Algorithms for Low-Distortion Embeddings into
Arbitrary 1-Dimensional Spaces

Timothy Carpenter

Dept. of Computer Science & Engineering, The Ohio State University
Columbus, USA

carpenter.454@osu.edu

Fedor V. Fomin

Department of Informatics, University of Bergen
Norway

fomin@ii.uib.no

Daniel Lokshtanov

Department of Informatics, University of Bergen
Norway

daniello@ii.uib.no

Saket Saurabh

Institute of Mathematical Sciences
Chennai, India
saket@imsc.res.in

Anastasios Sidiropoulos
Computer Science Dept., University of Illinois at Chicago

USA

sidiropo@uic.edu

—— Abstract

We study the problem of finding a minimum-distortion embedding of the shortest path metric
of an unweighted graph into a “simpler” metric X. Computing such an embedding (exactly or
approximately) is a non-trivial task even when X is the metric induced by a path, or, equival-
ently, the real line. In this paper we give approximation and fixed-parameter tractable (FPT)
algorithms for minimum-distortion embeddings into the metric of a subdivision of some fixed
graph H, or, equivalently, into any fixed 1-dimensional simplicial complex. More precisely, we
study the following problem: For given graphs G, H and integer c, is it possible to embed G
with distortion ¢ into a graph homeomorphic to H? Then embedding into the line is the special
case H = K>, and embedding into the cycle is the case H = K3, where K} denotes the complete
graph on k vertices. For this problem we give

an approximation algorithm, which in time f(H)-poly(n), for some function f, either correctly

decides that there is no embedding of G with distortion ¢ into any graph homeomorphic to

H, or finds an embedding with distortion poly(c);

an exact algorithm, which in time f/(H,c) - poly(n), for some function f’, either correctly

decides that there is no embedding of G with distortion ¢ into any graph homeomorphic to

H, or finds an embedding with distortion c.
Prior to our work, poly(OPT)-approximation or FPT algorithms were known only for embedding
into paths and trees of bounded degrees.

2012 ACM Subject Classification Mathematics of computing — Approximation algorithms

Keywords and phrases Metric embeddings, minimum-distortion embeddings, 1-dimensional sim-
plicial complex, Fixed-parameter tractable algorithms, Approximation algorithms

© Timothy Carpenter, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,
5v and Anastasios Sidiropoulos;

licensed under Creative Commons License CC-BY }

34th International Symposium on Computational Geometry (SoCG 2018). NI

Editors: Bettina Speckmann and Csaba D. Téth; Article No. 21; pp.21:1-21:14 T

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

]

[N

O

mailto:carpenter.454@osu.edu
mailto:fomin@ii.uib.no
mailto:daniello@ii.uib.no
mailto:saket@imsc.res.in
mailto:sidiropo@uic.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2

Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

Digital Object Identifier 10.4230/LIPIcs.SoCG.2018.21

Related Version A full version of the paper is available at https://arxiv.org/abs/1712.06747

1 Introduction

Embeddings of various metric spaces are a fundamental primitive in the design of algorithms
[16, 18, 23, 22, 1, 2]. A low-distortion embedding into a low-dimensional space can be used
as a sparse representation of a metrical data set (see e.g. [17]). Embeddings into 1- and
2-dimensional spaces also provide a natural abstraction of vizualization tasks (see e.g. [9]).
Moreover embeddings into topologically restricted spaces can be used to discover interesting
structures in a data set; for example, embedding into trees is a natural mathematical
abstraction of phylogenetic reconstruction (see e.g. [11]). More generally, embedding into
“algorithmically easy” spaces provides a general reduction for solving geometric optimization
problems (see e.g. [7, 12]).

A natural algorithmic problem that has received a lot of attention in the past decade
concerns the exact or approximate computation of embeddings of minimum distortion of a
given metric space into some host space (or, more generally, into some space chosen from a
specified family). Despite significant efforts, most known algorithms for this important class
of problems work only for the case of the real line and trees.

In this work we present exact and approximate algorithms for computing minimum
distortion embeddings into arbitrary 1-dimensional topological spaces of bounded complexity.
More precisely, we obtain algorithms for embedding the shortest-path metric of a given
unweighted graph into a subdivision of an arbitrary graph H. The case where H is just one
edge is precisely the problem of embedding into the real line. We remark that prior to our
work, even the case where H is a triangle, which corresponds to the problem of embedding
into a cycle, was open.

We remark that the problem of embedding shortest path metrics of finite graphs into any
fixed finite 1-dimensional simplicial complex C is equivalent to the problem of embedding into
arbitrary subdivisions of some fixed finite graph H, where H is the abstract 1-dimensional
simplicial complex corresponding to C'. Since we are interested in algorithms, for the
remainder of the paper we state all of our results as embeddings into subdivisions of graphs.

1.1 OQOur contribution

We now formally state our results and briefly highlight the key new techniques that we
introduce. The input space consists of some unweighted graph G. The target space is some
unknown subdivision H’ of some fixed unweighted graph H; we allow the edges in H’ to
have arbitrary non-negative edge lengths.

We first consider the problem of approximating a minimum-distortion embedding into
arbitrary H-subdivisions. We obtain a polynomial-time approximation algorithm, summarized
in the following. The proof is given in Section 4.

