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Abstract
For many algorithms dealing with sets of points in the plane, the only relevant information
carried by the input is the combinatorial configuration of the points: the orientation of each
triple of points in the set (clockwise, counterclockwise, or collinear). This information is called
the order type of the point set. In the dual, realizable order types and abstract order types
are combinatorial analogues of line arrangements and pseudoline arrangements. Too often in the
literature we analyze algorithms in the real-RAM model for simplicity, putting aside the fact that
computers as we know them cannot handle arbitrary real numbers without some sort of encoding.
Encoding an order type by the integer coordinates of a realizing point set is known to yield doubly
exponential coordinates in some cases. Other known encodings can achieve quadratic space or
fast orientation queries, but not both. In this contribution, we give a compact encoding for
abstract order types that allows efficient query of the orientation of any triple: the encoding uses
O(n2) bits and an orientation query takes O(logn) time in the word-RAM model with word size
w ≥ logn. This encoding is space-optimal for abstract order types. We show how to shorten the
encoding to O(n2(log logn)2

/ logn) bits for realizable order types, giving the first subquadratic
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20:2 Subquadratic Encodings for Point Configurations

encoding for those order types with fast orientation queries. We further refine our encoding to
attain O(logn/ log logn) query time at the expense of a negligibly larger space requirement. In
the realizable case, we show that all those encodings can be computed efficiently. Finally, we
generalize our results to the encoding of point configurations in higher dimension.
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1 Introduction

At SoCG’86, Chazelle asked [29]:

“How many bits does it take to know an order type?”

This question is of importance in Computational Geometry for the following two reasons:
First, in many algorithms dealing with sets of points in the plane, the only relevant information
carried by the input is the combinatorial configuration of the points given by the orientation
of each triple of points in the set (clockwise, counterclockwise, or collinear) [18]. Second,
computers as we know them can only handle numbers with finite description and we cannot
assume that they can handle arbitrary real numbers without some sort of encoding. The
study of robust algorithms is focused on ensuring the correct solution of problems on finite
precision machines. Chapter 41 of The Handbook of Discrete and Computational Geometry
is dedicated to this issue [41].

The (counterclockwise) orientation ∇(p, q, r) ∈ {−, 0,+ } of a triple of points p, q, and r
with coordinates (xp, yp), (xq, yq), and (xr, yr) is the sign of the determinant∣∣∣∣∣∣

1 xp yp
1 xq yq
1 xr yr

∣∣∣∣∣∣ .
Given a set of n labeled points P = { p1, p2, . . . , pn }, we define the order type of P to

be the function χ : [n]3 → {−, 0,+ } : (a, b, c) 7→ ∇(pa, pb, pc) that maps each triple of point
labels to the orientation of the corresponding points, up to isomorphism. A great deal of
the literature in computational geometry deals with this notion [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
12, 13, 14, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 32, 33, 34, 36, 37, 38, 39]. The order type
of a point set has been further abstracted into combinatorial objects known as (rank-three)
oriented matroids [21]. The chirotope axioms define consistent systems of signs of triples [12].
From the topological representation theorem [13], all such abstract order types correspond to
pseudoline arrangements, while, from the standard projective duality, order types of point
sets correspond to straight line arrangements. See Chapter 6 of The Handbook for more
details [38].

When the order type of a pseudoline arrangement can be realized by an arrangement of
straight lines, we call the pseudoline arrangement stretchable. As an example of a nonstretch-
able arrangement, Levi gives Pappus’s configuration where eight triples of concurrent straight
lines force a ninth, whereas the ninth triple cannot be enforced by pseudolines [33] (see Fig-
ure 1). Ringel shows how to convert the so-called “non-Pappus” arrangement of Figure 1 (b)

http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.20
https://arxiv.org/abs/1801.01767
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(a) Realizable order type. (b) Abstract order type which is not realizable.

Figure 1 Pappus’s configuration.

