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Abstract
Updating an abstract Voronoi diagram in linear time, after deletion of one site, has been an open
problem for a long time. Similarly for various concrete Voronoi diagrams of generalized sites,
other than points. In this paper we present a simple, expected linear-time algorithm to update
an abstract Voronoi diagram after deletion. We introduce the concept of a Voronoi-like diagram,
a relaxed version of a Voronoi construct that has a structure similar to an abstract Voronoi
diagram, without however being one. Voronoi-like diagrams serve as intermediate structures,
which are considerably simpler to compute, thus, making an expected linear-time construction
possible. We formalize the concept and prove that it is robust under an insertion operation, thus,
enabling its use in incremental constructions.
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1 Introduction

The Voronoi diagram of a set S of n simple geometric objects, called sites, is a well-known
geometric partitioning structure that reveals proximity information for the input sites. Classic
variants include the nearest-neighbor, the farthest-site, and the order-k Voronoi diagram of S
(1 ≤ k < n). Abstract Voronoi diagrams [11] offer a unifying framework for various concrete
and well-known instances. Some classic Voronoi diagrams have been well investigated, with
optimal construction algorithms available in many cases, see e.g., [2] for references and more
information or [16] for numerous applications.

For certain tree-like Voronoi diagrams in the plane, linear-time construction algorithms
have been well-known to exist, see e.g., [1, 7, 13, 8]. The first technique was introduced by
Aggarwal et al. [1] for the Voronoi diagram of points in convex position, given the order
of points along their convex hull. It can be used to derive linear-time algorithms for other
fundamental problems: (1) updating a Voronoi diagram of points after deletion of one site in
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time linear to the number of the Voronoi neighbors of the deleted site; (2) computing the
farthest Voronoi diagram of point-sites in linear time, after computing their convex hull; (3)
computing the order-(k+1) subdivision within an order-k Voronoi region. There is also a
much simpler randomized approach for the same problems introduced by Chew [7]. Klein
and Lingas [13] adapted the linear-time framework [1] to abstract Voronoi diagrams, under
restrictions, showing that a Hamiltonian abstract Voronoi diagram can be computed in linear
time, given the order of Voronoi regions along an unbounded simple curve, which visits
each region exactly once and can intersect each bisector only once. This construction has
been extended recently to include forest structures [4] under similar conditions, where no
region can have multiple faces within the domain enclosed by a curve. The medial axis of a
simple polygon is another well-known problem to admit a linear-time construction, shown by
Chin et al. [8].

In this paper we consider the fundamental problem of updating a two-dimensional Voronoi
diagram, after deletion of one site, and provide an expected linear-time algorithm to achieve
this task. We consider the framework of abstract Voronoi diagrams to simultaneously address
the various concrete instances under their umbrella. To the best of our knowledge, no
linear-time construction algorithms are known for concrete diagrams of non-point sites,
nor for abstract Voronoi diagrams. Related is our expected linear-time algorithm for the
concrete farthest-segment Voronoi diagram [10]1, however, definitions are geometric, relying
on star-shapeness and visibility properties of segment Voronoi regions, which do not extend
to the abstract model. In this paper we consider a new formulation.

Abstract Voronoi diagrams. Abstract Voronoi diagrams (AVDs) were introduced by
Klein [11]. Instead of sites and distance measures, they are defined in terms of bisect-
ing curves that satisfy some simple combinatorial properties. Given a set S of n abstract
sites, the bisector J(p, q) of two sites p, q ∈ S is an unbounded Jordan curve, homeomorphic
to a line, that divides the plane into two open domains: the dominance region of p, D(p, q)
(having label p), and the dominance region of q, D(q, p) (having label q), see Figure 1. The
Voronoi region of p is

VR(p, S) =
⋂

q∈S\{p}

D(p, q).

The (nearest-neighbor) abstract Voronoi diagram of S is V(S) = R2 \
⋃
p∈S VR(p, S).

Following the traditional model of abstract Voronoi diagrams (see e.g. [11, 3, 6, 5]) the
system of bisectors is assumed to satisfy the following axioms, for every subset S′ ⊆ S:
(A1) Each nearest Voronoi region VR(p, S′) is non-empty and pathwise connected.
(A2) Each point in the plane belongs to the closure of a nearest Voronoi region VR(p, S′).
(A3) After stereographic projection to the sphere, each bisector can be completed to a Jordan

curve through the north pole.
(A4) Any two bisectors J(p, q) and J(r, t) intersect transversally and in a finite number of

points. (It is possible to relax this axiom, see [12]).

V(S) is a plane graph of structural complexity O(n) and its regions are simply-connected.
It can be computed in time O(n logn), randomized [14] or deterministic [11]. To update
V(S), after deleting one site s ∈ S, we compute V(S \ {s}) within VR(s, S). The sequence of

1 A preliminary version contains a gap when considering the linear-time framework of [1], thus, a
linear-time construction for the farthest segment Voronoi diagram remains an open problem.
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Figure 1 A bisector J(p, q) and its dominance
regions; D(p, q) is shown shaded.
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Figure 2 The Voronoi diagram V({p, q, r}) in
solid lines. The shaded region is VR(p, {p, q, r}).

site-occurrences along ∂VR(s, S) forms a Davenport-Schinzel sequence of order 2 and this
constitutes a major difference from the respective problem for points, where no repetition
can occur. V(S \ {s}) ∩ VR(s, S) contains disconnected Voronoi regions, which introduce
several complications. For example, V(S′) ∩ VR(s, S′ ∪ {s}) for S′ ⊂ S \ {s} may contain
various faces that are not related to V(S \ {s}) ∩ VR(s, S), and conversely, an arbitrary
sub-sequence of ∂VR(s, S) need not correspond to any Voronoi diagram. At first sight, a
linear-time algorithm may seem infeasible.

