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Abstract
Bisimulation is a fundamental concept in the classical concurrency theory for comparing the
behaviour of nondeterministic processes. It admits elegant characterisations from various per-
spectives such as fixed point theory, modal logics, game theory, coalgebras etc. In this paper,
we review some key ideas used in the formulations and characterisations of reasonable notions of
bisimulations for both probabilistic and quantum processes. To some extent the transition from
probabilistic to quantum concurrency theory is smooth and natural. However, new ideas need
also to be introduced. We have not yet reached the stage of formally verifying quantum commu-
nication protocols and quantum algorithms using bisimulations implemented by automatic tools.
We discuss some recent efforts in this direction.
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1 Introduction

Bisimulation [39, 37] is a fundamental concept in the classical concurrency theory as it admits
beautiful characterisations in terms of fixed points, modal logics, co-algebras, pseudometrics,
games, decision algorithms, etc. Its generalisation in the probabilistic setting is initiated
by Larsen and Skou in [36] and has subsequently been widely investigated in probabilistic
concurrency theory. One of the main contributions of [36] is the introduction of a lifting
operation that converts a relation between states to a relation between distributions over
states. Later on, the lifting operation is shown to be closely related to some prominent
concepts in mathematics such as the Kantorovich metric [33, 45] and the maximum network
flow problem [1]; the latter is crucial for designing algorithms to check if two states are
bisimilar.

The probabilistic bisimulation nicely defined in [36] has natural characterisations by
probabilistic extensions of Hennessy-Milner logic [28]; see e.g. [36, 14, 15, 40, 10, 30, 26, 12, 4].
Most characterisations employ some modalities indexed with numbers. A typical modal
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2:2 Bisimulations for Probabilistic and Quantum Processes

formula, dated back to [36], is 〈a〉pφ, where p is a probability value. A state s satisfies this
formula if the probability that s can make an a-labelled transition to the set of states satisfying
φ exceeds p. In [44] van Breugel et al. generalise the characterisation of [36] to labelled
Markov processes, i.e. reactive probabilistic processes [36, 46] with continuous state spaces,
and surprisingly, without using any modality indexed with numbers. Usually, the simpler
the logical characterisation, the more difficult its completeness proof, since constructing
distinguishing formulae for non-bisimilar states with fewer modalities is more challenging.
Van Breugel et al. prove such an elegant result by using some advanced machinery such
as the Lawson topology on probabilistic powerdomains [31] and Banach algebras. However,
if we confine ourselves to discrete rather than continuous state spaces, as in e.g. [36], the
characterisation result given in [44] has a very elementary proof [7].

Since probabilistic behaviour is prevalent in quantum computation, it is natural to invest-
igate how a quantum concurrency theory can be built upon the probabilistic concurrency
theory. Notice that the operational semantics of many quantum systems can be defined in
terms of probabilistic labelled transition systems, which allows us to define quantum bisimu-
lations in a very intuitive way by extending probabilstic bisimulations with a requirement
on demanding equal environments when comparing two quantum processes. However, to
check quantum bisimulations, we need to appeal to the instantiation of quantum variables
by quantum systems. What’s worse, to check whether or not two quantum processes are
bisimilar, we need to consider arbitrarily chosen quantum states, which appears infeasible
in practice because quantum states constitute a continuum. Fortunately, it is possible to
overcome this difficulty by introducing a symbolic semantics and its associated symbolic
quantum bisimulations [20] that are equivalent to the usual concrete bisimulations. This
opens the door to design effective algorithms to check quantum bisimulations.

A distinctive feature of quantum computation is entailed by the no-cloning theorem
in quantum mechanics. Namely, quantum resources are linear from a type-theoretic point
of view. It is then particularly meaningful to study linear contextual equivalence, which
is a special form of contextual equivalence as the behaviours of programs are observed by
executing them only once. In [8], it is shown that for higher-order quantum programs, linear
contextual equivalence can be precisely captured by a distribution-based bisimilarity, which
is weaker than the usual state-based bisimilarity. Of course, distribution-based bisimulations
can also be defined for probabilistic processes, but in the quantum setting they become a
more important coinductive proof technique.

