contradiction.

Using standard arguments, we can show that the number of maximal induced paths is
upper-bounded by the minimum of the feedback edge number k of the input graph and
the number n of vertices. Moreover, one can easily compute all maximal induced paths in
linear-time (see Line 6 in Algorithm 1).

4 Proofs of results marked with (?) are deferred to the full version.

ISAAC 2018

36:6 An Adaptive Version of Brandes’ Algorithm for Betweenness Centrality

Algorithm 1: Computation of betweenness centrality in a biconnected graph.
Input: An undirected biconnected graph G with vertex weights Pen: V (G)→ N.
Output: The betweenness centrality values of all vertices.

1 foreach v ∈ V (G) do BC[v]← 0 // BC will contain the betweenness centrality values
2 F ← feedback edge set of G // computable in O(n+m) time using BFS
3 if |F | = 1 then
4 update BC for the case that G is a cycle // computable in O(n) time, see Proposition 4
5 else
6 Pmax ← all maximal induced paths of G // takes O(n+m) time, see Lemma 6
7 foreach s ∈ V ≥3(G) do // some precomputations taking O(|F |n) time, see Lemma 10
8 compute dG(s, t) and σst for each t ∈ V (G) \ {s}
9 Inc[s, t]← 2 · Pen[s] · Pen[t]/σst for each t ∈ V =2(G)

10 Inc[s, t]← Pen[s] · Pen[t]/σst for each t ∈ V ≥3(G) \ {s}
11 foreach x0x1 . . . xq = Pmax ∈ Pmax do // initialize W left and W right, in O(n) time
12 W left[x0]← Pen[x0]; W right[xq]← Pen[xq]
13 for i = 1 to q do W left[xi]←W left[xi−1] + Pen[xi]
14 for i = q − 1 to 0 do W right[xi]←W right[xi+1] + Pen[xi]
15 foreach x0x1 . . . xq = Pmax

1 ∈ Pmax do // case s ∈ V =2(Pmax
1), see Section 3

/* deal with the case t ∈ V =2(Pmax
2), see Section 3.1 */

16 foreach y0y1 . . . yr = Pmax
2 ∈ Pmax \ {Pmax

1 } do
/* update BC for the case v ∈ V (Pmax

1) ∪ V (Pmax
2) */

17 foreach v ∈ V (Pmax
1) ∪ V (Pmax

2) do BC[v]← BC[v] + γ(s, t, v)
/* now deal with the case v /∈ V (Pmax

1) ∪ V (Pmax
2) */

18 update Inc[x0, y0], Inc[xq, y0], Inc[x0, yr], and Inc[xq, yr]
/* deal with the case that t ∈ V =2(Pmax

1), see Section 3.1 */
19 foreach v ∈ V (Pmax

1) do BC[v]← BC[v] + γ(s, t, v)
20 update Inc[x0, xq] // this deals with the case v /∈ V (Pmax

1)
21 foreach s ∈ V ≥3(G) do // perform modified BFS from s, see Section 3.2
22 foreach t, v ∈ V (G) do BC[v]← BC[v] + Inc[s, t] · σst(v)

23 return BC.

I Lemma 5 (?). Let G be a graph with feedback edge number k containing no degree-one
vertices. Then the cardinalities |V ≥3(G)| and |Pmax| are upper-bounded by O(min{n, k}).

I Lemma 6 (?). The set Pmax of all maximal induced paths of a graph with n vertices and m
edges can be computed in O(n+m) time.

Our algorithm processes the maximal induced paths one by one (see Lines 7 to 22). This
part of the algorithm requires its own pre- and postprocessing (see Lines 7 to 14 and Lines 21
to 22 respectively). In the preprocessing, we initialize tables used frequently in the main
part (of Section 3). The postprocessing computes the final betweenness centrality values
of each vertex as this computation is too time-consuming to be executed for each maximal
induced path. When explaining our basic ideas, we will first present the postprocessing as
this explains why certain values will be computed during the algorithm.

Recall that we want to compute
∑
s,t∈V (G) γ(s, t, v) for each v ∈ V (G) (see Equation (1)).

Using the following observations, we split Equation (1) into different parts:

I Observation 7. For s, t, v ∈ V (G) it holds that γ(s, t, v) = γ(t, s, v).