Our results. In this paper we give a simple randomized algorithm to compute V(S \ {s})
within VR(s, S) in expected time linear on the complexity of ∂VR(s, S). The algorithm
is simple, not more complicated than its counterpart for points [7], and this is achieved
by computing simplified intermediate structures that are interesting in their own right.
These are Voronoi-like diagrams, having a structure similar to an abstract Voronoi diagram,
however, they are not Voronoi structures. Voronoi-like regions are supersets of real Voronoi
regions, and their boundaries correspond to monotone paths in the relevant system of
bisectors, rather than to an envelope in the same system as in a real Voronoi diagram
(see Definition 5). We prove that Voronoi-like diagrams are well-defined, and also they
are robust under an insertion operation, thus, making possible a randomized incremental
construction for V(S \ {s}) ∩VR(s, S) in linear time. We expect the concept to find uses in
other Voronoi computations, where computing intermediate relaxed structures may simplify
the entire computation. A first candidate in this direction is the linear-time framework of
Aggarwal et al. [1] that we plan to investigate next.

Our approach can be adapted (in fact, simplified) to compute in expected linear time
the farthest abstract Voronoi diagram, after the sequence of its faces at infinity is known.
The latter sequence can be computed in time O(n logn). We also expect that our algorithm
can be adapted to compute the order-(k+1) subdivision within an order-k abstract Voronoi
region in expected time linear on the complexity of the region boundary.2 Our technique
can be applied to concrete diagrams that may not strictly fall under the AVD model such
as Voronoi diagrams of line segments that may intersect and of planar straight-line graphs
(including simple and non-simple polygons).

2 Preliminaries

Let S be a set of n abstract sites (a set of indices) that define an admissible system of
bisectors in the plane J = {J(p, q) : p 6= q ∈ S}, which fulfills axioms (A1)–(A4) for every
S′ ⊆ S. The (nearest) Voronoi region of p is VR(p, S) =

⋂
q∈S\{p}D(p, q) and the Voronoi

diagram of S is V(S) = R2 \
⋃
p∈S VR(p, S), see, e.g., Figure 2.

2 The adaptation is non-trivial, thus, we only make a conjecture here and plan to consider details in
subsequent work.

SoCG 2018
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Figure 3 The domain Ds = VR(s, S) ∩DΓ.
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Figure 4 (a) A p-inverse cycle. (b) A p-cycle.

Bisectors that have a site p in common are called p-related or simply related; related
bisectors can intersect at most twice [11, Lemma 3.5.2.5]. When two related bisectors J(p, q)
and J(p, r) intersect, bisector J(q, r) also intersects with them at the same point(s) [11],
and these points are the Voronoi vertices of V({p, q, r}), see Figure 2. Since any two related
bisectors in J intersect at most twice, the sequence of site occurrences along ∂VR(p, S),
p ∈ S, forms a Davenport-Schinzel sequence of order 2 (by [19, Theorem 5.7]).

To update V(S) after deleting one site s ∈ S, we compute V(S \ {s}) within VR(s, S),
i.e., compute V(S \{s})∩VR(s, S). Its structure is given in the following lemma. Figure 7(a)
illustrates V(S \ {s}) ∩VR(s, S) (in red) for a bounded region VR(s, S), where the region’s
boundary is shown in bold.

I Lemma 1. V(S \ {s}) ∩ VR(s, S) is a forest having exactly one face for each Voronoi
edge of ∂VR(s, S). Its leaves are the Voronoi vertices of ∂VR(s, S), and points at infinity if
VR(s, S) is unbounded. If VR(s, S) is bounded then V(S \ {s}) ∩VR(s, S) is a tree.

Let Γ be a closed Jordan curve in the plane large enough to enclose all the intersections of
bisectors in J , and such that each bisector crosses Γ exactly twice and transversally. Without
loss of generality, we restrict all computations within Γ.3 The curve Γ can be interpreted
as J(p, s∞), for all p ∈ S, where s∞ is an additional site at infinity. Let the interior of Γ
be denoted as DΓ. Our domain of computation is Ds = VR(s, S) ∩DΓ, see Figure 3; we
compute V(S \ {s}) ∩Ds.

The following lemmas are used as tools in our proofs. Let Cp be a cycle of p-related
bisectors in the arrangement of bisectors J ∪ Γ. If for every edge in Cp the label p appears
on the outside of the cycle then Cp is called p-inverse, see Figure 4(a). If the label p appears
only inside Cp then Cp is called a p-cycle, see Figure 4(b). By definition, VR(p, S) ⊆ Cp for
any p-cycle Cp. A p-inverse cycle cannot contain pieces of Γ.

I Lemma 2. In an admissible bisector system there is no p-inverse cycle.

Proof. The farthest Voronoi region of p is FVR(p, S) =
⋂
q∈S\{p}D(q, p). By its definition,

FVR(p, S) must be enclosed in any p-inverse cycle Cp. But farthest Voronoi regions must be
unbounded [15, 3] deriving a contradiction. J

The following transitivity lemma is a consequence of transitivity of dominance regions [3,
Lemma 2] and the fact that bisectors J(p, q), J(q, r), J(p, r) intersect at the same point(s).