! Here, a d-dimensional simplicial complex, for some integer d > 1, is the space obtained by taking a set
of simplices of dimension at most d, and identifying pairs of faces of the same dimension. An abstract
d-dimensional simplicial complex A is a family of nonempty subsets of cardinality at most d 4+ 1 of some
ground set X, such that for all Y/ C Y € A, we have Y’ € A; in particular, any 1-dimensional simplicial
complex corresponds to the set of edges and vertices of some graph.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.21
https://arxiv.org/abs/1712.06747

T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos

» Theorem 1. There exists a 8"n®N) time algorithm that takes as input an n-vertex graph
G, a graph H on h vertices, and an integer ¢, and either correctly concludes that there is
no c-embedding of G into any subdivision of H, or produces a caLg-embedding of G into a
subdivision of H, with caLg < 64 -10% - ¢4(h +1)°.

In addition, we also obtain a FPT algorithm, parameterized by the optimal distortion
and H.

» Theorem 2. There exists a f(h,c) -nPM) time algorithm that takes as input an n-vertex
graph H, a graph H on h vertices, and an integer c, and either correctly concludes that there
is mo c-embedding of G into any subdivision of H, or produces a c-embedding of G into a
subdivision of H.

1.2 Related work

Embedding into 1-dimensional spaces. Most of the previous work on approximation and
FPT algorithms for low-distortion embedding (with one notable recent exception [27])
concerns embeddings of a more general metric space M into the real line and trees. However,
even in the case of embedding into the line, all polynomial time approximation algorithms
make assumptions on the metric M such as having bounded spread (which is the ratio between
the maximum and the minimum point distances in M) [3, 26] or being the shortest-path
metric of an unweighted graph [5]. This happens for a good reason: as it was shown by
Bidoiu et al. [3], computing the minimum line distortion is hard to approximate up to a
factor polynomial in n, even when M is a weighted tree metric with spread n®M.

Most relevant to our approximation algorithm is the work of Bidoiu et al. [5], who gave
an algorithm that for a given n-vertex (unweighted) graph G and ¢ > 0 in time O(cn?) either
concludes correctly that no ¢-distortion of G into line exists, or computes an O(c)-embedding
of G into the line. Similar results can be obtained for embedding into trees [5, 6]. Our approx-
imation algorithm can be seen as an extension of these results to much more general metrics.

Parameterized complexity of low-distortion embeddings was considered by Fellows et
al. [13], who gave an FPT algorithm for finding an embedding of an unweighted graph
metric into the line with distortion at most ¢, or concludes that no such embedding exists,
which works in time O(nc*(2¢ + 1)¢). As it was shown by Lokshtanov et al. [24], unless the
exponential time hypothesis fails, this bound is asymptotically tight. For weighted graph
metrics Fellows et al. obtained an algorithm with running time O(n(cW)*(2¢+1)2<V), where
W is the largest edge weight of the input graph. In addition, they rule out, unless P=NP,
any possibility of an algorithm with running time O((nW)™)), where h is a function of ¢
alone. The problem of low-distortion embedding into a tree is FPT parameterized by the
maximum vertex degree in the tree and the distortion ¢ [13].

Due to the intractability of low-distortion embedding problems from the approximation
and parameterized complexity perspective, Nayyeri and Raichel [26] initiated the study of
approximation algorithms with running time, in the worst case, not necessarily polynomial
and not even FPT. In a very recent work Nayyeri and Raichel [27] obtained a (1 + ¢)-
approximation algorithm for finding the minimum-distortion embedding of an n-point metric
space M into the shortest path metric space of a weighted graph H with m vertices. The
running time of their algorithm is (copTA)“"X(l/E)HQ'O((“OPT)M) P . mOM) where A is
the spread of the points of M, w is the treewidth of H and A is the doubling dimension of H.
Our approximation and FPT algorithms and the exact algorithm of Nayyeri and Raichel
are incomparable. Their algorithm is for more general metrics but runs in polynomial time
only when the optimal distortion copt is constant, even when H is a cycle. In contrast,

21:3

SoCG 2018

21:4

Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

our approximation algorithm runs in polynomial time for any value of copt. Moreover, the
algorithm of Nayyeri and Raichel is (approximation) FPT with parameter copt only when
the spread A of M (which in the case of the unweighted graph metric is the diameter of the
graph) and the doubling dimension of the host space are both constants; when copt = O(1)
(which is the interesting case for FPT algorithms), this implies that the doubling dimension of
M must also be constant, and therefore M can contain only a constant number of points, this
makes the problem trivially solvable in constant time. The running time of our parameterized
algorithm does not depend on the spread of the metric of M.

Embedding into higher dimensional spaces. Embeddings into d-dimensional Euclidean
space have also been investigated. The problem of approximating the minimum distortion
in this setting appears to be significantly harder, and most known results are lower bounds
[25, 10]. Specifically, it has been shown by Matousek and Sidiropoulos [25] that it is NP-hard
to approximate the minimum distortion for embedding into R? to within some polynomial
factor. Moreover, for any fixed d > 3, it is NP-hard to distinguish whether the optimum
distortion is at most « or at least n?, for some universal constants «, 3 > 0. The only known
positive results are a O(1)-approximation algorithm for embedding subsets of the 2-sphere
into R? [5], and approximation algorithms for embedding ultrametrics into R? [4, 9].

Bijective embeddings. We note that the approximability of minimum-distortion embed-
dings has also been studied for the case of bijections [28, 15, 19, 21, 8, 20, 10]. In this setting,
most known algorithms work for subsets of the real line and for trees.

2 Notation and definitions

For a graph G, we denote by V(G) the set of vertices of G and by E(G) the set of edges of
G. For some U C V(G), we denote by G[U] the subgraph of G induced by U. Let deg,.«(G)
denote the maximum degree of G.