Figure 2 Perles’s configuration.

to a simple arrangement while preserving nonstretchability [39]. All arrangements of eight or
fewer pseudolines are stretchable [24], and the only nonstretchable simple arrangement of nine
pseudolines is the one given by Ringel [37]. More information on pseudoline arrangements is
available in Chapter 5 of The Handbook [23].

Figure 1 shows that not all pseudoline arrangements are stretchable. Indeed, most are not:
there are 2Θ(n2) abstract order types [19] and only 2Θ(n logn) realizable order types [9, 27].
This discrepancy stems from the algebraic nature of realizable order types, as illustrated by
the main tool used in the upper bound proofs (the Milnor-Thom Theorem [35, 40]).

Information theory implies that we need quadratic space for abstract order types whereas
we only need linearithmic space for realizable order types. Hence, storing all

(
n
3
)
orientations

in a lookup table seems wasteful. Another obvious idea for storing the order type of a point
set is to store the coordinates of the points, and answer orientation queries by computing the
corresponding determinant. While this should work in many practical settings, it cannot work
for all point sets. Perles’s configuration shows that some configuration of points, containing
collinear triples, forces at least one coordinate to be irrational [31](see Figure 2). Order types
of points in general position can always be represented by rational coordinates. It is well
known, however, that some configurations require doubly exponential coordinates, hence
coordinates with exponential bitsizes if represented in the normal way [30].

Goodman and Pollack defined λ-matrices which can encode abstract order types using
O(n2 logn) bits [25]. They asked if the space requirements could be moved closer to the
information-theoretic lower bounds. Felsner and Valtr showed how to encode abstract
order types optimally in O(n2) bits via the wiring diagram of their corresponding allowable
sequence [19, 20] (as defined in [22]). Aloupis et al. gave an encoding of size O(n2) that
can be computed in O(n2) time and that can be used to test for the isomorphism of two
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20:4 Subquadratic Encodings for Point Configurations

distinct point sets in the same amount of time [10]. However, it is not known how to decode
the orientation of one triple from any of those encodings in, say, sublinear time. Moreover,
since the information-theoretic lower bound for realizable order types is only Ω(n logn), we
must ask if this space bound is approachable for those order types while keeping orientation
queries reasonably efficient.

Our results
In this contribution, we are interested in compact encodings for order types: we wish to
design data structures using as few bits as possible that can be used to quickly answer
orientation queries of a given abstract or realizable order type. In Section 2, we give the first
optimal encoding for abstract order types that allows efficient query of the orientation of any
triple: the encoding is a data structure that uses O(n2) bits of space with queries taking
O(logn) time in the word-RAM model with word size w ≥ logn. Our encoding is far from
being space-optimal for realizable order types. We show that its construction can be easily
tuned to only require O(n2(log logn)2

/ logn) bits in this case. In Section 3, we further refine
our encoding to reduce the query time to O(logn/ log logn). In the realizable case, we give
quadratic upper bounds on the preprocessing time required to compute an encoding in the
real-RAM model. In the full version of the paper, we generalize our encodings for chirotopes
of point sets in higher dimension [15].

Our data structure is the first subquadratic encoding for realizable order types that
allows efficient query of the orientation of any triple. It is not known whether a subquadratic
constant-degree algebraic decision tree exists for the related problem of deciding whether a
point set contains a collinear triple. Any such decision tree would yield another subquadratic
encoding for realizable order types. We see the design of compact encodings for realizable
order types as a subgoal towards subquadratic nonuniform algorithms for this related problem,
a major open problem in Computational Geometry. Note that pushing the preprocessing
time below quadratic would yield such an algorithm.

2 Encoding order types via hierarchical cuttings

To make our statements clear, we use the following definition:

I Definition 1. For fixed k and given a function f : [n]k → [O(1)], we define a (S(n), Q(n))-
encoding of f to be a string of S(n) bits such that, given this string and any t ∈ [n]k, we can
compute f(t) in Q(n) query time in the word-RAM model with word size w ≥ logn.