I Lemma 3. Let z ∈ R2 and p, q, r ∈ S. If z ∈ D(p, q) and z ∈ D(q, r), then z ∈ D(p, r).

We make a general position assumption that no three p-related bisectors intersect at the
same point. This implies that Voronoi vertices have degree 3.

3 The presence of Γ is conceptual and its exact position unknown; we never compute coordinates on Γ.



K. Junginger and E. Papadopoulou 50:5

p p
sα sβ

(b)

VR(p)α β

(a)

pp
sαsβ

(c)

sα
p

sβ
p

ββ α

αVR(p) VR(p)

Figure 5 (a) Arcs α, β fulfill the p-monotone
path condition; they do not fulfill it (b) and (c).

p r p
q

ptp
qE P

p
p p

q
r t

(b)(a)

p
r

Figure 6 (a) The envelope E = env(Jp,{q,r,t}).
(b) A p-monotone path P in Jp,{q,r,t}.

3 Problem formulation and definitions

Let S denote the sequence of Voronoi edges along ∂VR(s, S), i.e., S = ∂VR(s, S) ∩DΓ. We
consider S as a cyclically ordered set of arcs, where each arc is a Voronoi edge of ∂VR(s, S).
Each arc α ∈ S is induced by a site sα ∈ S \ {s} such that α ⊆ J(s, sα). A site p may
induce several arcs on S; recall, that the sequence of site occurrences along ∂VR(s, S) is a
Davenport-Schinzel sequence of order 2.

We can interpret the arcs in S as sites that induce a Voronoi diagram V(S), where
V(S) = V(S \ {s}) ∩ Ds and Ds = VR(s, S) ∩ DΓ. Figure 7(a) illustrates S and V(S) in
black (bold) and red, respectively. By Lemma 1, each face of V(S \ {s}) ∩Ds is incident to
exactly one arc in S. In this respect, each arc α in S has a Voronoi region, VR(α,S), which
is the face of V(S \ {s}) ∩Ds incident to α.

For a site p ∈ S and S′ ⊆ S, let Jp,S′ = {J(p, q) | q ∈ S′, q 6= p} denote the set of all
p-related bisectors involving sites in S′. The arrangement of a bisector set J is denoted by
A(J). A(Jp,S′) may consist of more than one connected components.

I Definition 4. A path P in Jp,S′ is a connected sequence of alternating edges and vertices
of the arrangement A(Jp,S′). An arc α of P is a maximally connected set of consecutive
edges and vertices of the arrangement along P , which belong to the same bisector. The
common endpoint of two consecutive arcs of P is a vertex of P . An arc of P is also called an
edge.

Two consecutive arcs in a path P are pieces of different bisectors. We use the notation
α ∈ P for referring to an arc α of P . For α ∈ P , let sα ∈ S denote the site in S that induces
α, where α ⊆ J(p, sα).

I Definition 5. A path P in Jp,S′ is called p-monotone if any two consecutive arcs α, β ∈ P ,
where α ⊆ J(p, sα) and β ⊆ J(p, sβ), induce the Voronoi edges of ∂VR(p, {p, sα, sβ}), which
are incident to the common endpoint of α, β (see Figure 5).

I Definition 6. The envelope of Jp,S′ , with respect to site p, is env(Jp,S′) = ∂VR(p, S′∪{p}),
called a p-envelope (see Figure 6(a)).

Figure 6 illustrates two p-monotone paths, where the path in Figure 6(a) is a p-envelope.
Notice, S is the envelope of the s-related bisectors in J , S = env(Js,S\{s}) ∩ DΓ. A p-
monotone path that is not a p-envelope can be a Davenport-Schinzel sequence of order > 2,
with respect to site occurrences in S \ {s}.

The system of bisectors Jp,S′ may consist of several connected components. For conve-
nience, in order to unify the various connected components of A(Jp,S′) and to consider its
p-monotone paths as single curves, we include the curve Γ in the corresponding system of
bisectors. Then, env(Jp,S′ ∪ Γ) is a closed p-monotone path, whose connected components in
Jp,S′ are interleaved with arcs of Γ.

SoCG 2018
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Figure 7 (a) illustrates S in black (bold) and V(S) in red, S = (α, β, γ, δ, ε, ζ, η, ϑ). (b) illustrates
Vl(P) for a boundary curve P = (α, β, γ, β′, ε, η, g) for S ′, where S ′ = (α, β, γ, ε, η) is shown in bold.
The arcs of P are original except the auxiliary arc β′ and the Γ-arc g.

I Definition 7. Consider S ′ ⊆ S and let S′ = {sα ∈ S |α ∈ S ′} ⊆ S\{s} be its corresponding
set of sites. A closed s-monotone path in Js,S′ ∪ Γ that contains all arcs in S ′ is called a
boundary curve for S ′. The part of the plane enclosed in a boundary curve P is called the
domain of P, and it is denoted by DP . Given P, we also use notation SP to denote S′.

A set of arcs S ′ ⊂ S can admit several different boundary curves. One such boundary curve
is its envelope E = env(Js,S′ ∪Γ). Figure 7(b) illustrates a boundary curve for S ′ ⊆ S, where
S is the set of arcs in Figure 7(a).

A boundary curve P in Js,S′ ∪ Γ consists of pieces of bisectors in Js,S′ , called boundary
arcs, and pieces of Γ, called Γ-arcs. Γ-arcs correspond to openings of the domain DP to
infinity. Among the boundary arcs, those that contain an arc of S ′ are called original and
others are called auxiliary arcs. Original boundary arcs are expanded versions of the arcs in
S ′. To distinguish between them, we call the elements of S core arcs and use an ∗ in their
notation. In Figure 7 the core arcs are illustrated in bold.

