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Abstract
We study a generalization of the Set Cover problem called the Partial Set Cover in the context
of geometric set systems. The input to this problem is a set system (X,R), where X is a set
of elements and R is a collection of subsets of X, and an integer k ≤ |X|. Each set in R has a
non-negative weight associated with it. The goal is to cover at least k elements of X by using
a minimum-weight collection of sets from R. The main result of this article is an LP rounding
scheme which shows that the integrality gap of the Partial Set Cover LP is at most a constant
times that of the Set Cover LP for a certain projection of the set system (X,R). As a corollary
of this result, we get improved approximation guarantees for the Partial Set Cover problem for
a large class of geometric set systems.
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1 Introduction

In the Set Cover (SC) problem, the input is a set system (X,R), where X is a set of n
elements, and R is a collection of subsets of X . The goal is to find a minimum-size collection
R′ ⊆ R that covers X, i.e., the union of the sets in R′ contains the elements of X. In
the weighted version, each set Si ∈ R has a non-negative weight wi associated with it, and
we seek to minimize the weight of R′. A simple greedy algorithm finds a solution that is
guaranteed to be within O(logn) factor from the optimal (see [33] for references), and it is
not possible to do better in general using any polynomial-time algorithm , under certain
standard complexity theoretic assumptions [15, 10]. In the rest of this article, we assume
polynomial running time in any statement that we make about an algorithm.

The question of whether we can improve the O(logn) bound has been extensively studied
for geometric set systems. We focus on three important classes – covering, hitting, and art
gallery problems. In the Geometric Set Cover problem, X typically consists of points in Rd,
and R contains sets induced by a certain class of geometric objects via containment. For
example, each set in R might be the subset of X contained in a hypercube. Some of the
well-studied examples include covering points by disks in the plane, fat triangles, etc. In the
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47:2 On Partial Covering For Geometric Set Systems

Geometric Hitting Set problem, X is a set of geometric objects, and each set in R is the
subset consisting of all objects in X that are stabbed by some point. In an example of the
art gallery problem, X consists of a set of points in a simple polygon, and each set in R is
the subset consisting of all points in X that can be seen by some vertex of the polygon [25].
Thus, the set system here is defined by visibility.

For many such geometric set systems, it is possible to obtain approximation guarantees
better than O(logn). We survey two of the main approaches to obtain such guarantees.
The first and the most successful approach is based on the SC Linear Program (LP) and its
connection to ε-nets. For completeness, we state the standard SC LP for the weighted case.

minimize
∑
Si∈R

wixi

subject to
∑

i:ej∈Si

xi ≥ 1, ej ∈ X (1)

xi ≥ 0, Si ∈ R (2)

For the unweighted case, Even et al. [13] showed that, if for a certain set system, O
( 1
ε · g

( 1
ε

))
size ε-nets exist, then the integrality gap of the SC LP is O(g(OPT )), where OPT is the size of
the optimal solution. This result is constructive, in that an efficient algorithm for constructing
ε-nets also yields an efficient algorithm for obtaining an O(g(OPT )) approximation. (A similar
result was obtained earlier by Brönnimann and Goodrich [3], without using LP machinery).
It is fairly well-known ([8, 20]) that, for a large class of geometric set systems, ε-nets of size
O
( 1
ε log

( 1
ε

))
can be computed efficiently, which implies O(log(OPT )) approximation for the

set cover problem on the corresponding geometric set system. Clarkson and Varadarajan [9]
showed that if the union complexity of any set of n objects is O(n · h(n)), then ε-nets of size
O
( 1
ε · h

( 1
ε

))
exist. Aronov et al. [1] gave a tighter bound of O( 1

ε · log h( 1
ε )) on the size of

ε-nets for the objects of union complexity O(n · h(n)) (see also [31]). Some of these results
were extended to the weighted case in [32, 6] by a technique called quasi-uniform sampling.
We summarize some of these ε-net based results for the set cover problem for geometric set
systems in Table 1.

Another approach for tackling SC for geometric set systems is by combinatorial algorithms.
The dominant paradigm from this class is a simple local search algorithm. The effectiveness
of local search was first demonstrated by Mustafa and Ray [29], who gave the first PTAS
for covering points by disks in plane. There have been a series of results that build on their
work, culminating in Govindarajan et al. [19], who show that local search yields a PTAS for
SC for a fairly general class of objects such as pseudodisks and non-piercing regions in plane.
Krohn et al. [27] gave a PTAS for the terrain guarding problem, where the geometric set

Table 1 LP-based approximation ratios for SC. See [9, 1, 32, 14, 6] for the references establishing
these bounds. Except for stabbing rectangles in R3 by points, these bounds hold for the weighted
SC. For these problems, we obtain analogous results for weighted PSC.