In this section, we use this definition with f being some order type,5 k = 3 and the codomain
of f being {−, 0,+ }. For the rest of the discussion, we assume the word-RAM model with
word size w ≥ logn and the standard arithmetic and bitwise operators. We prove our main
theorems for the two-dimensional case:

I Theorem 2. All abstract order types have an (O(n2), O(logn))-encoding.

I Theorem 3. All realizable order types have an (O(n
2(log logn)2

logn ), O(logn))-encoding.

5 Technically, we encode the orientation predicate of some realizing arrangement of the order type and
skip the isomorphism. If desired, a canonical labeling of the arrangement can be produced in O(n2)
time for abstract and realizable order types [10].
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I Theorem 4. In the real-RAM model and the constant-degree algebraic decision tree model,
given n real-coordinate input points in R2 we can compute the encoding of their order type as
in Theorems 2 and 3 in O(n2) time.

For instance, Theorem 3 implies that for any set of points { p1, p2, . . . , pn }, there exists a
string of O(n2(log logn)2

/ logn) bits such that given this string and any triple of indices
(a, b, c) ∈ [n]3 we can compute the value of χ(a, b, c) = ∇(pa, pb, pc) in O(logn) time.

Throughout the rest of this paper, we assume that we can access some arrangement of
lines or pseudolines that realizes the order type we want to encode. We thus exclusively
focus on the problem of encoding the order type of a given arrangement. This does not pose
a threat against the existence of an encoding. However, we have to be more careful when
we bound the preprocessing time required to compute such an encoding. This is why, in
Theorem 4, we specify the model of computation and how the input is given.

Hierarchical cuttings

We encode the order type of an arrangement via hierarchical cuttings as defined in [16].
A cutting in Rd is a set of (possibly unbounded and/or non-full dimensional) constant-
complexity cells that together partition Rd. A 1

r -cutting of a set of n hyperplanes is a
cutting with the constraint that each of its cells is intersected by at most n

r hyperplanes.
There exist various ways of constructing 1

r -cuttings of size O(rd). Those cuttings allow for
efficient divide-and-conquer solutions to many geometric problems. The hierarchical cuttings
of Chazelle have the additional property that they can be composed without multiplying
the hidden constant factors in the big-oh notation. In particular, they allow for O(nd)-
space O(logn)-query d-dimensional point location data structures (for constant d). In the
plane, hierarchical cuttings can be constructed for arrangement of pseudolines with the same
properties.

Idea

We want to preprocess n pseudolines { `1, `2, . . . , `n } in the plane so that, given three indices
a, b, and c, we can compute their orientation, that is, whether the intersection `a ∩ `b lies
above, below or on `c. Our data structure builds on cuttings as follows: Given a cutting Ξ
and the three indices, we can locate the intersection of `a and `b with respect to Ξ. The
location of this intersection is a cell of Ξ. The next step is to decide whether `c lies above, lies
below, contains or intersects that cell. In the first three cases, we are done. Otherwise, we can
answer the query by recursing on the subset of pseudolines intersecting the cell containing
the intersection. We build on hierarchical cuttings to solve all subproblems efficiently.

Intersection location

When the `a are straight lines, locating the intersection `a ∩ `b in Ξ is trivial if we know
the real parameters of `a and `b and of the descriptions of the subcells of Ξ. However, in
our model we are not allowed to store real numbers. To circumvent this annoyance, and to
handle arrangements of pseudolines, we make a simple observation illustrated by Figure 3.

I Observation 5. Two pseudolines `a and `b intersect in the interior of a full-dimensional
cell C if and only if each pseudoline properly intersects the boundary of C exactly twice and
their intersections with its boundary alternate.

SoCG 2018



20:6 Subquadratic Encodings for Point Configurations

`b

`a

C

π

(a) `a ∩ `b ∩ C = ∅.

