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Abstract
It is established that for any finite set of positive real numbers A, we have

|A/A+A| � |A| 32 + 1
26

log5/6 |A|
.
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1 Introduction

Given a set A, we define its sum set, product set and ratio set as

A+A := {a+ b : a, b ∈ A}, AA := {ab : a, b ∈ A}, A/A := {a/b : a, b ∈ A, b 6= 0}.

respectively. It was conjectured by Erdős and Szemerédi that, for any finite set A of integers,
at least one of the sum set or product set has near-quadratic growth. Solymosi [9] used a
beautiful and elementary geometric argument to prove that, for any finite set A ⊂ R,

max{|A+A|, |AA|} � |A|4/3

log1/3 |A|
. (1)

Recently, a breakthrough for this problem was achieved by Konyagin and Shkredov [3]. They
adapted and refined the approach of Solymosi, whilst also utilising several other tools from
additive combinatorics and discrete geometry in order to prove that

max{|A+A|, |AA|} � |A| 43 + 1
20598−o(1). (2)

Further refinements in [4], [6] and very recently [7] have improved this exponent to 4/3 +
5/5277 + o(1). See [3], [4], [6], [7] and the references contained therein for more background
on the sum-product problem.

In this paper the related problem of establishing lower bounds for the sets

AA+A := {ab+ c : a, b, c ∈ A}, A/A+A := {a/b+ c : a, b, c ∈ A, b 6= 0}
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well as by FWF Project P 30405-N32.
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are considered. It is believed, in the spirit of the Erdős-Szemerédi conjecture, that these sets
are always large. It was conjectured by Balog [1] that, for any finite set A of real numbers,
|AA+A| ≥ |A|2. In the same paper, he proved the following result in that direction:

I Theorem 1. Let A and B be finite sets of positive real numbers. Then

|AB +A| � |A||B|1/2.

In particular,

|AA+A| � |A|3/2 |A/A+A| � |A|3/2.

The proof of Theorem 1 uses similar elementary geometric arguments to those of [9]. In
fact, one can obtain the same bound by a straightforward application of the Szemerédi-Trotter
Theorem (see [10, Exercise 8.3.3]).

Some progress in this area was made by Shkredov [8], who built on the approach of Balog
in order to prove the following result:

I Theorem 2. For any finite set A of positive real numbers,

|A/A+A| � |A| 32 + 1
82

log
2

41 |A|
, (3)

The main result of this paper is the following improvement on Theorem 2:

I Theorem 3. Let A be a finite set of positive reals. Then

|A/A+A| � |A| 32 + 1
26

log5/6 |A|
.

For the set AA+A the situation is different, and it has proven rather difficult to beat
the threshold exponent of 3/2. A detailed study of this set can be found be in a recent paper
of the author, Ruzsa, Shen and Shkredov [5]. However, the corresponding problem for sets of
integers is resolved, up to constant factors, thanks to a nice argument of George Shakan.2

1.1 Sketch of the proof of Theorem 3
The proof is a refined version of the argument used by Balog to prove Theorem 1. Balog’s
argument goes roughly as follows:

Consider the point set A × A in the plane. Cover this point set by lines through the
origin. Let us assume for simplicity that all of these lines are equally rich, so we have k lines
with |A|2/k points on each line. Label the lines l1, l2, . . . , lk in increasing order of steepness.
Note that if we take the vector sum of a point on li with a point on li+1, we obtain a point
which has slope in between those of li and li+1. The aim is to show that many elements of
(A/A+A)× (A/A+A) can be obtained by studying vector sums from neighbouring lines.

Indeed, for any 1 ≤ i ≤ k − 1, consider the sum set

{(b/a, c/a) + (d, e) : a ∈ A, (b, c) ∈ (A×A) ∩ li, (d, e) ∈ (A×A) ∩ li+1}.

2 See http://mathoverflow.net/questions/168844/sum-and-product-estimate-over-integers-rationals-and-
reals, where this argument first appeared.
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There are at least |A| choices for (b/a, c/a) and at least |A|2/k choices for (d, e). Since all of
these sums are distinct, we obtain at least |A|3/k elements of (A/A+A)× (A/A+A) lying
in between li and li+1. Summing over all 1 ≤ i ≤ k − 1, it follows that

|A/A+A|2 � |A|3.

