
Õ(n1/3)-Space Algorithm for the Grid Graph
Reachability Problem
Ryo Ashida
Department of Mathematical and Computing Science, Tokyo Institute of Technology
(c/o Professor Osamu Watanabe)
Tokyo, Japan
ashida1@is.titech.ac.jp

Kotaro Nakagawa
JMA SYSTEMS Corporation
Tokyo, Japan
kootaroonakagawa@gmail.com

Abstract
The directed graph reachability problem takes as input an n-vertex directed graph G = (V, E),
and two distinguished vertices s and t. The problem is to determine whether there exists a path
from s to t in G. This is a canonical complete problem for class NL. Asano et al. proposed an
Õ(
√

n) space1 and polynomial time algorithm for the directed grid and planar graph reachability
problem. The main result of this paper is to show that the directed graph reachability problem
restricted to grid graphs can be solved in polynomial time using only Õ(n1/3) space.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases graph reachability, grid graph, graph algorithm, sublinear space algo-
rithm

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.5

Related Version A full version of this paper is available at http://arxiv.org/abs/1803.07097

1 Introduction

The graph reachability problem, for a graph G = (V, E) and two distinct vertices s, t ∈ V ,
is to determine whether there exists a path from s to t. This problem characterizes many
important complexity classes. The directed graph reachability problem is a canonical complete
problem for the nondeterministic log-space class, NL. Reingold showed that the undirected
graph reachability problem characterizes the deterministic log-space class, L[8]. As with P vs.
NP problem, whether L=NL or not is a major open problem. This problem is equivalent to
whether the directed graph reachability problem is solvable in deterministic log-space. There
exist two fundamental solutions for the directed graph reachability problem, breadth first
search, denoted as BFS, and Savitch’s algorithm. BFS runs in O(n) space and O(m) time,
where n and m are the number of vertices and edges, respectively. For Savitch’s algorithm,
we use only O(log2 n) space but require Θ(nlog n) time. BFS needs short time but large
space. Savitch’s algorithm uses small space but super polynomial time. A natural question
is whether we can make an efficient deterministic algorithm in both space and time for the
directed graph reachability problem. In particular, Wigderson proposed a problem that does

1 In this paper “Õ(s(n)) space” means O(s(n)) words intuitively and precisely O(s(n) log n) space.

© Ryo Ashida and Kotaro Nakagawa;
licensed under Creative Commons License CC-BY

34th International Symposium on Computational Geometry (SoCG 2018).
Editors: Bettina Speckmann and Csaba D. Tóth; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ashida1@is.titech.ac.jp
mailto:kootaroonakagawa@gmail.com
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.5
http://arxiv.org/abs/1803.07097
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Õ(n1/3)-Space Algorithm for the Grid Graph Reachability Problem

there exist an algorithm for the directed graph reachability problem that uses polynomial
time and O(nε) space, for some ε < 1? [11], and this question is still open. The best known
polynomial time algorithm, shown by Barns, Buss, Ruzzo and Schieber, uses O(n/2

√
log n)

space [4].
For some restricted graph classes, better results are known. Stolee and Vinodchandran

showed that for any 0 < ε < 1, the reachability problem for directed acyclic graph with O(nε)
sources and embedded on a surface with O(nε) genus can be solved in polynomial time and
O(nε) space [9]. A natural and important restricted graph class is the class of planar graphs.
The planar graph reachability problem is hard for L, and in the unambiguous log-space class,
UL [5], which is a subclass of NL. Imai et al. gave an algorithm using O(n1/2+ε) space and
polynomial time for the planar graph reachability problem [2, 7]. Moreover Asano et al.
devised a efficient way to control the recursion, and proposed a polynomial time and Õ(

√
n)

space algorithm for the planar graph reachability problem [3]. In this paper, we focus on
the grid graph reachability problem, where grid graphs are special cases of planar graphs.
Allender et al. showed the planar graph reachability problem is log-space reducible to the
grid graph reachability problem [1]. By using the algorithm of Asano et al., we can solve the
grid graph reachability problem in Õ(

√
n) space and polynomial time. The main result of

this paper is to show an Õ(n1/3) space and polynomial time algorithm for the directed grid
graph reachability problem.

I Theorem 1 ([3]). There exists an algorithm that decides directed planar graph reachability
in polynomial time and Õ(

√
n) space. (We refer to this algorithm by PlanarReach in this

paper.)

2 Preliminaries and an outline of the algorithm

We will use the standard notions and notations for algorithms, complexity measures, and
graphs without defining them. We consider mainly directed graphs, and a graph is assumed
to be a directed graph unless it is specified as a undirected graph. Throughout this paper,
for any set X, |X| denotes the number of elements in X. We refer to the maximum and
minimum elements of X as max X and min X, respectively. Consider any directed graph
G = (V, E). For any u, v ∈ V , a directed edge e from u to v is denoted as e = (u, v); on the
other hand, the tail u and the head v of e are denoted as t(e) and h(e), respectively. For any
U ⊆ V , let G[U] denote the subgraph of G induced by U .

Recall that a grid graph is a graph whose vertices are located on grid points, and whose
vertices are adjacent only to their immediate horizontal or vertical neighbors. We refer to a
vertex on the boundary of a grid graph as a rim vertex. For any grid graph G, we denote the
set of the rim vertices of G as RG.

Computational model

For discussing sublinear-space algorithms formally, we use the standard multi-tape Turing
machine model. A multi-tape Turing machine consists of a read-only input tape, a write-only
output tape, and a constant number of work tapes. The space complexity of this Turing
machine is measured by the total number of cells that can be used as its work tapes.

