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—— Abstract

Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected
graphs is among the most prominent problems of algorithmic graph theory. For n-vertex and m-
edge graphs, the best known algorithms run in 6(m\/ﬁ) time. We build on recent theoretical
work focusing on linear-time data reduction rules for finding maximum-cardinality matchings
and complement the theoretical results by presenting and analyzing (thereby employing the
kernelization methodology of parameterized complexity analysis) linear-time data reduction rules
for the positive-integer-weighted case. Moreover, we experimentally demonstrate that these data
reduction rules provide significant speedups of the state-of-the art implementation for computing
matchings in real-world graphs: the average speedup is 3800% in the unweighted case and “just”
30% in the weighted case.
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1 Introduction

In their book chapter on weighted matching, Korte and Vygen [11] write that “weighted
matching appears to be one of the ‘hardest’ combinatorial optimization problems that can be
solved in polynomial time”. Correspondingly, the design and analysis of matching algorithms
plays a pivotal role in algorithm theory as well as in practical computing. Complementing
the rich literature on matching algorithms (see Coudert, Ducoffe, and Popa [6] and Duan,
Pettie, and Su [8] for recent accounts, the latter also providing a literature overview), in
this work we focus on efficient linear-time data reduction rules that may help to speed up

© Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche;
37 licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).

Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 53; pp. 53:1-53:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:andre.nichterlein@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de
mailto:zschoche@tu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.53
http://arxiv.org/abs/1806.09683
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

53:2

Data Reduction for Maximum Matching on Real-World Graphs

superlinear matching algorithms. Notably, while recent breakthrough results on matching
(including linear-time approximation algorithms [7]) focus on the theory side, we study both
theory and practice, thereby achieving gains on both sides.

To achieve our results, we follow and significantly extend recent purely theoretical
work [13] presenting and analyzing linear-time data reductions for the unweighted case.
More specifically, on the theoretical side we complement these results by performing an
analysis for the weighted case (turning out to become more technical); on the practical side,
we demonstrate that these data reduction rules may serve to speed up the state-of-the-art
matching solver due to Kolmogorov [10]. Similar data reduction rules have been implemented
for finding maximum independent sets and minimum vertex covers [2, 5], leading to significant
speedups of algorithms for both problems.

Formally, we study the following two problems; note that we formulate them as decision
problems since this better fits with presenting our theoretical part where we prove kernelization
results (thereby employing the framework of parameterized complexity analysis); our data
reduction rules also work and are implemented for the optimization versions.

MAXIMUM-CARDINALITY MATCHING

Input: An undirected graph G = (V, E) and s € N.
Question: Is there a size-s subset M C F of nonoverlapping (that is, pairwise vertex-disjoint)
edges?

MAXIMUM-WEIGHT MATCHING
Input: An undirected graph G = (V, E), edge weights w: E — IN, and s € IN.
Question: Is there a subset M C E of nonoverlapping edges of weight ZceM w(e) > s?

We remark that all our results extend to the case of rational weights; however, integers
are easier to cope with and are used in the implementation of Kolmogorov [10].

Our contributions. We lift known kernelization results [13] for MAXIMUM-CARDINALITY
MATCHING to MAXIMUM-WEIGHT MATCHING. To this end, we provide algorithms to
efficiently apply our newly developed data reduction rules. Herein, we have a particular eye
on exhaustively applying the data reduction rules in linear time, which seems imperative in an
effort to practically improve matching algorithms. Hence, our main theoretical contribution
lies in developing efficient algorithms implementing the data reduction rules, thereby also
showing a purely theoretical guarantee on the amount of data reduction that can be achieved in
the worst case (this is also known as kernelization in parameterized algorithmics)®. We proceed
by implementing and testing the data reduction algorithms for MAXIMUM-CARDINALITY
MATCHING and MAXIMUM-WEIGHT MATCHING, thereby demonstrating their significant
practical effectiveness. More specifically, combining them in form of preprocessing with
Kolmogorov’s state-of-the-art solver [10, 16] yield partially tremendous speedups on sparse
real-world graphs (taken from the SNP library [12]). Concretely, comparing Kolmogorov’s
algorithm with and without our data reduction algorithms, the average speedup is 3800% in
the unweighted case and “only” 30% in the weighted case.

Notation. We use standard notation from graph theory. All graphs considered in this
work are simple and undirected. For a graph G, we denote with E(G) = E the edge set.

