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Abstract
Recovering hidden graph-like structures from potentially noisy data is a fundamental task in
modern data analysis. Recently, a persistence-guided discrete Morse-based framework to extract
a geometric graph from low-dimensional data has become popular. However, to date, there is
very limited theoretical understanding of this framework in terms of graph reconstruction. This
paper makes a first step towards closing this gap. Specifically, first, leveraging existing theoretical
understanding of persistence-guided discrete Morse cancellation, we provide a simplified version
of the existing discrete Morse-based graph reconstruction algorithm. We then introduce a simple
and natural noise model and show that the aforementioned framework can correctly reconstruct
a graph under this noise model, in the sense that it has the same loop structure as the hidden
ground-truth graph, and is also geometrically close. We also provide some experimental results
for our simplified graph-reconstruction algorithm.
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1 Introduction

Recovering hidden structures from potentially noisy data is a fundamental task in modern
data analysis. A particular type of structure often of interest is the geometric graph-like
structure. For example, given a collection of GPS trajectories, recovering the hidden road
network can be modeled as reconstructing a geometric graph embedded in the plane. Given
the simulated density field of dark matters in universe, finding the hidden filamentary
structures is essentially a problem of geometric graph reconstruction.

Different approaches have been developed for reconstructing a curve or a metric graph
from input data. For example, in computer graphics, much work have been done in extracting
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1D skeleton of geometric models using the medial axis or Reeb graphs [7, 26, 19, 15, 21, 4].
In computer vision and machine learning, a series of work has been developed based on the
concept of principal curves, originally proposed by Hastie and Steutzle [17]. Extensions to
graphs include the work in [18] for 2D images and in [22] for high dimensional point data.

In general, there is little theoretical guarantees for most approaches developed in practice
to extract hidden graphs. One exception is some recent work in computational topology:
Aanijaneya et al. [1] proposed the first algorithm to approximate a metric graph from an
input metric space with guarantees. The authors of [5, 15] used Reeb-like structures to
approximate a hidden (metric) graph with some theoretical guarantees. These work however
only handles (Gromov-)Hausdorff-type of noise. When input points are embedded in an
ambient space, they requires the input points to lie within a small tubular neighborhood of
the hidden graph. Empirically, these methods do not seem to be effective when the input
contains ambient noise allowing some faraway points from the hidden graph.

Recently, a discrete Morse-based framework for recovering hidden structures was proposed
and studied [6, 16, 23]. This line of work computes and simplifies a discrete analog of
(un)stable manifolds of a Morse function by using the (Forman’s) discrete Morse theory
coupled with persistent homology for 2D or 3D volumetric data. One of the main issues in
such simplification is the inherent obstructions that may occur for cancelling critical pairs.
The authors of [23] suggest sidestepping this and consider a combinatorial representation
of critical pairs for further processing. The authors in [6] identify a restricted set of pairs
called “cancellable close pairs” which are guaranteed to admit cancellation. This framework
has been applied to, for example, extracting filament structures from simulated dark matter
density fields [24] and reconstructing road networks from GPS traces [25].

This persistence-guided discrete Morse-based framework has shown to be very effective in
recovering a hidden geometric graph from (non-Hausdorff type) noise and non-homogeneous
data. The method draws upon the global topological structure hidden in the input scalar field
and thus is particularly effective at identifying junction nodes which has been a challenge
for previous approaches that rely mostly on local information. However, to date, theoretical
understanding of such a framework remains limited. Simplification of a discrete Morse
gradient vector field using persistence has been studied before. For example, the work of [6]
clarifies the connection between persistence-pairing and the simplification of discrete Morse
chain complex (which is closely related, but different from the cancellation in the discrete
gradient vector field) for 2D and 3D domains. Bauer et al. [3] obtain several results on
persistence guided discrete Morse simplification for combinatorial surfaces. The simplification
of vertex-edge persistence pairing used in [3] has also been observed in [2] independently for
simplifying Morse functions on surfaces. Leveraging these existing developments, we aim to
provide a theoretical understanding of a persistence-guided discrete Morse based approach
to reconstruct a hidden geometric graph.

Main contributions and organization of paper. In Section 3, we start with one version
of the existing persistence-guided discrete Morse-based graph reconstruction algorithm (as
employed in [24, 25, 8]). We show that this algorithm can be significantly simplified while
still yielding the same output. To establish the theoretical guarantee of the reconstruction
algorithm, we introduce a simple yet natural noise model in Section 4. Intuitively, this noise
model assumes that we are given an input density field ρ : Rd → R where densities are
significantly higher within a small neighborhood around a hidden graph than outside it. Under
this noise model, we show that the reconstructed graph has the same loop structure as the
hidden graph, and is also geometrically close to it; the technical details are in Sections 5 and
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6 for the general case and the 2-dimensional case (with additional guarantees), respectively.
While our noise model is simple, our theoretical guarantees are first of a kind developed

for a discrete Morse-based approach applied to graph reconstruction. In fact, prior to this, it
was not clear whether a discrete Morse based approach can recover a graph even if there
is no noise, that is, the density function has positive values only on the hidden graph. For
our specific noise model, it may be possible to develop thresholding strategies perhaps with
theoretical guarantees. However, previous work (e.g, [24, 25]) have shown that discrete Morse
approach succeeds in many cases handling non-homogeneous data where thresholding fails.
We have implemented the proposed simplified algorithm and tested it on several data sets,
which generally gives a speed-up of at least a factor of 2 over a state-of-the-art approach.
We present more discussions and experimental results in the full version of this paper [9].

2 Preliminaries

2.1 Morse theory

For simplicity, we consider only a smooth function f : Rd → R. See [10, 20] for more general
discussions.