For the sake of explanation, we will follow a standard convention and give a sublinear-
space algorithm by a sequence of constant number of sublinear-space subroutines A1, . . . , Ak

such that each Ai computes, from its given input, some output that is passed to Ai+1 as
an input. Note that some of these outputs cannot be stored in a sublinear-size work tape;

R. Ashida and K. Nakagawa 5:3

nevertheless, there is a standard way to design a sublinear-space algorithm based on these
subroutines. The key idea is to compute intermediate inputs every time when they are
necessary. For example, while computing Ai, when it is necessary to see the jth bit of the
input to Ai, simply execute Ai−1 (from the beginning) until it yields the desired jth bit on
its work tape, and then resume the computation of Ai using this obtained bit. It is easy to
see that this computation can be executed in sublinear-space. Furthermore, while a large
amount of extra computation time is needed, we can show that the total running time can
be polynomially bounded if all subroutines run in polynomial-time.

Outline of the algorithm

We show the outline of our algorithm. Our algorithm uses the algorithm PlanarReach for the
planar graph reachability. We assume both

√
n and n1/3 are integers for simplicity. Let G

be an input
√

n×
√

n grid graph with n vertices.
1. Separate G into n1/3 × n1/3 small grid graphs, or “blocks”. There are n1/3 blocks, and

each block contains n2/3 vertices.
2. Transform each block B into a special planar graph, “gadget graph”, with O(n1/3) vertices.

The reachability among the vertices in RB should be unchanged. The total number of
vertices in all blocks becomes O(n2/3).

3. We apply the algorithm PlanarReach to the transformed graph of size O(n2/3), then the
reachability is computable in Õ

(√
n2/3

)
= Õ(n1/3) space.

In step 1 and 2, we reduce the number of vertices in the graph G while keeping the
reachability between the rim vertices of each block so that we can solve the reachability
problem of the original graph. Then to this transformed graph we apply PlanarReach in step
3, which runs in Õ(n1/3) space.

I Theorem 2. There exists an algorithm that computes the grid graph reachability in
polynomial-time and Õ(n1/3) space.

The start vertex s (resp., the end vertex t) may not be on the rim of any block. In such a
situation, we make an additional block so that s (resp., t) would be on the rim of the block.
This operation would not increase the time and space complexity. In this paper, we assume
that s (resp., t) is on the rim of some block.

3 Graph transformation

In this section, we explain an algorithm that modifies each block and analyze time and space
complexity of the algorithm. Throughout this section, we let a directed graph G0 = (V0, E0)
denote a block of the input grid graph, and let V rim

0 denote the set of its rim vertices. We
use N to denote the number of vertices of the input grid graph and n to denote |V rim

0 |,
which is O(N1/3); note, on the other hand, that we have |V0| = O(n2) = O(N2/3). Our
task is to transform this G0 to a plane “gadget graph”, an augmented plane graph, G̃p with
O(n) = O(N1/3) vertices including V rim

0 so that the reachability among vertices in V rim
0 on

G0 remains the same on G̃p.
There are two steps for this transformation. We first transform G0 to a circle graph Gcir

0 ,
and then obtain G̃p from the circle graph.

SoCG 2018

5:4 Õ(n1/3)-Space Algorithm for the Grid Graph Reachability Problem

u v

Cacl[u, v]

Ccl[u, v]

gap-3 chord

lower area

upper area

(a) (b) (c)

e1 e2

e3

e4 e1

e2

e3

Figure 1 An example of the notions on chords. (a) a figure showing a chord, arcs, a lower area,
an upper area, (b) a figure showing crossing chords (e1 and e2) and semi-crossing chords (e3 and e4)
and (c) separating chords (e3 separates e1 and e2).

3.1 Circle graph

We introduce the notion of “circle graph”. A circle graph is a graph embedded on the plane so
that all its vertices are placed on a cycle and all its edges are drawn inside of the cycle. Note
that a circle graph may not have an edge between a pair of adjacent vertices on the cycle. We
introduce some basic notions on circle graphs. Consider any circle graph G = (V, E), and let
C be a cycle on which all vertices of V are placed. For any u, v ∈ V , a clockwise tour (resp.,
anti-clockwise tour) is a part of the cycle C from u to v in a clockwise direction (resp., in an
anti-clockwise direction). We use Ccl[u, v] (resp., Cacl[u, v]) to denote this tour (Figure 1(a)).
When we would like to specify the graph G, we use Ccl

G[u, v] (resp., Cacl
G [u, v]). The tour

Ccl[u, v], for example, can be expressed canonically as a sequence of vertices (v1, . . . , vk) such
that v1 = u, vk = v, and v2, . . . , vk−1 are all vertices visited along the cycle C clockwise.
We use Ccl(u, v) and Ccl[u, v) (resp., Cacl(u, v) and Cacl[u, v)) to denote the sub-sequences
(v2, . . . , vk−1) and (v1, . . . , vk−1) respectively. Note here that it is not necessary that G has
an edge between adjacent vertices in such a tour. The length of the tour is simply the number
of vertices on the tour. An edge (u, v) of G is called a chord if u and v are not adjacent on
the cycle C. For any chord (u, v), we may consider two arcs, namely, Ccl[u, v] and Cacl[u, v];
but in the following, we will simply use C[u, v] to denote one of them that is regarded as the
arc of the chord (u, v) in the context. When necessary, we will state, e.g., “the arc Ccl[u, v]”
for specifying which one is currently regarded as the arc. A gap-d (resp., gap-d+) chord is
a chord (u, v) whose arc C[u, v] is of length d + 2 (resp., length ≥ d + 2). For any chord
(u, v), the subplane inside of the cycle C surrounded by the chord (u, v) and the arc C[u, v]
is called the lower area of the chord; on the other hand, the other side of the chord within
the cycle C is called the upper area (see Figure 1(a)). A lowest gap-d+ chord is a gap-d+