L We clearly remark, however, that our theoretical findings (that is, kernel size upper bounds based on
the feedback edge set number) are too weak in order to fully explain the practical success of the data
reduction rules.
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We write uv to denote the edge {u,v} and G — v to denote the graph obtained from G by
removing v and all its incident edges. A feedback edge set of a graph G is a set X of edges
such that G — X is a tree or forest. The feedback edge number denotes the size of a minimum
feedback edge set. A matching in a graph is a set of pairwise disjoint edges. Let G be a graph
and let M C E(G) be a matching in G. We denote by match(G) the maximum-cardinality
matching respectively the maximum-weight matching in G, depending on whether we have
edge weights or not. If there are edge weights w: F — IN, then for a matching M we denote
by w(M) = > ) w(e) the weight of M. Moreover, we denote with w(G) the weight of a
maximum-weight matching match(G), i.e. w(G) = w(match(G)). A vertex v € V is called
matched with respect to M if there is an edge in M containing v, otherwise v is called free
with respect to M. If the matching M is clear from the context, then we omit “with respect
to M™.

Kernelization. A parameterized problem is a set of instances (I, k) where I € ¥* for a finite
alphabet X, and k € N is the parameter. We say that two instances (I,k) and (I’, k") of
parameterized problems P and P’ are equivalent if (I, k) is a yes-instance for P if and only
if (I', k') is a yes-instance for P’. A kernelization is an algorithm that, given an instance (I, k)
of a parameterized problem P, computes in polynomial time an equivalent instance (I, k')
of P (the kernel) such that |I'| + k' < f(k) for some computable function f. We say that f
measures the size of the kernel, and if f(k) € k(1) then we say that P admits a polynomial
kernel. Often, a kernel is achieved by applying polynomial-time executable data reduction
rules. We call a data reduction rule R correct if the new instance (I’, k") that results from
applying R to (I, k) is equivalent to (I, k). An instance is called reduced with respect to
some data reduction rule if further application of this rule has no effect on the instance.

2 Kernelization Algorithms

In this section, we recall the data reduction rules for MAXIMUM-CARDINALITY MATCHING
and show how to lift them to MAXIMUM-WEIGHT MATCHING. For MAXIMUM-CARDINALITY

MATCHING two simple data reduction rules are due to a classic result of Karp and Sipser [9].

They deal with vertices of degree at most two.

» Reduction Rule 2.1 ([9]). Let v € V. If deg(v) = 0, then delete v. If deg(v) =1, then
delete v and its neighbor, and decrease the solution size s by one.

» Reduction Rule 2.2 ([9]). Let v be a vertex of degree two and let u,w be its neighbors.
Then remove v, merge u and w, and decrease the solution size s by one.

In each application of the two data reduction rules the considered vertex v is matched
(hence the decrease of the solution size). When applying Reduction Rule 2.1, then v is
matched to its only neighbor u. For Reduction Rule 2.2 the situation is not so clear as v
is matched to u or to w depending on how the maximum-cardinality matching in the rest
of the graph looks like. Thus, one can only fix the matching edge with endpoint v (in the
original graph) in a postprocessing step.

Both of the above data reduction rules can be exhaustively applied in linear time. While
for Reduction Rule 2.1 this is easy to see, for Reduction Rule 2.2 the algorithm needs further
ideas [3]. Using the above data reduction rules, one can show a kernel with respect to the
parameter feedback edge number, that is, the size of a minimum feedback edge set.

» Theorem 1 ([13]). MAXIMUM-CARDINALITY MATCHING admits a linear-time computable
linear-size kernel with respect to the parameter feedback edge number k.
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Figure 1 Left: Input graph. Right: The graph after applying Reduction Rule 2.4 to vertex v.

Applying the O(m+/n)-time algorithm for MAXIMUM-CARDINALITY MATCHING [14]
altogether yields an O(n + m + k-5)-time algorithm, where k is the feedback edge number.

Weighted Matching. In the remainder of this section, we show how to lift Theorem 1
to the weighted case. Reduction Rules 2.1 and 2.2 are based on the simple observation
that for every vertex v € V of degree at least one, there exists a maximum-cardinality
matching containing v: If v is not matched, then take an arbitrary neighbor u of v, remove
the edge containing u from a maximum-cardinality matching, and add the edge wv. This
observation does not hold in the weighted case — see e. g. Figure 1 (left side) where the only
maximum-weight matching {au, bc} leaves v free. Thus, we need new ideas to obtain data
reduction rules for the weighted case.