C

`b`a

π

(b) `a ∩ `b ∩ C 6= ∅.

Figure 3 Cyclic permutations (π).

This gives us a way to encode the location of the intersection of `a and `b in Ξ using only bits.
For an arrangement of pseudolines, we use the standard vertical decomposition to construct
a hierarchical cutting, which guarantees that a pseudoline intersects a cell boundary at most
twice. For an arrangement of lines, we can use the standard bottom-vertex triangulation
instead, which allows us to generalize our results to higher dimensions [15]. In the plane, the
bottom-vertex triangulation partitions the space into triangular cells. We define the cyclic
permutation of a full-dimensional cell C and a finite set of pseudolines L to be the finite
sequence of properly intersecting pseudolines from L encountered when walking along the
boundary of C in clockwise or counterclockwise order, up to rotation and reversal.

Note that non-full-dimensional cells are easier to encode. For a 0-dimensional cell and
a pseudoline, we store whether the pseudoline lies above, lies below, or contains the 0-
dimensional cell. For a 1-dimensional cell, a pseudoline could also intersect the interior of the
cell, but in only one point. The intersections with that cell define an (acyclic) permutation
with potentially several intersections at the same position. This information suffices to
answer location queries for those cells, and the space taken is not more than that necessary
for full-dimensional cells. When two pseudolines intersect in a 1-dimensional cell or contain
the same 0-dimensional cell, they appear simultaneously in the cyclic permutation of an
adjacent 2-dimensional cell if they intersect its interior. If that is the case, the location
of the intersection of those two pseudolines in the cutting is the non-full-dimensional cell.
A constant number of bits can be added to the encoding each time we need to know the
dimension of the cell we encode.

Encoding

Given n pseudolines in the plane and some fixed parameter r, compute a hierarchical 1
r -

cutting of those pseudolines. This hierarchical cutting consists of ` levels labeled 0, 1, . . . , `−1.
Level i has O(r2i) cells. Each of those cells is further partitioned into O(r2) subcells. The
O(r2(i+1)) subcells of level i are the cells of level i+ 1. Each cell of level i is intersected by
at most n

ri pseudolines, and hence each subcell is intersected by at most n
ri+1 pseudolines.

We compute and store a combinatorial representation of the hierarchical cutting as follows:
For each level of the hierarchy, for each cell in that level, for each pseudoline intersecting that
cell, for each subcell of that cell, we store two bits to indicate the location of the pseudoline
with respect to that subcell, that is, whether the pseudoline lies above (00), lies below (01)
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or intersects the interior of that subcell (10). When a subcell is non-full-dimensional, we use
another value (11) when the pseudoline contains the subcell. When a pseudoline intersects
the interior of a 2-dimensional subcell, we also store the two indices of the intersections of that
pseudoline with the subcell in the cyclic permutation associated with that subcell, beginning
at an arbitrary location in, say, clockwise order. If the intersected subcell is 1-dimensional
instead, we store the index of the intersection in the acyclic permutation associated with
that subcell, beginning at an arbitrary endpoint. If two pseudolines intersect in the interior
of a 1-dimensional subcell or on the boundary of a 2-dimensional subcell, they share the
same index in the associated permutation.

This representation takes O( nri + n
ri+1 log n

ri+1 ) bits per subcell of level i by storing for
each pseudoline its location and, when needed, the permutation indices of its intersections
with the subcell. For each of the λ = O(n

2

t2 ) subcells of the last level of the hierarchy we
store a pointer to a lookup table of size τ = O(t3) that allows to answer the query of the
orientation of any triple of pseudolines intersecting that subcell. The number t = n

r` denotes
an upper bound on the number of pseudolines intersecting each of those subcells.