X Geometric objects inducing R Integrality Gap of SC LP

Points in R2 Disks (via containment) O(1)
Fat triangles (containment) O(log log∗ n)

Points in R3 Unit cubes (containment) O(1)
Halfspaces (containment) O(1)

Rectangles in R3 Points (via stabbing) O(log logn)
Points on 1.5D terrain Points on terrain (via visibility) O(1) [11]
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system is defined by visibility. These results for local search only hold for the unweighted
set cover problem. Another common strategy, called the shifting strategy, was introduced
by Hochbaum and Maass [22]. They give a PTAS for covering points by unit balls in Rd;
however in this case the set R consists of all unit balls in Rd. Chan [5] gave a PTAS for
stabbing a set of fat objects in Rd using a minimum number of points from Rd. Erlebach
and Van Leeuwen [12] combine the shifting strategy with a sophisticated dynamic program
to obtain a PTAS for weighted set cover with unit disks in the plane.

Now we turn to the Partial Set Cover (PSC) problem. The input to PSC is the same
as that to the SC, along with an additional integer parameter k ≤ |X|. Here the goal is
to cover at least k elements from X while minimizing the size (or weight) of the solution
R′ ⊆ R. It is easy to see that PSC is a generalization of SC, and hence it is at least as
hard as SC. We note here that another classical problem that is related to both of these
problems is the so-called Maximum Coverage (MC) problem. In this problem, we have an
upper bound on the number of sets that can be chosen in the solution, and the goal is to
cover the maximum number of elements. It is a simple exercise to see that an exact algorithm
for the unweighted PSC can be used to solve MC exactly, and vice versa. However the
reductions are not approximation-preserving. In particular, the greedy algorithm achieves
1− 1/e approximation guarantee for MC—which is essentially the best possible—whereas
it is NP-hard to approximate PSC within o(logn) factor in general. We refer the reader to
[24] for a generalization of MC and a survey of results.

For PSC, the greedy algorithm is shown to be an O(log ∆) approximation in [23, 30],
where ∆ is the size of the largest set in R. Bar-Yehuda [2], using the local ratio technique,
and Gandhi et al. [17], using the primal-dual method, give algorithms which achieve an
approximation guarantee of f , where f is the maximum frequency of any element in the sets.
A special case of PSC is the Partial Vertex Cover (PVC) problem, where we need to pick a
minimum size (or weight) subset of vertices that covers at least k edges of the graph. Bshouty
and Burroughs [4] and [21] present different approaches for obtaining a 2-approximation
based on LP rounding for PVC. We refer the reader to [16] for a more detailed history of
these foundational results, and to [28, 26] for more recent results on PVC, PSC, and related
problems.

While SC for various geometric set systems has been studied extensively, there is relatively
less work studying PSC in the geometric setting. Gandhi et al. [17] give a PTAS for a
geometric version of PSC where R consists of all unit disks in the plane. They provide a
dynamic program on top of the standard shifting strategy of Hochbaum and Maass [22],
thus adapting it for PSC. Using a similar technique, Glaßer et al. [18] give a PTAS for a
generalization of partial geometric covering, under a certain assumption on the density of
the given disks. Chan and Hu [7] give a PTAS for PSC where R consists of a given set of
unit squares in the plane, by combining the shifting strategy with sophisticated dynamic
programming.

Our results and techniques

Suppose that we are given a PSC instance (X,R, k). For any set of elements Y ⊆ X, let
R|Y := {S∩Y | S ∈ R} denote the projected set system. Suppose also that for any projected
SC instance (Y,R|Y ), (where Y ⊆ X) and a corresponding feasible SC LP solution σ1, we
can round σ1 to a feasible integral SC solution with cost at most β times that of σ1. That is,
we suppose that we can efficiently compute a β-approximation for the SC instance (Y,R|Y )
by solving the natural LP relaxation and rounding it. Then, we show that we can round
the solution to the natural PSC LP for (X,R, k) to an integral solution to within a 2β + 2

SoCG 2018
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factor. By the previous discussion about the existence of such rounding algorithms for SC
LP for a large class of geometric objects (cf. Table 1), we get the same guarantees for the
corresponding PSC instances as well, up to a constant factor. For clarity, we describe a
sample of these applications.

1. Suppose we are given a set P of n points and a set T of fat triangles in the plane and
a positive weight for each triangle in T . We wish choose a subset T ′ ⊆ T of triangles
that covers P , and minimize the weight of T ′, defined to be the sum of the weights of
the triangles in it. This is a special case of weighted SC obtained by setting X = P , and
adding the set t ∩ P to R for each triangle in t ∈ T , with the same weight. There is
an O(log log∗ n) approximation for this problem based on rounding SC LP [14, 6]. We
obtain the same approximation guarantee for the partial covering version, where we want
a minimum weight subset of T covering any k of the points in P .

2. Suppose we are given a set B of n axis-parallel boxes and a set P of points in R3, and we
wish to find a minimum cardinality subset of P that hits (or stabs) each box in B. This
a special case of SC obtained by setting X = B, and adding the set {b ∈ B | p ∈ b} to R
for each point p ∈ P . There is an O(log logn) approximation for this problem based on
rounding SC LP [1]. Thus, we obtain the same approximation guarantee for the partial
version, where we want a minimum cardinality subset of P stabbing any k of the boxes
in B.