For a point p ∈ Rd, the gradient vector of f at a point p is ∇f(p) = −[ ∂f∂x1
· · · ∂f∂xd ]T ,

which represents the steepest descending direction of f at p, with its magnitude being the
rate of change. An integral line of f is a path π : (0, 1)→ Rd such that the tangent vector
at each point p of this path equals ∇f(p), which is intuitively a flow line following the
steepest descending direction at any point. A point p ∈ Rd is critical if its gradient vector
vanishes, i.e, ∇f(p) = [0 · · · 0]T . A maximal integral line necessarily “starts” and “ends” at
critical points of f ; that is, limt→0 π(t) = p with ∇f(p) = [0 · · · 0]T , and limt→1 π(t) = q

with ∇f(q) = [0 · · · 0]T . See Figure 1a where we show the graph of a function f : R2 → R,
and there is an integral line from p′ to the minimum v1.

For a critical point p, the union of p and all the points from integral lines flowing into
p is referred to as the stable manifold of p. Similarly, for a critical point q, the union of
q and all the points on integral lines starting from q is called the unstable manifold of q.
The stable manifold of a minimum p intuitively corresponds the basin/valley around p in
the terrain of f . The 1-stable manifolds of index (d− 1) saddles consist of pieces of curves
connecting (d− 1)-saddles to maxima – These curves intuitively capture “mountain ridges”
of the terrain (graph of the function f); see Figure 1a for an example. Symmetrically, the
unstable manifold of a maximum q corresponds to the mountain around q. The 1-unstable
manifolds consist of a collection of curves connecting 1-saddles to minima, corresponding
intuitively to the “valley ridges”.

In this paper, we focus on a graph-reconstruction framework using Morse-theory (as in e.g,
[16, 6, 24, 25]). Intuitively, the 1-stable manifolds of saddles (mountain ridges) of the density
field ρ are used to capture the hidden graphs. To implement such an idea in practice, the
discrete Morse theory is used for robustness and simplicity contributed by its combinatorial
nature; and a simplification scheme guided by the persistence pairings is employed to remove
noise. Below, we introduce some necessary background notions in these topics.

2.2 Discrete Morse theory

First we briefly describe some notions from discrete Morse theory (originally introduced by
Forman [14]) in the simplicial setting.

SoCG 2018
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(a) (b) (c) (d)

Figure 1 (a) M1 and M2 are maxima (red dots), v1 and v2 are minima (blue dots), s is a saddle
(green dots) with its stable manifolds flowing to it from M1 and M2. If we put a drop of water at p′

it will flow to v1. If we put it on the other side of the mountain ridge it will flow to minimum v2.
(b) Before cancellation of pair 〈v2, e2〉. (c) After cancellation, the path from e2 to v2 is inverted,
giving rise to a gradient path from e1 to v1, making 〈v1, e1〉 now potentially cancellable. (d) An
edge-triangle pair 〈e, t〉 which is not cancellable as there are two gradient paths between them.

A k-simplex τ = {p0, . . . , pk} is the convex hull of k + 1 affinely independent points; k is
called the dimension of τ . A face σ of τ is a simplex spanned by a proper subset of vertices
of τ ; σ is a facet of the k-simplex τ , denoted by σ < τ , if its dimension is k − 1.

Suppose we are given a simplicial complex K which is simply a collection of simplices
and all their faces so that if two simplices intersect, they do so in a common face. A discrete
(gradient) vector is a pair of simplices (σ, τ) such that σ < τ . A Morse pairing in K is a
collection of discrete vectors M(K) = {(σ, τ)} where each simplex appears in at most one
pair; simplices that are not in any pair are called critical.

Given a Morse pairing M(K), a V-path is a sequence τ0, σ1, τ1, . . . , σ`, τ`, σ`+1, where
(σi, τi) ∈M(K) for every i = 1, . . . , `, and each σi+1 is a facet of τi for each i = 0, . . . , `. If
` = 0, the V-path is trivial. This V-path is cyclic if ` > 0 and (σ`+1, τ0) ∈M(K); otherwise,
it is acyclic in which case we call this V-path a gradient path. We say that a gradient path is a
vertex-edge gradient path if dimension(σi) = 0, implying that dimension(τi) = 1. Similarly,
it is a edge-triangle gradient path if dimension(σi) = 1. A Morse pairing M(K) becomes a
discrete gradient vector field (or equivalently a gradient Morse pairing) if there is no cyclic
V-path induced by M(K).

Intuitively, given a discrete gradient vector fieldM(K), a gradient path τ0, σ1, . . . , τ`, σ`+1
is the analog of an integral line in the smooth setting. But different from the smooth setting,
a maximal gradient path may not start or end at critical simplices. However, those that do
(i.e, when τ0 and σk+1 are critical simplices) are analogous to maximal integral line in the
smooth setting which “start” and “end” at critical points, and for convenience one can think
of critical k-simplices in the discrete Morse setting as index-k critical points in the smooth
setting. For example, for a function on R2, critical 0-, 1- and 2-simplices in the discrete
Morse setting correspond to minima, saddles and maxima in the smooth setting, respectively.