M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Niedermeier 36:7

I Observation 8 (?). Let G be a biconnected graph with at least one vertex of degree three.
Let v ∈ V (G). Then,∑

s,t∈V (G)

γ(s, t, v) =
∑

s∈V ≥3(G), t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(t, s, v)

+
∑

s∈V =2(Pmax
1), t∈V =2(Pmax

2)
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v) +
∑

s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

In the remaining graph, by Lemma 5, there are O(min{k, n}) vertices of degree at least
three and O(k) maximal induced paths. This implies that we can afford to run the modified
BFS (similar to Brandes’ algorithm) from each vertex s ∈ V ≥3(G) in O(min{k, n} · (n+k)) =
O(kn) time. This computes the first summand and, by Observation 7, also the second
summand in Observation 8. However, we cannot afford to run such a BFS from every vertex
of degree two. Thus we need to compute the third and fourth summand differently.

To this end, note that σst(v) is the only term in γ(s, t, v) that depends on v. Our goal
is then to precompute γ(s, t, v)/σst(v) = Pen[s] · Pen[t]/σst for as many vertices as possible.
Hence, we store precomputed values in a table Inc[·, ·] (see Lines 10, 18 and 20). Then, we
plug this factor into the next lemma which provides our postprocessing.

I Lemma 9 (?). Let s be a vertex and let f : V (G)2 7→ N be a function such that for
each u, v ∈ V (G) the value f(u, v) can be computed in O(τ) time. Then, one can com-
pute

∑
t∈V (G) f(s, t) · σst(v) for all v ∈ V overall in O(n · τ +m) time.

Our strategy is to start the algorithm behind Lemma 9 only from vertices in V ≥3(G) (see
Line 22). Since the term τ in the above lemma will be constant, we obtain a running time
of O(kn) for running this postprocessing for all vertices. The most intricate part will be to
precompute the factors in Inc[·, ·] (see Lines 18 and 20). We defer the details to Section 3.1.
In these parts, we need the tables W left and W right. These tables store values depending
on the maximal induced path a vertex is in. More precisely, for a vertex xi in a maximal
induced path Pmax = x0x1 . . . xq, we store inW left[xk] the sum of the Pen[·]-values of vertices
“left of” xk in Pmax; formally, W left[xk] =

∑k
i=1 Pen[xj]. Similarly, we have W right[xk] =∑q−1

i=k Pen[xk]. The reason for having these tables is easy to see: Assume for the vertex xk ∈
Pmax that the shortest paths to t /∈ V (Pmax) leave Pmax through x0. Then, it is equivalent
to just consider the shortest path(s) starting in x0 and simulate the vertices between xk
and x0 in Pmax by “temporarily increasing” Pen[x0] by W left[xk]. This is also the idea
behind the argument that we only need to increase the values Inc[·, ·] for the endpoints of
the maximal induced paths in Line 18.

This leaves us with the remaining part of the preprocessing: the computation of the
distances dG(s, t), the number of shortest paths σst, and Inc[s, t] for s ∈ V ≥3(G), t ∈ V (G)
(see Lines 7 to 10 in Algorithm 1). This can be done in O(kn) time as well:

I Lemma 10 (?). The initialization in the for-loop in Lines 7 to 10 of Algorithm 1 can be
done in O(kn) time.

Putting all parts together, we arrive at our main theorem (see Section 3.2 for the proof).

I Theorem 11. Betweenness Centrality can be solved in O(kn) time, where k is the
feedback edge number of the input graph.

ISAAC 2018

36:8 An Adaptive Version of Brandes’ Algorithm for Betweenness Centrality

3 Dealing with maximal induced paths

In this section, we focus on degree-two vertices contained in maximal induced paths. Recall
that the goal is to compute the betweenness centrality CB(v) (see Equation (1)) for all v ∈
V (G) in O(kn) time. In the end of this section, we finally prove Theorem 11.

Based on Observation 8 and Equation (1), we compute CB(v) in three steps. By starting
a modified BFS from vertices in V ≥3(G) similarly to Baglioni et al. [2] and Brandes [3], we
can compute the following term in O(kn) time:∑

s∈V ≥3(G), t∈V (G)

γ(t, s, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(s, t, v).

3.1 Paths with endpoints in maximal induced paths
In this subsection, we show how to compute the remaining two summands given in Observa-
tion 8. In the next subsection, we prove Theorem 11.

Paths with endpoints in different maximal induced paths. We now focus on shortest paths
between pairs of maximal induced paths Pmax

1 and Pmax
2 , and how to efficiently determine

how these paths affect the betweenness centrality of each vertex.