Vertices of degree at most one. We start with the simple case of dealing with vertices of
degree at most one. Here, the following data reduction rule is obvious.

» Reduction Rule 2.3. If deg(v) =0 for a vertex v € V, then delete v. If w(e) =0 for an
edge e € E, then delete e.

Next, we show how to deal with degree-one vertices, see Figure 1 for a visualization.

» Reduction Rule 2.4. Let G = (V, E) be a graph with non-negative edge weights w: E — NN.
Let v be a degree-one vertex and let u be its neighbor. Then delete v, set the weight of every
edge e incident with u to max{0,w(e) — w(uv)}, and decrease the solution value s by w(uv).

While proving the correctness of this rule (see next lemma) is relatively straightforward,
the naive algorithm to exhaustively apply Reduction Rule 2.4 is too slow for our purpose: If
the edge weights are adjusted immediately after deleting v, then exhaustively applying the
rule to a star requires ©(n?) time. However, as we subsequently show, Reduction Rule 2.4
can be exhaustively applied in linear time.

» Lemma 2. Reduction Rule 2.4 is correct.
Due to space restrictions, we defer the poof of Lemma 2 to the arXiv version.
» Lemma 3. Reduction Rule 2.4 can be exhaustively applied in O(n 4+ m) time.

Proof. The basic idea of the algorithm exhaustively applying Reduction Rule 2.4 in linear
time is as follows: We store in each vertex a number indicating the weight of the heaviest
incident edge removed due to Reduction Rule 2.4. Then, whenever we want to access the
“current” weight of an edge e, then we subtract from w(e) the two numbers stored in the two
incident vertices. Once Reduction Rule 2.4 is no more applicable, then we update the edge
weights to get rid of the numbers in the vertices in order to create a MAXIMUM-WEIGHT
MATCHING instance.
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The details of the algorithm are as follows. First, in O(n + m) time we collect all
degree-one vertices in a list L and initialize for each vertex v a counter ¢(v) := 0. Then, we
process L one by one. For a degree-one vertex v € L, let u be its neighbor. We decrease s
by max{0, w(uv) — c¢(u) —¢(v)}, then set c(u) := ¢(u) + max{0, w(uv) — c(u) —c(v)}, and then
delete v. If after the deletion of v its neighbor u has degree one, then u is added to L. Thus,
after at most n steps, each one doable in constant time, we processed L. When L is empty,
then in O(m) time we update for each edge uv its weight w(uv) := max{0, w(uv)—c(u)—c(v)}.
This finishes the description of the algorithm.

Observe that we have the following invariant when processing the list L: the weight of
an edge wv is max{0, w(uv) — c(u) — ¢(v)}. With this invariant, it is easy to see that the
algorithm indeed applies Reduction Rule 2.4 exhaustively. |

Note that after applying Reduction Rule 2.4 we can have weight-zero edges and thus
Reduction Rule 2.3 might become applicable. We do not know whether Reduction Rules 2.3
and 2.4 together can be applied exhaustively in linear time. However, for the kernel we
present in the end of this section it is sufficient to apply Reduction Rule 2.4 exhaustively.

Vertices of degree two. Lifting Reduction Rule 2.2 to the weighted case is more delicate
than lifting Reduction Rule 2.1 to Reduction Rules 2.3 and 2.4. The reason is that the two
incident edges might have different weights. As a consequence, we cannot decide locally what
to do with a degree-two vertex. Instead, we process multiple degree-two vertices at once. To
this end, we use the following notation.

» Definition 4. Let G be a graph. A path P = vyv; ... v is a mazimal path in G if £ > 3,
the inner vertices vy, vs,...,vs—1 all have degree two in GG, but the endpoints vy and v, do
not, that is, degs(v1) = ... = dega(ve—1) = 2, deg(vo) # 2, and degq(ve) # 2.

» Definition 5. Let G be a graph. A cycle C = vgvy ... vevg is a pending cycle in G if at
most one vertex in C' does not have degree two in G.

The reason to study maximal paths and pending cycles is that we can compute a maximum-
weight matching in these graphs quickly, as stated next. This allows us to preprocess all
vertices in a maximal path or a pending cycle at once.