For a set of arcs S ′ ⊆ S, we define the Voronoi diagram of S ′ ⊆ S as V(S ′) = V(S′)∩DE ,
where E is the s-envelope env(Js,S′ ∪ Γ). V(S ′) can be regarded as the Voronoi diagram
of the envelope E , thus, it can also be denoted as V(E). The face of V(S ′) incident to an
arc α ∈ E is called the Voronoi region of α and is denoted by VR(α,S ′). We would like to
extend the definition of V(S ′) to any boundary curve stemming out of S ′. To this goal we
define a Voronoi-like diagram for any boundary curve P of S ′. Notice, Ds ⊆ DE ⊆ DP .

I Definition 8. Given a boundary curve P in Js,S′ ∪ Γ, a Voronoi-like diagram of P is a
plane graph on J (S′) = {J(p, q) ∈ J | p, q ∈ S′} inducing a subdivision on the domain DP
as follows (see Figure 7(b)):
1. There is exactly one face R(α) for each boundary arc α of P, and ∂R(α) consists of the

arc α plus an sα-monotone path in Jsα,S′ ∪ Γ.
2.
⋃
α∈P\ΓR(α) = DP .

The Voronoi-like diagram of P is Vl(P) = DP \
⋃
α∈P R(α).

Voronoi-like regions in Vl(P) are related to real Voronoi regions in V(S ′) as supersets,
as shown in the following lemma. In Figure 7(b) the Voronoi-like region R(η) is a superset
of its corresponding Voronoi region VR(η,S) in (a); similarly for e.g., R(α). Note that not
every boundary curve of S ′ ⊂ S needs to admit a Voronoi-like diagram.

I Lemma 9. Let α be a boundary arc in a boundary curve P of S ′ such that a portion α̃ ⊆ α
appears on the s-envelope E of S ′, E = env(Js,S′ ∪ Γ). Given Vl(P), R(α) ⊇ VR(α̃,S ′). If α
is original, then R(α) ⊇ VR(α̃,S ′) ⊇ VR(α∗,S).

Proof. By the definition of a Voronoi region, no piece of a bisector J(sα, ·) can appear in the
interior of VR(α̃,S ′), where α̃ ∈ E (recall that V(S ′) = V(E)). Since in addition α ⊇ α̃, the
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claim follows. For an original arc α, since S′ ⊆ S, by the monotonicity property of Voronoi
regions, we also have VR(α̃,S ′) ⊇ VR(α∗,S). J

As a corollary to Lemma 9, the adjacencies of the real Voronoi diagram V(S ′) are preserved
in Vl(P), for all arcs that are common to the envelope E and the boundary curve P. In
addition, Vl(E) coincides with the real Voronoi diagram V(S ′).

I Corollary 10. Vl(E) = V(S ′). This also implies Vl(S) = V(S).

The following Lemma 12 gives a basic property of Voronoi-like regions that is essential
for subsequent proofs. To establish it we first need the following observation.

I Lemma 11. DP cannot contain a p-cycle of J (SP) ∪ Γ, for any p ∈ SP .

Proof. Let p ∈ SP define an original arc along P . This arc is bounding VR(p, SP ∪{s}), thus,
it must have a portion within VR(p, SP). Hence, VR(p, SP) has a non-empty intersection
with R2 \ DP . But VR(p, SP) must be enclosed within any p-cycle of J (SP) ∪ Γ, by its
definition. Thus, no such p-cycle can be contained in DP . Refer to Figure 8. J

I Lemma 12. Suppose bisector J(sα, sβ) appears within R(α) (see Figure 9). For any
connected component e of J(sα, sβ)∩R(α) that is not intersecting α, the label sα must appear
on the same side of e as α. Let ∂Re(α) denote the portion of ∂R(α) cut out by such a
component e, at opposite side from α. Then ∂Re(α) ⊆ D(sβ , sα).

By Lemma 12, any components of J(sα, sβ) ∩R(α) must appear sequentially along ∂R(α).
Note that ∂Re(α) may as well contain Γ-arcs.

Proof. Suppose for the sake of contradiction that there is such a component e ⊆ J(sα, sβ) ∩
R(α) with the label sα appearing at opposite side of e as α (see Figure 10). Then e and
∂R(α) form an sα-cycle C within DP , contradicting Lemma 11. Suppose now that ∂Re(α)
lies only partially in D(sβ , sα). Then J(sβ , sα) would have to re-enter R(α) at ∂Re(α),
resulting in another component of J(sβ , sα) ∩R(α) with an invalid labeling. J

The following lemma extends Lemma 12 when a component e of J(sα, sβ)∩R(α) intersects
arc α. If J(sα, sβ) intersects α, then there is also a component β̃ of J(s, sβ)∩R(α) intersecting
α at the same point as e. If β̃ has only one endpoint on α, let ∂Re(α) denote the portion of
∂R(α) that is cut out by e, at the side of its sβ-label (see Figure 11(a)). If both endpoints of
β̃ are on α then there are two components of J(sα, sβ)∩R(α) incident to α (see Figure 11(b));
let ∂Re(α) denote the portion of ∂R(α) between these two components.

I Lemma 13. Let e be a component of J(sα, sβ) ∩R(α). Then ∂Re(α) ⊆ D(sβ , sα).