I Proposition 12 (?). In O(kn) time the following values can be computed for all v ∈ V (G):∑
s∈V =2(Pmax

1), t∈V =2(Pmax
2)

Pmax
1 6=Pmax

2 ∈Pmax

γ(s, t, v).

Recall that in the course of the algorithm, we first gather values in Inc[·, ·] and in the final
step we compute for each s, t ∈ V ≥3(G) the values Inc[s, t] · σst(v) in O(m) time (Lemma 9).
This postprocessing (see Lines 21 and 22 in Algorithm 1) takes O(kn) time.

In the proof of Proposition 12 (deferred to the full version), we consider two cases for
every pair Pmax

1 6= Pmax
2 ∈ Pmax of maximal induced paths: First, we look at how the

shortest paths between vertices in Pmax
1 and Pmax

2 affect the betweenness centrality of those
vertices that are not contained in the two maximal induced paths, and second, how they
affect the betweenness centrality of those vertices that are contained in the two maximal
induced paths.

Paths with endpoints in the same maximal induced paths. Subsequently, we look at
shortest paths starting and ending in a maximal induced path Pmax = x0 . . . xq and show
how to efficiently compute how these paths affect the betweenness centrality. Our goal is to
prove the following:

I Proposition 13. In O(kn) time the following values can be computed for all v ∈ V (G):∑
s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

As in Section 3.1, we first gather all increments to Inc[·, ·] and in the final step, we compute for
each s, t ∈ V ≥3(G) the values Inc[s, t] ·σst(v). We start with the following simple observation.

M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Niedermeier 36:9

I Observation 14. Let Pmax = x0 . . . xq, where x0, xq ∈ V ≥3(G) and xi ∈ V =2(G) for 1 ≤
i ≤ q − 1. Then

∑
s,t∈V =2(Pmax)

γ(s, t, v) =
∑

i,j∈[1,q−1]

γ(xi, xj , v) = 2 ·
q−1∑
i=1

q−1∑
j=i+1

γ(xi, xj , v).

For the sake of readability we set [xp, xr] := {xp, xp+1, . . . , xr}, p < r. We will distinguish
between two different cases that we then treat separately: Either v ∈ [xi, xj] or v ∈ V (G) \
[xi, xj]. We will show that both cases can be solved in overall O(q) time for Pmax. Doing this
for all maximal induced paths results in a running time ofO(

∑
Pmax∈Pmax V =2(Pmax)) ⊆ O(n).

We will distinguish between the two main cases in the calculations – all shortest xixj-paths
are fully contained in Pmax, or all shortest xixj-paths leave Pmax – and the corner case
that there are some shortest paths inside Pmax and some that partially leave it. Observe
that for any fixed pair i < j the distance between xi and xj is given by din = j − i if a
shortest path is contained in Pmax and by dout = i+ dG(x0, xq) + q − j if a shortest xixj-
path leaves Pmax. The corner case that there are shortest paths both inside and outside
of Pmax occurs when din = dout. In this case it holds that j − i = i + dG(x0, xq) + q − j
which is equivalent to

j = i+ dG(x0, xq) + q

2 , (2)

where j is an integer smaller than q. For convenience, we will use a notion of “mid-elements”
for a fixed starting vertex xi. We distinguish between the two cases that this mid-element has
a higher index in Pmax or a lower one. Formally, we say that i+mid = i+ (dG(x0, xq) + q)/2
and j−mid = j − (dG(x0, xq) + q)/2. We next analyze the factor σxixj

(v)/σxixj
. We also

distinguish between the cases v ∈ V (Pmax) and v /∈ V (Pmax). Observe that

σxixj (v)
σxixj

=



0, if dout < din ∧ v ∈ [xi, xj] or din < dout ∧ v /∈ [xi, xj];
1, if din < dout ∧ v ∈ [xi, xj];
1, if dout < din ∧ v /∈ [xi, xj] ∧ v ∈ V (Pmax);
σx0xq (v)
σx0xq

, if dout < din ∧ v /∈ V (Pmax);
1

σx0xq +1 , if din = dout ∧ v ∈ [xi, xj];
σx0xq

σx0xq +1 , if din = dout ∧ v /∈ [xi, xj] ∧ v ∈ V (Pmax);
σx0xq (v)
σx0xq +1 , if din = dout ∧ v /∈ V (Pmax).