chord that has no other gap-d+ chord in its lower area. We say that two chords (u1, v1) and
(u2, v2) cross if they cross in the circle C in a natural way (see Figure 1(b)). Formally, we
say that (u1, v1) crosses (u2, v2) if either (i) u2 is on the tour Ccl(u1, v1) and v2 is on the
tour Cacl(u1, v1), or (ii) v2 is on the tour Ccl(u1, v1) and u2 is on the tour Cacl(u1, v1). Also,
we say that (u1, v1) semi-crosses (u2, v2) if either (i) u2 is on the tour Ccl[u1, v1] and v2 is
on the tour Cacl[u1, v1], or (ii) v2 is on the tour Ccl[u1, v1] and u2 is on the tour Cacl[u1, v1]
(see Figure 1(b)). Note that clearly crossing implies semi-crossing. In addition, we say that a
chord (u1, v1) separates two chords (u2, v2) and (u3, v3) if the endpoints of two chords v2 and

R. Ashida and K. Nakagawa 5:5

u1

ukvk w′ ukvk

u1

w′

(a) (b)

up vp

vq

uq

up vp

vq

uq

Figure 2 A common vertex w′ of a path from uk to vk and a path from u1 to vq or vp for some
p, q < k.

v3 are separated by the chord (u1, v1) (see Figure 1(c)). Formally, (u1, v1) separates (u2, v2)
and (u3, v3) if either (i) v2 is on the tour Ccl[u1, v1] and v3 is on the tour Cacl[u1, v1], or (ii)
v3 is on the tour Ccl[u1, v1] and v2 is on the tour Cacl[u1, v1]. We say that k chords (u1, v1),
(u2, v2), . . . , (uk, vk) are traversable if the following two conditions are satisfied:
1. (u1, v1) semi-crosses (u2, v2),
2. ∀i ∈ [3, k], ∃p, q < i, (ui, vi) separates (up, vp) and (uq, vq).

Now for the graph G0 = (V0, E0), we define the circle graph Gcir
0 = (V cir

0 , Ecir
0) by

V cir
0 = V rim

0 , and
Ecir

0 =
{

(u, v) | ∃path from u to v in G0
}

,

where we assume that the rim vertices of V cir
0 (= V rim

0) are placed on a cycle C0 as they
are on the rim of the block in the grid graph. Then it is clear that Gcir

0 keeps the same
reachability relation among vertices in V cir

0 = V rim
0 . Recall that G0 has O(n2) vertices. Thus,

by using PlanarReach, we can show the following lemma.

I Lemma 3. Gcir
0 keeps the same reachability relation among vertices in V cir

0 = V rim
0 . That

is, for any pair u, v of vertices of V cir
0 , v is reachable from u in Gcir

0 if and only if it is
reachable from u in G0. There exists an algorithm that transforms G0 to Gcir

0 in O(n)-space
and polynomial-time in n.

The notion of traversable is a key for discussing the reachability on Gcir
0 . Based on the

following lemma, we use a traversable sequence of edges for characterizing the reachability
on the circle graph Gcir

0 .

I Lemma 4. For a circle graph Gcir
0 = (V cir

0 , Ecir
0) obtained from a block grid graph G0, if

there are traversable edges (u1, v1), (u2, v2), . . . , (uk, vk) ∈ Ecir
0 , then (u1, vk) ∈ Ecir

0 .

Proof. We show that vk is reachable from u1 in G0 by induction on k. First, we consider
the case k = 2, namely (u1, v1) semi-crosses (u2, v2). G0 contains a path pu1,v1 which goes
from u1 to v1. Also, G0 contains a path pu2,v2 which goes from u2 to v2. Since G0 is planar
and u1, v1, u2, and v2 are the rim vertices and the edges are semi-crossing, there exists a
vertex w which is common in pu1,v1 and pu2,v2 in G0. Since w is reachable from u and v2 is
reachable from w, there exists a path from u1 to v2.

SoCG 2018

5:6 Õ(n1/3)-Space Algorithm for the Grid Graph Reachability Problem

∞ → 1

∞ → 1

∞ → 1

∞ → 2 ∞ → 1

∞ → 3

∞ → 3

1 → ∞

1 → ∞

1 → ∞

1 → ∞

2 → ∞

3 → ∞

1 → 1

1 → 2

2 → 2

1 → 2

Figure 3 An example of the transformation from a circle graph to a gadget graph.

Next, we assume that the lemma is true for all sequences of traversable edges of length
less than k. By the definition, there exist two edges (up, vp) and (uq, vq) that the edge (uk, vk)
separates (p, q < k). We have two paths pu1,vp

from u1 to vp and pu1,vq
from u1 to vq in

G0 by the induction hypothesis. Also we have a path puk,vk
from uk to vk. Since (uk, vk)

separates (up, vp) and (uq, vq), vp and vq are on the different sides of arcs of the edge (uk, vk).
If u1 and vp are on the same arc of (uk, vk), the paths pu1,vq

and puk,vk
have a common

vertex w′ (see Figure 2(a)). On the other hand, if u1 and vq are on the same arc of (uk, vk),
the paths pu1,vp

and puk,vk
have a common vertex w′ (see Figure 2(b)). Thus there exists a

path from u1 to vk via w′ in G0. J

3.2 Gadget graph
We introduce the notion of “gadget graph”. A gadget graph is a graph that is given a “label
set” to each edge.