3. Suppose we have a 1.5D terrain (i.e., an x-monotone polygonal chain in R2), a set P of
points and a set G of n points, called guards, on the terrain along with a positive weight
for each guard in G. The goal is to choose a subset G′ ⊂ G such that each point in P
is seen by some guard in G, and minimize the weight of G′. Two points p and g on the
terrain see each other if the line segment connecting them does not contain a point below
the terrain. This is a special case of SC obtained by setting X = P , and adding the set
{p ∈ P | g sees p} to R for each guard g ∈ G. There is an O(1)-approximation guarantee
for this problem based on rounding SC LP [11]. Thus, we obtain an O(1)-approximation
for the partial version, where we want a minimum weight subset of G that sees any k of
the points in P .

Our algorithm for rounding a solution to the natural PSC LP corresponding to partial
cover instance (X,R, k) proceeds as follows. Let X1 be the elements that are covered by
the LP solution to an extent of at least 1/2. By scaling the LP solution by a factor of 2,
we get a feasible solution to the SC LP corresponding to (X1,R|X1), which we round using
the LP-based β-approximation algorithm. For the set X \X1, the LP solution provides a
total fractional coverage of at least k − |X1|. Crucially, each element of X \X1 is shallow
in that it is covered to an extent of at most 1/2. We use this observation to round the LP
solution to an integer solution, of at most twice the cost, that covers at least k − |X1| points
of X \X1. This rounding step and its analysis are inspired by the PVC rounding scheme of
[4], but there are certain subtleties in adapting it to the PSC problem. To the best of our
knowledge, this connection between the SC LP and PSC LP was not observed before.

The rest of this article is organized as follows. In Section 2, we describe the standard LP
formulation for the PSC problem, and give an integrality gap example. We describe how to
circumvent this integrality gap by preprocessing the input in Section 3. Finally, in Section 4,
we describe and analyze the main LP rounding algorithm.
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2 Preliminaries

We use the following Integer Programming formulation of PSC (see left side of display below).
Here, for each element ej ∈ X, the variable zj denotes whether it is one of the k elements
that are chosen by the solution. For each such chosen element ej , the first constraint ensures
that at least one set containing it must be chosen. The second constraint ensures that at
least k elements are covered by the solution. We relax the integrality Constraints 3, and 4,
and formulate it as a Linear Program (see right side).

minimize
∑

Si∈R

wixi

subject to
∑

i:ej∈Si

xi ≥ zj , ej ∈ X

∑
ej∈X

zj ≥ k,

zj ∈ {0, 1}, ej ∈ X (3)
xi ∈ {0, 1}, Si ∈ R (4)

Integer Program

minimize
∑

Si∈R

wixi (5)

subject to
∑

i:ej∈Si

xi ≥ zj , ej ∈ X (6)

∑
ej∈X

zj ≥ k, (7)

zj ∈ [0, 1], ej ∈ X (8)
xi ∈ [0, 1], Si ∈ R (9)

Linear Program

Since SC is a special case of PSC where k = n, the corresponding LP can be obtained
by setting k appropriately in Constraint 7. However, in this case, the LP can be further
simplified as described earlier. We denote the cost of a PSC LP solution σ = (x, z), for the
instance (X,R), as cost(σ) :=

∑
Si∈R wixi, and the cost of an SC LP solution is defined in

exactly the same way. Also, for any collection of sets R′ ⊆ R, we define w(R′) :=
∑
Si∈R′ wi.

Finally, for a PSC instance (X,R, k), let OPT (X,R, k) denote the cost of an optimal solution
for that instance.

Unlike SC LP, the integrality gap of PSC LP can be Ω(n), even for the unweighted case.
Integrality Gap: Consider the set system (X,R), where X = {e1, . . . , en}, and R = {S1},
where S1 = X. Here, k = 1, so at least one element has to be covered. The size of the optimal
solution is 1, because the only set S1 has to be chosen. However, consider the following
fractional solution σ = (x, z), where zj = 1

n for all ej ∈ X, and x1 = 1
n , which has the cost

of 1
n . This shows the integrality gap of n.
However, Gandhi et al. [17] show that after “guessing” the heaviest set in the optimal

solution, the integrality gap of the LP corresponding to the residual instance is at most f ,
where f is the maximum frequency of any element in the set system. In this article, we
show that after guessing the heaviest set in the optimal solution, the residual instance has
integrality gap at most 2β+2, where β is the integrality gap of the SC LP for some projection
of the same set system.

3 Preprocessing

Henceforth, for convenience, we let (X ′,R′, k′) denote our original input instance of PSC. To
circumvent the integrality gap, we preprocess the given instance to “guess” the heaviest set
in the optimal solution, and solve the residual instance as in [4, 17] – see Algorithm 1. Let
us renumber the sets R′ = {S1, . . . , Sm}, so that w1 ≤ w2 ≤ . . . ≤ wm. For each Si ∈ R′,
let Ri = {S1, S2, . . . , Si−1}, and Xi = X ′ \ Si. We find the approximate solution Σi for this
residual instance (Xi,Ri, ki) with coverage requirement ki = k − |Si|, if it is feasible (i.e.