For a critical edge e, we define its stable manifold to be the union of edge-triangle gradient
paths that ends at e. Its unstable manifold is defined to be the union of vertex-edge gradient
paths that begins with e. While earlier we use “mountain ridges” (1-stable manifolds)
to motivate the graph reconstruction framework, algorithmically (especially for the Morse
cancellations below), vertex-edge gradient paths are simpler to handle. Hence in our algorithm
below, we in fact consider the function gρ = −ρ (instead of the density field ρ itself) and the
algorithm outputs (a subset of) the 1-unstable manifolds (vertex-edge paths in the discrete
setting) as the recovered hidden graph.
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Morse cancellation / simplification. One can simplify a discrete gradient vector fieldM(K)
(i.e, reducing the number of critical simplices) by the following Morse cancellation operation:
A pair of critical simplices 〈σ, τ〉 with dimension(τ) = dimension(σ) + 1 is cancellable, if
there is a unique gradient path τ = τ0, σ1, . . . , τ`, σ`+1 = σ starting at the k + 1-simplex τ
and ends at the k-simplex σ. The Morse cancellation operation on 〈σ, τ〉 then modifies the
vector field M(K) by removing all gradient vectors (σi, τi), for i = 1, . . . , `, while adding new
gradient vectors (σi, τi−1), for i = 1, . . . , `+ 1. Intuitively, the gradient path is inverted. Note
that τ = τ0 and σ = σ`+1 are no longer critical after the cancellation as they now participate
in discrete gradient vectors. If there is no gradient path, or more than one gradient path
between this pair of critical simplices 〈σ, τ〉, then this pair is not cancellable – the uniqueness
condition is to ensure that no cyclic V-paths are formed after the cancellation operation. See
Figure 1 (b) – (d) for examples.

2.3 Persistence pairing
The Morse cancellation can be applied to any sequence of critical simplices pairs as long
as they are cancellable at the time of cancellation. There is no canonical cancellation
sequence. To cancel features corresponding to “noise” w.r.t. an input piecewise-linear
function f : |K| → R, a popular strategy is to guide the Morse cancellation by the persistent
homology induced by the lower-star filtration [16, 24], which we introduce now.

Filtrations and lower-star filtration. Given a simplicial complex K, let S be an ordered
sequence σ1, . . . , σN of all n simplices in K so that for any simplex σi ∈ K, all of its faces
appear before it in S. Then S induces a (simplex-wise) filtration F (K): K1 ⊂ K2 ⊂ · · · ⊂
KN = K, where Ki =

⋃
j≤i σj is the subcomplex formed by the prefix σ1, . . . , σi of S. Passing

to homology groups, we have a persistence module H∗(K1)→ · · · → H∗(KN ), which has a
unique decomposition into the direct sum of a set of indecomposable summands that can
be represented by the set of persistence-pairing P (K) induced by F (K): Each persistence
pair (σi, σj) ∈ P (K) indicates that a new k-th homological class, k = dimension(σi),
is created at Ki and destroyed at Kj ; σi is thus called a positive simplex as it creates,
and σj a negative simplex. Assuming that there is a simplex-wise function f̄ : K → R
such that f̄(σi) ≤ f̄(σj) if i < j, then the persistence of the pair (σ, τ) is defined as
pers(σ) = pers(τ) = pers(σ, τ) = f̄(τ)− f̄(σ). Some simplices σ`’s may be unpaired, meaning
that homological features created at K` are never destroyed. We augment P (K) by adding
(σ`,∞) for every unpaired simplex σ` to it, and set pers(σ`,∞) =∞.

The persistent homology can be defined for any filtration of K. In our setting, there is
an input function f : V (K)→ R defined at the vertices V (K) of K whose linear extension
leads to a piecewise-linear (PL) function still denoted by f : |K| → R. To reflect topological
features of f , we use the lower-star filtration of K induced by f : Specifically, for any vertex
v ∈ V (K), its lower-star LowSt(v) is the set of simplicies containing v where v has the highest
f value among their vertices. Now sort vertices of K in non-decreasing order of their f -values:
v1, . . . , vn. An ordered sequence S = 〈σ1, . . . , σN 〉 induces a lower-star filtration Ff (K) of
K w.r.t. f if S can be partitioned to n consecutive pieces 〈σ1, . . . , σI1〉, 〈σI1+1, . . . , σI2〉,
. . . , 〈σIn−1+1, . . . , σN 〉, such that the i-th piece 〈σIi−1+1, . . . , σIi〉 equals LowSt(vi).

Now let Pf (K) be the resulting set of persistence pairs induced by the lower-star filtration
Ff (K). Extend the function f : V (K) → R to a simplex-wise function f̄ : K → R where
f̄(σ) = maxv∈σ f(v) (i.e, f̄(σ) is the highest f-value of any of its vertices). For each pair
(σ, τ), we measure its persistence by pers(σ, τ) = f̄(τ)− f̄(σ). Every simplex in K contributes
to a persistence pair in Pf (K). However, assuming the value of f is distinct on all vertices,

SoCG 2018
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then those persistence pairs with zero-persistence are “trivial” in the sense they correspond
to the local pairing of two simplices from the lower-star of the same vertex. A persistence
pair (σ, τ) with positive persistence corresponds to a pair of (homological) critical points
(p, q) for the PL-function f : |K| → R [10] induced by the function f on V (K), with p ∈ σ
and q ∈ τ .

3 Reconstruction algorithm

Problem setup. Suppose we have a domain Ω (which will be a cube in Rd in this paper)
and a density function ρ : Ω → R (that “concentrates” around a hidden geometric graph
G ⊂ Ω). In the discrete setting, our input will be a triangulation K of Ω and a density
function given as a PL-function ρ : K → R. Our goal is to compute a graph Ĝ approximating
the hidden graph G. In Algorithm 1, we first present a known discrete Morse-based graph
(1-skeleton) reconstruction framework, which is based on the approaches in [16, 6, 24, 25].