(3)

The denominator σx0xq
+ 1 is correct since there are σx0xq

shortest paths from x0 to xq (and
therefore σx0xq shortest paths from xi to xj that leave Pmax) and one shortest path from xi
to xj within Pmax. Note that if there are shortest paths that are not contained in Pmax,
then dG(x0, xq) < q as we are in the case that 0 < i < j < q. Thus Pmax is not a shortest
path from x0 to xq.

We will now compute the value for all paths that only consist of vertices in Pmax, that is,
we will compute for each xk with i < k < j the term 2 ·

∑q−1
i=1

∑q−1
j=i+1 γ(xi, xj , xk) with a

dynamic program in O(q) time. Since i < k < j this can be simplified to

2 ·
∑

i∈[1,q−1]
i<k

∑
j∈[i+1,q−1]

k<j

γ(xi, xj , xk) = 2 ·
∑

i∈[1,k−1]

∑
j∈[k+1,q−1]

γ(xi, xj , xk).

I Lemma 15. For a fixed maximal induced path Pmax = x0x1 . . . xq, for all xk with 0 ≤ k ≤ q
we can compute 2 ·

∑
i∈[1,k−1]

∑
j∈[k+1,q−1] γ(xi, xj , xk) in O(q) time.

ISAAC 2018

36:10 An Adaptive Version of Brandes’ Algorithm for Betweenness Centrality

Proof. For the sake of readability we define

αxk
= 2 ·

∑
i∈[1,k−1]

∑
j∈[k+1,q−1]

γ(xi, xj , xk).

Note that i ≥ 1 and k > i and thus for x0 we have αx0 = 2
∑
i∈∅
∑
j∈[1,q−1] γ(xi, xj , x0) = 0.

This will be the base case of the dynamic program.
For every vertex xk with 1 ≤ k < q it holds that

αxk
= 2 ·

∑
i∈[1,k−1]

j∈[k+1,q−1]

γ(xi, xj , xk) = 2 ·
∑

i∈[1,k−2]
j∈[k+1,q−1]

γ(xi, xj , xk)+2 ·
∑

j∈[k+1,q−1]

γ(xk−1, xj , xk).

Similarly, for xk with 1 < k ≤ q it holds that

αxk−1 = 2·
∑

i∈[1,k−2]
j∈[k,q−1]

γ(xi, xj , xk−1) = 2·
∑

i∈[1,k−2]
j∈[k+1,q−1]

γ(xi, xj , xk−1)+2·
∑

i∈[1,k−2]

γ(xi, xk, xk−1).

Next, observe that any path from xi to xj with i ≤ k − 2 and j ≥ k + 1 that contains xk
also contains xk−1 and vice versa. Substituting this into the equations above yields

αxk
= αxk−1 + 2 ·

∑
j∈[k+1,q−1]

γ(xk−1, xj , xk)− 2 ·
∑

i∈[1,k−2]

γ(xi, xk, xk−1).

Lastly, we prove that
∑
j∈[k+1,q−1] γ(xk−1, xj , xk) and 2 ·

∑
i∈[1,k−2] γ(xi, xk, xk−1) can

be computed in constant time once W left and W right are precomputed (see Lines 11 to 14 in
Algorithm 1). These tables can be computed in O(q) time as well. For convenience we say
that γ(xi, xj , xk) = 0 if i or j are not integral or are not in [1, q − 1] and define W [xi, xj] =∑j
`=i Pen[x`] = W left[xj]−W left[xi−1]. Then we can use Equations (2) and (3) to show that∑

j∈[k+1,q−1]

γ(xk−1, xj , xk) =
∑

j∈[k+1,q−1]

Pen[xk−1] · Pen[xj] ·
σxk−1xj

(xk)
σxk−1xj

= γ(xk−1, x(k−1)+
mid
, xk) +

∑
j∈[k+1,min{d(k−1)+

mide−1,q−1}]

Pen[xk−1] · Pen[xj]

=


Pen[xk−1] ·W [xk+1, xq−1], if (k − 1)+

mid ≥ q;
Pen[xk−1] ·W [xk+1, xd(k−1)+

mide−1], if (k − 1)+
mid < q ∧ (k − 1)+

mid /∈ Z;
Pen[xk−1] · (Pen[x(k−1)+

mid
] · 1

σx0,xq +1 +W [xk+1, x(k−1)+
mid−1]), otherwise.