The rest of the paper is structured as follows. In Section 2, we review the formal model
of probabilistic labelled transition systems, the lifting operation, some of its equivalent
formulations, state-based and distribution-based bisimulations. In Section 3 we introduce a
quantum process algebra, discuss state-based and distribution-based quantum bisimulations,
and symbolic bisimulations. Finally, we conclude in Section 4.

2 Probabilistic Bisimulation

In this section, we introduce the model of probabilistic labelled transition systems, the key
concept of lifting operation, the state-based and distribution-based bisimulations.

2.1 Probabilistic Labelled Transition Systems
Let S be a countable set. A (discrete) probability (sub)distribution over set S is a function
∆ : S → [0, 1] with size |∆| =

∑
s∈S ∆(s) ≤ 1. It is a (full) distribution if |∆| = 1. Its

support, written d∆e, is the set {s ∈ S | ∆(s) > 0}. Let Dsub(S) and D(S) denote the set of
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Figure 1 Example pLTSs.

all subdistributions and distributions over S, respectively. We use ε to stand for the empty
subdistribution, that is ε(s) = 0 for any s ∈ S. We write s for the point distribution for
state s, satisfying s(t) = 1 if t = s, and 0 otherwise. If pi ≥ 0 and ∆i is a distribution for
each i in some finite index set I, then

∑
i∈I pi ·∆i is given by

(
∑
i∈I

pi ·∆i)(s) =
∑
i∈I

pi ·∆i(s) .

If
∑
i∈I pi = 1 then this is easily seen to be a distribution in D(S).

I Definition 1. A probabilistic labelled transition system (pLTS) is defined as a triple
〈S,A,→〉, where S is a set of states, A is a set of actions, and the transition relation → is a
subset of S ×A×D(S).

A non-probabilistic labelled transition system (LTS) may be viewed as a degenerate pLTS
– one in which only point distributions are used. We often write s α−→ ∆ in place of
(s, α,∆) ∈→.

In order to visualise pLTSs, we often draw them as directed graphs. Given that in a
pLTS transitions go from states to distributions, we need to introduce additional edges to
connect distributions back to states, thereby obtaining a bipartite graph. States are therefore
represented by nodes of the form • and distributions by nodes of the form ◦. For any state s
and distribution ∆ with s α−→ ∆ we draw an edge from s to ∆, labelled with α. Consequently,
the edges leaving a •-node are all labelled with actions from A. For any distribution ∆
and state s in d∆e, the support of ∆, we draw an edge from ∆ to s, labelled with ∆(s).
Consequently, the edges leaving a ◦-node are labelled with positive real numbers that sum to
1. Sometimes we partially unfold this graph by drawing the same nodes multiple times; in
doing so, all outgoing edges of a given instance of a node are always drawn, but not necessarily
all incoming edges. Edges labelled by probability 1 occur so frequently that it makes sense
to omit them, together with the associated nodes ◦ representing point distributions.

Two example pLTSs are described this way in Figure 1, where diagram (b) depicts the
initial part of the pLTS obtained by unfolding the one in diagram (a).
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2:4 Bisimulations for Probabilistic and Quantum Processes

For each state s, the outgoing transition s
α−→ ∆ represents the nondeterministic

alternatives available in the state s. The nondeterministic choices provided by s are supposed
to be resolved by the environment, which is often formalised by a scheduler or an adversary.
On the other hand, the probabilistic choices in the underlying distribution ∆ are made by the
system itself. Therefore, for each state s, the environment chooses some outgoing transition
s

α−→ ∆. Then the action α is performed, the system resolves the probabilistic choice, and
subsequently with probability ∆(s′) the system reaches state s′.

If we impose the constraint that for any state s and action α at most one outgoing
transition from s is labelled α, then we obtain the special class of pLTSs called reactive (or
deterministic) pLTSs that are the probabilistic counterpart to deterministic LTSs. Formally,
a pLTS is reactive if for each s ∈ S, α ∈ A we have that s α−→ ∆ and s α−→ ∆′ imply ∆ = ∆′.