Algorithm 1: MorseRecon(K,ρ, δ)
Data: Triangulation K of Ω, density function ρ : K → R, threshold δ
Result: Reconstructed graph Ĝ
begin

1 Compute persistence pairings P (K) by the lower-star filtration of K w.r.t gρ = −ρ
2 M =PerSimpVF(P (K), δ)
3 Ĝ = CollectOutputG(M)
4 return Ĝ

Procedure PerSimpVF(P (K), δ)
1 Set initial discrete gradient field M on K to be trivial
2 Rank all persistence pairs in P (K) in increasing order of their persistence
3 for each (σ, τ) ∈ P (K) with pers(σ, τ) ≤ δ do
4 If possible, perform discrete-Morse cancellation of (σ, τ) and update the

discrete gradient vector field M
5 return M

Procedure CollectOutputG(M)
1 Ĝ = ∅
2 for each remaining critical edge e with pers(e) > δ do
3 Ĝ = Ĝ

⋃
{1-unstable manifold of e}

4 return Ĝ

Intuitively, we wish to use “mountain ridges” of the density field to approximate the
hidden graph, which are computed as the 1-unstable manifolds of gρ = −ρ, the negation
of the density function. Specifically, after initializing the discrete gradient vector field M
to be a trivial one, a persistence-guided Morse cancellation step is performed in Procedure
PerSimpVF() to compute a new discrete gradient vector field Mδ so as to capture only
important (high persistent) features of gρ. In particular, Morse-cancellation is performed
for each pair of critical simplices from P (K) (if possible) in increasing order of persistence
values (for pairs with equal persistence, we use the nested order as in [3]). Finally, the union
of the 1-unstable manifolds of all remaining high-persistence critical edges is taken as the
output graph Ĝ, as outlined in Procedure CollectOutputG().
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Algorithm 2: MorseReconSimp(K,ρ, δ)
Procedure PerSimpTree(P (K), δ) /∗ This procedure replaces original PerSimpVF() ∗/

1 Π := the set of vertex-edge persistence pairs from P (K)
2 Set Π≤δ ⊆ Π to be Π≤δ = {(v, e) ∈ Π | pers(v, e) ≤ δ}
3 T :=

⋃
(v,σ)∈Π≤δ{σ = 〈u1, u2〉, u1, u2}

4 return T
Procedure Treebased-OutputG(T ) /∗ This procedure replaces CollectOutputG() ∗/

1 Ĝ = ∅
2 for each edge e = 〈u, v〉 with pers(e) > δ do
3 Let π(u) be the unique path from u to the sink of the tree Ti containing u
4 Define π(v) similarly; Set Ĝ = Ĝ ∪ π(u) ∪ π(v) ∪ {e}

5 return Ĝ

Since we only need 1-unstable manifolds, K is assumed to be a 2-complex. It is pointed
out in [8] that in fact, instead of performing Morse-cancellation for all critical pairs involving
edges (i.e, vertex-edge pairs and edge-triangle pairs), one only needs to cancel vertex-edge
pairs – This is because only vertex-edge gradient vectors will contribute to the 1-unstable
manifolds, and also new vertex-edge vectors can only be generated while canceling other
vertex-edge pairs. Hence in PerSimpVF(), we can consider only vertex-edge pairs (σ, τ) ∈ P in
order. Furthermore, it is not necessary to check whether the cancellation is valid or not – it
will always be valid as long as the pairs are processed in increasing orders of persistence [3]1.

However, we can further simplify the algorithm as follows: First, we replace procedure
PerSimpVF() by procedure PerSimpTree() as shown in Algorithm 2, which is much simpler
both conceptually and implementation speaking. Note that there is no explicit cancellation
operation any more.

The 1-dimensional simplicial complex T output by procedure PerSimpTree() may have
multiple connected components T = {T1, . . . , Tk} – In fact, it is known that each Ti is a
tree and T is a forest (see results from [2, 3] as summarized in Lemma 2 below). For each
component Ti, we define its sink, denoted by si(Ti), as the vertex vi ∈ Ti with the lowest
function gρ = −ρ value. Lemma 2 also states that the sink of Ti would have been the only
critical simplex among all simplices in Ti, if we had performed the δ-simplification as specified
in procedure PerSimpVF(). Next, we replace procedure CollectOutputG() by procedure
Treebased-OutputG() shown in Algorithm 2. We use MorseReconSimp() to denote our simplified
version of Algorithm 1 (with PerSimpVF() replaced by PerSimpTree(), and CollectOutputG()
replaced by Treebased-OutputG(). In summary, algorithm MorseReconSimp(K, ρ, δ) works by
first computing all persistence pairs as before. It then collects all vertex-edge persistence
pairs (v, e) with pers(v, e) ≤ δ. These edges along with the set of all vertices form a spanning
forest T . Then, for every edge e = 〈u, v〉 with pers(e) > δ, it outputs the 1-unstable manifold
of e, which is simply the union of e and the unique paths from u and v to the sink (root)
of the tree containing them respectively. Its time complexity is stated below; note for the
previous algorithm MorseRecon(), the cancellation step can take Õ(n2) time.

1 We remark that though [3] states that the cancellation is not valid in higher dimension or non-manifold
2-complexes, all cancellations in PerSimpVF() are for vertex-edge pairs in a spanning tree which can be
viewed as a 1-complex, and thus are always valid.

SoCG 2018
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I Theorem 1. The time complexity of our Algorithm PerSimpVF() is O(Pert(K)+n), where
PerT (K) is the time to compute persistence pairings for K, and n is the total number of
vertices and edges in K.

We remark that the O(n) term is contributed by the step collecting all 1-unstable
manifolds, which takes linear time if one avoids revisiting edges while tracing the paths.