Let M = (X,d), M’ = (X’,d’) be metric spaces. An injective map f : X — X’ is called

an embedding. The expansion of f is defined to be expansion(f) = SUP, /2y e X %

and the contraction of f is defined to be contraction(f) = sup, _,¢ x m. We say that
f is non-expanding (resp. non-contracting) if expansion(f) < 1 (resp. contraction(f) < 1).
The distortion of f is defined to be distortion(f) = expansion(f) - contraction(f). We say that
f is a c-embedding if distortion(f) < c.

For a metric space M = (X, d), for some z € X, and r > 0, we write bally/(z,7) = {y €
X :d(z,y) <r}, and for some Y C X, we define diamy(Y') = sup, ey d(z,y). We omit the
subscript when it is clear from the context. We also write diam(M) = diamj;(X). When
M is finite, the local density of M is defined to be §(M) = maxyex >0 MIM(Z%. For a
graph G, we denote by d¢ the shortest-path distance in G. We shall often use G to refer to
the metric space (V(G),dg).

For graphs H and H', we say that H' is a subdivision of H if it is possible, after replacing
every edge of H by some path, to obtain a graph isomorphic to H’.

3 Overview of our results and techniques

Here we present our main theorems and algorithms, with a short discussion. Formal proofs
and detailed statements of the algorithms can be either found in the later section or in the
appended full version of the paper.

T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos

Approximation algorithm for embedding into an H-subdivision for general H. Here,
we briefly highlight the main ideas of the approximation algorithm for embedding into
H-subdivisions, for arbitrary fixed graph H. A key concept is that of a proper embedding;:
this is an embedding where every edge of the target space is “necessary”. In other words,
for every edge e of H' there exists some vertices u, v in GG, such that the shortest path

between u and v in H’' traverses e. Embeddings that are not proper are difficult to handle.

We first guess the set of edges in H such that their corresponding paths in H’ contain
unnecessary edges; we “break” those edges of H into two new edges, each having a leaf as
one of their endpoint. There is a bounded number of guesses (depending on H), and we are
guaranteed that for at least one guess, there exists an optimal embedding that is proper. By
appropriately scaling the length of the edges in H' we may assume that the embedding we
are looking for has contraction exactly 1. The importance of using proper embeddings is that
a proper embedding which is “locally” non-contracting is also (globally) non-contracting,
while this is not necessarily true for non-proper embeddings.

A second difficulty is that we do not know the number of times that an edge in H is being
subdivided. Guessing the exact number of times each edge is subdivided would require nf(*))
time, which is too much. Instead we set a specific threshold ¢, based on ¢. The threshold
¢ is approximately c®, and essentially ¢ is a threshold for how many vertices a BFS in G
needs to see before it is able to distinguish between a part of G that is embedded on an edge,
and a part of G that is embedded in an area of H' close to a vertex of degree at least 3. In
particular, parts of G that are embedded close to the middle of an edge can be embedded
with low distortion onto the line, while parts that are embedded close to a vertex of degree 3
in H can not - because G “grows in at least 3 different directions” in such parts. Since a
BF'S can be used as an approximation algorithm for embedding into the line, it will detect
whether the considered part of G is close to a degree > 3 vertex of H or not.

Instead of guessing exactly how many times each edge of H is subdivided, we guess
for every edge whether it is subdivided at least ¢ times or not. The edges of H that are
subdivided at least £ times are called “long”, while the edges that are subdivided less than ¢
times are called “short”. We call the connected components of H induced by the short edges
a cluster. Having defined clusters, we now observe that a cluster with only two long edges
leaving it can be embedded into the line with (relatively) low distortion, contradicting what
we said in the previous paragraph! Indeed, the parts of G mapped to a cluster with only
two long edges leaving it are (from the perspective of a BFS), indistinguishable from the
parts that are mapped in the middle of an edge! For this reason, we classify clusters into two
types: the boring ones that have at most two (long) edges leaving them, and the interesting
ones that are incident to at least 3 long edges.

Any graph can be partitioned into vertices of degree at least 3 and paths between these
vertices such that every internal vertex on these paths has degree 2. Thinking of clusters
as “large” vertices and the long edges as edges between clusters, we can now partition the
“cluster graph” into interesting clusters (analogs of the vertices of degree at least 3), and
chains of boring clusters between the interesting clusters (analogs of the paths of vertices of
degree 2).

The parts of G that are embedded onto a chain of boring clusters can be embedded into
the line with low distortion, and therefore, for a BF'S these parts are indistinguishable from
the parts of G that are embedded onto a single long edge. However, the interesting clusters
are distinguishable from the boring ones, and from the parts of G that are mapped onto long
edges, because around interesting clusters the graph really does “grow in at least 3 different
directions” for a long enough time for a BFS to pick up on this.

21:5

SoCG 2018

21:6

Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

Using the insights above, we can find a set F of at most |V (H)| vertices in G, such
that every vertex in F' is mapped “close” to some interesting cluster, and such that every
interesting cluster has some vertex in F' mapped “close” to it. At this point, one can
essentially just guess in time O(h") which vertex of F' is mapped close to which clusters
of H. Then one maps each of the vertices that are “close” to F' (in G) to some arbitrarily
chosen spot in H which is close enough to the image of the corresponding vertex of F'. Local
density arguments show that there are not too many vertices in G that are “close” to F', and
therefore this arbitrary choice will not drive the distortion of the computed mapping up too
much.