SoCG 2018
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Algorithm 1 PartialCover(X ′,R′, k′).
1: Sort and renumber the sets in R′ = {S1, . . . , Sm} such that w1 ≤ . . . ≤ wm.
2: for i = 1 to m do
3: Ri ← {S1, . . . , Si−1}
4: Xi ← X ′ \ Si
5: ki ← k′ − |Si|
6: if (Xi,Ri, ki) is feasible then
7: Σi ← approximate solution to (Xi,Ri, ki)
8: else
9: Σi ←⊥

10: end if
11: end for
12: `← arg mini:Σi 6=⊥ w(Σi ∪ {Si})
13: return Σ` ∪ {S`}

∣∣⋃
S∈Ri

S ∩Xi

∣∣ ≥ ki). We return Σ = arg minSi∈R′ w(Σi ∪ {Si}) over all Si such that the
residual instance (Xi,Ri, ki) is feasible.

I Lemma 1. Let Σ∗ be an optimal partial cover for the instance (X ′,R′, k′), and let Sp be
the heaviest set in Σ∗. Let Σp be the approximate solution to (Xp,Rp, kp) returned by the
Rounding Algorithm of Theorem 3, and Σ′ be the solution returned by Algorithm 1. Then,
1. OPT (X ′,R′, k′) = OPT (Xp,Rp, kp) + wp
2. w(Σ′) ≤ w(Σp ∪ {Sp}) ≤ (2β + 2) ·OPT (X ′,R′, k′)

Proof. Since the optimal solution Σ∗ contains Sp, Σ∗p := Σ∗\{Sp} covers at least k′−|Sp| = kp
elements from X ′ \ Sp. Therefore, Σ∗p is feasible for (Xp,Rp, kp). Now, an easy and
standard argument implies that Σ∗p is an optimal solution for (Xp,Rp, kp). Thus, w(Σ∗p) =
OPT (Xp,Rp, kp) and the first part follows.

From Theorem 3, we have an approximate solution Σp to the instance (Xp,Rp, kp) such
that w(Σp) ≤ (2β+ 2) ·OPT (Xp,Rp, kp) +B, where B ≤ wp is the weight of the heaviest set
in Rp. Now Algorithm 1 returns a solution whose cost is at most w(Σp ∪ {Sp}) ≤ (2β + 2) ·
OPT (Xp,Rp, kp)+wp+wp ≤ (2β+2) ·(OPT (Xp,Rp, kp)+wp) ≤ (2β+2) ·OPT (X ′,R′, k′).
We use the result from part 1 in the final inequality. J

We summarize our main result in the following theorem, which follows easily from
Lemma 1.

I Theorem 2. Given our input partial set cover instance (X ′,R′, k′), assume there is a
β ≥ 1 such that for any X1 ⊆ X ′, we can round a solution to SC LP for the projected set
system (X1,R′|X1

) to within a β factor. Then, we can find a (2β + 2)-factor approximation
for the partial set cover instance (X ′,R′, k′).

4 Rounding algorithm

Suppose that we have guessed the maximum weight set Sp ∈ R′ in the optimal solution
for the original instance (X ′,R′, k′), as described in the previous section. Thus, we now
have the residual instance (Xp,Rp, kp), where Xp = (X ′ \ Sp),Rp = {S1, S2, . . . , Sp−1}, and
kp = k′ − |Sp|. We solve the LP corresponding to the PSC instance (Xp,Rp, kp) to obtain an
optimal LP solution σ∗ = (x, z). In the following, we describe a polynomial time algorithm
to round PSC LP on this instance.
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Let 0 < α ≤ 1/2 be a parameter (eventually we will set α = 1/2). Let Y = {ej ∈ Xp |∑
i:ej∈Si

xi ≥ α} be the set of elements that are covered to an extent of at least α by the LP
solution.

We create a solution σ1 of a feasible set cover LP for the instance (Y,Rp|Y ) as follows.
For all sets Si ∈ Rp, we set x′i = min{xi

α , 1}. Note that cost of this fractional solution is at
most 1

α times that of σ∗. Also, note that σ1 is feasible for the SC LP because for any element
ej ∈ Y , we have that

∑
i:ej∈Si

x′i =
∑

i:ej∈Si

min
{

1, xi
α

}
≥ min

{
1, 1
α

∑
i:ej∈Si

xi

}
≥ 1.

Suppose that there exists an efficient rounding procedure to round a feasible SC LP
solution σ1, for the instance (Y,Rp|Y ) to a solution with weight at most β · cost(σ1). In the
remainder of this section, we describe an algorithm (Algorithm 2) for rounding σ∗ = (x, z)
into a solution that (1) covers at least kp − |Y | elements from Xp \ Y , and (2) has cost at
most 1

α · cost(σ
∗) +B, where B is the weight of the heaviest set in Rp. Combining the two

solutions thus acquired, we get the following theorem.