I Definition 5. A gadget graph G̃ is a graph defined by a tuple (Ṽ , Ẽ, K̃, L̃), where Ṽ is a
set of vertices, Ẽ is a set of edges, K̃ is a path function that assigns an edge or ⊥ to each
edge, and L̃ is a level function that assigns a label set to each edge. A label set is a set
{i1 → o1, i2 → o2, . . . , ik → ok} of labels where each label ij → oj , ij , oj ∈ R ∪ {∞}, is a
pair of in-level and out-level.

Remark. For an edge (u, v) ∈ Ẽ, we may use expressions K̃(u, v) and L̃(u, v) instead of
K̃((u, v)) and L̃((u, v)) for simplicity.

Our goal is to transform a given circle graph (obtained from a block grid graph) Gcir
0 =

(V cir
0 , Ecir

0) in which all vertices in V cir
0 are placed on a cycle C to a plane gadget graph

G̃p = (Ṽ out
p ∪ Ṽ in

p , Ẽp, K̃p, L̃p) where Ṽ out
p is the set of outer vertices that are exactly the

vertices of V cir
0 placed in the same way as Gcir

0 on the cycle C, and Ṽ in
p is the set of inner

vertices placed inside of C. All edges of Ẽp are also placed inside of C under our embedding.
The inner vertices of Ṽ in

p are used to replace crossing points of edges of Ecir
0 to transform to

a planar graph (see Figure 3). We would like to keep the “reachability” among vertices in
Ṽ out

p in G̃p while bounding |Ṽ in
p | = O(n).

We explain how to characterize the reachability on a gadget graph. Consider any gadget
graph G̃ = (Ṽ , Ẽ, K̃, L̃), and let x and y be any two vertices of Ṽ . Intuitively, the reachability
from x to y is characterized by a directed path on which we can send a token from x to y.

R. Ashida and K. Nakagawa 5:7

e∗ v∗
u v

new circle graph part

e1 e2

e3

w

G̃0 G̃1

u v

e∗

Figure 4 An initial transformation step from G̃0 to G̃1.

Suppose that there is a directed path p = (e1, . . . , em) from x to y. We send a token through
this path. The token has a level, which is initially ∞ when the token is at vertex x. (For
a general discussion, we use a parameter `s for the initial level of the token.) When the
token reaches the tail vertex t(ej) of some edge ej of p with level `, it can “go through” ej to
reach its head vertex h(ej) if L̃(ej) has an available label ij → oj such that ij ≤ ` holds for
its in-level ij . If the token uses a label ij → oj , then its level becomes the out-level oj at
the vertex h(ej). If there are several available labels, then we naturally use the one with
the highest out-level. If the token can reach y in this way, we consider that a “token tour”
from x to y is “realized” by this path p. Technically, we introduce K̃ so that some edge
can specify the next edge. We consider only a path p = (e1, . . . , em) as “valid” such that
ei+1 = K̃(ei) for all ei such that K̃(ei) 6= ⊥. We characterize the reachability from x to y on
gadget graph G̃ by using a valid path realizing a token tour from x to y.

I Definition 6. For any gadget graph G̃ = (Ṽ , Ẽ, K̃, L̃), and for any two vertices x, y of Ṽ ,
there exists a token tour from x to y with initial level `s if there exists a sequence of edges
(e1, . . . , em) that satisfies
1. x = t(e1) and y = h(em),
2. h(ei) = t(ei+1) (1 ≤ i < m),
3. if K̃(ei) is not ⊥ (1 ≤ i < m), then ei+1 = K̃(ei),
4. there exist labels i1 → o1 ∈ L̃(e1), . . . , im → om ∈ L̃(em) such that `s ≥ i1 and ot ≥ it+1

for all 1 ≤ t < m.

At the beginning of our algorithm, we obtain a gadget graph G̃0 = (Ṽ0, Ẽ0, K̃0, L̃0) whose
base graph is equal to Gcir

0 , and K̃0(e) = ⊥, L̃0(e) = {0→∞} for every e ∈ Ẽ0. It is obvious
that Gcir

0 and G̃0 have the same reachability. Namely, there exists a token tour from x to y

for x, y ∈ Ṽ0 in G̃0 if and only if there exists an edge (x, y) ∈ Ẽ0.
We explain first the outline of our transformation from G̃0 to G̃p. We begin by finding

a chord e∗ = (u, v) with gap ≥ 2 having no other gap-2+ chord in its lower area, that is,
one of the lowest gap-2+ chords. (If there is no gap-2+ chord, then the transformation is
terminated.) For this e∗ and its lower area, we transform them into a planar part and reduce
the number of crossing points as follows (see Figure 4): (i) Consider all edges of G̃0 crossing
this chord e∗ (e1, e2 and e3 in Figure 4). Create a new inner vertex v∗ of G̃p on the chord and
bundle all crossing edges going through this vertex v∗; that is, we replace all edges crossing e∗
by edges between their end points in the lower area of e∗ and v∗, and edges between v∗ and
their end points in the upper area of e∗. (ii) Introduce new inner vertices for edges crossing