Using the basic property of Lemma 12 and its extension, we show that if there is any
non-empty component of J(sα, sβ) ∩R(α), then J(s, sβ) must also intersect DP , i.e., there
exists a non-empty component of J(s, sβ) ∩DP that is missing from P . Using this property
and Theorem 18 of the next section, we obtain the following theorem (see Section 5).

SoCG 2018
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I Theorem 14. Given a boundary curve P of S ′ ⊆ S, Vl(P) (if it exists) is unique.

The complexity of Vl(P) is O(|P|), where |P| denotes the number of boundary arcs in P ,
as it is a planar graph with exactly one face per boundary arc and vertices of degree 3 (or 1).

4 Insertion in a Voronoi-like diagram

Consider a boundary curve P for S ′ ⊂ S and its Voronoi-like diagram Vl(P). Let β∗ be an
arc in S \ S ′, thus, β∗ is contained in the closure of the domain DP .

We define arc β ⊇ β∗ as the connected component of J(s, sβ) ∩DP that contains β∗ (see
Figure 12). We also define an insertion operation ⊕, which inserts arc β in P deriving a
new boundary curve Pβ = P ⊕ β, and also inserts R(β) in Vl(P) deriving the Voronoi-like
diagram Vl(Pβ) = Vl(P)⊕ β. Pβ is the boundary curve obtained by deleting the portion of
P between the endpoints of β, which lies in D(sβ , s), and substituting it with β.

Figure 13 enumerates the possible cases of inserting arc β in P and is summarized in the
following observation.

Γ

PPP

β β
β

P

β

(a) (b) (c) (d)
P

(e)
P
β

(f)

β

Figure 13 Insertion cases for an arc β.

I Observation 15. Possible cases of inserting arc β in P (see Figure 13). DPβ ⊆ DP .
(a) β straddles the endpoint of two consecutive boundary arcs; no arcs in P are deleted.
(b) Auxiliary arcs in P are deleted by β; their regions are also deleted from Vl(Pβ).
(c) An arc α ∈ P is split into two arcs by β; R(α) in Vl(P) will also be split.
(d) A Γ-arc is split in two by β; Vl(Pβ) may switch from being a tree to being a forest.
(e) A Γ-arc is deleted or shrunk by inserting β. Vl(Pβ) may become a tree.
(f) P already contains a boundary arc β̄ ⊇ β∗; then β = β̄ and Pβ = P.

Note that Pβ may contain fewer, the same number, or even one extra auxiliary arc
compared to P.

I Lemma 16. The curve Pβ = P ⊕ β is a boundary curve for S ′ ∪ {β∗}.

Proof. Since P is a (closed) s-monotone path in Js,S′ ∪ Γ, Pβ is also such a path in
Js,S′∪{sβ} ∪ Γ, by construction. No original arc in P can be deleted by the insertion of β,
because every core arc in S appears on the envelope env(Js,S ∪ Γ); thus, such an arc cannot
be cut out by the insertion of β on P. Hence, Pβ contains all arcs in S ′ ∪ {β∗}. J
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Figure 14 The merge curve J(β) (thick,
green) on Vl(P) (thin, red).

s
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Figure 15 If β splits α, J(β) ⊂ R(α) would
yield a forbidden sα-inverse cycle.

ei

y
β

xP
J i
x

vi

Jj
y

vm−j+1ei−1 em−j+1

em−j

Figure 16 J ix and Jjy in Section 4.1.

Given Vl(P) and arc β, where β∗ ∈ S \ S ′, we define a merge curve J(β), within Vl(P),
which delimits the boundary of R(β) in Vl(Pβ). We define J(β) incrementally, starting at an
endpoint of β. Let x and y denote the endpoints of β, where x, β, y are in counterclockwise
order around Pβ ; refer to Figure 14.

I Definition 17. Given Vl(P) and arc β ⊂ J(s, sβ), the merge curve J(β) is a path
(v1, . . . , vm) in the arrangement of sβ-related bisectors, Jsβ ,SP ∪ Γ, connecting the endpoints
of β, v1 = x and vm = y. Each edge ei = (vi, vi+1) is an arc of a bisector J(sβ , ·), called an
ordinary edge, or an arc on Γ. For i = 1: if x ∈ J(sβ , sα), then e1 ⊆ J(sβ , sα); if x ∈ Γ, then
e1 ⊆ Γ. Given vi, vertex vi+1 and edge ei+1 are defined as follows (see Figure 14). Wlog we
assume a clockwise ordering of J(β).
1. If ei ⊆ J(sβ , sα), let vi+1 be the other endpoint of the component J(sβ , sα) ∩ R(α)

incident to vi. If vi+1 ∈ J(sβ , ·) ∩ J(sβ , sα), then ei+1 ⊆ J(sβ , ·). If vi+1 ∈ Γ, then
ei+1 ⊆ Γ. (In Figure 14, see ei = e′, vi = z, vi+1 = z′.)

2. If ei ⊆ Γ, let g be the Γ-arc incident to vi. Let ei+1 ⊆ J(sβ , sγ), where R(γ) is the first
region, incident to g clockwise from vi, such that J(sβ , sγ) intersects g ∩R(γ); let vi+1
be this intersection point. (In Figure 14, see vi = v and vi+1 = w.)

A vertex v along J(β), is called valid if v is a vertex in the arrangement A(Jsβ ,SP ∪ Γ)
or v is an endpoint of β. The following theorem shows that J(β) is well defined, given Vl(P),
and that it forms an sβ-monotone path. We defer its proof to the end of this section.