Storing the permutation at each subcell would suffice to answer all queries that do not
reach the last level of the hierarchy. However, to get fast queries, we need to have access to
all bits belonging to a given pseudoline without having to read the bits of the others. Using
the Zone Theorem ([11, 17, 23]), and the fact that hierarchical cuttings are constructed by
decompositions of subsets of the input pseudolines, we can bound the number of bits stored
for a single pseudoline intersecting a given cell of level i by ζi = O(r2 + r log n

ri+1 ). This
allows us to store all bits belonging to a given cell-pseudoline pair (C, `) in a contiguous block
of memory σ(C, `) whose location in the encoding is easy to compute. We call σ(C, `) the
signature of ` in C. The overall number of bits stored stays the same up to a constant factor.

For queries that reach the last level of the hierarchy, storing an individual lookup table
for each leaf would cost too much as soon as t = ω(1). However, as long as t is small enough,
each order type is shared by many leaves, and we can thus reuse space. Formally, let ν(n)
denote the number of order types of size n, which is ν(n) = 2Θ(n2) for abstract order types
and ν(n) = 2Θ(n logn) for realizable order types. At most ν(t) distinct lookup tables are
needed for answering the queries on the subcells of the last level of the hierarchy. Hence the
pointers have size Ψ = O(log ν(t)) and the total size needed for the lookup tables is O(t3ν(t)).
For each leaf, we store a canonical labeling of size κ = O(t log t) on the pseudolines that
intersect it. We use that canonical labeling to order the queries in the associated lookup
table.

The encoding is the concatenation of the parameters n, r, and t, all signatures σ(C, `)
for all pairs (C, `) with ` ∩ C, the canonical labelings at the leaves, the leaf pointers and the
lookup tables. We define a canonical order on the cells of level i so that they can be ordered
as { Ci,1, Ci,2, . . . , Ci,O(r2i) }. We complement the encoding with appropriate padding so that
the position ρ(Ci,j , `) of the signature σ(Ci,j , `) is

ρ(Ci,j , `) = ρ(Ci−1,1, `
Ci−1,1
0 ) + cr2i−2

⌊ n

ri−1

⌋
ζi−1 + (j − 1)

⌊ n
ri

⌋
ζi + π(Ci, `)ζi,

where c is some constant, π(C, `) is the first index of ` in the cyclic permutation of C, `Ca is
the pseudoline such that π(C, `Ca) = a, and, for the root cell of the hierarchy C0,1 representing
the entire space and containing all the intersections of the arrangement, ρ(C0,1, `0) is the
position after the encoding of the parameters n, r, and t, and ρ(C0,1, `a) = ρ(C0,1, `0) + aζ0.

SoCG 2018



20:8 Subquadratic Encodings for Point Configurations

The canonical labeling of the first leaf is stored at position

ρΛ0 = c

`−1∑
i=0

r2i
⌊ n
ri

⌋
ζi,

the lookup table pointer of the first leaf is stored at position ρΛ0 + κ, the canonical labeling
of leaf Λ is stored at position ρΛ0 + (Λ− 1)(κ+ Ψ) and its table lookup pointer at κ from
that position. The first lookup table is stored at position ρΛ0 + λ(κ+ Ψ) and lookup table Θ
is stored at position ρΛ0 + λ(κ+ Ψ) + (Θ− 1)τ .

Space complexity

We prove a general bound on the space taken by our construction when the hierarchy contains
` levels. Let H`

r(n) ∈ N be the maximum amount of space (bits), over all arrangements
of n pseudolines, taken by the ` ∈ N levels of a hierarchy with parameter r ∈ (1,+∞).
This excludes the space taken by the lookup tables, their associated pointers and canonical
labelings at the leaves, and the parameters of the hierarchy n, r and t.

I Lemma 6. For r ≥ 2 and t = n
r` we have

H`
r(n) = O

(
n2

t
(log t+ r)

)
.

Proof. By definition, we have

H`
r(n) = O

(
`−1∑
i=0

(
r2i · r2 ·

( n
ri

+ n

ri+1 log n

ri+1

)))
.