SoCG 2018

5:8 Õ(n1/3)-Space Algorithm for the Grid Graph Reachability Problem

v∗

v∗

e0

e1

u

v∗

v∗

e0 e1

u

(a) (b)

v∗

v∗

(c)

v∗

v∗

e
ē

(d)

Figure 5 Examples of vertices made by MakePlanar.

gap-1 chords in the lower area of e∗ (w in Figure 4). (iii) Add appropriate label sets to those
newly introduced edges so that the reachability is not changed by this transformation. At
this point we regard the lower area of e∗ as processed, and remove this part from the circle
graph part of G̃0 by replacing the arc C[u, v] by a tour (u, v∗, v) to create a new circle graph
part of G̃1. We then repeat this transformation step on the circle graph part of G̃1. In the
algorithm, Ut is the vertices of the circle graph part of G̃t, thus G̃t[Ut] indicates the circle
graph part of G̃t. Note that e∗ is not removed and becomes a gap-1 chord in the next step.

We explain step (ii) for G̃0 in more detail. Since e∗ is a gap-2+ chord, there exist only
gap-1 chords or edges whose one end point is v∗ in the lower area of e∗. If there are two
edges e0 and e1 that cross each other, we replace the crossing point by a new inner vertex u

(see Figure 5(a), (b)). The edge ei becomes two edges (t(ei), u) and (u, h(ei)) (i = 0, 1), and
we set K̃1(t(ei), u) = (u, h(ei)). The edges might be divided into more than two segments
(see Figure 5(c)). We call the edge of G̃0 original edge of the divided edges. By the path
function, we must move along the original edge. An edge e might have a reverse direction
edge ē = (h(e), t(e)) (see Figure 5(d)). In this case, e and ē share a new vertex for resolving
crossing points. For G̃t[Ut] (t > 0), we process the lower area in the same way. We refer to
this algorithm as MakePlanar, and the new inner vertices created by MakePlanar in step t as
V t

MP.
The detailed process of step (iii) is written in Algorithm 2, and Algorithm 1 describes

the entire process of step (i), (ii) and (iii). The following lemma shows that an output graph
of Algorithm 1 has small size.

I Lemma 7. Algorithm 1 terminates creating a planar graph of size O(n).

Proof. In the beginning of the algorithm, |U0| = n and |Ut| decreases by at least 1 for each
iteration since the picked edge et

∗ is a gap-2+ chord. Hence the algorithm stops after at most
n iterations and the number of the new inner vertices made at line 7, or vt

∗, is also at most n.
If a gap-k chord is picked, we make at most 2k− 1 new inner vertices by MakePlanar, namely
|V t

MP| ≤ 2k − 1, since there exist only gap-1 chords in the lower area of the picked edge. The
total number of inner vertices becomes at most

n +
t∑

i=1
(2ki − 1) = n + 2

t∑
i=1

ki − t ≤ n + 2× 2n = 5n

where t is the number of iterations and ki means that a gap-ki chord was picked in the i-th
iteration. After all, |Ṽ out

p ∪ Ṽ in
p | ≤ n + 5n = 6n. J

R. Ashida and K. Nakagawa 5:9

Algorithm 1
Input: A circle graph Gcir

0 = (V cir
0 , Ecir

0) obtained from a block graph.
Task: Output a plane gadget graph G̃p = (Ṽ out

p ∪Ṽ in
p , Ẽp, K̃p, L̃p) which satisfies Ṽ out

p = V cir
0

and the reachability among vertices in Ṽ out
p in G̃p is the same as Gcir

0 .
1: initialize t = 0 // loop counter
2: G̃0 = (Ṽ out∪Ṽ0, Ẽ0, K̃0, L̃0) where Ṽ out ← V cir

0 , Ṽ0 ← ∅, Ẽ0 ← Ecir
0 , K̃0(e)← ⊥, L̃0(e)←

{0→∞} for each e ∈ Ecir
0 , and U0 ← Ṽ out

3: for every v ∈ Ṽ out, `0
in(v)← 0, `0

out(v)←∞, p0(v)← v.
4: while G̃t[Ut] has a lowest gap-2+ chord do
5: pick a lowest gap-2+ chord et

∗
6: make a new vertex vt

∗
7: Ṽt+1 ← Ṽt ∪ {vt

∗}
8: Ẽt+1 ← (Ẽt ∪ {(t(e), vt

∗), (vt
∗, h(e)) | e crosses e∗ or e = e∗}) \ {e | e crosses e∗}

9: Ut+1 ← (Ut ∪ {vt
∗}) \ C

G̃t[Ut](t(e
t
∗), h(et

∗))
10: use MakePlanar to make the lower area of et

∗ planar and update Ṽt+1, Ẽt+1 and K̃t+1.
11: change the labels by using Algorithm 2 for keeping reachability
12: output G̃t+1[C

G̃t[Ut][t(e
t
∗), h(et

∗)] ∪ {vt
∗} ∪ V t

MP], which is the lower area of et
∗.