» Observation 6. MAXIMUM-WEIGHT MATCHING can be solved in O(n) time on paths and
cycles.

Proof. If the input graph G is a path, then by exhaustively applying Reduction Rules 2.3
and 2.4, we can compute a maximum-weight matching. Otherwise, if G is a cycle, then we
take an arbitrary edge e and distinguish two cases. First, we take e into a matching and
remove both endpoints from the graph. In the resulting path, we compute in linear time a
maximum-weight matching M. Second, we delete e and obtain a path for which we compute
in linear time a maximum-weight matching M’. We then simply choose between M U {e}
and M’ the heavier matching as the result. <

Now, using Observation 6, we introduce data reduction rules for maximal paths and
pending cycles. Both rules are based on a similar idea which is easier to explain for a
pending cycle. Let C' be a pending cycle and u € C the degree-at-least-three vertex in C.
Then there are two cases: w is matched with a vertex not in C' or it is not. Now let M
be a maximum-weight matching for G, and let M’ be a maximum-weight matching with
the constraint that u is matched to a vertex outside C. Clearly, M N E(C) is at least as
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Figure 2 Left: A pending cycle C with u being the vertex of degree more than three. Right: The
graph after applying Reduction Rule 2.5 where s is reduced by w(C — u).

large as M’ N E(C). Looking only at C, all that we need to know is the difference of the
weights of these two matchings. This can be encoded with one vertex z which replaces the
whole cycle C (see Figure 2 for an illustration). Then, matching z corresponds to taking the
matching in C' and not matching z corresponds to taking the matching in C' — u. Formalizing
this idea, we arrive at the following data reduction rule.

» Reduction Rule 2.5. Let G be a graph with non-negative edge weights. Let C' be a pending
cycle in G, where u € C has degree at least three in G. Then replace C by an edge uz with
w(uz) = w(C) —w(C — u) and decrease the solution value s by w(C — u).

» Lemma 7. Reduction Rule 2.5 is correct.

Proof. Let C be a pending cycle in G where u € C has degree at least three in G and
let G’ be the graph obtained applying Reduction Rule 2.5 to C'. We show w(G’) = w(G) —
w(C —u). Let M be a maximum-weight matching in G. Let Mz := M \ E(C). Observe
that w(Mg) = w(M) — w(M N E(C)) > w(G) —w(C). If u is matched with respect
to Mg, then we have Mz = M \ E(C — u). Hence, w(G") > w(Mg) > w(G) —w(C — u).
If u is free with respect to Mg, then Mg U {uz} is a matching in G’ with weight at
least (w(G) —w(C)) + (w(C) — w(C —u)) = w(G) — w(C — u). Hence, in both cases we
have w(G’') > w(G) — w(C — u).

Conversely, let M’ be a maximum-weight matching in G’. Recall that, for an edge-
weighted graph H, match(H) denotes a maximum-weight matching in H. If uz € M’, then
(M’ \ {uz}) U match(C) is a matching in G with w(G’') — (w(C) — w(C —u)) + w(C) =
w(G") + w(C —u). Hence, w(G) > w(G') + w(C —u). fuz & M’, then M" Umatch(C — u)
is a matching in G with weight at least w(G’) + w(C — u). Again, in both cases we
have w(G) > w(G') + w(C — u). Combined with w(G’) > w(G) — w(C — u), we arrive
at w(G@') = w(G) —w(C — u). <

The basic idea for maximal paths is the same as for pending cycles. The difference is that
we have to distinguish four cases depending on whether or not the two endpoints u and v
of a maximal path P are matched within P. To simplify the notation, we set w(uv) = 0 if
the edge uv does not exist in G. Furthermore, P — v — v denotes the path obtained from
removing in P the vertices u and v. This avoids some trivial case distinctions.

Figure 3 visualizes the next data reduction rule.

» Reduction Rule 2.6. Let G = (V, E) be a graph with non-negative edge weights w: E — NN.
Let P be a maximal path in G with endpoints u and v. Then remove all vertices in P
except u and v, add a new vertex z and, if not already existing, add the edge uv. Furthermore,
set w(uz) == w(P —v) —w(P —u—v), wwz) = w(P —u) —w(P —u—2v), and w(uv) :=
max{w(uwv),w(P) — w(P —u —v)}, and decrease the solution value s by w(P — u — v).