I Theorem 3. There exists a rounding algorithm to round a partial cover LP corresponding to
(Xp,Rp, kp), which returns a solution Σp such that w(Σp) ≤ (2β + 2) ·OPT (Xp,Rp, kp) +B,
where B is the weight of the heaviest set in Rp.

Proof. Let Σp = Σp1 ∪ Σp2, where Σp1 is the solution obtained by rounding σ1, and
Σp2 = Σ ∪Rend is the solution returned by Algorithm 2. By assumption, Σp1 covers Y , and
Σp2 covers at least kp− |Y | elements from Xp \ Y by Lemma 8. Therefore, Σp covers at least
kp elements from Xp.

By assumption, we have that w(Σp1) ≤ β · cost(σ1) ≤ β
αcost(σ

∗). Also, from Lemma 9,
we have that w(Σp2) ≤ 1

αcost(σ
∗) +B. We get the claimed result by combining the previous

two inequalities, setting α = 1/2, and noting that cost(σ∗) ≤ OPT (Xp,Rp, kp). J

Let H = {Si ∈ Rp | xi ≥ α} be the sets that have xi value at least α. Note that without
loss of generality, we can assume that ∪Si∈HSi ⊆ Y . If |Y | ≥ kp, we are done. Otherwise,
let X ← Xp \ Y , R ← Rp \ H, and k ← kp − |Y |. Let σ = (x, z) be the LP solution σ∗

restricted to the instance (X,R, k), that is, x = (xi | Si ∈ R), z = (zj | ej ∈ X). We show
how to round σ on the instance (X,R, k) to find a collection of sets that covers at least k
elements from X. In the following lemma, we show that the LP solution σ is feasible for the
instance (X,R, k).

I Lemma 4. The LP solution σ = (x, z) is feasible for the instance (X,R, k). Furthermore,
cost(σ) ≤ cost(σ∗).

Proof. Note that xi and zj values are unchanged from the optimal solution σ∗, therefore
the Constraints 9, and 8 (from PSC LP) are satisfied.

Note that by definition, for any element ej ∈ X, ej 6∈ ∪Si′∈HSi′ , and ej 6∈ Y . Therefore,
by Constraint 6, we have that

∑
i:ej∈Si

xi =
∑

i:ej∈Si,Si∈R
xi ≥ zj .

SoCG 2018
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As for Constraint 7, note that∑
ej∈Xp

zj ≥ kp (By feasibility of optimal solution σ∗)

=⇒
∑
ej∈X

zj ≥ kp −
∑
ej∈Y

zj (X = Xp \ Y )

=⇒
∑
ej∈X

zj ≥ kp − |Y | (zj ≤ 1 for ej ∈ Y by feasibility)

=⇒
∑
ej∈X

zj ≥ k (k = kp − |Y |)

Finally, note that cost(σ) =
∑
Si∈R wixi ≤

∑
Si∈Rp

wixi = cost(σ∗), because R ⊆ Rp,
and the xi values are unchanged. J

4.1 Algorithm for rounding shallow elements
We have an LP solution σ for the PSC instance (X,R, k). Note that for any Si ∈ R, xi < α,
and for any ej ∈ X,α >

∑
i:ej∈Si

xi ≥ zj , i.e. each element is shallow. For convenience, we
let zj =

∑
i:ej∈Si

xi. We now describe Algorithm 2, which rounds σ to an integral solution
to the instance (X,R, k). At the beginning of Algorithm 2, we initialize Rcur, the collection
of “unresolved” sets, to be R; and Xcur, the set of “uncovered” elements, to be X.

At the heart of the rounding algorithm is the procedure RoundTwoSets, which takes
input two sets S1, S2 ∈ Rcur, and rounds the corresponding variables x1, x2 such that either
x1 is increased to α, or x2 is decreased to 0 (cf. Lemma 5 part 3). A set is removed from
Rcur if either of these conditions is met. In addition, if xi reaches α, then the set Si is
added to Σ, which is a part of the output, and all the elements in Si are added to the set Ξ;
furthermore, xi is set to 1. At a high level, the goal of Algorithm 2 is to resolve all of the
sets either way, while maintaining the cost and the feasibility of the LP.

Given the procedure RoundTwoSets, we carefully choose the order in which the sets are
paired up for rounding; however, there is some degree of freedom. We pick a set from Rcur
in a careful way as the leader. We use variable a to denote the index of the leader; thus, the
leader is Sa. The leader Sa is chosen arbitrarily in Line 4 but in a specific way in Line 20. We
keep pairing the leader Sa up with another arbitrary set Sb ∈ Rcur, until Sa is removed from
Rcur, or it is the only set remaining in Rcur. To ensure that the Constraint 7 is maintained,
we carefully determine whether to increase xa and decrease xb in RoundTwoSets, or vice
versa. Thinking of |Xcur∩Sa|

wa
, and |Xcur∩Sb|

wb
as the “cost-effectiveness” of the sets Sa and Sb

respectively, we increase xa at the expense of xb, if Sa is more cost-effective than Sb or vice
versa.