We multiply the previous equation by n
tr` = 1

H`
r(n) = O

(
n2

t

`−1∑
i=0

(
1

r`−i−1 ·
(
r + log n

ri+1

)))
.

We use the equivalence n
ri+1 = tr`−i−1 to replace the last term in the previous equation

H`
r(n) = O

(
n2

t

`−1∑
i=0

(
1

r`−i−1 · (r + log t+ (`− i− 1) log r)
))

.

We reverse the summation by redefining i← `− i− 1 and group the terms

H`
r(n) = O

(
n2

t

(
(log t+ r)

`−1∑
i=0

1
ri

+ log r
`−1∑
i=0

i

ri

))
.

Using the following inequalities:
k∑
i=0

xi ≤ 1
1− x and

k∑
i=0

ixi ≤ x

(1− x)2 , ∀k ∈ N,∀x ∈ (0, 1),

we conclude that

H`
r(n) = O

(
n2

t

((
1 + 1

r − 1

)
(log t+ r) +

(
1 + 2r − 1

r2 − 2r + 1

)
log r
r

))
,

and that for r ≥ 2

H`
r(n) = O

(
n2

t
(log t+ r)

)
. J
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Taking into account the space taken by the other bits of the encoding we obtain

I Lemma 7. The space taken by our encoding is

S`r(n) = O

(
logntr + n2

t
(log t+ r) + t3ν(t) + n2

t2
(log ν(t) + t log t)

)
.

We pick r constant for both abstract and realizable order type. We have ν(t) = 2Θ(n2)

for abstract order types, hence we choose t =
√
δ logn for small enough δ and the last term

in Lemma 7 dominates with n2. Note how the quadratic bottleneck of this encoding is the
storage of the order type pointers at the leaves of the hierarchy. We have ν(t) = 2Θ(n logn)

for realizable order types, hence we choose t = δ logn/ log logn for small enough δ and the
second and last term in Lemma 7 dominate with n2(log logn)2

/ logn. This proves the space
constraints in Theorems 2 and 3.

Correctness and query complexity

Given our encoding and three pseudoline indices a, b, c we answer a query as follows: We
start by decoding the parameters n, r, and t. In our model, this can be done in O(log∗ n+
log∗ r + log∗ t) time.6 Let C = C0,1. First, find the subcell C′ of C containing `a ∩ `b by
testing for each subcell whether the intersections of `a and `b with the subcell alternate in
the cyclic permutation. This can be done in O(r2) time by scanning σ(C, `a) and σ(C, `b)
in parallel. Note that non-full dimensional subcells can be tested more easily. Next, if `c
does not properly intersect C′, answer the query accordingly. If on the other hand `c does
properly intersect the subcell we recurse on C′. This can be tested by scanning σ(C, `c) in
O(r2) time. Note that in case that the subcell is non-full-dimensional we can already answer
the query. When we reach the relative interior of a subcell of the last level of the hierarchy
without having found a satisfactory answer, we can answer the query by table lookup in
constant time. This works as long as each order type identifier for at most t pseudolines fits
in a constant number of words, which is the case for the values of t we defined. The position
of the signatures scanned during the first recursive step of the query can be computed in
constant time and at each other recursive step of the query we can compute the positions
of the signatures we need to scan from the position of the signatures scanned during the
previous recursive step in constant time. When we reach the bottom of the recursion, the
position of the lookup table pointer, the position of the canonical labeling, and the position of
the lookup table can be computed in constant time. The total query time is thus proportional
to r2 logr n in the worst case, which is logarithmic since r is constant. This proves the query
time constraints in Theorems 2 and 3. With the hope of getting faster queries we could pick
r = Θ(log t) to reduce the depth of the hierarchy, without changing the space requirements
by more than a constant factor. However, if no additional care is taken, this would slow the
queries down by a Θ(log2 t/ log log t) factor because of the scanning approach taken when
locating the intersection `a ∩ `b. We show how to handle small but superconstant r properly
in the next section.