I Theorem 18. J(β) is a unique sβ-monotone path in the arrangement of sβ-related bisectors
Jsβ ,SP ∪ Γ connecting the endpoints of β. J(β) can contain at most one ordinary edge per
region of Vl(P), with the exception of e1 and em−1, when v1 and vm are incident to the same
face in Vl(P). J(β) cannot intersect the interior of arc β.

We define R(β) as the area enclosed by β ∪ J(β). Let Vl(P)⊕ β be the subdivision of
DPβ obtained by inserting J(β) in Vl(P) and deleting any portion of Vl(P) enclosed by J(β),
i.e., Vl(P)⊕ β =

(
(Vl(P) \R(β)) ∪ J(β)

)
∩DPβ . We prove that Vl(P)⊕ β is a Voronoi-like

diagram. To this goal we need an additional property of J(β).

I Lemma 19. If the insertion of β splits an arc α ∈ P (Observation 15(c)), then J(β) also
splits R(α) and J(β) * R(α). In no other case can J(β) split a region R(α) in Vl(P).
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Proof. Suppose for the sake of contradiction that β splits arc α and J(β) ⊂ R(α), as shown
in Figure 15. Then J(β) = J(sα, sβ)∩R(α) and the bisector J(sα, sβ) together with the arc
α form a forbidden sα-inverse cycle, deriving a contradiction to Lemma 2. Thus, J(β) must
intersect ∂R(α) in Vl(P) and therefore J(β) * R(α). By Theorem 18, J(β) can only enter
some other region at most once. Thus, J(β) cannot split any other region. J

I Theorem 20. Vl(P)⊕ β is a Voronoi-like diagram for Pβ = P ⊕ β, denoted Vl(Pβ).

Proof. By Theorem 18, R(β) fulfills the properties of a Voronoi-like region. Moreover, the
updated boundary of any other region R(α) in Vl(P), which is truncated by J(β), remains
an sα-monotone path. By Lemma 19, J(β) cannot split a region R(α) in Vl(P), and thus, it
cannot create a face that is not incident to α. Therefore, Vl(P)⊕ β fulfills all properties of
Definition 8. J

The tracing of J(β) within Vl(P), given the endpoints of β, can be done similarly to
any ordinary Voronoi diagram, see e.g., [11] [2, Ch. 7.5.3] for AVDs, or [9, Ch. 7.4] [18, Ch.
5.5.2.1] for concrete diagrams. For a Voronoi-like diagram this can be established due to the
basic property of Lemmas 12 and 13.

Special care is required in cases (c), (d), and (e) of Observation 15, in order to identify
the first edge of J(β); in these cases, β may not overlap with any feature of Vl(P), thus, a
starting point for tracing J(β) is not readily available. In case (c), we trace a portion of
∂R(α), which does not get deleted afterwards, thus it adds to the time complexity of the
operation Vl(P)⊕ β (see Lemma 21). In cases (d) and (e), we show that if no feature of Vl(P)
overlaps β, then either there is a leaf of Vl(P) in the neighboring Γ-arc or J(β) ⊆ R(α). In
either case a starting point for J(β) can be identified in O(1) time. Notice, if J(β) ⊆ R(α),
then it consists of a single bisector J(sβ , sα) (and one or two Γ-arcs).

The following lemma gives the time complexity to compute J(β) and update Vl(Pβ). The
statement of the lemma is an adaptation from [10], however, the proof contains cases that
do not appear in a farthest segment Voronoi diagram. | · | denotes complexity.

Let P̃ denote a finer version of P, where a Γ-arc between two consecutive boundary arcs
in P is partitioned into smaller Γ-arcs as defined by the incident faces of Vl(P). Since |Vl(P)|
is O(|P|), |P̃| is also O(|P|).

I Lemma 21. Let α and γ be the first original arcs on Pβ occurring before and after β. Let
d(β) be the number of arcs in P̃ between α and γ (both boundary and Γ-arcs). Given α, γ,
and Vl(P), in all cases of Observation 15, except (c), the merge curve J(β) and the diagram
Vl(Pβ) can be computed in time O(|R(β)|+ d(β)). In case (c), where an arc is split and a
new arc ω is created by the insertion of β, the time is O(|∂R(β)|+ |∂R(ω)|+ d(β)).

4.1 Proving Theorem 18
We first establish that J(β) cannot intersect arc β, other than its endpoints, using the
following Lemma.

I Lemma 22. Given Vl(P), for any arc α ∈ P, R(α) ⊆ D(s, sα).

Proof. The contrary would yield an sα-inverse cycle defined by J(s, sα) and ∂R(α). J

Lemma 22 implies that bisector J(sβ , sα) cannot intersect J(s, sβ) within region R(α). Thus
J(β) cannot intersect arc β in its interior. The following lemma is used in several proofs.

I Lemma 23. D(s, ·)∩DP is always connected. Thus, any components of J(s, ·)∩DP must
appear sequentially along P.
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Figure 17 The assumption that edge ei = (vi, vi+1) of the merge curve J ix hits a boundary arc of
P as in Lemma 24.