It remains to embed all of the vertices that are “far” from F' in G. However, by the choice
of F' we know that all such vertices should be embedded onto long edges, or onto chains of
boring clusters. Thus, each of the yet un-embedded parts of the graph can be embedded with
low distortion into the line! All that remains is to compute such low distortion embeddings
for each part using a BFS, and assign each part to an edge of H. Stitching all of these
embeddings together yields the approximation algorithm.

There are multiple important details that we have completely ignored in the above
exposition. The most important one is that a cluster can actually be quite large when
compared to a long edge. After all, a boring cluster contains up to E(H) short edges, and
the longest short edge can be almost as long as the shortest long edge! This creates several
technical complications in the algorithm that computes the set F'. Resolving these technical
complications ends up making it unnecessary to guess which vertex of F' is mapped to which
vertex of H, instead one can compute this directly, at the cost of increasing the approximation
ratio.

FPT algorithm for embedding into an H-subdivision for general H. Our FPT algorithm
for embedding a graph G into H-subdivisions (for arbitrary fixed H) draws inspiration
from the algorithm for the line used in [14, 5], while also using an approach similar to the
approximation algorithm for H-subdivisions. The result here is an exact algorithm with
running time f(H, copr) - n®™M). A naive generalization of the algorithm for the line needs to
maintain the partial solution over f(H) intervals, which results in running time n9() which
is too much. Supposing that there is a proper c-embedding of G into some H-subdivision, we
attempt to find this embedding by guessing the short and long edges of H. Using this guess,
we partition H into connected clusters of short and long edges (we call the clusters of short
edges “interesting” clusters, and the clusters of long edges “path” clusters). We show that
if a c-embedding exists, we can find a subset of V(G), with size bounded by a function of
|H| and ¢, that contains all vertices embedded into the interesting clusters of H. From this,
we make further guesses as to which specific vertices are embedded into which interesting
clusters, then how they are embedded into the interesting clusters. We also make guesses as
to what the embedding looks like for a short distance (for example, O(c?)) along the long
edges which are connected to the important clusters.

Since the number of guesses at each step so far can be bounded in terms of ¢ and H, we
can iterate over all possible configurations. Once our guesses have found the correct choices
for the interesting clusters and for a short distance along the paths leaving these clusters,
we are able to partition the remaining vertices of G, and guess which path clusters these
partitions are embedded into. Due to the “path-like” nature of the path clusters, when we
pair the correct partition and path cluster, we are able to use an approach inspired by [14, 5]
to find a c-embedding of the partition into the path cluster, which is compatible with the
choices already made for the interesting clusters.

T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos

4 An approximation algorithm for embedding into arbitrary graphs

In this section we give a complete (technical) description of our approximation algorithm for
embedding into arbitrary graphs; albeit without proof sometimes. In particular, we prove
Theorem 1. We start by formally defining the notions of pushing and proper embeddings.

4.1 Proper, pushing, and non-contracting embeddings

Let G, H be connected graphs, with a fixed total order < on V(G) and V(H). A non-
contracting, copr-embedding of G to H is a function fopt : V(G) — (HopT, wopT), Where
Hopt is a subdivision of H, wopT : E(Hopt) — R>?, and for all u,v € V(G),

da(u,v) < dHopr,wopr) (forT (1), forT(v)) < copT - da(u,v),

where d(pgopr,wepr) 18 the shortest path distance in Hopt with respect to wopt. Stated
formally, for all hy, he € V(Hopr), if P is the set of all paths from hy to he in Hopr, then

d(HOPTa’U’OPT)(h17 hs) = }1}161% {Z wOPT(e)} .

ecP

» Definition 3. For a graph Gi, a subdivision G} of Gy, and and edge e € FE(Gy), let
SUBg; (e) be the subdivision of e in G. For convenience, for each e € E(H), we shall use
eopT to indicate the subdivision of e in HopT.

The following notion of consecutive vertices will be necessary to describe additional
properties we will want our embeddings to have.

» Definition 4. Suppose there exists u,v € V(G) and e € E(H) such that fopr(uw), fopt(v) €
V(eopt) and fopt(u) < fopt(v). If for all w € V(G) \ {u, v}, fopt(w) is not in the path in
eopt between fopt(u) and fopt(v), then we say that u and v are consecutive w.r.t. e, or we
say that u and v are consecutive.

The first property we will want our embeddings to have is that they are “pushing”.
The intuition here is that we want our embedding to be such that we cannot modify it by
contracting the distance further between two consecutive vertices.

» Definition 5. If for all u,v € V(G) and e € E(H) such that v and v are consecutive
w.r.t. e we have that deqp (forT(u), forT(v)) = de(u,v), then we say that fopt is pushing.

The next property we want for our embeddings is that they are “proper”, meaning that
all edges of the target graph are, in a loose sense, covered by an edge of the source graph.

» Definition 6. For any z € V(HopT), if there exists {u,v} € E(G) such that

d(HOPT,wOPT)(fOPT(u)v fOPT (U)) = d(HopT,'wop'r) (Za fOPT (U)) + d(Hop-r,’wopT)(Z7 fOPT(U))

then we say that z is proper w.r.t. fopr. If for all z € V(HopT), « is proper w.r.t. fopr, then
we say that fopt is proper.

Given some target graph to embed into, there may not necessarily be a proper embedding.
However, for some “quasi-subgraph” (defined below) of our target, there will be a proper
embedding, which can be used to find an embedding into the target graph.

21:7

SoCG 2018

21:8

Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

» Definition 7. Let J and J’ be connected graphs. We say J' is a quasi-subgraph of J if
J can be made isomorphic to J’ by applying any sequence of the following rules to J: (1.)
Delete a vertex in V(J). (2.) Delete an edge in E(J). (3.) Delete an edge {u,v} € E(J),
add vertices v/, v’ to V(J), and add edges {u,u'},{v,v'} to E(J).