V. Korenwein, A. Nichterlein, R. Niedermeier, and P. Zschoche

T T
— — e

\ —u)—w(P—u—0)

Pi AN W(P) —w(P —u—v) @

Figure 3 Applying Reduction Rule 2.6 on a path P with endpoints v and v (where u and v are
not adjacent). The four choices for v and v on whether or not they are matched to a vertex within
the path are reflected by the three (full) edges on the right where at most one can be taken into a

matching. Since the edge uv is not contained in the input graph the weight of the edge uv in the
reduced graph simplifies to the displayed value.

» Lemma 8. Reduction Rule 2.6 is correct.

Proof. Let G be the input graph with a maximal path P with endpoints v and v. Furthermore,
let G’ be the reduced instance with z defined as in the data reduction rule. We show
that w(G’") = w(G) — w(P —u —v).

Let M be a maximum-weight matching for G. We define M5 := M \ E(P). Observe
that w(Mp) = w(M) —w(M N E(P)) > w(G) —w(P) We distinguish four cases.

1. If both u and v are matched with respect to Mz, then M = M \ E(P — u — v) and
hence w(Mp) =w(M) —w(MNE(P —u—v)) > w(G) —w(P —u—wv).

2. If u is matched and v is free with respect to Mz, then M = M \ E(P — u) and
hence w(Mp) > w(G)—w(P—u). Thus, MzU{vz} is a matching of weight at least (w(G)—
wP—u)+ (wP—-u)—wP—-—u—0)) =w(G) —w(P—u-—u).

3. If v is matched and u is free with respect to Mg, then M3 = M \ E(P — v) and
hence w(Mp) > w(G)—w(P—v). Thus, MsU{uz} is a matching of weight at least (w(G)—
wP—=v)+ (WP —-v)—wP-—u-—)) =w(G) —w(P—u-—uv).

4. Finally, if both u and v are free with respect to M, then M5 U {uv} is a matching of
weight at least (w(G) — w(P)) + (w(P) — w(P —u —v)) =w(G) —w(P —u—v).

Thus in each case we have w(G’') > w(G) — w(P —u —v).

Conversely, let M’ be a maximum-weight matching for G’. We define M’ := M’ \

{uz,vz,uv}. Again, we distinguish four cases.

1. If both u and v are matched with respect to M, then M’ = M’. Hence, M’ Umatch(P —
u — v) is a matching in G with weight at least w(G’) + w(P — u — v).

2. If u is matched and v is free with respect to M/, then w.l.o.g. vz € M’. Hence, M’ U
match(P — ) is a matching in G with weight at least w(G’') — (w(P —u) — w(P —u —
v)) +w(P —u) =w(G) +w(P —u—v).

3. If w is matched and v is free with respect to M’, then w.lo.g. uz € M’. Hence,
M’ Umatch(P — v) is a matching in G with weight at least w(G") — (W(P —v) — w(P —
u—2v))+wP—v)=w(G@)+wlP —u-—uv).

4. Finally, if both v and v are free with respect to M, then w.l.o.g uv € M’ as w(uv) > w(uz)
and w(uv) > w(vz). Now, we encounter two subcases.

a. If w(uv) > w(P) — w(P — u —v), then the edge uv is in G and in G’, having the same
weight in both graphs. Then, M’ U match(P — u — v) is a matching in G with weight
at least w(G’) + w(P —u —v).

b. Otherwise, M’ Umatch(P) is a matching in G with weight at least w(G’) — (w(P) —
WP —u—v))+wlP)=w(G)+wlP —u-—uv).
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Hence, in all cases we have w(G) > w(G') + w(P — u —v). Combined with w(G") >
w(G) + w(P — u —v), we can infer that w(G') = w(G) — w(P —u —v). <

» Lemma 9. Reduction Rules 2.5 and 2.6 can be ezhaustively applied in O(n +m) time.