13: t← t + 1
14: end while
15: use MakePlanar to make G̃t[Ut] planar and assign labels by line 17-24 of Algorithm 2.
16: output G̃t[Ut ∪ V t

MP]

Now we explain Algorithm 2 describing how to assign labels to G̃t+1 constructed in
Algorithm 1. For each outer vertex v ∈ Ṽ out, we keep three attributes pt(v), `t

in(v) and
`t

out(v), and we call them parent, in-level and out-level respectively. We calculate these values
from line 2 to 7 and line 25 to 27. pt(v) is a vertex belonging to the circle graph part of G̃t,
namely pt(v) ∈ Ut. From the algorithm, we can show that there are token tours from v to
pt(v) and/or from pt(v) to v. For the token tour from v to pt(v), the final level of the token
becomes `t

in(v). On the other hand, for the token tour from pt(v), it is enough to have `t
out(v)

as an initial level to reach v. We will show these facts implicitly in the proof of Lemma 8.
At the beginning of each iteration of Algorithm 1, we choose a lowest gap-2+ chord et

∗.
We collect vertices in Ut which are endpoints for some edges crossing with et

∗, and we refer to
the vertices among them which are in the lower area of et

∗ as S` and the vertices in the upper
area of et

∗ as Su (see Figure 6(a) and line 2). Next we collect vertices whose parents are in S`

(resp., Su), and we denote them by T ` (resp., T u) (line 3). Let x′ and y′ be vertices whose
parents are t(et

∗) and h(et
∗) respectively. We assign indices to the vertices in T u and T ` such

that the nearer to x′ a vertex is located, the larger index the vertex has (see Figure 6(b)).
We regard T ` as a sequence (t`

1, t`
2, . . . , t`

|T `|), and T u as a sequence (tu
1 , tu

2 , . . . , tu
|T u|). For

each vertex t`
i in T `, we calculate `t+1

in (t`
i) and `t+1

out (t`
i) in Algorithm 3. From line 1 to 4, we

decide temporary values of `t+1
in (t`

i) and `t+1
out (t`

i) according to reachability among vertices in
T ` and T u in Gcir

0 . When tu
j has the maximum index among vertices that t`

i can reach in T u,
we let `t+1

in (t`
i) = j + i/n. When tu

j has the minimum index among vertices which can reach
t`
i in T u, we let `t+1

out (t`
i) = j + i/n. The term i/n is for breaking ties. In the next for-loop,

we change the in- and out-levels so that the in-level of the larger indexed vertex is larger
than the out-level of the smaller indexed vertex. If there exists a vertex t`

j such that i > j

and `t+1
out (t`

j) > `t+1
in (t`

i), then we let ∆ = (`t+1
out (t`

j) − j/n) − (`t+1
in (t`

i) − i/n) and add ∆ to
`t+1

in (t`
i) and `t+1

out (t`
i). For preserving the magnitude relationship between in- and out-levels

SoCG 2018

5:10 Õ(n1/3)-Space Algorithm for the Grid Graph Reachability Problem

Algorithm 2

Task: Set L̃t+1 so that G̃t+1 has the same reachability as G̃t

1: For every edge e appearing in both G̃t and G̃t+1, let L̃t+1(e) = L̃t(e).
2: S` (resp., Su) ← {v ∈ U | ∃e ∈ Ẽt s.t. e crosses et

∗, t(e) = v or h(e) = v, and v is at the
lower (resp., upper) area of et

∗}
3: T ` (resp., T u) ← {v ∈ V cir

0 | pt(v) ∈ S` (resp. Su)}
4: Fix any vertices x′, y′ ∈ V cir

0 such that pt(x′) = t(et
∗), pt(y′) = h(et

∗).
5: Set an order to T ` according to the order appearing in CGcir

0
[y′, x′]. We regard T ` as a

sequence (t`
1, t`

2, . . . , t`
|T `|) (see Figure 6(b)).

6: Set an order to T u in the same way as T ` but according to the tour along the other arc.
We also regard T u as a sequence (tu

1 , tu
2 , . . . , tu

|T u|) (see Figure 6(b)).
7: Use Algorithm 3 for calculating `t+1

in (v) and `t+1
out (v) for all v ∈ T `.

8: for u ∈ S` do
9: L̃t+1(u, vt

∗)← {`t
in(v)→ `t+1

in (v) | pt(v) = u}
10: L̃t+1(vt

∗, u)← {`t+1
out (v)→ `t

out(v) | pt(v) = u}
11: end for
12: for u ∈ Su do
13: L̃t+1(u, vt

∗)← {`t
in(tu

i)→ maxt`∈T `{`t+1
out (t`)| (tu

i , t`) ∈ Ecir
0 }|tu

i ∈ T u and pt(tu
i) = u}

14: L̃t+1(vt
∗, u)← {mint`∈T `{`t+1

in (t`) | (t`, tu
i) ∈ Ecir

0 } → `t
out(tu

i)| tu
i ∈ T u and pt(tu

i) = u}
15: end for
16: L̃t+1(t(et

∗), vt
∗)← {∞→ 0}, L̃t+1(vt

∗, h(et
∗))← {∞→ 0}

17: for all edge e created by MakePlanar do
18: Let e′ be the original edge of e

19: if t(e) = t(e′) then
20: L̃t+1(e)← {a→ b | a→ b ∈ L̃t(e′)}
21: else
22: L̃t+1(e)← {b→ b | a→ b ∈ L̃t(e′)}
23: end if
24: end for
25: for v ∈ {w ∈ Ut | w is at the lower area of et

∗} do
26: pt+1(v) = vt

∗
27: end for
28: Unchanged `t

in(·), `t
out(·) and pt(·) will be taken over to `t+1

in (·), `t+1
out (·) and pt+1(·).

Algorithm 3
Task: Calculate `t+1

in (v) and `t+1
out (v) for all v ∈ T `.