By examining the quasi-subgraphs of our target graph, we can restrict our search to
proper, pushing, non-contracting embeddings. This leads to the following result.

» Lemma 8. There exists a proper, pushing, non-contracting copt-embedding of G to some
(H9,w?), where HY is the subdivision of some quasi-subgraph of H, and w? : E(H?) — R>0.

4.2 Approximation algorithm

In this subsection we give our approximation algorithm. By Lemma 8 there is a proper,
pushing copr-embedding of G into a subdivision of a quasi-subgraph H? of H with edge
weight function w?. Furthermore, by subdividing each edge of H sufficiently many times, for
any € > 0 any c-embedding of G into (H?,w?) can be turned into an (¢ + €)-embedding of G
into a subdivision of H.

The weighted quasi-subgraph (H?,w?) of H is a subdivision of a quasi-subgraph Hg,;
of H. Since H has less than 3PV quasi-subgraphs our algorithm can guess Hgyp.
Thus, for the purposes of our approximation algorithm, it is sufficient to find an embedding
of G into a weighted subdivision (Harg,warc) of Hsyp under the assumption that a proper,
pushing copt-embedding of GG into some weighted subdivision of Hg, exists. Furthermore,
any proper and pushing embedding is non-contracting and has contraction exactly equal to
1. Such an embedding f is a c-embedding if and only if for every edge

w € B(G), i) (f(0), f(0)) < c. (1)

Thus, to prove that our output embedding is a c-embedding (for some ¢) we will prove that
it is proper, pushing and that (1) is satisfied. Thus, the main technical result of this section
is encapsulated in the following lemma.

» Lemma 9. There is an algorithm that takes as input a graph G with n vertices, a graph
OM and either correctly concludes that there is no c-
embedding of G into a weighted subdivision of H, or produces a proper, pushing caLg-embedding
of G into a weighted subdivision of a quasi-subgraph H' of H, where caLg = O(c**h?).

H and an integer ¢, runs in time 2" - n

Definitions. To prove Lemma 9 we need a few definitions. Throughout the section we
will assume that there exists a weighted subdivision (Hopr,wopt) and a c-embedding
fort : V(G) — V(Hopt). This embedding is unknown to the algorithm and will be used
for analysis purposes only. Every edge e = uv in H corresponds to a path P. in Hopt from
u to v. Based on the embedding fopt : V(G) — V(Hopt) we define the embedding pattern
function fopt : V(G) — V(H) U E(H) as follows. For every vertex v € V(G) such that fopt
maps v to a vertex of Hopt that is also a vertex of H, fopT maps v to the same vertex. In
other words if fopt(v) = u for uw € V(H), then fop-r(v) = u. Otherwise fopt maps v to a
vertex u on a path P, corresponding to an edge e € E(H). In this case we set fop-r(v) =e.

We will freely make use of the “inverses” of the functions fopt and fop-r. For a vertex
set C' C V(Hopt) we define foor(C) = {v € V(G) : fopr(v) € C}. We will also naturally
extend functions that act on elements of a universe to subsets of that universe. For example,
for a set F' C E(Hopt) we use wopt(F) to denote) . wopt(e). We further extend this
convention to write wopt(P.) instead of wopt(E(P.)) for a path (or a subgraph) of Hopr.
We extend the distance function to also work for distances between sets.

T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos

Throughout the section we will use the following parameters, for now ignore the paren-
thesized comments to the definitions of the parameters, these are useful for remembering the
purpose of the parameter when reading the proofs: h = |E(H)| (the number of edges in H),
c (the distortion of fopt), £ = 20c® (long edge threshold), r = 5¢h (half of covering radius),
and carg = 64 - 10° - ¢**(h + 1)° (distortion of output embedding).

Using the parameter ¢ we classify the edges of H into short and long edges. An edge
e € E(H) is called short if wopt(P.) < ¢ and it is called long otherwise. The edge sets
Eshort and Ejong denote the set of short and long edges in H respectively. A cluster in H is
a connected component C of the graph Hgport = (V(H), Esport). We abuse notation and
denote by C' both the connected component and its vertex set. The long edge degree of a
cluster C in H is the number of long edges in H incident to vertices in C. Here a long edge
whose both endpoints are in C' is counted twice. A cluster C of long edge degree at most 2 is
called boring, otherwise it is interesting. Most of the time when discussing clusters, we will
be speaking of clusters in H. However we overload the meaning of the word cluster to mean
something else for vertex sets of G. A cluster in G is a set C such that there exists a cluster
Cy of H such that C = {v € V(G) : fopr(v) € V(Cx) U E(Cy)}. Thus there is a one to
one correspondence between clusters in G and H.

A cluster-chain is a sequence C1,e1,Co, ea,...,e;_1,Cy such that the following conditions
are satisfied. First, the C;’s are distinct clusters in H, except that possibly Cy = C}. Second,
C, and C} are interesting, while Cy, ... Cy_; are boring. Finally, for every ¢ < ¢ the edge e;
is a long edge in H connecting a vertex of C; to a vertex of Cj41.

4.2.1 Using Breadth First Search to detect interesting clusters

In this subsection we prove a lemma that is the main engine behind Lemma 9. Once the
main engine is set up, all we will need to finish the proof of Lemma 9 will be to complete
the embedding by running the approximation algorithm for embedding into a line for each
cluster-chain of H, and stitching these embeddings together.