There are two rather crude steps in this argument. The first is the observation that there
are at least |A| choices for the point (b/a, c/a). In fact, the number of points of this form is
equal to the cardinality of product set of A and a set of size |A|2/k. This could be as small
as |A|, but one would typically expect it to be considerably larger. This extra information
was used by Shkredov [8] in his proof of (3).

The second wasteful step comes at the end of the argument, when we only consider sums
coming from pairs of lines which are neighbours. This means that we consider only k − 1
pairs of lines out of a total of

(
k
2
)
. A crucial ingredient in the proof of (2) was the ability to

find a way to count sums coming from more than just neighbouring lines.
The proof of Theorem 3 deals with these two steps more efficiently. Ideas from [8] are

used to improve upon the first step, and then ideas from [3] improve upon the second step.
We also make use of the fact that the set A/A is invariant under the function f(x) = 1/x,
which allows us to use results on convexity and sumsets of Elekes, Nathanson and Ruzsa [2]
in order to get a better exponent in Theorem 3.

2 Notation and preliminary results

Throughout the paper, the standard notation �,� as well as O,Ω is applied to positive
quantities in the usual way. Saying X � Y or X = Ω(Y ) means that X ≥ cY , for some
absolute constant c > 0.

The main tool is the Szemerédi-Trotter Theorem.

I Theorem 4. Let P be a finite set of points in R2 and let L be a finite set of lines. Then

|{(p, l) ∈ P × L : p ∈ l}| � (|P ||L|)2/3 + |P |+ |L|.

Define

d(A) = min
C 6=∅

|AC|2

|A||C|
. (4)

We will need the following consequence of the Szemerédi-Trotter Theorem, which is [3,
Corollary 8].

I Lemma 5. Let A1, A2 and A3 be finite sets of real numbers and let α1, α2 and α3 be
arbitrary non-zero real numbers. Then the number of solutions to the equation

α1a1 + α2a2 + α3a3 = 0,

such that a1 ∈ A1, a2 ∈ A2 and a3 ∈ A3, is at most

C · d1/3(A1)|A1|1/3|A2|2/3|A3|2/3,

for some absolute constant C.

Another application of (a variant of) the Szemerédi-Trotter Theorem is the following
result of Elekes, Nathanson and Ruzsa [2]:

SoCG 2018
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I Theorem 6. Let f : R→ R be a strictly convex or concave function and let X,Y, Z ⊂ R
be finite. Then

|f(X) + Y ||X + Z| � |X|3/2|Y |1/2|Z|1/2.

In particular, this theorem can be applied with f(x) = 1/x, X = A/A, Y = Z = A, using
the fact that f(A/A) = A/A, to obtain the following corollary:

I Corollary 7. For any finite set A ⊂ R,

|A/A+A| � |A/A|3/4|A|1/2.

3 Proof of main theorem

Recall that the aim is to prove the inequality

|A/A+A| � |A| 32 + 1
26

log1/2 |A|
.

Consider the point set A×A in the plane. At the outset, we perform a dyadic decom-
position, and then apply the pigeonhole principle, in order to find a large subset of A×A
consisting of points lying on lines through the origin which contain between τ and 2τ points,
where τ is some real number.

Following the notation of [3], for a real number λ, define

Aλ :=
{

(x, y) ∈ A×A : y
x

= λ
}
,

and its projection onto the horizontal axis,

Aλ := {x : (x, y) ∈ Aλ}.

Note that |Aλ| = |A ∩ λA| and∑
λ

|Aλ| = |A|2. (5)

Let Sτ be defined by

Sτ := {λ : τ ≤ |A ∩ λA| < 2τ}.

After dyadically decomposing the sum (5), we have

|A|2 =
∑
λ

|Aλ| =
dlog |A|e∑
j=1

∑
λ∈S2j−1

|Aλ|.

Applying the pigeonhole principle, we deduce that there is some τ such that∑
λ∈Sτ

|Aλ| ≥
|A|2

dlog |A|e ≥
|A|2

2 log |A| . (6)

Since τ ≤ |A|, this implies that

|Sτ | ≥
|A|

2 log |A| . (7)

Also, since |Aλ| < 2τ for any λ ∈ Sτ , we have

τ |Sτ | �
|A|2

log |A| . (8)



O. Roche-Newton 69:5

3.1 A lower bound for τ

Suppose3 that |A/A| ≥ |A| 43 + 2
39 . Then, by Corollary 7,

|A/A+A| � |A/A| 34 |A| 12 � |A| 32 + 1
26 ,

as required. Therefore, we may assume that |A/A| ≤ |A| 43 + 2
39 . In particular, by (8),

τ |A| 43 + 2
39 ≥ τ |A/A| ≥ τ |Sτ | �

|A|2

log |A| .