Justification of the modified algorithm MorseReconSimp(). Let Mδ denote the resulting
discrete gradient field after canceling all vertex-edge persistence pairs in P (K) with persistence
at most δ; that is, Mδ is the output of the procedure PerSimpVF() (although we only compute
the relevant part of the discrete gradient vector field). Using observations from [2, 3], we show
that the output T of procedure PerSimpTree() includes all information of Mδ. Furthermore,
procedure Treebased-OutputG() computes the correct 1-unstable manifolds for all critical
edges with persistence larger than δ. Indeed, observe that edges in Morse pairings from Mδ

(for any δ ≥ 0) form a spanning forest of edges in K. Results of [3] imply that the output T
constructed by our modified procedure corresponds exactly to this spanning forest:

I Lemma 2. The following statements hold for the output T of procedure PerSimpTree()
w.r.t any δ ≥ 0:
(i) T is a spanning forest consisting of potentially multiple trees {T1, . . . , Tk}.
(ii) For each tree Ti, its sink vi is the only critical simplex in Mδ. The collection of vis

corresponds exactly to those vertices whose persistence is bigger than δ.
(iii) Any edge with pers(e) > δ remains critical in Mδ (and cannot be contained in T ).

Note that, (ii) above implies that for each Ti, any discrete gradient
path of Mδ in Ti terminates at its sink vi. See the right figure for an
illustration. Hence for any vertex v ∈ Ti, the path π(v) computed in
procedure Treebased-OutputG() is the unique discrete gradient path starting
at v. This immediately leads to the following result:

I Corollary 3. For each critical edge e = 〈u, v〉 with pers(e) ≥ δ, π(u) ∪ π(v) ∪ {e} as
computed in procedure Treebased-OutputG() is the 1-unstable manifold of e in Mδ. Hence the
output of our simplified algorithm MorseReconSimp() equals that of the original algorithm
MorseRecon().

4 Noise model

We first describe the noise model in the continuous setting where the domain is Ω = [0, 1]d.
We then explain the setup in the discrete setting when the input is a triangulation K of Ω.

Given a connected “true graph” G ⊂ Ω, consider a ω-
neighborhood Gω ⊆ Ω, meaning that (i) G ⊆ Gω, and (ii) for any
x ∈ Gω, d(x,G) ≤ ω (i.e, Gω is sandwiched between G and its
ω-offset). Given Gω, we use cl(Gω) to denote the closure of its
complement cl(Gω) = cl(Ω \Gω). See the right figure, showing
G (red graph) with its ω-neighborhood Gω (orange).

I Definition 4. A density function ρ : Ω → R is a (β, ν, ω)-approximation of a connected
graph G if the following holds:
C-1 There is a ω-neighborhood Gω of G such that Gω deformation retracts to G.
C-2 ρ(x) ∈ [β, β + ν] for x ∈ Gω; and ρ(x) ∈ [0, ν] otherwise. Furthermore, β > 2ν.
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Intuitively, this noise model requires that the density ρ concentrates around the true
graph G in the sense that the density is significantly higher inside Gω than outside it; and
the density fluctuation inside or outside Gω is small compared to the density value in Gω
(condition C-2). Condition C-1 says that the neighborhood has the same topology of the
hidden graph. Such a density field could for example be generated as follows: Imagine that
there is an ideal density field fG : Ω → R where fG(x) = β for x ∈ Gω and 0 otherwise.
There is a noisy perturbation g : Ω→ R whose size is always bounded by g(x) ∈ [0, ν] for
any x ∈ Ω. The observed density field ρ = fG + g is an (β, ν, ω)-approximation of G.

In the discrete setting when we have a triangulation K of Ω, we define a ω-neighborhood
Gω to be a subcomplex of K, i.e, Gω ⊆ K, such that (i) G is contained in the underlying
space of Gω and (ii) for any vertex v ∈ V (Gω), d(v,G) ≤ ω. The outside-region cl(Gω) ⊆ K
is simply the smallest subcomplex of K that contains all simplices from K \ Gω (i.e, all
simplices not in Gω and their faces). A PL-function ρ : K → R (β, ν, ω)-approximation of G
can be extended to this setting by requiring the underlying space of Gω deformation retracts
to G as in (C-1), and having those density conditions in (C-2) only at vertices of K.

We remark that the noise model is still limited – In particular, it does not allow significant
non-uniform density distribution. However, this is the first time that theoretical guarantees
are provided for a discrete Morse based reconstruction framework, despite that such a
framework has been used for different applications before. We also give experiments and
discussions in Appendix B of the full version [9] that the algorithm works beyond this noise
model empirical, where thresholding type approaches do not work.

5 Theoretical guarantee

In this section, we prove results that are applicable to any dimension. Recall that Mδ is
the discrete gradient field after the δ-Morse cancellation process, where we perform Morse-
cancellation for all vertex-edge persistence pairs from P (K). (While our algorithm does not
maintain Mδ explicitly, we use it for theoretical analysis.) At this point, all positive edges
(i.e, those paired with triangles or unpaired in P (K)) remain critical in Mδ. Some negative
edges (i.e, those paired with vertices in P (K)) are also critical in Mδ – these are exactly the
negative edges with persistence bigger than δ. Treebased-OutputG() only takes the 1-unstable
manifolds of those critical edges (positive or negative) with persistence bigger than δ; so
those positive edges whose persistence is ≤ δ (if there is any) are ignored.

From now on, we use “under our noise model” to refer to (1) the input is a (β, ν, ω)-
approximated density field w.r.t. G, and (2) δ ∈ [ν, β − ν). Let Ĝ be the output of algorithm
MorseReconSimp(K, ρ, δ). The proof of the following result is in the full version [9].

I Proposition 5. Under our noise model, we have:
(i) There is a single critical vertex left after PerSimpVF() which is in Gω.
(ii) Every critical edge considered by Treebased-OutputG() forms a persistence pair with a

triangle.
(iii) Every critical edge considered by Treebased-OutputG() is in Gω.

I Theorem 6. Under our noise model, the output graph satisfies Ĝ ⊆ Gω.