6 Logarithmic space and constant decoding time is trivial when w = Θ(logn). If w is too large, encode n
in binary using dlogn+ 1e bits, dlogn+ 1e using dlogdlogn+ 1e+ 1e bits, dlogdlogn+ 1e+ 1e using
dlogdlogdlogn+ 1e+ 1e+ 1e bits, etc. until the number to encode is smaller than a constant which we
encode in unary with 1’s. Prepend a 1 to the largest number and 0 to all the others except the smallest.
Concatenate those numbers from smallest to largest. Total space is O(logn) bits and decoding n can be
done in O(log∗ n) time in the word-RAM model with w ≥ logn. As an alternative, logarithmic space
and logarithmic decoding time is also trivially achievable with no constraint on w.
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Preprocessing time

For a set of n points in the plane, or an arrangement of n lines in the dual, we can construct
the encoding of their order type in quadratic time in the real-RAM and constant-degree
algebraic computation tree models. We prove Theorem 4.

Proof. A hierarchical cutting can be computed in O(nr`) time in the dual plane. All
signatures σ(C, `) can be computed from the cutting in the same time. The lookup tables
and leaf-table pointers can be computed in O(n2 + t3ν(t)) time as follows: For each subcell
C among the n2

t2 subcells of the last level of the hierarchy, compute a canonical labeling
and representation of the lines intersecting C in O(t2) time as in [10]. Insert the canonical
representation in some trie in O(t2) time. If the canonical representation was not already in
the trie, create a lookup table with the answers to all O(t3) queries on those lines and attach
a pointer to that table in the trie. This happens at most ν(t) times. In the encoding, store
the canonical labeling and this new pointer or the pointer that was already in the trie for
the subcell C. All parts of the encoding can be concatenated together in time proportional
to the size of the encoding. J

3 Sublogarithmic query complexity

We further refine the data structure defined in the previous section so as to reduce the
query time by a log logn factor. We do so using specificities of the word-RAM model that
allow us to preprocess computations on inputs of small but superconstant size. The idea
is to make each signature σ(C, `) fit in a single word of memory by only approximately
encoding the cyclic permutation of the intersections around each subcell, relying on the fact
that ambiguous situations rarely arise. Those ambiguous situations, if they happen, can be
deterministically handled using additional lookup tables. This improvement is applicable for
both abstract and realizable order types.

We improve our main theorems for the two-dimensional case:

I Theorem 8. All abstract order types have an (O(n2), O( logn
log logn ))-encoding.

I Theorem 9. All realizable order types have a (O(n
2 logε n
logn ), O( logn

log logn ))-encoding.

I Theorem 10. In the real-RAM model and the constant-degree algebraic decision tree model,
given n real-coordinate input points in R2 we can compute the encoding of their order type as
in Theorems 8 and 9 in O(n2) time.

Bit packing

Fix a large α, a small δ and define r = Θ(logδ n). Note that we can construct a hierarchical
cutting with superconstant r by constructing a hierarchical cutting with some appropriate
constant parameter r′, and then skip levels that we do not need. Denote by ni = n/ri an upper
bound on the number of lines intersecting a cell of level i. For each subcell of level i, partition
its cyclic permutation into logα n blocks of at most ni+1/ logα n intersections. For each
pseudoline intersecting a cell we only store the block numbers that that pseudoline touches
in its signature. Hence, each signature σ(C, `) only uses Θ(log2δ n + α logδ n log logn) =
Θ(log2δ n) bits, which fits in a word for small enough δ.
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Intersection oracle

We construct an additional lookup table to compute the subcell in which qi ∩ qj lies in
constant time. Computing it via scanning with so many subcells to check would waste any
further savings. For that we need a general observation on the precomputation of functions
on small universes.