Herein we use (k − 1)+
mid /∈ Z to say that (k − 1)+

mid is not integral. Analogously,∑
i∈[1,k−2]

γ(xi, xk, xk−1) =
∑

i∈[1,k−2]

Pen[xi] · Pen[xk] · σxixk
(xk−1)

σxixk

= γ(xk−1, xk−
mid
, xk−1) +

∑
i∈[max{1,b(k−1)−

midc+1},k−2]

Pen[xi] · Pen[xk]

=


Pen[xk] ·W [x1, xk−2], if k−mid < 1;
Pen[xk] ·W [xbk−

midc+1, xk−2], if k−mid ≥ 1 ∧ k−mid /∈ Z;
Pen[xk] · (Pen[xk−

mid
] · 1

σx0,xa +1 +W [x1, xk−
mid+1]), otherwise.

This completes the proof since (k − 1)+
mid, k

−
mid, every entry in W [·], and all other variables

in the equation above can be computed in constant time once W left[·] is computed. Thus,
computing αxi for each vertex xi in Pmax takes constant time. As there are q vertices
in Pmax, the computations for the whole maximal induced path Pmax take O(q) time. J

M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Niedermeier 36:11

We still need to compute the value for all paths that partially leave Pmax. Note
that Inc[s, t] · σst(v) will be computed in the postprocessing step (see Lines 21 and 22
in Algorithm 1).

I Lemma 16 (?). Let Pmax = x0x1 . . . xq ∈ Pmax. Then, assuming that Inc[s, t] · σst(v)
can be computed in constant time for some s, t ∈ V ≥3(G), for v ∈ V (G) \ [xi, xj] one can
compute

∑
i∈[1,q−1]

∑
j∈[i+1,q−1] γ(xi, xj , v) in O(q) time.

3.2 Postprocessing and algorithm summary
We are now ready to combine all parts and prove our main theorem.

I Theorem 11 (Restated). Betweenness Centrality can be solved in O(kn) time, where k
is the feedback edge number of the input graph.

Proof. We show that in the Lines 7 to 22 Algorithm 1 computes the value

CB(v) =
∑

s,t∈V (G)

Pen[s] · Pen[t] · σst(v)
σst

=
∑

s,t∈V (G)

γ(s, t, v)

for all v ∈ V (G) in O(kn) time. We use Observation 8 to split the sum as follows:∑
s,t∈V (G)

γ(s, t, v) =
∑

s∈V ≥3(G), t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G), t∈V ≥3(G)

γ(t, s, v)

+
∑

s∈V =2(Pmax
1), t∈V =2(Pmax

2)
Pmax

1 6=Pmax
2 ∈Pmax

γ(s, t, v) +
∑

s,t∈V =2(Pmax)
Pmax∈Pmax

γ(s, t, v).

By Propositions 12 and 13, we can compute the third and fourth summand in O(kn)
time provided that Inc[s, t] · σst(v) is computed for every s, t ∈ V ≥3(G) and v ∈ V (G) in
a postprocessing step (see Lines 15 to 20). We incorporate this postprocessing into the
computation of the first two summands in the equation, that is, we next show that for
all v ∈ V (G) the following value can be computed in O(kn) time:∑

s∈V ≥3(G)
t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G)
t∈V ≥3(G)

γ(s, t, v) +
∑

s∈V ≥3(G)
t∈V ≥3(G)

Inc[s, t] · σst(v).

To this end, observe that∑
s∈V ≥3(G)
t∈V (G)

γ(s, t, v) +
∑

s∈V =2(G)
t∈V ≥3(G)

γ(s, t, v) +
∑

s∈V ≥3(G)
t∈V ≥3(G)

Inc[s, t] · σst(v)

=
∑

s∈V ≥3(G)
t∈V (G)

Pen[s] · Pen[t] · σst(v)
σst

+
∑

s∈V ≥3(G)
t∈V =2(G)

Pen[s] · Pen[t] · σst(v)
σst

+
∑

s∈V ≥3(G)
t∈V ≥3(G)

Inc[s, t] · σst(v)

=
∑

s∈V ≥3(G)

(
(2 ·

∑
t∈V =2(G)

Pen[s] Pen[t]σst(v)
σst

) +
∑
t∈V ≥3

σst(v)(Pen[s] Pen[t]
σst

+ Inc[s, t])
)
.

Note that we initialize Inc[s, t] in Lines 10 and 9 in Algorithm 1 with 2 · Pen[s] Pen[t]/σst
and Pen[s] Pen[t]/σst respectively. Thus we can use the algorithm described in Lemma 9 for
each vertex s ∈ V ≥3(G) with f(s, t) = Inc[s, t].