2.2 Lifting Relations
In the probabilistic setting, formal systems are usually modelled as distributions over states.
To compare two systems involves the comparison of two distributions. So we need a way of
lifting relations on states to relations on distributions. This is used, for example, to define a
notion of probabilistic bisimulation as we shall see soon. A few approaches of lifting relations
have appeared in the literature. We will take the one from [11], and show its coincidence
with two other approaches.

I Definition 2. Given two sets S and T and a binary relation R ⊆ S×T , the lifted relation
R† ⊆ D(S)×D(T ) is the smallest relation that satisfies:
(1) s R t implies s R† t
(2) (Linearity) ∆i R† Θi for all i ∈ I implies (

∑
i∈I pi ·∆i) R† (

∑
i∈I pi ·Θi), where I is a

finite index set and
∑
i∈I pi = 1.

There are alternative presentations of Definition 2. One example is given below.

I Proposition 3. Let ∆ and Θ be two distributions over S and T , respectively, and R⊆ S×T .
Then ∆ R† Θ if and only if there are two collections of states, {si}i∈I and {ti}i∈I , and a
collection of probabilities {pi}i∈I , for some finite index set I, such that

∑
i∈I pi = 1 and ∆,Θ

can be decomposed as follows:
(1) ∆ =

∑
i∈I pi · si

(2) Θ =
∑
i∈I pi · ti

(3) For each i ∈ I we have si R ti.

From Definition 2, the next two propositions follow. In fact, they are sometimes used in the
literature as definitions of lifting relations instead of being properties (see e.g. [43, 36, 13, 41]).

I Proposition 4.
(1) Let ∆ and Θ be distributions over S and T , respectively. Then ∆ R† Θ if and only if there

is a probability distribution on S × T , with support a subset of R, such that ∆ and Θ are
its marginal distributions. In other words, there exists a weight function w : S×T → [0, 1]
such that
a. ∀s ∈ S :

∑
t∈T w(s, t) = ∆(s)

b. ∀t ∈ T :
∑
s∈S w(s, t) = Θ(t)

c. ∀(s, t) ∈ S × T : w(s, t) > 0⇒ s R t.
(2) Let ∆ and Θ be distributions over S and R be an equivalence relation. Then ∆ R† Θ if

and only if ∆(C) = Θ(C) for all equivalence classes C ∈ S/R, where ∆(C) stands for
the accumulation probability

∑
s∈C ∆(s).
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Given a binary relation R⊆ S × T and a set S′ ⊆ S, we write R(S′) for the set
{t ∈ T | ∃s ∈ S′ : s R t}. A set S′ is R-closed if R(S′) ⊆ S′.

I Proposition 5. Let ∆ and Θ be distributions over finite sets S and T , respectively.
(1) ∆ R† Θ if and only if ∆(S′) ≤ Θ(R(S′)) for all S′ ⊆ S.
(2) If R is a preorder, then ∆ R† Θ if and only if ∆(S′) ≤ Θ(S′) for each R-closed set

S′ ⊆ S.

Besides the above interesting properties, the lifting operation has an intrinsic connection
with some important concepts in mathematics, notably the Kantorovich metric [33]. For
example, it turns out that our lifting of binary relations from states to distributions nicely
corresponds to the lifting of metrics from states to distributions by using the Kantorovich
metric. In addition, the lifting operation is closely related to the maximum flow problem in
optimisation theory. This observation initially made by Baier et al. is crucial for designing
decision algorithms for probabilistic bisimulations and simulations [1, 48].

2.3 Probabilistic Bisimulation
With a solid base of the lifting operation, we can proceed to define a probabilistic version of
bisimulation. Let s and t be two states in a pLTS. We say t can simulate the behaviour of s
if whenever the latter can exhibit some action, say a, and lead to distribution ∆ then the
former can also perform a and lead to a distribution, say Θ, which then in turn can mimic
∆ in successor states. We are interested in defining a relation between two states, but it is
expressed by invoking a relation between two distributions. To formalise the mimicking of
one distribution by the other, we make use of the lifting operation investigated in Section 2.2.

I Definition 6. A relation R⊆ S × S is a probabilistic simulation if s R t implies
if s a−→ ∆ then there exists some Θ such that t a−→ Θ and ∆ R† Θ.

