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Abstract
We consider a well studied generalization of the maximum clique problem which is defined as
follows. Given a graph G on n vertices and an integer d ≥ 1, in the maximum diameter-bounded
subgraph problem (MaxDBS for short), the goal is to find a (vertex) maximum subgraph of G of
diameter at most d. For d = 1, this problem is equivalent to the maximum clique problem and
thus it is NP-hard to approximate it within a factor n1−ε, for any ε > 0. Moreover, it is known
that, for any d ≥ 2, it is NP-hard to approximate MaxDBS within a factor n1/2−ε, for any ε > 0.

In this paper we focus on MaxDBS for the class of unit disk graphs. We provide a polynomial-
time constant-factor approximation algorithm for the problem. The approximation ratio of our
algorithm does not depend on the diameter d. Even though the algorithm itself is simple, its
analysis is rather involved. We combine tools from the theory of hypergraphs with bounded
VC-dimension, k-quasi planar graphs, fractional Helly theorems and several geometric properties
of unit disk graphs.
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1 Introduction

Computing a maximum size clique in a graph is one of the fundamental problems in theoretical
computer science [7]. It is not only NP-hard but even hard to approximate within a factor of
n1−ε, for any ε > 0, unless P = NP [16]. A clique, equivalently, is a subgraph of diameter
1. A natural, well studied, generalization of the maximum clique problem is the maximum
diameter-bounded subgraph problem (MaxDBS for short), in which the goal is to compute a
maximum (vertex) subgraph of diameter d, for a given d ≥ 2. A subgraph with diameter
≤ d is sometimes referred to in the literature as a d-club. MaxDBS is also known to have
hardness of approximation of n1/2−ε, unless P = NP [5].

In this paper, we study MaxDBS in the class of unit disk graphs. A unit disk graph is
defined as the intersection graph of disks of equal (e.g., unit) diameter in the plane. Unit
disk graphs provide a graph-theoretic model for ad hoc wireless networks, where two wireless
nodes can communicate if they are within the unit Euclidean distance away from each other.

Many classical NP-Complete problems including chromatic number, independent set and
dominating set are still NP-complete even for unit disk graphs [13, 14]. However, the class of
unit disk graphs is one of the non-trivial classes of graphs for which the maximum clique
problem is in P . Indeed, in a celebrated result, Clark, Colbourn and Johnson [13] provide a
beautiful polynomial time algorithm to compute the maximum clique in unit disk graphs.
Unfortunately, we do not know how to extend this algorithm to the MaxDBS problem.

Our main contribution in this paper is a polynomial-time algorithm that approximates
MaxDBS within a constant factor in unit disk graphs. Moreover, our constant factor
approximation ratio does not depend on the diameter d. To the best of our knowledge, it
is not known whether this problem is NP-hard. Our algorithm works as follows: Given a
unit disk graph G = (V,E) and an integer d, compute for each vertex v ∈ V the BFS-tree of
radius d

2 (or d+1
2 if d is odd) centered at v, and return the tree of maximum size. Although,

the algorithm is very natural and simple, its analysis for unit disk graphs is rather involved.
We note that this algorithm might perform very bad for arbitrary graphs. For example, a
2-subdivision of a clique with n vertices is the graph obtained by subdividing each edge of
the clique Kn into a path of length 2. It is easily seen that such a graph with n+

(
n
2
)
vertices

has diameter 4 but every BFS tree of radius 2 contains at most 2n vertices.

1.1 Related work
MaxDBS has been studied extensively in general graphs in the last two decades. Bourjolly
et al. [8] showed that MaxDBS is NP-hard. Balasundaram et al. [6] proved that for any
d, MaxDBS is NP-hard in graphs of diameter d + 1. Asahiro et al. [5] showed that, for
any ε > 0 and d ≥ 2, it is NP-hard to approximate MaxDBS within a factor of n1/2−ε,
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and they gave an n1/2-approximation algorithm for the problem. Chang et al. [11] provide
an algorithm that finds a maximum subgraph of diameter d in O(1.62n · poly(n)) time.
There are more results on solving MaxDBS by using various integer and linear programming
formulations [4, 6, 9, 8, 10, 21].