Therefore

τ � |A|
2
3−

2
39

log |A| . (9)

3.2 An upper bound for d(A)

Define P to be the subset of A × A lying on the union of the lines through the origin
containing between τ and 2τ points. That is, P = ∪λ∈SτAλ. We will study vector sums
coming from this point set by two different methods, and then compare the bounds in order
to prove the theorem. To begin with, we use the methods from the paper [8] to obtain an
upper bound for d(A). The deduction of the forthcoming bound (11) is a minor variation of
the first part of the proof of [8, Theorem 13].

After carrying out the aforementioned pigeonholing argument, we have a set of |Sτ | lines
through the origin, each containing approximately τ points from A × A. Label the lines
l1, l2, . . . , l|Sτ | in increasing order of steepness. The line li has equation y = qix and so
q1 < q2 < · · · < q|Sτ |. For any 1 ≤ i ≤ |Sτ | − 1, consider the sum set

Aqi +Aqi+1 ·∆(A−1) ⊂ (A+A/A)× (A+A/A), (10)

where ∆(B) = {(b, b) : b ∈ B}. Note that Aqi+1 ·∆(A−1) has cardinality |Aqi+1A
−1|, and

therefore the set in (10) has at least |Aqi+1A
−1||Aqi | elements, all of which lie in between li

and li+1. This is a consequence of the observation of Solymosi that the sum set of m points
on one line through the origin and n points on another line through the origin consists of
mn points lying in between the two lines. It is important to note that this fact is dependent
on the points lying inside the positive quadrant of the plane, which is why the assumption
that A consists of strictly positive reals is needed for this proof.

3 In order to simplify the some forthcoming calculations, we are a little careless with the logarithmic
factors here. By making a weaker assumption that |A/A| ≥ |A|

4
3 + 2

39 /(log |A|)C , for an optimal choice
of C, we can obtain a slightly smaller power of log |A| in the statement of Theorem 3.

SoCG 2018
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Summing over all 1 ≤ i < |Sτ |, applying the definition of d(A) and using the bounds (8)
and (6), we obtain

|A/A+A|2 ≥
|Sτ |−1∑
i=1

|Aqi ||A/Aqi+1 |

≥ |A|1/2d1/2(A)
|Sτ |−1∑
i=1

|Aqi ||Aqi+1 |1/2

� |A|3/2d1/2(A)
|Sτ |1/2 log1/2 |A|

|Sτ |−1∑
i=1

|Aqi |

� |A|7/2d1/2(A)
|Sτ |1/2 log3/2 |A|

.

This can be rearranged to obtain

d(A)� |A/A+A|4|Sτ | log3 |A|
|A|7

. (11)

This bound will be utilised later in the proof. We now analyse the vector sums in a
different way, based on the approach of [3].

3.3 Clustering setup
For each λ ∈ Sτ , we identify an element from Aλ, which we label (aλ, λaλ). These fixed
points will have to be chosen with a little care later, but for the next part of the argument,
we can think of the choice of (aλ, λaλ) as completely arbitrary, since the required bound
holds whichever choice we make for these fixed points.

Then, fixing two distinct slopes λ and λ′ from Sτ and following the observation of Balog
[1], we note that at least τ |A| distinct elements of (A/A+A)× (A/A+A) are obtained by
summing points from the two lines. Indeed,

Aλ + (aλ′ , λ′aλ′) ·∆(A−1) ⊂ (A/A+A)× (A/A+A).

Once again, these vector sums are all distinct and have slope in between λ and λ′.
Following the strategy of Konyagin and Shkredov [3], we split the family of |Sτ | slopes

into clusters of 2M consecutive slopes, where 2 ≤ 2M ≤ |Sτ | and M is a parameter
to be specified later. For example, the first cluster is U1 = {l1, . . . , l2M}, the second is
U2 = {l2M+1, . . . , l4M}, and so on. We then split each cluster arbitrarily into two disjoint
subclusters of size M . For example, we have U1 = V1 tW1 where V1 = {l1, . . . , lM} and
W1 = {lM+1, . . . , l2M}.