If both R and R−1 are probabilistic simulations, then R is a probabilistic bisimulation.
The largest probabilistic bisimulation, denoted by ∼s, is called (state-based) probabilistic
bisimilarity.

Let’s look at the two pLTSs in Figure 1. It is easy to check that the top node in diagram (a)
and that in diagram (b) are related by ∼s.

Various characterisations of probabilistic bisimilarity by probabilistic versions of Hennessy-
Milner logic [28] have appeared in the literature. In particular, if we confine ourselves to
reactive pLTSs, then there are neat logical characterisations even without negation. For
example, Desharnais et al. [14] uses a logic with the following grammar

ϕ ::= > | ϕ ∧ ϕ | 〈a〉qϕ

where q is any rational number in the unit interval [0, 1] and a ranges over the fixed set of
labels of a given reactive pLTS. The formula > can always be satisfied. The formula ϕ ∧ ϕ
stands for the usual conjunction. The formula 〈a〉qϕ is satisfied by state s if the probability
that s can make an a-labelled transition to the set of states satisfying ϕ exceeds p. The
characterisation result of [14] holds for reactive pLTSs with continuous state spaces. For
reactive pLTSs with countable state spaces, a simpler proof of that result is given in [12].
Most other characterisations also employ modalities indexed with numbers. This fits in our
intuition: if two states are not bisimilar, then they may satisfy a property with different
probabilities, so by fiddling with the numbers we can construct a formula that can tell apart
the two states. The only exception is the one given in [44], which shows that, for reactive
probabilistic processes, probabilistic bisimilarity can be characterised by a surprisingly simple
logic.

CONCUR 2018



2:6 Bisimulations for Probabilistic and Quantum Processes

Let L be the set of formulae defined by the grammar

φ ::= > | 〈φ, φ〉 | 〈a〉φ

where a ranges over the set of labels of a reactive pLTS. A state s satisfies a formula φ with
certain probability, given by Pr(s, φ) defined as follows:

Pr(s,>) = 1
Pr(s, 〈φ1, φ2〉) = Pr(s, φ1) · Pr(s, φ2)

Pr(s, 〈a〉φ) =
{ ∑

s′∈S ∆(s′) · Pr(s′, φ) if s a−→ ∆
0 otherwise.

We call 〈φ1, φ2〉 a conjunction of two formulae φ1 and φ2, which models the copying capacity of
probabilistic testing originally considered in [36]. Note that conjunction is given the arithmetic
interpretation as multiplication, which differs from many other logical characterisations of
probabilistic bisimilarity. The formula 〈a〉φ measures the probability that a state performs
action a and then its successor states sastisfy φ.

The logic L induces a natural logical equivalence, written =L, by letting s1 =L s2 if
Pr(s1, φ) = Pr(s2, φ) for any φ ∈ L and states s1 and s2. In [44] van Breugel et al. consider
labelled Markov processes with continuous state spaces and they show that probabilistic
bisimilarity coincides with the above notion of logical equivalence. Their proof involves
advanced machinery such as the Lawson topology on probabilistic powerdomains [31] and
Banach algebras. If we confine ourselves to finite-state reactive pLTSs, it is possible to avoid
all the advanced machinery and give an elementary proof of the coincidence of ∼s with =L,
as recently demonstrated in [7].

2.4 Distribution-Based Bisimulation
In Definition 6 we compare the behaviour of two states, and then resort to the lifting
operation when talking about the simulation of one distribution by another. Alternatively, it
is possible to consider subdistributions as first-class citizens and directly define a relation that
compares subdistributions. In order to do so, we first define a transition relation between
subdistributions.

I Definition 7. With a slight abuse of notation, we also use the notation a−→ to stand for
the transition relation between subdistributions, which is the smallest relation satisfying the
following three rules:
(1) if s a−→ ∆ then s a−→ ∆;
(2) if s 6 a−→ then s a−→ ε;
(3) if ∆i

a−→ Θi for all i ∈ I then (
∑
i∈I pi ·∆i)

a−→ (
∑
i∈I pi ·Θi), where I is a finite index

set and
∑
i∈I pi ≤ 1.