Proof. Recall that the output graph Ĝ consists of the union of 1-unstable manifolds of all
the edges e∗1, . . . , e∗g with persistence larger than δ – By Propositions 5 (ii) and (iii), they are
all positive (paired with triangles), and contained inside Gω.

Take any i ∈ [1, g] and consider e∗i = 〈u, v〉. Without loss of generality, consider the
gradient path starting from u: π : u = u1, e1, u2, e2, . . . , us, es, us+1. By Lemma 2 and

SoCG 2018



31:10 Graph Reconstruction by Discrete Morse Theory

Proposition 5, us+1 must be a critical vertex (a sink) and is necessarily the global minimum
v0, which is also contained inside Gω. We now argue that the entire path π (i.e, all simplices
in it) is contained inside Gω. In fact, we argue a stronger statement: First, we say that
a gradient vector (v, e) is crossing if v ∈ Gω and e /∈ Gω (i.e, e ∈ cl(Gω)) – Since v is an
endpoint of e, this means that the other endpoint of e must lie in K \Gω.

I Claim 1. During the δ-Morse cancellation, no crossing gradient vector is ever produced.

Proof. Suppose the lemma is not true: Then let (v, e) be the first crossing gradient vector
ever produced during the δ-Morse cancellation process. Since we start with a trivial discrete
gradient vector field, the creation of (v, e) can only be caused by reversing of some gradient
path π′ connecting two critical simplices v′ and e′ while we are performing Morse-cancellation
for the persistence pair (v′, e′). Obviously, pers(v′, e′) ≤ δ. On the other hand, due to our
(β, ν, ω)-noise model and the choice of δ, it must be that either both v′, e′ ∈ Gω or both
v′, e′ ∈ K \Gω – as otherwise, the persistence of this pair will be larger than β − ν > δ.

Now consider this gradient path π′ connecting v′ and e′ in the current discrete gradient
vector fieldM ′. Since the pair (v, e) becomes a gradient vector after the inversion of this path,
it must be that (w, e) currently is a gradient vector where e = 〈v, w〉. Furthermore, since the
path π′ begins and ends with simplices either both in Gω or both outside it, the path π′ must
contain a gradient vector (v′′, e′′) going in the opposite direction crossing inside/outside, that
is, v′′ ∈ Gω and e′′ /∈ Gω. In other words, it must contain a crossing gradient vector. This
however contradicts to our assumption that (v, e) would be the first crossing gradient vector.
Hence the assumption is wrong and no crossing gradient vector can ever be created. J

As there is no crossing gradient vector during and after δ-Morse cancellation, it follows that π,
which is one piece of the 1-unstable manifold of the critical edge e∗i , has to be contained inside
Gω. The same argument works for the other piece of 1-unstable manifold of e∗i (starting
from the other endpoint of e∗i ). Since this is for any i ∈ [1, g], the theorem holds. J

The previous theorem shows that Ĝ is close to G in geometry. Next we will show that
they are also close in topology.

I Proposition 7. Under our noise model, Ĝ is homotopy equivalent to G.

Proof. We show that Ĝ has the same first Betti number as that of G which implies the claim
as any two graphs in Rd with the same first Betti number are homotopy equivalent.

The underlying space of ω-neighborhood Gω of G deformation retracts to G by definition.
Observe that, by our noise model, Gω is a sublevel set in the filtration that determines the
persistence pairs. This sublevel set being homotopy equivalent to G must contain exactly g
positive edges where g is the first Betti number of G. Each of these positive edges pairs with a
triangle in Gω. Therefore, pers(e, t) > δ for each of the g positive edges in Gω. By our earlier
results, these are exactly the edges that will be considered by procedure Treebased-OutputG().
Our algorithm constructs Ĝ by adding these g positive edges to the spanning tree each of
which adds a new cycle. Thus, Ĝ has first Betti number g. J

We have already proved that Ĝ is contained in Gω. This fact along with Proposition 7
can be used to argue that any deformation retraction taking (underlying space) Gω to G
also takes Ĝ to a subset G′ ⊆ G where G′ and G have the same first Betti number. In what
follows, we use Gω to denote also its underlying space.
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I Theorem 8. Let F : Gω× [0, 1]→ Gω be any deformation retraction. Then, the restriction
F |

Ĝ
: Ĝ × [0, 1] → Gω is a homotopy from the embedding Ĝ to G′ ⊆ G where G′ is the

minimal subset so that G and G′ have the same first Betti number.

Proof. The fact that F |
Ĝ

(·, `) is continuous for any ` ∈ [0, 1] is obvious from the continuity
of F . Only thing that needs to be shown is that F |

Ĝ
(Ĝ, 1) = G′. Suppose not. Then,

G′′ = F |
Ĝ

(Ĝ, 1) is a proper subset of G which has a first Betti number less than that of G.
We observe that the cycle in Ĝ created by a positive edge e along with the paths to the root of
the spanning tree is also non-trivial in Gω because this is a cycle created by adding the edge
e during persistence filtration and the edge e is not killed in Gω.Therefore, a cycle basis for Ĝ
is also a homology basis for Gω. Since the map F (·, 1) : Gω → G is a homotopy equivalence,
it induces an isomorphism in the respective homology groups; in particular, a homology basis
in Gω is mapped to a homology basis in G. Therefore, the image G′′ = F |

Ĝ
(Ĝ, 1) must have

a basis of cardinality g if Ĝ has first Betti number g. But, G′′ cannot have a cycle basis of
cardinality g if it is a proper subset of G′ reaching a contradiction. J

6 Additional guarantee for 2D

For R2, we now show that Gω actually deformation retracts to Ĝ, which is stronger than
saying G and Ĝ are homotopy equivalent. We are unable to prove this result for dimensions
higher than 2, as our current proof needs that the edge-triangle persistence pairs can always
be canceled (even though our algorithm does not depend on edge-triangle cancellations at
all). It would be interesting, as a future work, to see whether a different approach can be
developed to avoid this obstruction for the special case under our noise model. The main
result of this section is as follows.