The idea is to show that each cluster determines many different elements of (A+A/A)×
(A + A/A). Since the slopes of these elements are in between the maximal and minimal
values in that cluster, we can then sum over all clusters without overcounting.

If a cluster contains exactly 2M lines, then it is called a full cluster. Note that there are⌊
|Sτ |
2M

⌋
≥ |Sτ |4M full clusters, since we place exactly 2M lines in each cluster, with the possible

exception of the last cluster which contains at most 2M lines.
The proceeding analysis will work in exactly the same way for any full cluster, and so

for simplicity of notation we deal only with the first cluster U1. We further simplify this by
writing U1 = U , V1 = V and W1 = W .
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Let µ denote the number of elements of (A/A+A)× (A/A+A) which lie in between l1
and l2M . Then4

µ ≥ τ |A|M2 −
∑

λ1,λ3∈V,λ2,λ4∈W :{λ1,λ2}6={λ3,λ4}

E(λ1, λ2, λ3, λ4), (12)

where

E(λ1, λ2, λ3, λ4) := |{z ∈ (Aλ1 + (aλ2 , λ2aλ2) ·∆(A−1))∩ (Aλ3 + (aλ4 , λ4aλ4) ·∆(A−1))}|.

In (12), the first term is obtained by counting sums from all pairs of lines in V ×W . The
second error term covers the overcounting of elements that are counted more than once in
the first term.

The next task is to obtain an upper bound for E(λ1, λ2, λ3, λ4) for an arbitrary quadruple
(λ1, λ2, λ3, λ4) which satisfies the aforementioned conditions.

Suppose that

z = (z1, z2) ∈ (Aλ1 + (aλ2 , λ2aλ2) ·∆(A−1)) ∩ (Aλ3 + (aλ4 , λ4aλ4) ·∆(A−1)).

Then

(z1, z2) = (a1, λ1a1) + (aλ2a
−1, λ2aλ2a

−1)
= (a3, λ3a3) + (aλ4b

−1, λ4aλ4b
−1),

for some a1 ∈ Aλ1 , a3 ∈ Aλ3 and a, b ∈ A. Therefore,

z1 = a1 + aλ2a
−1 = a3 + aλ4b

−1

z2 = λ1a1 + λ2aλ2a
−1 = λ3a3 + λ4aλ4b

−1

3.4 Bounding E(λ1, λ2, λ3, λ4) in the case when λ4 6= λ2

Let us assume first that λ4 6= λ2. Note that this assumption implies that λ4 6= λ1, λ2, λ3.
We have

0 = λ1a1 + λ2aλ2a
−1 − λ3a3 − λ4aλ4b

−1 − λ4(a1 + aλ2a
−1 − a3 − aλ4b

−1),

and thus

0 = aλ2(λ2 − λ4)a−1 + (λ1 − λ4)a1 + (λ4 − λ3)a3. (13)

Note that the values λ1 − λ4, aλ2(λ2 − λ4) and λ4 − λ3 are all non-zero. We have shown
that each contribution to E(λ1, λ2, λ3, λ4) determines a solution to (13) with (a, a1, a3) ∈
A×Aλ1 ×Aλ3 . Furthermore, the solution to (13) that we obtain via this deduction is unique,
and so a bound for E(λ1, λ2, λ3, λ4) will follow from a bound to the number of solutions to
(13).

It therefore follows from an application of Lemma 5 that

E(λ1, λ2, λ3, λ4) ≤ C · d(A−1)1/3|A|1/3(A)τ4/3 = C · d(A)1/3|A|1/3(A)τ4/3,

4 For the sake of simplicity of presentation, a small abuse of notation is made here. The lines in V
and W are identified with their slopes. In this way, the notation λi ∈ V is used as a shorthand for
{(x, y) : y = λix} ∈ V .

SoCG 2018
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where C is an absolute constant. Therefore,

µ ≥M2|A|τ −M4Cd1/3(A)|A|1/3τ4/3 −
∑

λ1,λ3∈V,λ2∈W :λ1 6=λ3

E(λ1, λ2, λ3, λ2) (14)

We now impose a condition on the parameter M (recall that we will choose an optimal value
of M at the conclusion of the proof) to ensure that the first error term is dominated by the
main term. We need

CM4d1/3(A)|A|1/3τ4/3 ≤ M2|A|τ
2 ,

which simplifies to

M ≤ |A|1/3
√

2Cd1/6(A)τ1/6
. (15)

With this restriction on M , we now have

µ ≥ M2|A|τ
2 −

∑
λ1,λ3∈V,λ2∈W :λ1 6=λ3

E(λ1, λ2, λ3, λ2). (16)

It remains to bound this second error term.