1: for i ∈ [1, |T `|] do
2: `t+1

in (t`
i)← max{j | (t`

i , tu
j) ∈ Ecir

0 , tu
j ∈ T u}+ i/n

3: `t+1
out (t`

i)← min{j | (tu
j , t`

i) ∈ Ecir
0 , tu

j ∈ T u}+ i/n

4: end for
5: for i = 1 to |T `| do
6: ∆← max(0, max{`t+1

out (t`
j)− j/n | 1 ≤ j < i} − (`t+1

in (t`
i)− i/n))

7: for k ∈ [i, |T `|] do
8: `t+1

in (t`
k)← `t+1

in (t`
k) + ∆

9: `t+1
out (t`

k)← `t+1
out (t`

k) + ∆
10: end for
11: end for

R. Ashida and K. Nakagawa 5:11

et∗

G̃t[Ut] Su

Sℓ

T ℓ

Tu

Sℓ

Su

et∗x′ y′

tu1

tu2tu3

tu4

tℓ4

tℓ3 tℓ2

tℓ1

G̃t

(a) (b)

Figure 6 (a) An example of S` and Su, (b) An example of T ` and T u.

of t`
i and those of t`

k (k > i), we also add ∆ to `t+1
in (t`

k) and `t+1
out (t`

k).
Back to Algorithm 2. From line 8 to 16, we assign labels to edges newly appearing in

G̃t+1. Let v be any vertex in T `. For edges in the lower area of et
∗, the edge (pt(v), vt

∗) has a
label `t

in(v)→ `t+1
in (v) (line 9), and the edge (vt

∗, pt(v)) has a label `t+1
out (v)→ `t

out(v) (line
10). Consider edges in the upper area of et

∗. Let v be any vertex in T u. The edge (pt(v), vt
∗)

has a label `t
in(v) → `max where `max is the maximum in-level of vertices in T ` that can

reach v (line 13). The edge (vt
∗, pt(v)) has a label `min → `t

out(v) where `min is the minimum
out-level of vertices in T ` that v can reach (line 14). The edges (t(et

∗), vt
∗) and (vt

∗, h(et
∗))

have only one label ∞→ 0, which prohibits using these edges (line 16).
From line 17 to 24, we assign labels to edges made by MakePlanar. For every edge

(u, v) in the lower area of et
∗, the edge (u, v) might be divided into some edges, for instance

(u, w1), (w1, w2), . . . (wk, v) by MakePlanar. In this case, when (u, v) has a label a→ b, (u, w1)
has a label a→ b and the other edges have labels b→ b.

From line 25 to 27, we update the parents of the vertices in the lower area of et
∗. For

each vertex v in Ut and in the lower area of et
∗, we let pt+1(v) = vt

∗.
The following lemma shows that paths in G̃0 remain in G̃t for every t.

I Lemma 8. For any t in Algorithm 1, if there exists an edge from x toward y in G̃0, then
there exists a token tour from x to y in G̃t whose length is at most 2t + 1.

The following lemma shows the other direction: if there exists a token tour from x to y in
the gadget graph, then there exists a path from x to y in the circle graph. From Lemma 4,
it is enough to prove the following Lemma.

I Lemma 9. For any t and x, y ∈ V cir
0 , if there exists a token tour from x to y in G̃t, then

there exists a traversable edge sequence (e1, . . . , ek) in Gcir
0 such that t(e1) = x and h(ek) = y.

We analyze the space and time complexity of Algorithm 1. Note that, for saving
computation space, we do not implement the Algorithm straightforwardly in some points.
We begin with the space complexity. We regard the circle graph Gcir

0 = (V cir
0 , Ecir

0) as the
input. For every v ∈ V cir

0 , we keep three attributes `t
in(v), `t

out(v) and pt(v) in step t. The
in- and out-levels are rational numbers that have the form of i + j/n. Thus we keep two
integers i and j for each in- and out-level. We use Õ(n) space for preserving them. In step

SoCG 2018

5:12 Õ(n1/3)-Space Algorithm for the Grid Graph Reachability Problem

t, we also keep Ut by using Õ(n) space. We need G̃t[Ut], but we do not keep Ẽt explicitly.
For u, v ∈ Ut, whether there exists an edge (u, v) in G̃t[Ut] is equivalent to whether there
exists an edge (x, y) in Ecir

0 such that pt(x) = u and pt(y) = v. Since Ecir
0 is included in the

input, we could calculate it with Õ(1) space. We keep no other information throughout the
Algorithm. The number of edges in G̃t[Ut] is at most 2|Ut|2 = O(n2). Thus, for line 4 and
5, we can find a lowest gap-2+ chord by using Õ(1) space. For line 7 and 9, we use only
Õ(1) space for updating Ṽt and Ut. For line 8, we ignore the edges in the upper area of et

∗
(these edges belong to G̃t+1[Ut+1], thus we have no need to keep them). For the edges in the
lower area of et

∗, since there exist only gap-1 chords in the area, the number of edges in the
area is O(n). We use Õ(n) space for temporarily keeping them. In MakePlanar (line 10), we
look through them, and find crossing points and resolve them and set K̃t+1(·) by using Õ(n)
space.