Note that if ∆ a−→ ∆′ then some (not necessarily all) states in the support of ∆ can perform
action a. Those states that cannot enable action a contribute nothing for ∆′.

I Definition 8. Let ∼d⊆ Dsub(S)×Dsub(S) be the largest symmetric relation such that if
∆ ∼d Θ then |∆| = |Θ| and ∆ a−→ ∆′ implies the existence of some Θ′ such that Θ a−→ Θ′
and ∆′ ∼d Θ′.

The distribution-based bisimilarity ∼d is shown in [6] as a sound and complete coinductive
proof technique for linear contextual equivalence, a natural extensional behavioural equival-
ence for functional programs. In the literature there are several proposals of distribution-based
bisimilarities [23, 26, 9, 17, 29], and some typical ones are compared in [16].
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3 Quantum Bisimulation

In this section, we will see that quantum bisimulations can be obtained by extending
probabilistic bisimulations in a smooth way.

As is well known, it is very difficult to guarantee the correctness of classical communication
protocols at the design stage, and some simple protocols were eventually found to have
fundamental flaws. One expects that the design of complex quantum protocols is at least
as error-prone, if not more, than in the classical case. Bisimulation and its associated
coinduction proof technique have also been explored in quantum concurrency theory.

Due to the presence of measurements, quantum processes exhibit probabilistic behaviour.
It is then natural to define the operational semantics of a quantum process in turns of a
pLTS, on which the probabilistic bisimulations we discussed before, with some modifications,
may play a role in providing a coinduction proof technique for quantum processes. Note that
in the quantum setting, bisimulations are defined to be relations over configurations that
are pairs of a quantum process and a density operator describing the state of environment
quantum systems. Below we illustrate this idea in the framework of a quantum process
algebra.

3.1 Quantum Bisimulation for qCCS
We first briefly review the syntax and semantics of a quantum extension of value-passing
CCS [37, 25], called qCCS, studied in [18, 47, 19, 21], and the definition of open bisimulation
between qCCS processes presented in [5]; the idea can be applied in other quantum process
algebras such as CQP [24] and QPAlg [32].

We assume three types of data in qCCS: Bool for booleans, real numbers Real for classical
data, and qubits Qbt for quantum data. Let cVar , ranged over by x, y, . . . , be the set of
classical variables, and qVar , ranged over by q, r, . . . , the set of quantum variables. It is
assumed that cVar and qVar are both countably infinite. We assume a set Exp of classical
data expressions over Real, which includes cVar as a subset and is ranged over by e, e′, . . . ,
and a set of boolean-valued expressions BExp, ranged over by b, b′, . . . . We further assume
that only classical variables can occur free in both data expressions and boolean expressions.
Let cChan be the set of classical channel names, ranged over by c, d, . . . , and qChan the
set of quantum channel names, ranged over by c, d, . . . . We often abbreviate a sequence of
distinct variables {q1, . . . , qn} into q̃.

Based on these notations, the syntax of qCCS terms can be given by the Backus-Naur
form

U ::= nil | K(ẽ, q̃) | α.U | U + U | U‖U | if b then U

α ::= τ | c?x | c!e | c?q | c!q | E [q̃] | M [q̃;x]

where c ∈ cChan, x ∈ cVar , c ∈ qChan, q ∈ qVar , q̃ ⊆ qVar , e ∈ Exp, ẽ ⊆ Exp, τ is the silent
action, b ∈ BExp, K(x̃, q̃) is a process constant with a defining equation K(x̃, q̃) def= U , and
E and M are respectively a trace-preserving super-operator and a non-degenerate projective
measurement applying on the Hilbert space associated with the systems q̃. In this paper, we
assume all super-operators are completely positive.

The notion of free classical variables in quantum processes, denoted by fv(·), can be
defined in the usual way with the only modification that the quantum measurement prefix
M [q̃;x] has binding power on x. A quantum process term U is closed if fv(U) = ∅. We let U ,
ranged over by U, V, · · · , be the set of all qCCS terms, and P, ranged over by P,Q, · · · , the
set of closed terms.