Notice that, instead of fixing a set Sa and pairing it up with other sets Sb, if we arbitrarily
chose the pairs of sets to be rounded, then the feasibility of the LP may not be maintained.
In particular, we cannot ensure that for all elements ej ∈ Xcur, zj ≤ 1 (Constraint 8). To
this end, we show that, our order of pairing up sets maintains the following two invariants:
1. Let Xα = {ej ∈ Xcur | zj ≥ α}. During the execution of while loop of Line 3, the elements

of Xα are contained in the leader Sa ∈ Rcur, that is chosen in Line 4 or Line 20.
2. Fix any set Si ∈ Rcur \ {Sa}. The xi value is unchanged since the beginning of the

algorithm until the beginning of the current iteration of while loop of Line 5; the xi value
can change in the current iteration only if Si is paired up with Sa.

In Lemma 7, we show that these invariants imply that Constraint 8 is maintained.
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Algorithm 2 RoundLP(X,R, w, k, σ).
1: Σ← ∅, Ξ← ∅.
2: Xcur ← X, Rcur ←R.
3: while |Rcur| ≥ 2 do
4: a← `, where S` is an arbitrary set from Rcur.
5: while 0 < xa < α and |Rcur \ {Sa}| ≥ 1 do
6: Sb ← an arbitrary set from Rcur \ {Sa}.
7: if |Xcur∩Sa|

wa
≥ |Xcur∩Sb|

wb
then

8: (xa, xb, z)←RoundTwoSets(Sa, Sb, w, σ,Xcur,Rcur)
9: if xb = 0 then

10: Rcur ←Rcur \ {Sb}.
11: end if
12: if xa = α then
13: Ξ← Ξ ∪ Sa, Xcur ← Xcur \ Sa.
14: Σ← Σ ∪ {Sa},Rcur ← Rcur \ {Sa}, xa ← 1.
15: end if
16: else
17: (xb, xa, z)←RoundTwoSets(Sb, Sa, w, σ,Xcur,Rcur).
18: if xa = 0 then
19: Rcur ←Rcur \ {Sa}.
20: a← b.
21: end if
22: if xb = α then
23: Ξ← Ξ ∪ Sb, Xcur ← Xcur \ Sb.
24: Σ← Σ ∪ {Sb},Rcur ←Rcur \ {Sb}, xb ← 1.
25: end if
26: end if
27: end while
28: end while
29: Rend ←Rcur.
30: return Σ ∪Rend.

31: function RoundTwoSets(S1, S2, w, σ,Xcur,Rcur)
32: δ ← min{α− x1,

w2
w1
· x2}.

33: x1 ← x1 + δ.
34: x2 ← x2 − w1

w2
· δ.

35: For all elements ej ∈ Xcur, update zj ←
∑

i:ej∈Si
xi.

36: return (x1, x2, z).
37: end function

The invariants are trivially true at the start of the first iteration of the while loops. Let
Sa ∈ Rcur be a set chosen in Line 4, or Line 20. During the while loop, we maintain the
invariants by pairing up the Sa with other arbitrary sets Sb, until Sa is removed from Rcur
in one of the two ways; or until it is the last set remaining. It is easy to see that Invariant 2
is maintained.

Now we describe in detail how Invariant 1 is being maintained in the course of the
algorithm. Consider the first case, i.e. in RoundTwoSets, we increase xa and decrease xb.
If after this, xb becomes 0, then we remove Sb from Rcur. If, on the other hand, xa increases
to α, then all the elements in Xcur ∩ Sa are covered to an extent of at least α, and so we
remove Sa from Rcur and Sa ∩Xcur from Xcur. If xb becomes 0, the set Xα continues to be
a subset of Sa, and if xa increases to α, it becomes empty. Thus, Invariant 1 is maintained.

SoCG 2018



47:10 On Partial Covering For Geometric Set Systems

In the second case, in RoundTwoSets, xa is decreased and xb is increased. This case is
a bit more complicated, because zj values of elements ej ∈ Sb are being increased by virtue
of increase in xb. Therefore, we need to explicitly maintain Invariant 1. If xb reaches α,
then Sb is removed from Rcur and all the elements covered by Sb are removed from Xcur
(and thus the invariant is maintained). On the other hand, if xa reaches 0, then the net
change in the zj values (since the beginning of the algorithm) for the elements ej ∈ Sa \ Sb
is non-positive – this follows from Invariant 2, as the xi values of the sets in Rcur \ {Sa, Sb}
are unchanged, and xa is now zero. Therefore, the set Xα ∩ (Sa \Sb) = ∅. However, Xα ∩Sb
may be non-empty because of the increase in xb. Therefore, we reset a to b, thus obtaining a
new leader Sa = Sb, and continue pairing the new leader up with other sets. Notice that we
have maintained Invariant 1 although the leader Sa has changed.