Before stating the lemma we define what it means for a vertex set F' in G to cover a
cluster. We say that a vertex set F' C V(G) r-covers a cluster C' in G if some vertex in F' is
at distance at most r (in G) from at least one vertex in C. A vertex set F' C V(G) covers a
cluster C' in H if F' covers the cluster Cg corresponding to C in G.

» Lemma 10 (Interesting Cluster Covering Lemma). There exists an algorithm that takes as
input G, H and ¢, runs in time 2"n®®) and halts. If there exists a proper c-embedding fopT
from G to a weighted subdivision of H, the algorithm outputs a family F C 2V such that
|F| < 2", every set F € F has size at most h, and there exists an F € F that 2r-covers all
interesting clusters of H.

We do not prove Lemma 10 here, however we describe the algorithm used in Lemma 10. The
algorithm iteratively adds vertices to a set F'. During the iteration the algorithm makes
some non-deterministic steps, these steps result in the algorithm returning a family of sets
F rather than a single set F'. We now describe a crucial subroutine of the algorithm of
Lemma 10 that we call the SEARCH algorithm. The algorithm takes as input G, ¢, a set
F C V(G) and a vertex v. The algorithm explores the graph, starting from v with the aim of
finding a local structure in G that on one hand can not be embedded into the line with low
distortion, while on the other hand is far away from F. It will either output fail, meaning
that the algorithm failed to find a structure not embeddable into the line, or success together
with a vertex i, meaning that the algorithm succeeded to find a structure not embeddable
into the line, and that 4 is close to this structure.

21:9

SoCG 2018

21:10

Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

Description of the SEARCH algorithm. The algorithm takes as input G, ¢, aset F' C V(G)
and a vertex v. It performs a breadth first search (BFS) from v in G. Let X3, X5, etc. be
the BFS layers starting from v. In other words X; = {z € V(G) : dg(v,z) =i}. The
algorithm inspects the BFS layers X7, X5, ... one by one in increasing order of i.

For i < 2¢? the algorithm does nothing other than the BFS itself. For i = 2¢? the
algorithm proceeds as follows. It picks an arbitrary vertex vy, € X; and picks another vertex
vgr € X; at distance at least 2c + 1 from vy, in G. Such a vertex vy might not exist, in this
case the algorithm proceeds without picking vg. The algorithm partitions X; into X} and
X1 in the following way. For every vertex x € X;, if dg(w,vr) < 2¢ then x is put into X£.
If dg(w,vR) < 2c then z is put into X[If some vertex x € X; is put both into X} and in
X or neither into X nor into X7 the algorithm returns success together with 4 = v.

For i > 2¢? the algorithm proceeds as follows. If any vertex in X is at distance at most 7
from any vertex in F' (in the graph G), the algorithm outputs fail and halts. Otherwise, the
algorithm partitions X; into X and XF. A vertex x € X; is put into X} if x has a neighbor
in X/ | and into X/ if z has a neighbor in X/*,. Note that x has at least one neighbor in
X;_1, and so z will be put into at least one of the sets X£ or X*. If x is put into both
sets XF and X7, the algorithm outputs success with @& = x and halts. If |X%| > 2¢2 or if
two vertices in X} have distance at least 2c + 1 from each other in G the algorithm picks a
vertex € X} and returns success with @& = x. Similarly, if | X /| > 2¢2 or if two vertices in
X[t have distance at least 2c + 1 from each other in G the algorithm picks a vertex x € X
and returns success with @ = x. If the BFS stops, (i.e X; = 0), the algorithm outputs fail.

4.2.2 STITCHing together approximate line embeddings

We now describe the STITCH algorithm. This algorithm takes as input G, H, ¢ and
F C V(G), runs in polynomial time and halts. We will prove that if there exists a c-
embedding fopt of G into a weighted subdivision (Hopt,wopt) of H such that F 2r-covers
all interesting clusters of G, the algorithm produces a caLg-embedding fa g of G into a
weighted subdivision (HaLg, waLg) of a quasi-subgraph H' of H. Throughout this section we
will assume that such an embedding fopt exists.

The STITCH algorithm starts by setting R = 4r, A = 4r and then proceeds as follows.
As long as there are two vertices v and v in F' such that 2R < dg(u,v) < 2R+ A, the
algorithm increases R to R+ A. Note that this process will stop after at most (lg ‘) iterations,
and therefore when it terminates we have R < 4r - h? < 400¢3h®. Define B = ballg(F, R),
and B to be the family of connected components of G[B]. Notice that the previous process
ensures that for any By, By € B we have dg(B1,B2) > A. Notice further that for every
interesting cluster C' in H we have that ballg(fgplT(C), r) C B.

We now classify the connected components of G — B. A component Z of G — B is called
deep if it contains at least one vertex at distance (in G) at least % from F, and it is shallow
otherwise. The shallow components are easy to handle because they only contain vertices
close to F.

» Lemma 11. For every shallow component Z of G — B, there is at most one connected
component By € B that contains neighbors of Z.

The next sequence of lemmas allows us to handle deep components. We say that a
component Z in G — B lies on the cluster-chain y = C1,e1,...,C} if

Z < [U forr(Ci) U fopr(e) | \ fopr(CLUCy).

i<t

T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos

» Lemma 12. Every component Z of G — B lies on some cluster-chain and no two deep
components Zy, Zs of G — B can lie on the same cluster-chain x.

» Lemma 13. There is a polynomial time algorithm that given G, B and a component Z of
G — B computes an embedding of Z components of G — B into the line with distortion at
most (£ - h-c)*. Furthermore, all vertices in Z with neighbors outside Z are mapped by this
embedding within distance (£ - h-c)® from the end-points.