I Observation 11. In the word-RAM model with word size w ≥ logn, for any word-to-word
function f : [2w]→ [2w], we can build a lookup table of total bitsize 2s+1w for all 2s inputs
x ∈ [2s] of bitsize s ≤ w in time 2sT (s) where T (s) is the complexity of computing f(x),
x ∈ [2s]. The image of any input of bitsize s can then be retrieved in O(1) time by a single
lookup (since the input fits in a single word). In particular, we have 2sT (s) and 2s+1w

sublinear as long as T (s) = sO(1) and s ≤ (1− ε) log2 n.

In other words, any polynomial time computable word-to-word function can be precomputed
in sublinear time and space for all inputs of roughly logarithmic size.

Since our pseudoline identifiers now fit in Θ(log2δ n) bits we can choose an appropriate δ
so as to satisfy the requirements given above. We can thus precompute the function that
sends two pseudoline identifiers to either the subcell containing their intersection or to some
special value in case of an ambiguous input.

Disambiguation

Note that ambiguous inputs rarely occur. An input is ambiguous if and only if at least one
boundary intersection of each pseudoline appears in the same cyclic permutation block of
the cell that contains their intersection. This happens less than logα n · (ni+1/ logα n)2 =
n2

r2(i+1) / logα n times per subcell of level i of the hierarchy. Summing over all levels, we get a
subquadratic size lookup table for ambiguous cases which can be implemented using standard
tools.

Space complexity

The total space used for the signatures σ(C, `) is proportional to

`−1∑
i=0

r2i · r2 ·
( n
ri

+ n

ri+1α log logn
)

= O

(
n2

t
(logδ n+ α log logn)

)
.

Intersection oracles and disambiguation tables fit in subquadratic space and the space analysis
for the rest of the data structure still holds. For small enough δ the space remains quadratic
for abstract order types and subquadratic for realizable order types. This proves the space
constraints in Theorems 8 and 9. Unfortunately, we must incur a nonabsorbable extra
logδ n factor in the realizable case. Note that a log log logn factor can be squeezed without
increasing the space usage by choosing r = Θ(log logn) instead.

Correctness and query complexity

The previous analysis still holds modulo additional disambiguation lookups and oracle-based
intersection location. We now have a shallower decision tree of depth logr n = Oδ( logn

log logn ).
This proves the query time constraints in Theorems 8 and 9.
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Preprocessing time

We prove Theorem 10.

Proof. As before, the hierarchical cutting and all signatures σ(C, `) can be computed in
O(nr`) time. The lookup table and leaf-table pointers can be computed in O(n2) time. All
intersection oracles and disambiguation tables can be computed in subquadratic time. J

4 Conclusion

Observe the following. Assume we are given an instance of some real-input decision problem.
Given a decision tree of depth D for this problem for which each input query and answer
can be encoded using at most Q bits, we can encode the instance using at most DQ bits by
encoding the path traversed when executing the decision tree on this instance. The general
position testing problem (GPT) asks if an input set of n points in the plane contains a
collinear triple. It is an example of a real-input decision problem for which no subquadratic
real-RAM algorithm is known even though the best known lower bound is only linearithmic.
Since shallow decision trees yield short encodings, we see the design of a subquadratic
encoding for realizable order types as a stepping stone towards nonuniform and uniform
subquadratic algorithms for GPT.

Unfortunately, even though our encodings achieve subquadratic space for realizable order
types, they cannot be used to test for isomorphism in subquadratic time. This is partly
because the preprocessing time to construct the encoding is already quadratic. However,
observe that the preprocessing time we achieve in this contribution matches the best known
upper bound for GPT in the algebraic decision tree model:

I Theorem 12. If there is an encoding with construction cost C(N) for realizable order
types in the algebraic decision tree model, then there is a nonuniform algorithm for general
position testing that runs in time C(N) in the algebraic decision tree model.

Proof. Construct the encoding. Then at zero cost in the nonuniform model, run all O(n3)
queries on the encoding. J

Goodman and Pollack saw GPT as a multidimensional generalization of sorting [25]. We
again stress the need for a better understanding of this fundamental problem.
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