From the above discussion, we have the following result.

I Claim 1. Throughout the execution of the while loop of Line 3, Invariants 1, and 2 are
maintained.

Finally, after leaving the while loop of Line 3, we set Rend to be Rcur, and add it to our
solution. Note that at this point, Rcur contains at most one set. We show that the resulting
solution Σ ∪Rend covers at least k elements.

4.2 Analysis
In this section, we analyze the behavior of Algorithm 2. In the following lemma, we show
that in each iteration, we make progress towards rounding while maintaining the cost of the
LP solution.

I Lemma 5. Let σ = (x, z), σ′ = (x′, z′) be the LP solutions just before and after the
execution of RoundTwoSets(S1, S2, w, σ,Xcur,Rcur) for some sets S1, S2 ∈ Rcur in some
iteration of the algorithm, such that σ is a feasible solution to the LP. Then,
1. cost(σ) = cost(σ′).
2.
∑
ej∈Xcur

z′j ≥
∑
ej∈Xcur

zj.
3. Either x′1 = α or x′2 = 0 (or both).

Proof.
1. Note that the xi variables corresponding to all the sets Si /∈ {S1, S2} remain unchanged.

The net change in the cost of the LP solution is

w1 · (x′1 − x1) + w2 · (x′2 − x2) = w1 · δ − w2 ·
(
w1

w2
· δ
)

= 0.

2. Let A = S1 ∩Xcur, and B = S2 ∩Xcur. z′j = zj for all elements ej 6∈ A∪B, i.e. zj values
are modified only for the elements ej ∈ A ∪B.
For |A| elements ej ∈ A, zj value is increased by δ by virtue of increase in x1. Similarly,
for |B| elements ej′ ∈ B, zj′ value is decreased by w1

w2
· δ. However by assumption, we

have that |A|w1
≥ |B|w2

. Therefore, the net change in the sum of zj values is

|A| · δ − |B| ·
(
w1

w2
· δ
)
≥ |A| · δ −

(
|A|
w1
· w1

)
· δ ≥ 0.

3. The value of δ is chosen such that δ = min{α− x1,
w2
w1
· x2}. If δ = α− x1 ≤ w2

w1
· x2, then

x′1 = x1 + (α − x1) = α, and x′2 = x2 − w1
w2
· (α − x1) ≥ x2 − x2 = 0. In the other case

when δ = w2
w1
· x2 < (α− x1), we have that x′1 = x1 + w2

w1
· x2 < x1 + (α− x1) = α, and

x′2 = x2 − w2
w1
· w1
w2
· x2 = 0. J
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I Remark. Note that Lemma 5 (in particular, the Part 2 of Lemma 5) alone is not sufficient
to show the feasibility of the LP after an execution of RoundTwoSets – we also have to
show that z′j ≤ 1. This is slightly involved, and is shown in Lemma 7 with the help of
Invariants 1, and 2.

I Corollary 6. Algorithm 2 runs in polynomial time.

Proof. In each iteration of the inner while loop Line 5, RoundTwoSets is called on some
two sets S1, S2 ∈ Rcur, and as such from Lemma 5, either x′1 = α or x′2 = 0. Therefore,
at least one of the sets is removed from Rcur in each iteration. Therefore, there are at
most O(|R|) iterations of the inner while loop. It is easy to see that each execution of
RoundTwoSets takes O(|R| · |X|) time. J

In the following Lemma, we show that Constraints 8 is being maintained by the algorithm.
This, when combined with Lemma 5, shows that we maintain the feasibility of the LP at all
times.

I Lemma 7. During the execution of Algorithm 2, for any element ej ∈ Xcur, we have that
zj ≤ 2α. By the choice of range of α, the feasibility of the LP is maintained.

Proof. At the beginning of the algorithm, we have that zj ≤ α for all elements ej ∈ Xcur = X.
Now at any point in the while loop, consider the set Xα = {ej ∈ Xcur | zj ≥ α} as defined
earlier. For any element ej ∈ Xcur \Xα, the condition is already met, therefore we need to
argue only for the elements in Xα. We know by Invariant 1 that there exists a set Sa ∈ Rcur
such that Xα ⊆ Sa.

By Invariant 2, the xi values of all sets Si ∈ Rcur \ {Sa} are unchanged, and therefore
for all elements ej ∈ Xcur, the net change to the zj variable is positive only by the virtue of
increase in the xa value. However, the net increase in the xa value is at most α because a
set Si is removed from Rcur as soon as its xi value reaches α. Accounting for the initial zj
value which is at most α, we conclude that zj ≤ 2α. J

Note that after leaving the outer while loop (Line 28), we must have |Rcur| ≤ 1. That is
in Line 29, we either let Rend ← Rcur = ∅, or Rend ← Rcur = {Si} for some set Si ∈ R.