Proof. Let Z be a component of G — B. By Lemma 12, Z lies on a cluster-chain xy =
Ci,e1,...,C4. Define the following total ordering of the vertices in Z: If fopT(a) e C;U{e;}
and fopT(b) € CjU{e;} and i < j, then a comes before b. If fopT(a) € C; and fOPT(b) =e¢
then a comes before b. If fopT(a) = fopT(b) =e; and fopt(a) is closer than fopt(b) to C;_1,
then a comes before b. If fopT(a) € C; and fopT(b) € C; we place a and b in any relative
order.

At most £ - h vertices are mapped to any boring cluster C;, and the distance between
any two vertices in the same boring cluster in Hopt is at most £ - h. Thus the distance (in
G3) between any two consecutive vertices in this ordering is at most £ - h - ¢. The number of
vertices appearing in the ordering between the two endpoints of an edge is at most £-h (all the
vertices of a boring cluster). Thus, if the ordering is turned into a pushing, non-contracting
embedding into the line, the distortion of this embedding is at most (¢ - h)? - c. Using the
known polynomial time approximation algorithm for embedding into the line [5] we can find
an embedding of Z into the line with distortion at most (¢ h - ¢)* in polynomial time.

Because B is a union of at most h balls, it follows that at most ¢? - h? vertices in Z have
neighbors in G, and that all of these vertices are among the ¢ - h first or last ones in the
above ordering. Since any two low distortion embeddings of a metric space into the line map
the same vertices close to the end-points, it follows that all vertices in Z with neighbors
outside Z are mapped by this embedding within distance (¢ - h - ¢)® from the end-points. <«

The STITCH algorithm builds the graph H’ as follows. Every vertex of H' corresponds
to a connected component B € B. Every deep component Z of G — B corresponds to an
edge between the (at most two) sets By and By € B that have non-empty intersection with
N¢g(Z). Note that the graph H’ is a multi-graph because it may have multiple edges and
self loops. However, since each set B € B has a connected image in H under f , Lemma 12
implies that H' is a topological subgraph of H. Hence any weighted subdivision of H' is a
weighted subdivision of a subgraph of H. The STITCH algorithm uses Lemma 13 to compute
embeddings of each deep connected component Z of G\ B. Further, for each component
B; € B the algorithm computes the set B which contains B;, as well as the vertex sets of
all shallow connected components whose neighborhood is in B;. By Lemma 11 the B}’s
together with the deep components of G — B form a partition of V(G).

What we would like to do is to map each set B} onto the vertex of H' that it corresponds
to, and map each deep connected component Z of G — B onto the edge of H' that it
corresponds to. When mapping Z onto the edge of H we use the computed embedding of Z
into the line, and subdivide this edge appropriately.

The reason this does not work directly is that we may not map all the vertices of B} onto
the single vertex v; in H’ that corresponds to B;. Instead, STITCH picks one of the edges
incident to v;, sub-divides the edge an appropriate number of times, and maps all the vertices
of B} onto the newly created vertices on this edge. The order in which the vertices of B} are
mapped onto the edge is chosen arbitrarily, however all of these vertices are mapped closer to
v; than any vertices of the deep component Z that is mapped onto the edge. This concludes
the construction of Ha g and farg. The STITCH algorithm defines a weight function wag
on the edges of HaLg, such that the embedding is pushing and non-contracting.

21:11

SoCG 2018

21:12

Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

» Lemma 14. fa g is a cag-embedding of G into (HaLg, WALG)-

We are now ready to prove Lemma 9.

Proof of Lemma 9. The algorithm runs the algorithm of Lemma 10, to produce a collection
F, such that |F| < 2", every set in F has size at most h, and such that if G has a c-embedding
fopT of into a weighted subdivision of H, then some F' € F 2r-covers all interesting clusters
(of fopt) in G. For each F € F the algorithm runs the STITCH algorithm, which takes
polynomial time. If STITCH outputs a caLg-embedding of G into a weighted subdivision of
a quasi-subgraph H' of H, the algorithm returns this embedding.

By Lemma 14, for the choice of F' € F that 2r-covers all interesting clusters, the STITCH
algorithm does output a ca| g-embedding of G into a weighted subdivision of a quasi-subgraph
H' of H. This concludes the proof. <

The discussion prior to the statement of Lemma 9 immediately implies that Lemma 9 is
sufficient to give an approximation algorithm for finding a low distortion (not necessarily
pushing, proper or non-contracting) embedding G into a (unweighted) subdivision of H.
The only overhead of the algorithm is the guessing of the quasi-subgraph Hg,;, of H, this
incurs an additional factor of 31V UEIHIEU)] < 97 in the running time, yielding the proof of
Theorem 1.

Finally, we remark that at a cost of a potentially higher running time in terms of h, one
may replace the (h + 1)? factor with ¢”. If ¢ > h + 1 we have that cag < 64 -10°- ¢33, On
the other hand, if ¢ < h + 1 we may run the algorithm of Theorem 2 in time f(H)n®®
instead and solve the problem optimally.

—— References

1 Sanjeev Arora, James Lee, and Assaf Naor. Euclidean distortion and the sparsest cut.
Journal of the American Mathematical Society, 21(1):1-21, 2008.

2 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

3 Mihai Badoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. Low-distortion
embeddings of general metrics into the line. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing (STOC), pages 225-233. ACM, 2005.