Asahiro et al. [5] studied the MaxDBS in other subclasses of graphs, including chordal
graphs, interval graphs, and s-partite graphs. For chordal graphs, they showed that the
problem can be solved in polynomial-time for odd d’s, and cannot be approximated within
factor n1/3−ε, for any ε > 0 for even d’s. For interval graphs, they showed that the problem
can be solved in polynomial-time. For s-partite graphs, they showed that the problem cannot
be approximated (unless P = NP ) within a factor of n1/3−ε, for any ε > 0, when s = 2 and
d ≥ 3, and when s ≥ 3 and d ≥ 2.

For unit disk graphs, the hardness of MaxDBS is still open, for d ≥ 2 we are not aware
of any previous work. As mentioned already, for d = 1, the problem is equivalent to the
maximum clique problem and it can be solved in polynomial-time [13].

1.2 Motivation
MaxDBS is a relaxation of the maximum clique problem and is motivated by cluster-detection
that arise in wide variety applications. For instance, finding clusters in networks helps in
understanding and analyzing the structure of the network. Another well studied notion is
that of a d-clique [6, 20, 21]. A d-clique of a graph G is a subset S of vertices of G, such that,
for every two vertices in S, the shortest distance between them in G is at most d. Clearly,
every d-club is a d-clique, but not vice versa, as shown in the example given by Alba [3] in
Figure 1.

v1

v2

v3

v4

v5

v6

Figure 1 S = {v1, v2, v3, v4, v5} is a 2-clique but not a 2-club since the graph induced by S has a
diameter 3.

2 Preliminaries

Let V be a finite set of points in the plane. For two points u, v ∈ V , let |uv| denote the
Euclidean distance between u and v. The unit disk graph on V is the undirected graph
G = (V,E), such that (u, v) ∈ E if and only if |uv| ≤ 1. The following lemma (though very
simple) turns out to be crucial to prove our main result.

I Lemma 1. For every two crossing edges (a, b) and (c, d) in G, at least one of the edges
(a, c) and (b, d) is in G, and at least one of the edges (a, d) and (b, c) is in G; see Figure 2
for an illustration.

Proof. To prove the lemma, it suffices to show that min{|ac|, |bd|} ≤ 1 and min{|ad|, |bc|} ≤ 1;
see Figure 2. Let x be the intersection point of (a, b) and (c, d). By the triangle inequality,
|ac| ≤ |ax| + |xc| and |bd| ≤ |bx| + |xd|. Thus, |ac| + |bd| ≤ |ab| + |cd| ≤ 2. Therefore,
min{|ac|, |bd|} ≤ 1. By a similar argument, we prove that min{|ad|, |bc|} ≤ 1. J
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a

bc

d

x

Figure 2 An illustration for the proof of Lemma 1.

2.1 Tool box
A range space (or a set system) (X,R) is a pair consisting of a set X of objects (called
the space) and a family R of subsets of X (called ranges). We say that a subset A of X is
shattered by R, if for each subset A′ of A, there exsist a range R ∈ R, such that A ∩R = A′.
The Vapnik-Chervonenkis dimension (or VC-dimension for short) of a range space (X,R) is
the size of the largest (finite) shattered subset of X; see [15] for examples of range spaces of
bounded VC-dimension.

The dual range space of (X,R) is a range space (Y,R∗), where Y = {yR : R ∈ R} and,
for each x ∈ X, the set {yR : x ∈ R} is a range in R∗. It is well known [17] that, if the
VC-dimension of (X,R) is k, then the VC-dimension of the dual range space (Y,R∗) is at
most 2k.

A range space (X,R) has fractional Helly number k, if for every α > 0, there exists
β > 0, such that if at least α

(|R|
k

)
subsets of size k of R have a non-empty intersection, then

there exists an element of X that is contained in at least β · |R| sets of R. In [18], Matoušek
proved the following theorem showing that every range space of bounded VC-dimension has
a fractional Helly property.