CONCUR 2018



2:8 Bisimulations for Probabilistic and Quantum Processes

The process constructs we give here are quite similar to those in classical CCS, and they
also have similar intuitive meanings: nil stands for a process which does not perform any
action; c?x and c!e are respectively classical input and classical output, while c?q and c!q
are their quantum counterparts. E [q̃] denotes the action of performing the super-operator E
on the qubits q̃ while M [q̃;x] measures the qubits q̃ according to M and the measurement
outcome is substituted for the classical variable x. The binary sum + models nondeterministic
choice: U + V behaves like either U or V depending on the choice of the environment. ‖
denotes the usual parallel composition. Finally, if b then U is the standard conditional
choice where U can be executed only if b is tt.

We now turn to the operational semantics of qCCS. For each quantum variable q ∈ qVar ,
we assume a 2-dimensional Hilbert space Hq to be the state space of the q-system. For any
S ⊆ qVar , we denote HS =

⊗
q∈S Hq. In particular, H = HqVar is the state space of the

whole environment consisting of all the quantum variables. Note that H is a countably-infinite
dimensional Hilbert space.

Suppose P is a closed quantum process. A pair of the form 〈P, ρ〉 is called a configuration,
where ρ ∈ D(H) is a density operator on H (As H is infinite dimensional, ρ should be
understood as a density operator on some finite dimensional subspace of H which contains
Hqv(P )). The set of configurations is denoted by Con, and ranged over by C,D, · · · . Let

Act = {τ} ∪ {c?v, c!v | c ∈ cChan, v ∈ Real} ∪ {c?r, c!r | c ∈ qChan, r ∈ qVar}.

Let D(Con), ranged over by ∆,Θ, · · · , be the set of all finite-supported probabilistic
distributions over Con. Then the operational semantics of qCCS can be given by the pLTS
〈Con,Act,−→〉, where −→ ⊆ Con×Act×D(Con) is the smallest relation satisfying some
inference rules. Here we select two rules related to super-operator application and quantum
measurements; the others can be found in [5].

(Oper)

〈E [q̃].P, ρ〉 τ−→ 〈P, Eq̃(ρ)〉

(Meas)

M =
∑
i∈I λiE

i pi = tr(Eiq̃ρ)
〈M [q̃;x].P, ρ〉 τ−→

∑
i∈I pi〈P [λi/x], Ei

q̃
ρEi

q̃
/pi〉

In rule (Meas), Eiq̃ denotes the operator Ei acting on the quantum systems q̃ and tr(Eiq̃ρ)
stands for the trace of Eiq̃ρ. This rule tells us that a measurement on the quantum system q̃

entails a probabilistic transition; each candidate configuration 〈P [λi/x], Eiq̃ρEiq̃/pi〉 occurs
with probability tr(Eiq̃ρ).

Let C = 〈P, ρ〉. We use the notation qv(C) := qv(P ) for free quantum variables and
env(C) := trqv(P )(ρ) for partial traces. Let ∆ =

∑
i∈I pi · 〈Pi, ρi〉. We write E(∆) for the

distribution
∑
i∈I pi · 〈Pi, E(ρi)〉. In addition, we let qv(∆) :=

⋃
i∈I qv(Pi) and env(∆) :=∑

i∈I pi · trqv(Pi)(ρi).

I Definition 9. A symmetric relation R ⊆ Con× Con is called an open bisimulation if for
any C,D ∈ Con, C R D implies that
(1) qv(C) = qv(D), and env(C) = env(D),
(2) for any trace-preserving super-operator E acting onH

qv(C) (Again, E should be understood
as a super-operator on some finite dimensional subspace of H

qv(C)), whenever E(C) α−→ ∆,
there exists Θ such that E(D) α−→ Θ and ∆ R† Θ.

Two quantum configurations C and D are open bisimilar, denoted by C ∼o D, if there exists
an open bisimulation R such that C R D.