Now we consider Algorithm 2. The number of edges in G̃t[Ut] is at most 2|Ut|2 = O(n2).
Thus, for line 2, we can find S` and Su by using Õ(1) space, and we use Õ(n) space for
keeping them. For line 3 to 6, since |T `|, |T u| = O(n), we also use Õ(n) for keeping T ` and
T u. In addition, we use Õ(n) space for calculating `t+1

in (v) and `t+1
out (v) for all v ∈ T `. In

Algorithm 3, we use Õ(1) space for each operation and the length of for-loops is O(n). Thus
we use Õ(1) space in all. For line 8 to 11, we only refer to in- and out-levels that we are
keeping. For line 12 to 15, we do not keep and ignore the labels belonging to edges in the
upper area. For line 16, we use Õ(1) space. For line 17 to 24, we check whether an edge in
the lower area was divided by MakePlanar and we use additional Õ(1) space. For line 25 to
27, we can find all vertices in the lower area of et

∗ by using Õ(n) space, and we use additional
Õ(1) space for updating pt+1(·).

We go back to Algorithm 1. For line 12, we output the information of the vertices,
edges, labels and values of the path function in the lower area of et

∗. Here we have to
calculate the labels on the gap-1 chords (other information is preserved now). Let the gap-1
chord be (vp

∗ , vq
∗). If p < q, this edge was made in step q and the labels on the edge were

calculated at line 13 of Algorithm 2. Thus, for any v ∈ V cir
0 such that pt(v) = vp

∗ , we calculate
`out = maxt`∈V cir

0 ,pt(t`)=vq
∗
{`t

out(t`) | (v, t`) ∈ Ecir
0 }, and `t

in(v) → `out becomes one of the
labels on the edge (if the vertex v is not in T u, `out is not defined and a label for v does not
exist). On the other hand, if p > q, this edge was made in step p and the labels on the edge
were calculated at line 14 of Algorithm 2. Thus, for any v ∈ V cir

0 such that pt(v) = vq
∗, we

calculate `in = mint`∈V cir
0 ,pt(t`)=vp

∗
{`t

in(t`) | (t`, v) ∈ Ecir
0 }, and `in → `t

out(v) becomes one of
the labels on the edge (if the vertex v is not in T u, `in is not defined and a label for v does
not exist). We use additional Õ(1) space for these calculation. For line 15, we trace line 10
to 12. In total, we use Õ(n) space.

Next consider the time complexity. In Lemma 7, we proved that the while-loop at line
4 stops after at most n steps. Since the sizes of Ut, S`, Su, T ` and T u are all O(n), every
operation in the Algorithms takes poly(n) time. Thus this algorithm runs in polynomial
time.

I Lemma 10. Algorithm 1 runs in polynomial time with using Õ(n) space.

From Lemma 8, 9 and 10, we can obtain G̃p with Õ(n) = Õ(N1/3) space and polynomial
time. By applying PlanarReach to the plane gadget graph with O(N2/3) vertices, we can
prove Theorem 2.

R. Ashida and K. Nakagawa 5:13

4 Conclusion

We presented an Õ(n1/3) space algorithm for the grid graph reachability problem. The most
natural question is whether we can apply our algorithm to the planar graph reachability
problem. Although the directed planar reachability is reduced to the directed reachability on
grid graphs [1], the reduction blows up the size of the graph by a large polynomial factor
and hence it is not useful. Moreover, it is known that there exist planar graphs that require
quadratic grid area for embedding [10]. However we do not have to stick to grid graphs.
We can apply our algorithm to graphs which can be divided into small blocks efficiently.
For instance we can use our algorithm for king’s graphs [6]. More directly, for using our
algorithm, it is enough to design an algorithm that divides a planar graph into small blocks
efficiently.

References
1 Eric Allender, David A Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambud-

dha Roy. Planar and grid graph reachability problems. Theory of Computing Systems,
45(4):675–723, 2009.

2 Tetsuo Asano and Benjamin Doerr. Memory-constrained algorithms for shortest path
problem. In CCCG, 2011.

3 Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe. Õ(
√

n)-space
and polynomial-time algorithm for planar directed graph reachability. In International Sym-
posium on Mathematical Foundations of Computer Science, pages 45–56. Springer, 2014.

4 Greg Barnes, Jonathan F Buss, Walter L Ruzzo, and Baruch Schieber. A sublinear space,
polynomial time algorithm for directed st connectivity. SIAM Journal on Computing,
27(5):1273–1282, 1998.

5 Chris Bourke, Raghunath Tewari, and NV Vinodchandran. Directed planar reachability
is in unambiguous log-space. ACM Transactions on Computation Theory (TOCT), 1(1):4,
2009.

6 Gerard Jennhwa Chang. Algorithmic aspects of domination in graphs. Handbook of Com-
binatorial Optimization, pages 221–282, 2013.

7 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, NV Vinodchandran, and Osamu Watanabe.
An O(n1/2+ε)-space and polynomial-time algorithm for directed planar reachability. In
Computational Complexity (CCC), 2013 IEEE Conference on, pages 277–286. IEEE, 2013.

8 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM),
55(4):17, 2008.

9 Derrick Stolee and NV Vinodchandran. Space-efficient algorithms for reachability in surface-
embedded graphs. In Computational Complexity (CCC), 2012 IEEE 27th Annual Confer-
ence on, pages 326–333. IEEE, 2012.

10 Leslie G Valiant. Universality considerations in vlsi circuits. IEEE Transactions on Com-
puters, 100(2):135–140, 1981.

11 Avi Wigderson. The complexity of graph connectivity. Mathematical Foundations of Com-
puter Science 1992, pages 112–132, 1992.

SoCG 2018

	Introduction
	Preliminaries and an outline of the algorithm
	Graph transformation
	Circle graph
	Gadget graph

	Conclusion