Proof. First, we collect in O(n+m) time all maximal paths and all pending cycles [4, Lemma
2]. Given a maximal path or a pending cycle on ¢ vertices due to Observation 6 one can
compute the necessary maximum-weight matchings (at most four) in O(¢) time. Moreover,
replacing the maximal path or the pending cycle by the respective structure is doable in O(¥)
time. Applying Reduction Rules 2.5 and 2.6 does not create new maximal paths (recall that
a maximal path needs at least two vertices of degree two) or pending cycles. Thus, as all
maximal paths and pending cycles combined contain at most n vertices, Reduction Rules 2.5
and 2.6 can be exhaustively applied in O(n + m) time. <

Each of Reduction Rules 2.3, 2.4, and 2.6 can be exhaustively applied in linear time;
however, we do not know whether all these data reduction rules together can be exhaustively
applied in linear time. Note that after applying Reduction Rule 2.5 Reduction Rule 2.4 might
become applicable. For our problem kernel below, however, Lemmas 3 and 9 are sufficient.
In contrast to this subsequent theoretical result, in our experimental part it proved beneficial
to apply the rules exhaustively in order to remove as many vertices and edges as possible.

» Theorem 10. MAXIMUM-WEIGHT MATCHING admits a linear-time computable 20k-vertex
and 22k-edge kernel with respect to the parameter feedback edge number k.

Proof. The kernelization algorithm works as follows: First, exhaustively apply Reduction
Rule 2.3 in O(n + m) time. Second, exhaustively apply Reduction Rules 2.5 and 2.6 in
O(n +m) time (see Lemma 9). Third, exhaustively apply Reduction Rule 2.4 in O(n + m)
time (see Lemma 3). Without loss of generality, one can assume that the input graph does
not contain a cycle where each vertex has degree two, because otherwise this cycle can be
solved independently in linear time (see Observation 6). Note that when applying the rules in
this order, the resulting graph G = (V| E)) does not contain any degree one-vertices, maximal
paths, or pending cycles.

We claim that G has less than 20k vertices and 22k edges. First, note that the input graph
contains at most k£ maximal paths [4, Lemma 1]. Thus, a feedback edge set X C E for G
contains at most 2k edges (each application of Reduction Rule 2.6 increases the feedback
edge set by one). Denote with Vi, VZ_, and VGZE y the vertices that have degree one,
two, and more than two in G — X. Observe that all vertices in the reduced graph G have
degree at least two since it is reduced with respect to Reduction Rules 2.3 and 2.4. Thus,
|VA_ | < 4k as each leaf in G — X has to be incident to an edge in X. Next, since G — X is
a forest (or tree), we have \VGZE | < |VA_ | and thus |V§i3 | < 4k. Finally, each degree-two
vertex in G needs two neighbors of degree at least three since G is reduced with respect to
Reduction Rules 2.5 and 2.6. Thus, the vertices in Vé_ x are either incident to an edge in X
or adjacent to one of the at most |VGZE’ | + 4k vertices in G that have degree at least three.

The sum over all degrees of vertices in VG?_?’ I8
Z dega_x(v) =2m — Z dege_x(v) <2(n—1) — 2‘V53X| . |VG=—1X|
veVEly veVE2  UVEL
=2lVE |+ |Vd_x| — 2 < 12k.
It follows that \VC%?X\ < 16k. Thus, the number of vertices in G is |V617,7X| + |VC2¥7X| +

‘V§§X| < 20k. Since G — X is a forest, it follows that G has at most |V| + 2k < 22k
edges. <
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Table 1 A selection of our test graphs from SNAP [12] with their respective size.

Graph n edges Graph n edges
email-Eu-core 1,005 16,064 p2p-Gnutella08 6,301 20,777
p2p-Gnutella25 22,687 54,705 ca-CondMat 23,133 93,439

soc-...dot090221 82,141 3.49-10° soc-Slashdot0811 77,360  4.69 - 10°
com-dblp 3.2-10° 1.05-10°  twitter-combined 81,306 1.34-10°
amazon0505 4.1-10° 2.44-10° roadNet-CA 2.10% 2.77-10°
wiki-topcats  1.8-10° 2.54-107  soc-LiveJournall 4.8-10° 4.29-107

3 Experimental Evaluation

In this section we provide an experimental evaluation of the data reduction rules on real-world
graphs ranging from a few thousand vertices and edges to a hundred million vertices and
edges. We analyze the effectiveness and efficiency of the kernelization as well as the effect on
the subsequently used state-of-the-art solver “blossom5” of Kolmogorov [10].