Here we are using exactly the same lifting operation as that in the probabilistic case
(cf. Definition 2). The above definition is inspired by the work of Sangiorgi [42], where a
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〈Q, ρ〉

τ

τ

〈P, ρ〉

❄

〈nil, |0〉q〈0| ⊗ trq(ρ)〉 〈nil, |0〉q〈0| ⊗ trq(ρ)〉
❄

❄

〈Q0, |0〉q〈0| ⊗ trq(ρ)〉 〈Q1, |1〉q〈1| ⊗ trq(ρ)〉

τ

〈nil, |0〉q〈0| ⊗ trq(ρ)〉
❄

τ

p1p0

❄

〈I[q].nil, |0〉q〈0| ⊗ trq(ρ)〉

τ

Figure 2 pLTSs for the two ways of setting a quantum system to |0〉.

notion of bisimulation is defined for the π-calculus [38, 42] by treating name instantiation
in an “open” style (name instantiation happens before any transition). Here we deal with
super-operator application in an “open” style, but the instantiation of variables can be in an
“early” style (variables are instantiated when input actions are performed). For example, the
operational semantics given in [5] is essentially an early semantics.

To illustrate the operational semantics and open bisimulation presented in this section,
we give a simple example.

I Example 10. This example shows two alternative ways of setting a quantum system to
the pure state |0〉. Let P def= Set0[q].I[q].nil and

Q
def= M0,1[q;x].(if x = 0 then I[q].nil + if x = 1 then X [q].nil),

where Set0 = {|0〉〈0|, |0〉〈1|},M0,1 is the 1-qubit measurement according to the computational
basis {|0〉, |1〉}, I is the identity super-operator, and X is the Pauli-X super-operator. For
any ρ ∈ D(H), the pLTSs rooted by 〈P, ρ〉 and 〈Q, ρ〉 respectively are depicted in Figure 2
where

Q0
def= if 0 = 0 then I[q].nil + if 0 = 1 then X [q].nil,

Q1
def= if 1 = 0 then I[q].nil + if 1 = 1 then X [q].nil,

and pi = tr(|i〉〈i|q · ρ). Note that both P and Q are free of quantum input. We can show
P ∼o Q easily by verifying that the relation R∪R−1, where

R = {(〈P, ρ〉, 〈Q, ρ〉), (〈I[q].nil, ρ0〉, 〈Q0, ρ0〉),
(〈I[q].nil, ρ0〉, 〈Q1, ρ1〉), (〈nil, ρ0〉, 〈nil, ρ0〉) : ρ ∈ D(H)}

and ρi = |i〉〈i|q ⊗ trqρ, is an open bisimulation.

3.2 A Useful Proof Technique
In Definition 9 super-operator application and transitions are considered at the same time.
In fact, we can separate the two issues and approach the concept of open bisimulation in an
incremental way, which turns out to be very useful when proving that two configurations are
bisimilar.

I Definition 11. A relation R⊆ Con × Con is closed under super-operator application if
C R D implies E(C) R E(D) for any trace-preserving super-operator E acting on H

qv(C).
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I Definition 12. A relation R ⊆ Con × Con is a ground simulation if C R D implies that
qv(C) = qv(D), env(C) = env(D), and

whenever C α−→ ∆, there is some distribution Θ with D α−→ Θ and ∆ R† Θ.
A relation R is a ground bisimulation if both R and R−1 are ground simulations.

The following property is shown in [5].

I Proposition 13. ∼o is the largest ground bisimulation that is closed under all super-operator
applications.

Proposition 13 provides us with a useful proof technique: in order to show that two config-
urations C and D are open bisimilar, it suffices to exhibit a binary relation including the
pair (C,D), and then to check that the relation is a ground bisimulation and is closed under
all super-operator application. This is analogous to a proof technique of open bisimulation
for the π-calculus [42], where name instantiation is playing the same role as super-operator
application here.

3.3 Distribution-Based Quantum Bisimulation
The distribution-based bisimulation defined in Section 2.4 can also be extended to the
quantum setting.

I Definition 14. A relation R ⊆ D(Con)×D(Con) is a distribution-based ground simulation
if ∆ R Θ implies that qv(∆) = qv(Θ), env(∆) = env(Θ), and

whenever ∆ α−→ ∆′, there is some subdistribution Θ′ with Θ α−→ Θ′ and ∆′ R Θ′.
A relation R is a distribution-based ground bisimulation if both R and R−1 are distribution-
based ground simulations.

A relation R is a distribution-based bisimulation if it is a distribution-based ground
bisimulation, and is closed under super-operator applications.