Proof. If we assume the contrary we obtain an s-inverse cycle defined by J(s, ·) and P. J

To prove Theorem 18 we use a bi-directional induction on the vertices of J(β). Let
J ix = (v1, v2, . . . , vi), 1 ≤ i < m, be the subpath of J(β) starting at v1 = x up to vertex
vi, including a small neighborhood of ei incident to vi, see Figure 16. Note that vertex
vi uniquely determines ei, however, its other endpoint is not yet specified. Similarly, let
Jjy = (vm, vm−1, . . . , vm−j+1), 1 ≤ j < m, denote the subpath of J(β), starting at vm up to
vertex vm−j+1, including a small neighborhood of edge em−j . Recall that we refer to the
edges of J(β) that are not Γ-arcs as ordinary. For any ordinary edge e` ∈ J(β), let α` denote
the boundary arc that induces e`, i.e., e` ⊆ J(sα` , sβ) ∩R(α`).

Induction hypothesis: Suppose J ix and Jjy , i, j ≥ 1, are disjoint sβ-monotone paths.
Suppose further that each ordinary edge of J ix and of Jjy passes through a distinct region of
Vl(P): α` is distinct for `, 1 ≤ ` ≤ i and m − j ≤ ` < m, except possibly αi = αm−j and
α1 = αm−1.

Induction step: Assuming that i + j < m, we prove that at least one of J ix or Jjy can
respectively grow to J i+1

x or Jj+1
y at a valid vertex (Lemmas 24, 25), and it enters a new

region of Vl(P) that has not been visited so far (Lemma 27). A finish condition when
i+ j = m is given in Lemma 26. The base case for i = j = 1 is trivially true.

Suppose that ei ⊆ J(sαi , sβ) and vi ∈ ∂R(αi). To show that vi+1 is a valid vertex it is
enough to show that (1) vi+1 can not be on αi, and (2) if vi is on a Γ-arc then vi+1 can be
determined on the same Γ-arc. However, we cannot easily derive these conclusions directly.
Instead we show that if vi+1 is not valid then vm−j will have to be valid.

In the following lemmas we assume that the induction hypothesis holds.

I Lemma 24. Suppose ei ⊆ J(sαi , sβ) but vi+1 ∈ αi, i.e., it is not a valid vertex because ei
hits αi. Then vertex vm−j must be a valid vertex in A(Jsβ ,SP ), and vm−j can not be on P.

I Lemma 25. Suppose vertex vi is on a Γ-arc g but vi+1 cannot be determined because no
bisector J(sβ , sγ) intersects R(γ) ∩ g, clockwise from vi. Then vertex vm−j must be a valid
vertex in A(Jsβ ,SP ) and vm−j can not be on P.

Proof of Lemma 24. Suppose vertex vi+1 of ei lies on αi as shown in Figure 17(a). Vertex
vi+1 is the intersection point of related bisectors J(s, sαi), J(sβ , sαi) and thus also of J(s, sβ).
Observe that arc β partitions J(s, sβ) in two parts: J1 incident to v1 and J2 incident to
vm. We claim that vi+1 lies on J2. Suppose otherwise, then J i+1

x and J1 would form a
forbidden sβ-inverse cycle, see the dashed black and the green solid curve in Figure 17(a).
By Lemma 23 the components of J2 ∩DP appear on P clockwise after vi+1 and before vm,
as shown in Figure 17(b) illustrating J(s, sβ) as a black dashed curve.

Now consider Jjy . We show that vm−j cannot be on P. First observe that vm−j can not
lie on P, clockwise after vm and before v1, since Jj+1

y cannot cross β. We prove that vm−j
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cannot lie on P clockwise after v1 and before vi+1. To see that, note that edge em−j cannot
cross any non-Γ edge of J i+1

x , because αm−j is distinct from all α`, ` ≤ i (by the induction
hypothesis). In addition, by the definition of a Γ-arc, vm−j cannot lie on any Γ-arc of J ix.
Finally, we show that vm−j cannot lie on P clockwise after vi+1 and before vm. If vm−j
lay on the boundary arc αm−j then we would have vm−j ∈ J(s, sβ). This would define an
sβ-inverse cycle Cβ , formed by Jj+1

y and J(sβ , s), see Figure 17(b). If vm−j lay on a Γ-arc
then there would also be a forbidden sβ-inverse cycle formed by Jj+1

y and J(s, sβ) because
in order to reach Γ edge ei must cross J(s, sβ). See the dashed black and the green curve in
Figure 17(c). Thus vm−j 6∈ P.

Since vm−j ∈ ∂R(αi+1) but vm−j 6∈ P, it must be a vertex of A(Jsβ ,SP ). J

Lemma 26 provides a finish condition for the induction. When it is met, J(β) = J ix ∪ Jjy ,
i.e., a concatenation of J ix and Jjy .

I Lemma 26. Suppose i+ j > 2 and either (1) or (2) holds: (1) αi = αm−j, i.e., vi and
vm−j+1 are incident to a common region R(αi) and ei, em−j ⊆ J(sβ , sαi); or (2) vi and
vm−j+1 are on a common Γ-arc g of P and ei, em−j ⊆ Γ. Then vi+1 = vm−j+1, vm−j = vi,
and m = i+ j.

I Lemma 27. Suppose vertex vi+1 is valid and ei+1 ⊆ J(sβ , sai+1). Then R(αi+1) has not
been visited by J ix nor Jjy , i.e., αi+1 6= α` for ` ≤ i and for m− j < `.

By Lemma 27, J i+1
x and Jj+1

y always enter a new region of Vl(P) that has not been
visited yet; thus, conditions (1) or (2) of Lemma 26 must be fulfilled at some point of the
induction. Hence, the proof of Theorem 18 is complete. Completing the induction establishes
also that the conditions of Lemmas 24 and 25 can never be met, thus, no vertex of J(β) can
be on a boundary arc of P, except its endpoints.