3.1 Setup & Implementation Details

Setup. Our program is written in C++14 and source code in available from http://fpt.

akt.tu-berlin.de/software/. One can replicate all experiments by following the manual
next to the source code. We ran all our experiments on an Intel(R) Xeon(R) CPU E5-1620
3.60 GHz machine with 64 GB main memory under the Debian GNU/Linux 7.0 operating
system, where we compiled the program with GCC 5.4.0. All tested graphs are from the
established SNAP [12] data set. See Table 1 for a sample list of graphs with their respective
number of vertices and edges. The weighted graphs are generated from the unweighted
graphs by adding edge-weights between 1 and 1000 chosen independently and uniformly at
random. The full list is given in the arXiv version.

Implementation Details. The first step of our program is to read the graph into our data
structure. On average this took 9% of the overall running time. When running blossom5 we
also measured the time to handover the graph from our data structure to the solver’s data
structure, which took on average 4% of the overall running time.

We implemented kernelization algorithms for the unweighted and weighted case. The
first kernelization is for MAXIMUM-CARDINALITY MATCHING, which exhaustively applies
Reduction Rules 2.1 and 2.2. Note that one can (theoretically) improve our implementation
of Reduction Rule 2.2 by a linear-time algorithm of Bartha and Kresz [3]. However, our naive
implementation proved to be sufficient. The second kernelization is for MAXIMUM-WEIGHT
MATcHING. We use the algorithms described in Lemmas 3 and 9 to apply Reduction
Rules 2.4 to 2.6. Deviating from the algorithm described in Theorem 10, based on empirical
observations our program applies Reduction Rules 2.3 to 2.6 as long as possible. Hence, the
kernelization does not run in linear time but further shrinks the input graph.

Note that all reported running times involving blossom5 are averages over 100 runs where
we randomly permute vertex indices in the input. Although this permutation yields an
isomorphic graph, we empirically observed that in the unweighted case the running time of
blossomb heavily depends on the permutation. For example, choosing a “good” or a “bad”
permutation for the same graph yields speed ups of a factor 20 or more. (See the arXiv
version for the results without this permutation.) When using blossom5 in the weighted case,
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Figure 4 Percentage of the number of remaining edges and vertices after the respective kerneliza-
tion algorithms (weighted, unweighted) relative to the numbers of vertices and edges in the input
graph.

we did not observe this effect. For consistency, however, we take the average running time
also in the weighted case. Note that our kernelization algorithm for the unweighted case was
not at all affected by changing the permutation. In the weighted case, however, for different
permutations the rules were applied in different order resulting in kernels slightly differing in
size. The time for computing the random permutation is included in the times measured for
reading and parsing of the graph.

3.2 Evaluation

We next present the results of our experimental evaluation starting with the size reduction
and running time of the kernelization algorithm.

Kernel size. The effectiveness of our kernelization algorithms is displayed in Figure 4: Few
graphs remain almost unchanged while other graphs are essentially solved by the kernelization
algorithm. As expected, the kernelization algorithm for the unweighted case is much more
effective than for the weighted case. On the 40 tested graphs, on average 70% of the vertices
and edges are removed by the kernelization; the median is 81%. The least amenable graph
was amazon0302 with a size reduction of only 7%. In contrast, on 16 out of the 40 graphs
the kernelization algorithm reduces more than 99% of the vertices and edges.

While the data reduction rules are less effective in the weighted case, they reduce the
graphs on average still by 51% with the median value being a bit lower with 48%. The least
amenable graph is again amazon0302 with a size reduction of only 3%. Still, on seven out of
the 40 graphs the kernelization algorithm reduces more than 99% of the vertices and edges.
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Figure 5 Left: Kernelization time depending on the graph sizes. Right: Running time comparison
with and without using our kernelization algorithms before blossom5. The solid/dashed/dash
dotted/dotted lines indicate a factor of 1/2/5/25 difference in the running time.

Kernelization time.
the test set. To this end, we consider the time spent on kernelization and the time spent
on blossomb. We will, for now, omit the running times needed for reading and parsing the

We next discuss the running time of our kernelization algorithms on

graph as these steps require on some instances more time than the kernelization algorithms.

As shown in Figure 5 (left), our kernelization algorithms are quite efficient. Even on the
largest graphs with more than 120 million edges and vertices, the running time is less than
45 seconds in the weighted case and less than ten seconds in the unweighted case. In the
unweighted case, our kernelization algorithm is always by at least a factor of 10 faster than
blossom5 (on the first 40 graphs). Hence, applying the kernelization algorithm before the
matching algorithm should — in the (unlikely) worst case of only few applications of the data
reduction rules — only slightly increase the overall running time.