3.5 Bounding E(λ1, λ2, λ3, λ4) in the case λ4 = λ2

It is in this case that we need to take care to make good choices for the fixed points (aλ, λaλ)
on each line lλ.

Fix λ2 ∈W . We want to prove that there is a choice for (aλ2 , λaλ2) ∈ Aλ2 such that∑
λ1,λ3∈V :λ1 6=λ3

E(λ1, λ2, λ3, λ2)�M2τ1/3|A|4/3.

We will do this using the Szemerédi-Trotter Theorem. Consider the sum∑
aλ2∈Aλ2

∑
λ1,λ3∈V :λ1 6=λ3

|{z ∈ (Aλ1 +(aλ2 , λ2aλ2) ·∆(A−1))∩ (Aλ3 +(aλ2 , λ2aλ2) ·∆(A−1))}|.

Suppose that

z = (z1, z2) ∈ (Aλ1 + (aλ2 , λ2aλ2) ·∆(A−1)) ∩ (Aλ3 + (aλ2 , λ2aλ2) ·∆(A−1)).

Then

(z1, z2) = (a1, λ1a1) + (aλ2a
−1, λ2aλ2a

−1)
= (a3, λ3a3) + (aλ2b

−1, λ2aλ2b
−1),

for some a1 ∈ Aλ1 , a3 ∈ Aλ3 and a, b ∈ A. Therefore,

z1 = a1 + aλ2a
−1 = a3 + aλ2b

−1

z2 = λ1a1 + λ2aλ2a
−1 = λ3a3 + λ2aλ2b

−1.

We have

0 = λ1a1 + λ2aλ2a
−1 − λ3a3 − λ2aλ2b

−1 − λ1(a1 + aλ2a
−1 − a3 − aλ2b

−1),
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and thus
λ3 − λ1

λ2 − λ1
a3 = aλ2(a−1 − b−1). (17)

As in the previous subsection, this shows that the quantity∑
aλ2∈Aλ2

∑
λ1 6=λ3∈V

|(Aλ1 + (aλ2 , λ2aλ2) ·∆(A−1)) ∩ (Aλ3 + (aλ2 , λ2aλ2) ·∆(A−1))|

is no greater than the number of solutions to (17) such that (λ1, λ3, a, b, aλ2 , a3) ∈ V × V ×
A×A×Aλ2 ×Aλ3 .

Fix, λ1, λ3 ∈ V such that λ1 6= λ3. Let Q = A−1 ×Aλ3 . Define lm,c to be the line with
equation λ3−λ1

λ2−λ1
y = m(x− c) and define L to be the set of lines

L = {laλ2 ,b
−1 : aλ2 ∈ Aλ2 , b ∈ A}.

Note that |Q| ≈ |L| ≈ τ |A| and so

I(Q,L)� (τ |A|)4/3.

Repeating this analysis via the Szemerédi-Trotter Theorem for each pair of distinct λ1, λ3 ∈ V ,
it follows that the number of solutions to (17) is O(M2(τ |A|)4/3). In summary,∑
aλ2∈Aλ2

∑
λ1 6=λ3∈V

|(Aλ1 +(aλ2 , λ2aλ2)∆(A−1))∩(Aλ3 +(aλ2 , λ2aλ2)∆(A−1))| �M2(τ |A|)4/3.