I Theorem 9. Under our noise model, Gω deformation retracts to G and Ĝ.

This main result follows from Proposition 10 and Theorem 11 below. To prove them, we will
show that there exists a partition R := {Ri} of the set of triangles in K for which Theorem 11
holds. (This theorem is our main tool in establishing the deformation retract.) We first state
the results below before giving their proofs. Let Bi = ∂Ri where ∂ is the boundary operator
operating on the 2-chain Ri. We also abuse the notations Ri and Bi to denote the geometric
space that is the point-wise union of simplices in the respective chains. Let ti be a triangle in
Ri whose choice will be explained later. In the following, let H be the maximal set of edges
in Ĝ whose deletions do not eliminate a cycle (assume that a vertex is deleted only if all of
its edges are deleted). Observe that H necessarily consists of negative edges forming “hairs”
attached to the loops of Ĝ and hence to ∪iBi because of the following proposition.

I Proposition 10. Under our noise model, Ĝ = ∪Bi
⋃
H.

I Theorem 11. Under our noise model, there exists a partition {Ri} of triangles in K such
that, there is a deformation retraction of ∪i(Ri \ ti) to Ĝ that comprises of two deformation
retractions, one from ∪i(Ri \ ti) to Gω and another one from Gω to ∪iBi

⋃
H which is Ĝ.

Now we describe the construction of a partitionR of the triangles inK to prove Proposition
10 and Theorem 11. For technicality we assume that K is augmented to a triangulation of
a sphere by putting a vertex v at infinity and joining it to the boundary of K with edges
and triangles all of whom have function value ∞. Let P (K) be the collection of persistence
pairs of the form either (σ, τ) or (σ,∞) generated from the lower-star filtration F (K) as
described before. Since K is 2-dimensional, each pair (σ, τ) is either a vertex-edge pair or an
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edge-triangle pair. We order persistence pairs in P (K) by their persistence, where ties are
broken via the nested order in the filtration F (K), and obtain:

P (K) = {(σ1, τ1), . . . , (σn, τn), (α1,∞), . . . , (αs,∞)}. (1)

Starting with a trivial discrete gradient vector fieldM0 where all simplices inK are critical,
the algorithm PerSimpVF() performs Morse cancellations for the first m ≤ n persistence pairs
(σ1, τ1), . . . , (σm, τm) in order where pers(σm, τm) ≤ δ but (σm+1, τm+1) > δ, Let Mi denote
the gradient vector field after canceling (σi, τi). Recall that in the implementation of the
algorithm we do not need to perform Morse cancellation for any edge-triangle pairs. However
in this section, for the theoretical analysis, we will cancel edge-triangle pairs as well. Recall
that a positive edge is one that creates a 1-cycle, namely, it is either paired with a triangle
or unpaired; while a negative edge is one that destroys a 0-cycle (i.e, paired with a vertex).

Consider the ordered sequence of edge-triangle persistence pairs, (e1, t1), . . . , (en, tn),
which is a subsequence of the one in (1). Consider the sequence t1, . . . , tn of triangles in K
ordered by the above sequence. Recall the standard persistence algorithm [11]. It implicitly
associates a 2-chain with a triangle t when searching for the edge it is about to pair with.
This 2-chain is non-empty if t is a destructor, and is empty otherwise. Let Di denote this
2-chain associated with ti for i ∈ [1, n]. Initially, the algorithm asserts Di = ti. At any
stage, if Di is not empty, the persistence algorithm identifies the edge e in the boundary
∂Di that has been inserted into the filtration F (K) most recently. If e has not been paired
with anyone, the algorithm creates the persistence pair (e, ti). Otherwise, if e has already
been paired with a triangle, say ti′ , then Di is updated with Di = Di +Di′ and the search
continues. Given an index j ∈ [1, n], we define a modified set of chains Cji inductively as
follows. For j = 1, C1

i = ti. Assume that Cj−1
i has been already defined. To define Cji ,

similar to the persistence algorithm, check if the edge ej−1 is on the boundary ∂Cj−1
i . If so,

define Cji := Cj−1
i + Cj−1

j−1 and Cji := Cj−1
i otherwise. The following result is proved in [9].

I Proposition 12. For i ∈ [1, n], ei is in ∂Cii . Furthermore, ei is the most recent edge in
∂Cii according to the filtration order F (K).

Procedure PerSimpVF() also implicitly maintains a 2-chain R∗i with each triangle ti.
Initially, R∗i = ti as in the case of Di. Then, inductively assume that R∗i is the 2-chain
implicitly associated with ti when a persistence pair (ei′ , ti′) is about to be considered by
PerSimpVF() and the boundary ∂R∗i contains ei′ . By reversing a gradient path between
ti′ and ei′ , it implicitly updates the 2-chain R∗i as R∗i := R∗i +R∗i′ . We observe that R∗i is
identical with Ci′i . Proposition 13 below establishes this fact along with some other inductive
properties useful to prove Theorem 11. The proof can be found in the full version [9].

I Proposition 13. Let (ej , tj) be the edge-triangle persistence pair PerSimpVF() is about to
consider and let Cji be the 2-chains defined as above . Then, the following statements hold:
(a) For each triangle ti, i = 1, . . . , n, in the persistence order, the 2-chain R∗i satisfies the

following conditions:(a.i) R∗i = Cji , (a.ii) interpreting R∗i as a set of triangles, one has
that the sets R∗i , i = j, . . . , n, partition the set of all triangles in K.