In the weighted case, however, our kernelization algorithm becomes slower than in the
unweighted case. This is not surprising as the kernelization algorithm is more involved than
the one for the unweighted case. Furthermore, blossom5 is significantly faster in the weighted
case; on four graphs the matching algorithm is up to 2.5 times faster than our kernelization
algorithm. However, on most graphs, our kernelization algorithm is still significantly faster
than blossomb (on average 17 times faster).

Running time comparison. We now compare the running time of only using blossom5 to
first apply our kernelization algorithms and then use blossom5 on the kernel. Recall that all
reported running times are averages over 100 runs. Since this 100 repetitions would have
taken years for some graphs, we use only the 40 smallest graphs for the comparison. These
graphs have between 12 thousand and 11 million edges.

Figure 5 (right) displays the results of the running time comparison. As one can clearly
see, in the unweighted case the kernelization significantly accelerates the algorithm to find
a maximum-cardinality matching. The speedup ranges from a factor 1.15 for the graph
facebook-combined to a factor 525 for the graph as-skitter (the largest graph in this test
set). The average speedup factor is 38, the median is 8.9.

For the weighted case, results are not as clear. With kernelization the algorithm is between

2.3 times slower for the graph roadNet-CA and 44.7 times faster for the graph wiki-Talk.

However, the wiki-Talk is an exception as it is the only graph where the kernelization
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gave a speedup of a factor more than ten. The average speedup factor is 3.10 and the
median is 1.3. On ten out of the 40 graphs the algorithm with kernelization was slower than
without. As discussed above, there are even four graphs where blossomb is even faster than
our kernelization algorithm alone.

Summary. While the kernelization algorithms reduce the input graphs quite significantly in
the weighted and unweighted case, the overall gain is very different in the two cases. When
searching for a maximum-cardinality matching, we clearly recommend to always apply our
kernelization algorithm. For the less clear weighted case, note that the kernelization is more
frequently beneficial than it is not. However, the speedup is not as large as in the unweighted
case and several instances are actually solved somewhat slower. There are several reasons for
this behavior; some of which motivate future research and also lead to engineering challenges:

First, blossomb is significantly faster on weighted graphs. We believe that the reason for
this is in unweighted graphs there are a lot of symmetries, and unlucky tie-breaking seems to
have a strong impact on blossom5. In the weighted case, the performance of blossom5 was
much more consistent under permuting the vertices in the input graph. As a consequence,
we believe that the following might speed up the algorithm: given an unweighted graph,
introduce edge-weights such that a maximum-weight matching in the then weighted graph is
also a maximum-cardinality matching in the unweighted graph. Using the famous Isolation
Lemma [15] one might even enrich and support this with a theoretical analysis. As our focus
was on data reduction, here we did not pursue this line of research yet.

Second, the kernelization algorithm in the weighted case is significantly slower than in the
unweighted case (see Figure 5) as applying the rules is more involved. Note that Reduction
Rules 2.1 and 2.2 only make changes in the local neighborhood of the affected vertices.
This is not the case in the weighted case, where the application of Reduction Rules 2.4
to 2.6 involve iterations over all edges, see Lemmas 3 and 9. Hence, applying the data
reduction rules exhaustively requires a larger overhead. Although some improvements in the
implementation might be possible, an improved algorithmic approach to exhaustively apply
the data reduction rules is needed. Is there a (quasi-)linear-time algorithm to exhaustively
apply Reduction Rules 2.3 to 2.67

4 Conclusion

Our work shows that it practically pays off to use (linear-time) data reduction rules for
computing maximum matchings. The current state of the theoretical (kernel size upper
bounds) analysis, however, is insufficient to fully explain this success. In future research,
one might also study the combination of data reduction with linear-time approximation
algorithms for matching [7]. Moreover, while our naive implementation for the unweighted
case proved to be quite fast, we still work on improving the algorithm for the weighted case.
In particular, parallelizing the kernelization algorithm seems promising for further speedups.
We conclude with the following questions:

Can exhaustive application of Reduction Rules 2.3 to 2.6 be realized in linear time?

The “crown” data reduction rule known for the NP-hard VERTEX COVER problem [1]
can be transferred to MAXIMUM-CARDINALITY MATCHING; however, our preliminary
tests did not show a significant improvement of the kernelization algorithm. Is there
any version of the “crown” data reduction rule with practical usefulness in matching
computations?
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