Therefore, by the pigeonhole principle, there is some aλ2 ∈ Aλ2 such that∑
λ1 6=λ3∈V

|(Aλ1 +(aλ2 , λ2aλ2)·∆(A−1))∩(Aλ3 +(aλ2 , λ2aλ2)·∆(A−1))| �M2τ1/3|A|4/3. (18)

We can then choose the fixed point (aλ2 , λ2aλ2) on lλ2 to be that corresponding to the value
aλ2 satisfying inequality (18). This in fact shows that∑

λ1 6=λ3∈V

E(λ1, λ2, λ3, λ2)�M2τ1/3|A|4/3. (19)

We repeat this process for each λ2 ∈W to choose a fix point for each line with slope in W .
Summing over all λ2 ∈W , we now have∑

λ1 6=λ3∈V,λ2∈W

E(λ1, λ2, λ3, λ2)�M3τ1/3|A|4/3. (20)

We have a bound for error term in (16). Still, we need to impose a condition on M so
that this error term is dominated by the main term. We need

M3τ1/3|A|4/3 ≤ M2|A|τ
4 ,

which simplifies to

M ≤ τ2/3

4|A|1/3 . (21)

With this restriction on M , we now have

µ ≥ M2|A|τ
4 . (22)

SoCG 2018
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Our integer parameter M must satisfy (15) and (21). We therefore choose

M := min
{⌊

|A|1/3
√

2Cd1/6(A)τ1/6

⌋
,

⌊
τ2/3

4|A|1/3

⌋}
.

Summing over the full clusters, of which there are at least |Sτ |4M , yields

|A/A+A|2 ≥ |Sτ |4M
M2

4 |A|τ (23)

� |Sτ |M |A|τ (24)

3.6 Choosing M - case 1

Suppose first that M =
⌊

|A|1/3
√

2Cd1/6(A)τ1/6

⌋
.

Recall that we need 2 ≤ 2M ≤ |Sτ |. It is easy to check that the upper bound for M is
satisfied. Indeed,

2M ≤ 2√
2C
|A|1/3 ≤ |A|

2 log |A| ≤ |Sτ |.

The first inequality above uses the fact that d(A) ≥ 1 for all A (since one can take C to
be a singleton in the (4)), as well as the bound τ ≥ 1. The second inequality is true for
sufficiently large |A|, and the third is (7). Since smaller sets can be dealt with by choosing
sufficiently small implied constants in the statement, we may assume that 2M ≤ |Sτ |.

Assume first that M ≥ 1 (we will deal with the other case later). Then, by (24) and the
definition of M

|A/A+A|2 � |Sτ ||A|
4/3τ5/6

d1/6(A)
.

Applying the inequality |Sτ |τ � |A|2
log |A| , it follows that

d1/6(A)|A/A+A|2 � |A|
3|Sτ |1/6

log5/6 |A|
. (25)

After bounding the left hand side of this inequality using (11), we obtain

|A/A+A|2/3|Sτ |1/6 log1/2 |A|
|A|7/6 |A/A+A|2 � d1/6(A)|A/A+A|2 � |A|

3|Sτ |1/6

log5/6 |A|
.

Rearranging this expression leads to the bound

|A/A+A| � |A|25/16

log1/2 |A|
,

which is stronger than the claim of the theorem.
It remains is to consider what happens if M ≤ 1. Indeed, if this is the case, then

|A|1/3
√

8Cd1/6(A)τ1/6
< 1

and so

|A|1/3

d1/6(A)τ1/6 � 1.
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After applying the bound τ ≤ |A|2/|Sτ |, it follows that

|Sτ |1/6

d1/6(A)
� 1� |A/A+A|2

|A|3
,

where the latter inequality is a consequence of Theorem 1. In particular, this implies that
(25) holds. We can then repeat the earlier analysis and once again reach the conclusion that

|A/A+A| � |A| 32 + 1
16

log1/2 |A|
.

3.7 Choosing M - case 2

Suppose now that M =
⌊

τ2/3

4|A|1/3

⌋
.

Again, we need to check that 2 ≤ 2M ≤ |Sτ |. If the lower bound does not hold then (9)
gives a contradiction for sufficiently large |A|. Smaller sets can be dealt with by choosing
sufficiently small implied constants in the statement. If the upper bound does not hold then

τ2/3

|A|1/3 ≥ 2M > |Sτ |.

Multiplying both sides of this inequality by τ and applying (8) gives the contradiction

|A|5/3 ≥ τ5/3 � |A|
7/3

log |A| .

Since this choice of M is valid, we can now conclude the proof. From (9), we have

M � τ2/3

|A|1/3 �
|A| 1

13

log
2
3 |A|

.

Then, by (24) and (8),

|A/A+A|2 � |A|3

log |A|M �
|A|3+ 1

13

log5/3 |A|
.

We conclude that

|A/A+A| � |A| 32 + 1
26

log5/6 |A|
,

and so the proof is complete. J
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