Note that the distribution-based bisimulation given in Definition 14 is slightly coarser
than that considered in [22], for the same reason as the comparison of the corresponding
probabilistic bisimulations [16].

In quantum mechanics, a fundamental principle is the no-cloning theorem of quantum
resources. From a type-theoretic point of view, quantum resources are linear and can be
described by linear types in quantum programming languages. How to define appropriate
program equivalences for this kind of languages is an interesting problem. In [8] a linear
contextual equivalence is introduced to compare the behaviour of quantum programs. Two
notions of bisimilarity, a state-based and a distribution-based are introduced as proof
techniques for reasoning about higher-order quantum programs. Both notions of bisimilarity
are sound with respect to the linear contextual equivalence, but only the distribution-based
one turns out to be complete.

3.4 Symbolic Bisimulations
The quantum bisimulations introduced so far, either state-based or distribution-based, are
generalised from the corresponding probabilistic bisimulations naturally and smoothly. A
major problem with them is that they all resort to the instantiation of quantum variables
by quantum states. As a result, to check whether or not two processes are bisimilar, we
have to accompany them with arbitrarily chosen quantum states, and check if the resultant
configurations are bisimilar. Note that all quantum states constitute a continuum. Therefore,
it seems that the verification of quantum bisimulations is infeasible from an algorithmic point
of view.
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Recall that for classical process algebras, Hennessy and Lin [27] introduced a notion of
symbolic bisimulation to deal with possibly infinite classical data sets. As a quantum extension
of value-passing CCS, the quantum process algebra qCCS has both (possibly infinite) classical
data domain and (doomed-to-be infinite) quantum data domain. To overcome the additional
difficulty caused by the infinity of all quantum states, we can make use of super-operator
valued distributions, which allow us to fold the operational semantics of qCCS into a symbolic
version and thus provide us with a notion of symbolic bisimulation. To check the symbolic
bisimilarity of two quantum processes, only a finite number of process-superoperator pairs
need to be considered, without appealing to quantum states. This idea has been successful in
developing an algorithm to check the state-based ground bisimulation for quantum processes
[20]. It would be interesting to purse this line of research so as to develop algorithms of
checking the symbolic versions of other quantum bisimulations.

4 Concluding Remarks

We have briefly reviewed a few ingredients for formulating reasonable notions of probabilistic
and quantum bisimulations.

(1) The lifting operation is the key of defining state-based probabilistic and quantum bisimu-
altions. It is mathematically interesting in itself because of the close connection with the
Kantorovich metric and the maximum network flow problem.

(2) Distribution-based bisimulation is more relevant to quantum processes because it offers
a coinductive proof technique for linear contextual equivalene, and linear resources are
prominent in quantum computation.

(3) The symbolic approach is promising to yield feasible algorithms of checking quantum
bisimulations.

There is a huge amount of literature on probabilistic bisimulations, and the current paper
is by no means a complete survey. A more detailed account of probabilistic bisimulations is
given in [4, Chapter3]. For quantum processes, a branching bisimulation is firstly proposed
in [35]. However, it is not a congruence because it is not preserved by parallel composition.
Quantum bisimulations that are congruence relations are given in [19, 20] and independently
in [3]. Both of them are defined for concrete quantum transition systems, and are difficult
to check with algorithms, which motivated the introduction of symbolic bisimulations for
quantum processes [20].

In [34] a semi-automated tool is developed to verify security proofs based on a weak
bisimulation similar to that given in Definition 9 for a finite fragment of qCCS. In that tool,
security parameters and quantum states are represented as symbols, and some user-defined
equations are used as rewriting rules for simplification. This differs from the symbolic
semantics discussed in Section 3.4 as the latter is more in line with the idea investigated in
[27] for value-passing CCS.

In the future, we believe that distribution-based symbolic bisimulations would be promising
to be used in software tools in support of verifying quantum communication protocols. Some
efforts are made in [22], which considers distribution-based bisimulations and the proofs are
manual when reasoning about the behavioural equivalence of quantum processes. In order
to deal with advanced protocols such as the quantum key distribution protocol BB84 [2], it
would be helpful to have some tool support, for which symbolic semantics could play a role.
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