To state the following claim, we introduce the following notation. Let σ′ = (x′, z′) be
the LP solution at the end of Algorithm 2. Let Rr = R \ Σ, where Σ is the collection at the
end of the while loop of Algorithm 2, and let Xr = X \ Ξ. Note that any element ej ∈ Xr is
contained only in the sets of Rr. Finally, let Zr =

∑
ej∈Xr

z′j .

I Claim 2. If Rend 6= ∅, then at least Zr elements are covered by Rend.

Proof. By assumption, we have that Rend 6= ∅, i.e. Rend = {Si} for some Si ∈ R. For each
Sl ∈ Rr with l 6= i, we have that xl = 0, again by the condition of the outer while loop.
Since Constraint 6 is made tight for all elements in each execution of RoundTwoSets, for
any element ej′ ∈ Xr but ej′ 6∈ Si, we have that zj′ = 0. On the other hand, for elements
ej ∈ Xr ∩ Si, we have that z′j = x′i ≤ α. If the number of such elements is p, then we have
that Zr ≤ α · p. The lemma follows since choosing Si covers all of these p elements, and
p ≥ Zr/α ≥ Zr. J

In the following lemma, we show that Algorithm 2 produces a feasible solution.

I Lemma 8. The solution Σ ∪Rend returned by Algorithm 2 covers at least k elements.
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Proof. There are two cases – Rend = ∅, or Rend = {Si} for some Si ∈ R. In the first case,
all elements in Xr are uncovered, and for all such elements, ej′ ∈ Xr, we have that zj′ = 0.
In this case, it is trivially true that the number of elements of Xr covered by Rend is Zr
(= 0). In the second case, the same follows from Claim 2. Therefore, in both cases we have
that,

Number of elements covered ≥ |Ξ|+ Zr

≥
∑
ej∈Ξ

z′j +
∑
ej∈Xr

z′j (By Lemma 7 and z′j ≤ 1)

=
∑
ej∈X

z′j

≥
∑
ej∈X

zj (Lemma 5, Part 2)

≥ k (By Lemma 4 and Constraint 7)

Recall that zj refers to the z-value of an element ej in the optimal LP solution σ, at the
beginning of the algorithm. J

I Lemma 9. Let Σ ∪Rend be the solution returned by Algorithm 2, and let B be the weight
of the heaviest set in R. Let σ = (x, z) and σ′ = (x′, z′) denote the LP solutions at the
beginning and end of Algorithm 2, respectively. Then,
1. w(Σ) =

∑
Si∈Σ wix

′
i ≤

∑
Si∈R wix

′
i ≤ 1

α

∑
Si∈R wixi = 1

αcost(σ),
2. w(Rend) ≤ B, and
3. w(Σ ∪Rend) ≤ 1

αcost(σ) +B.

Proof. For the first part, the inequality
∑
Si∈R wix

′
i ≤ 1

α

∑
Si∈R wixi follows because (a)

RoundTwoSets preserves the cost of the LP solution, and (b) when a set Si is added to
Σ, its contribution to the cost of the LP increases by a factor of 1

α . For the second part,
note that Rend contains at most one set Si ∈ R. By definition, weight of any set in Si is
bounded by B, the maximum weight of any set in R. The third part follows from the first
two parts. J

From Lemma 8 and Lemma 9, we conclude that Σ ∪ Rend is a solution that covers at
least k = kp − |X1| elements from Xp \X1, and whose cost is at most 1

αcost(σ) +B.

5 A generalization of PSC

Consider the following generalization of the PSC problem, where the elements ej ∈ X ′ have
profits pj ≥ 0 associated with them. Now the goal is to choose a minimum-weight collection
Σ ⊆ R′ such that the total profit of elements covered by the sets of Σ is at least K, where
0 ≤ K ≤

∑
ej∈X pj is provided as an input. Note that setting pj = 1 for all elements we get

the original PSC problem. This generalization has been considered in [26].
It is easy to modify our algorithm that for PSC, such that it returns a 2β+ 2 approximate

solution for this generalization as well. We briefly describe the modifications required. Firstly,
we modify Constraint 7 of PSC LP to incorporate the profits as follows:∑

ej∈X
zj · pj ≥ K

The preprocessing and the rounding algorithms work with the straightforward modifications
required to handle the profits. One significant change is in the rounding algorithm (Algorithm
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2). We compare the “cost-effectiveness” of the two sets Sa, Sb in Line 7 for the PSC as
|Sa∩Xcur|

wa
≥ |Sb∩Xcur|

wb
. For handling the profits of the elements, we replace this with the

following condition – Pa

wa
≥ Pb

wb
, where Pa :=

∑
ej∈Sa∩Xcur

pj , and Pb :=
∑
ej∈Sb∩Xcur

pj .
With similar straightforward modifications, the analysis of Algorithm 2 goes through with
the same guarantee on the cost of the solution. We remark here that despite the profits, the
approximation ratio only depends on that of the standard SC LP, which is oblivious to the
profits.
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