(b) There is a gradient path from ti to all edges of the triangles in R∗i , and (b.i) the path is
unique if the edge is in the boundary ∂R∗i for every i = j, . . . , n; (b.ii) if there is more
than one gradient path from ti to an edge e, then e must be a negative edge.

We are now ready to setup the regions Ris needed for Theorem 11 and Proposition 10.
Suppose the first m edge-triangle pairs have persistence less than or equal to δ, the parameter
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supplied to PerSimpVF(). Then, we set Ri = R∗i as in Proposition 13 for i ≥ m+ 1, . . . , n.
The proof for Proposition 10 is in the full version [9].

Finally, similar to the vertex-edge gradient vectors, we say that a gradient vector (e, t) is
crossing if e ∈ Gω and t /∈ Gω. The following claim can be proved similarly as Claim 1.

I Claim 2. During the δ-Morse cancellation of edge-triangle pairs, no crossing gradient
vector is ever produced.

Proof of Theorem 11. Set R̂i = Ri \ ti. Let T be the spanning tree formed by all negative
edges and their vertices. Let Li be the set of edges in Ri that has more than one gradient path
from ti to them; Li ⊂ T by Proposition 13 (b.ii). First, we want to establish a deformation
retraction from ∪(R̂i \ ti) to Gω. To do this, for k = 0, 1, . . . , s, we will define R̂ki inductively
where R̂k−1

i deformation retracts to R̂ki and R̂si ⊆ Gω ∪ Li. Let R̂0
i = R̂i. For k = 1, . . . , s,

consider a positive edge e in R̂k−1
i where (a) e is not in Gω and (b) there is a unique gradient

path in Ri from ti to e that passes through triangles all of which are in Ri \ R̂k−1
i . If such an

edge e exists, then e is necessarily incident to a single triangle, say t, in R̂k−1
i . We collapse

the pair (e, t), which is necessarily an edge-triangle gradient vector pair because e is positive.
We take R̂ki to be R̂k−1

i \ {e, t}. If no such e exists, then either (A) there is no positive edge
in R̂k−1

i \Gω any more; or (B) for each positive edge e′ ∈ R̂k−1
i \Gω, (B-1) there is a unique

gradient path from ti to e′ but this path passes through some triangle in R̂k−1
i ; or (B-2)

there are two gradient paths from ti to e′.
If there is no positive edge in R̂k−1

i \Gω any more, then R̂k−1
i ⊆ Gω ∪ Li, as otherwise,

there will be at least some triangle from R̂k−1
i \Gω ∪ Li with at least one boundary edge of

it being positive. The induction then terminates; we set s = k − 1 and reach our goal.
We now show that case (B-1) is not possible. Suppose it happens, that is, e′ ∈ R̂k−1

i \ Li
is an edge not in Gω for which the unique gradient path from ti passes through triangles
in R̂k−1

i . Let e′′ be the first edge in this path that is in R̂i
k−1
\ Li. Then, if e′′ 6∈ Gω, it

qualifies for the conditions (a) and (b) required for e reaching a contradiction. So, assume
e′′ ∈ Gω. But, in that case, we have a gradient path that goes into Gω and then comes out
to reach e′ 6∈ Gω. There has to be a gradient pair in this path where the edge is in Gω and
the triangle is not in Gω. This contradicts Claim 2. Thus, case (B-1) is not possible. Now
consider (B-2): e′ must be negative by Proposition 13 (b.ii). So, it is not possible either.

To summarize, the induction terminates in case (A), at which time we would have that
R̂si ⊆ Gω ∪Li. Furthermore, this process also establishes a deformation retraction from R̂i to
R̂si realized by successive collapses of edge-triangle pairs. Furthermore, by construction, each
collapsed pair (e, t) must be from cl(Gω), hence ∪iR̂si contains all simplices in Gω. Combined
with that R̂si ⊆ Gω ∪ Li, we have that ∪iR̂si = Gω ∪ L, where L = ∪iLi is a subset of the
spanning tree T . The edges in L being part of a spanning tree cannot form a cycle and thus
can be retracted along the tree to Gω, which gives rise to a deformation retraction from
∪i(Ri \ ti) to Gω ∪ L and then to Gω, establishing the first part of Theorem 11.

We now show that (∪iR̂si )
⋂
Gω = Gω deformation retracts to ∪Bi

⋃
H. Let L̂i be the

edges in R̂si ∩Gω with more than one gradient path from ti to them. These edges are negative
by Proposition 13 (b.ii). Replacing R̂i with R̂si ∩Gω and edges in Bi ∪ L̂i playing the role of
edges in Gω ∪Li in the above induction, we can obtain that R̂si ∩Gω deformation retracts to
Bi ∪ L̂i. Observe that now instead of Claim 2, we use the fact that no edge-triangle gradient
path crosses Bi that consists of only negative and critical edges. To this end, we also observe
that ∪L̂i = T ∩Gω where T is the spanning tree formed by all negative edges, as we only
collapse edge-triangle pairs that are gradient pairs (hence the participating edges are always
positive). This implies that H ⊂ ∪L̂i. Again, edges in L̂i (being part of a spanning tree) can
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be retracted along the spanning tree till one reaches Bi or edges in H. Performing this for
each i, we thus obtain a deformation retraction from (∪iR̂si )

⋂
Gω = Gω to ∪Bi

⋃
∪L̂iand

further to ∪Bi
⋃
H = Ĝ. This finishes the proof of Theorem 11. J

In the full version of this paper [9], we also provide some experiments demonstrating the
efficiency of the simplified algorithm, as well as discussion on thresholding strategies.
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