5 Vl(P) is unique

In this section we establish that Vl(P) is unique. To this goal we prove the following lemma
and use it to prove Theorem 14.

I Lemma 28. Suppose there is a non-empty component e of J(sα, ·) intersecting R(α) in
Vl(P). Then J(s, ·) must also intersect DP . Further, there exists a component of J(s, ·)∩DP ,
denoted as β, such that the merge curve J(β) in Vl(P) contains e.

Proof sketch of Theorem 14. Suppose that for a given boundary curve P there exist two
different Voronoi-like diagrams V1

l 6= V2
l . Then there must be an edge e1 ⊆ J(sβ , sα) of

V1
l , such that e1 intersects region R2(α) of V2

l . Let edge e ⊆ J(sβ , sα) be the component
of R2(α) ∩ J(sβ , sα) overlapping with e1. Lemma 28 yields a non-empty component β0 of
J(s, sβ) ∩ DP such that J(β0) on V2

l contains edge e. Since J(β0) and ∂R1(β) have an
overlapping component e ∩ e1, and they bound the regions of two different arcs β0 6= β of
site sβ , they form an sβ-cycle C. But C is contained in DP , deriving a contradiction to
Lemma 11. J

6 A randomized incremental algorithm

Consider a random permutation of the set of arcs S, o = (α1, . . . , αh). For 1 ≤ i ≤ h define
Si = {α1, . . . , αi} ⊆ S to be the subset of the first i arcs in o. Given Si, let Pi denote a
boundary curve for Si, which induces a domain Di = DPi .
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The randomized algorithm is inspired by the randomized, two-phase, approach of Chew [7]
for the Voronoi diagram of points in convex position; however, it constructs Voronoi-like
diagrams of boundary curves Pi within a series of shrinking domains Di ⊇ Di+1. The
boundary curves are obtained by the insertion operation, starting with J(s, sα1), thus, they
always admit a Voronoi-like diagram. In phase 1, the arcs in S get deleted one by one in
reverse order of o, while recording the neighbors of each deleted arc at the time of its deletion.
Let P1 = ∂(D(s, sα1) ∩DΓ) and D1 = D(s, sα1) ∩DΓ. Let R(α1) = D1. Vl(P1) = ∅ is the
Voronoi-like diagram for P1. In phase 2, we start with Vl(P1) and incrementally compute
Vl(Pi+1), i = 1, . . . , h−1, by inserting arc αi+1 in Vl(Pi), where Pi+1 = Pi ⊕ αi+1 and
Vl(Pi+1) = Vl(Pi)⊕ αi+1. At the end we obtain Vl(Ph), where Ph = S.

We have already established that Vl(S) = V(S) (Corollary 10) and Ph = S, thus,
the algorithm is correct. Given the analysis and the properties of Voronoi-like diagrams
established in Sections 3 and 4, as well as Lemma 21, the time analysis becomes similar to
the one for the farthest-segment Voronoi diagram [10].

I Lemma 29. Pi contains at most 2i arcs; thus, the complexity of Vl(Pi) is O(i).

Proof. At each step of phase 2, one original arc is inserted and at most one additional arc is
created by a split, thus, |Pi| ≤ 2i. The complexity of Vl(Pi) is O(|Pi|), thus, it is O(i). J

I Lemma 30. The expected number of arcs in P̃i (auxiliary boundary arcs and fine Γ-arcs)
that are visited while inserting αi+1 is O(1).

Proof. To insert arc αi+1 at one step of phase 2, we may trace a number of arcs in P̃i that
may be auxiliary arcs and/or fine Γ-arcs between the pair of consecutive original arcs that has
been stored with αi+1 in phase 1. Since every element of Si+1 is equally likely to be αi+1, each
pair of consecutive original arcs in Pi+1 has probability 1/i to be considered at step i. Let nj
be the number of arcs inbetween the jth pair of original arcs in P̃i, 1 ≤ j ≤ i;

∑i
j=1 nj = |P̃i|

which is O(i). The expected number of arcs that are traced is then
∑i
j=1 nj/i ∈ O(1). J

Using the same backwards analysis as in [10], we conclude with the following theorem.

I Theorem 31. Given an abstract Voronoi diagram V(S), V(S \ {s}) ∩ VR(s, S) can be
computed in expected O(h) time, where h is the complexity of ∂VR(s, S). Thus, V(S \ {s})
can also be computed in expected time O(h).

7 Concluding remarks

Updating an abstract Voronoi diagram, after deletion of one site, in deterministic linear time
remains an open problem. We plan to investigate the applicability of Voronoi-like diagrams
in the linear-time framework of Aggarwal et al. [1] in subsequent research.

The algorithms and the results in this paper (Theorem 31) are also applicable to concrete
Voronoi diagrams of line segments and planar straight-line graphs (including simple and
non-simple polygons) even though they do not strictly fall under the AVD model unless
segments are disjoint. For intersecting line segments, ∂VR(s, S) is a Davenport-Schinzel
sequence of order 4 [17] but this does not affect the complexity of the algorithm, which
remains linear.

Examples of concrete diagrams that fall under the AVD umbrella and thus can benefit
from our approach include [6]: disjoint line segments and disjoint convex polygons of constant
size in the Lp norms, or under the Hausdorff metric; point sites in any convex distance metric
or the Karlsruhe metric; additively weighted points that have non-enclosing circles; power
diagrams with non-enclosing circles.
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