ISAAC 2018

36:12 An Adaptive Version of Brandes’ Algorithm for Betweenness Centrality

Since the values Pen[s], Pen[t], σst and Inc[s, t] can all be looked up in constant time,
the algorithm takes O(n+m) time to run a modified BFS from some vertex s (see Lines 21
and 22). By Lemma 5 there are O(min{k, n}) vertices of degree at least three. The algorithm
therefore take O(min{n, k} ·m) = O(min{n, k} · (n+ k)) = O(kn) time to run the modified
BFS from all vertices of degree at least three. J

4 Conclusion

Lifting the processing of degree-one vertices due to Baglioni et al. [2, 13] to a technically
much more demanding processing of degree-two vertices, we derived a new algorithm for
Betweenness Centrality running in O(kn) worst-case time (k is the feedback edge
number of the input graph). Our work focuses on algorithm theory and contributes to the
field of adaptive algorithm design [5] as well as to the recent “FPT in P” program [7]. It
would be of high interest to identify structural parameterizations “beyond” the feedback
edge number that might help to get more results in the spirit of our work. In particular,
extending our algorithmic approach with the treatment of twin vertices [12, 13] might help to
get a running time bound involving the vertex cover number of the graph. From a practical
viewpoint it remains to be investigated for which classes of real-world networks our (more
complicated) algorithmic approach yields faster algorithms in empirical studies.

References

1 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic Equiva-
lences Between Graph Centrality Problems, APSP and Diameter. In Proc. of 26th SODA,
pages 1681–1697. SIAM, 2015.

2 Miriam Baglioni, Filippo Geraci, Marco Pellegrini, and Ernesto Lastres. Fast exact com-
putation of betweenness centrality in social networks. In Proc. of 4th ASONAM, pages
450–456. IEEE Computer Society, 2012.

3 Ulrik Brandes. A faster algorithm for betweenness centrality. J Math Sociol, 25(2):163–177,
2001.

4 Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory Social Network Anal-
ysis with Pajek. Cambridge University Press, 2011.

5 Vladimir Estivill-Castro and Derick Wood. A Survey of Adaptive Sorting Algorithms. ACM
Comput Surv, 24(4):441–476, 1992.

6 Linton Freeman. A set of measures of centrality based on betweenness. Sociometry, 40:35–
41, 1977.

7 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. Theor Comput
Sci, 689:67–95, 2017.

8 David S. Johnson. The genealogy of theoretical computer science: A preliminary report.
ACM SIGACT News, 16(2):36–49, 1984.

9 Mark E. J. Newman. Who Is the Best Connected Scientist? A Study of Scientific Coau-
thorship Networks. In Proc. of 23rd CNLS, pages 337–370. Springer, 2004.

10 André Nichterlein, Rolf Niedermeier, Johannes Uhlmann, and Mathias Weller. On tractable
cases of Target Set Selection. SNAM, 3(2):233–256, 2013.

11 Kim Norlen, Gabriel Lucas, Michael Gebbie, and John Chuang. EVA: Extraction, visual-
ization and analysis of the telecommunications and media ownership network. In Proc. of
14th ITS, 2002.

M. Bentert, A. Dittmann, L. Kellerhals, A. Nichterlein, and R. Niedermeier 36:13

12 Rami Puzis, Yuval Elovici, Polina Zilberman, Shlomi Dolev, and Ulrik Brandes. Topology
manipulations for speeding betweenness centrality computation. J Comp Net, 3(1):84–112,
2015.

13 Ahmet Erdem Sariyüce, Kamer Kaya, Erik Saule, and Ümit V. Çatalyürek. Graph Manipu-
lations for Fast Centrality Computation. ACM Trans Knowl Discov Data, 11(3):26:1–26:25,
2017.

14 Flavio Vella, Massimo Bernaschi, and Giancarlo Carbone. Dynamic Merging of Frontiers
for Accelerating the Evaluation of Betweenness Centrality. ACM JEA, 23(1):1.4:1–1.4:19,
2018.

15 Wei Wang and Choon Yik Tang. Distributed computation of node and edge betweenness
on tree graphs. In Proc. of 52nd CDC, pages 43–48. IEEE, 2013.

ISAAC 2018

	Introduction
	Algorithm overview
	Dealing with maximal induced paths
	Paths with endpoints in maximal induced paths
	Postprocessing and algorithm summary

	Conclusion