4 Mihai Badoiu, Julia Chuzhoy, Piotr Indyk, and Anastasios Sidiropoulos. Embedding ul-
trametrics into low-dimensional spaces. In Proceedings of the 22nd Annual Symposium on
Computational Geometry (SoCG), pages 187-196. ACM, 2006.

5 Mihai Badoiu, Kedar Dhamdhere, Anupam Gupta, Yuri Rabinovich, Harald Récke, R. Ravi,
and Anastasios Sidiropoulos. Approximation algorithms for low-distortion embeddings into
low-dimensional spaces. In Proceedings of the 16th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 119-128. STAM, 2005.

6 Mihai Badoiu, Piotr Indyk, and Anastasios Sidiropoulos. Approximation algorithms for
embedding general metrics into trees. In Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 512-521. ACM and SIAM, 2007.

7 Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applica-
tions. In Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium
on Foundations of Computer Science, pages 184-193. IEEE, 1996.

8 Nishanth Chandran, Ryan Moriarty, Rafail Ostrovsky, Omkant Pandey, Mohammad Ali
Safari, and Amit Sahai. Improved algorithms for optimal embeddings. ACM Transactions
on Algorithms, 4(4), 2008. doi:10.1145/1383369.1383376.

http://dx.doi.org/10.1145/1383369.1383376

T. Carpenter, F. V. Fomin, D. Lokshtanov, S. Saurabh, and A. Sidiropoulos

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Mark de Berg, Krzysztof Onak, and Anastasios Sidiropoulos. Fat polygonal partitions
with applications to visualization and embeddings. Journal of Computational Geometry,
4(1):212-239, 2013.

Jeff Edmonds, Anastasios Sidiropoulos, and Anastasios Zouzias. Inapproximability for
planar embedding problems. In Proceedings of the 20th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 222-235. Society for Industrial and Applied Mathem-
atics, 2010.

Martin Farach, Sampath Kannan, and Tandy Warnow. A robust model for finding optimal
evolutionary trees. Algorithmica, 13(1-2):155-179, 1995.

Martin Farach-Colton and Piotr Indyk. Approximate nearest neighbor algorithms for haus-
dorff metrics via embeddings. In Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (FOCS), pages 171-179. IEEE, 1999.

Michael Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances Rosam-
ond, and Saket Saurabh. Distortion is fixed parameter tractable. ACM Trans. Comput.
Theory, 5(4):16:1-16:20, 2013. doi:10.1145/2489789.

Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Elena Losievskaja, Frances A.
Rosamond, and Saket Saurabh. Distortion is fixed parameter tractable. In Proceedings of
the 36th International Colloguium on Automata, Languages and Programming (ICALP),
volume 5555 of Lecture Notes in Computer Science, pages 463-474. Springer, 2009.

Alexander Hall and Christos Papadimitriou. Approximating the distortion. In Chandra
Chekuri, Klaus Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation,
Randomization and Combinatorial Optimization. Algorithms and Techniques, pages 111-
122, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg,.

Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In Proceed-
ings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pages
10-33. IEEE, 2001.

Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM (JACM), 53(3):307-323, 2006.

Piotr Indyk and Jiri Matousek. Low-distortion embeddings of finite metric spaces. In
Handbook of Discrete and Computational Geometry, pages 177-196. CRC Press, 2004.

Claire Kenyon, Yuval Rabani, and Alistair Sinclair. Low distortion maps between point
sets. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC),
pages 272-280. ACM, 2004.

Claire Kenyon, Yuval Rabani, and Alistair Sinclair. Low distortion maps between point
sets. SIAM J. Comput., 39(4):1617-1636, 2009. doi:10.1137/080712921.

Subhash Khot and Rishi Saket. Hardness of embedding metric spaces of equal size. In
Approximation, randomization, and combinatorial optimization. Algorithms and techniques,
pages 218-227. Springer, 2007.

Nathan Linial. Finite metric-spaces—combinatorics, geometry and algorithms. In Pro-
ceedings of the International Congress of Mathematicians, Vol. III, pages 573-586, Beijing,
2002. Higher Ed. Press.

Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15(2):215-245, 1995.

Daniel Lokshtanov, Déniel Marx, and Saket Saurabh. Slightly superexponential paramet-
erized problems. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 760-776. SIAM, 2011.

Jiti Matousek and Anastasios Sidiropoulos. Inapproximability for metric embeddings into
R?. Transactions of the American Mathematical Society, 362(12):6341-6365, 2010.

21:13

SoCG 2018

http://dx.doi.org/10.1145/2489789
http://dx.doi.org/10.1137/080712921

21:14

Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

26

27

28

Amir Nayyeri and Benjamin Raichel. Reality distortion: Exact and approximate algorithms
for embedding into the line. In Proceedings of the 56th Annual Symposium on Foundations
of Computer Science (FOCS), pages 729-747. IEEE, 2015.

Amir Nayyeri and Benjamin Raichel. A treehouse with custom windows: Minimum
distortion embeddings into bounded treewidth graphs. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pages 724—
736, Philadelphia, PA, USA, 2017. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=3039686.3039732.

Christos Papadimitriou and Shmuel Safra. The complexity of low-distortion embeddings
between point sets. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), volume 5, pages 112-118. STAM, 2005.

http://dl.acm.org/citation.cfm?id=3039686.3039732

	Introduction
	Our contribution
	Related work

	Notation and definitions
	Overview of our results and techniques
	An approximation algorithm for embedding into arbitrary graphs
	Proper, pushing, and non-contracting embeddings
	Approximation algorithm
	Using Breadth First Search to detect interesting clusters
	STITCHing together approximate line embeddings