I Theorem 2 ([18]). Let (X,R) be a range space such that the VC-dimension of the dual
range space of (X,R) is at most k − 1. Then, (X,R) has a fractional Helly number k.

A range space (X,R) satisfies the (p, q)-property if among every p ranges of R some q
have a non-empty intersection. Matoušek [18] established the following (p, q)-theorem for
range spaces of bounded VC-dimension.

I Theorem 3 ([18]). Let (X,R) be a range space such that the VC-dimension of the dual
range space of (X,R) is at most k − 1 and let p ≥ k. Then, there exists a constant t
(depending only on p and k), such that if (X,R) satisfies the (p, k)-property, then there exists
a subset X ′ of X of size at most t intersecting all the ranges of R, i.e., X ′ ∩R 6= ∅, for every
R ∈ R.

A (simple) topological graph is a graph drawn in the plane, such that its vertices are rep-
resented by a set of distinct points and its edges are Jordan arcs connecting the corresponding
points, so that (i) each edge does not contain any other vertex as an interior point, (ii) every
pair of edges intersect at most once, and (iii) no three edges have a common intersection
point. Agarwal et al. [2] showed that any topological graph with n vertices and without
k pairwise crossing edges has O(n log2k−6 n) edges. This bound was further improved to
O(n log2k−8 n) by Ackerman [1]. Hence, if G is a complete topological graph on n vertices
and without k pairwise crossing edges, then

(
n
2
)

= n(n− 1)/2 ≤ c′n log2k−8 n, where c′ is the
constant in the big ‘O’, depending only on k. This implies that k ≥ log(n−1)−c

2 log logn + 4, where c
is a constant depending on c′. Therefore, we have the following corollary.
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I Corollary 4. Any complete topological graph on n vertices contains at least log(n−1)−c
2 log logn + 4

pairwise crossing edges, where c is a constant.

3 Approximation algorithm

Let G = (V,E) be the unit disk graph of a set of points V in the plane. For two vertices u
and v in V , let d(u, v) denote the shortest (hop) distance between u and v in G.7 Assuming
that G is connected, the diameter of G is defined as the maximum (hop) distance between
any two vertices in G, i.e., maxu,v∈V d(u, v). A subgraph of G is called d-club if its diameter
is equal to d. Let Gopt denote a maximum d-club of G. In this section, we first present a
polynomial-time approximation algorithm that computes a d-club of size at least c times
the size of Gopt, where c is a constant and d is even. Later, we show how to generalize this
algorithm for odd d’s.

Set r = d
2 . For a vertex u ∈ V , let Tr(u) denote the tree of center u and radius r that

contains all vertices of distance at most r from u in G. Namely, a vertex v is in Tr(u) if
and only if d(u, v) ≤ r. Given a vertex u ∈ V , Tr(u) can be computed using the breadth
first search (BFS) algorithm in O(|V |+ |E|) time. Our algorithm computes all the trees of
radius r centered at vertices of G and returns a tree T of the maximum size, i.e., the tree
that contains the maximum number of vertices. It is clear that T is a d-club of G and can
be computed in polynomial time. Let Vopt denote the set of vertices of Gopt and n = |Vopt|
denote the size of Gopt. In the following, we prove that T contains at least cn vertices, where
c is a constant.

Let Tr(Gopt) denote the set of all trees of radius r centered at vertices of Gopt, and let
T ∗r be a tree in Tr(Gopt) that contains the maximum number of vertices of Gopt among trees
of Tr(Gopt). First, observe that the size of T is at least as the size of T ∗r , since Gopt is a
subgraph of G. Therefore, it is sufficient to prove that T ∗r contains at least cn vertices.

Let (X,R) be the range space where X = Vopt and for each tree Tr(u) in Tr(Gopt), the
set {v ∈ Vopt : v ∈ Tr(u)} is a range in R. Thus, in the dual range space (Y,R∗) of (X,R),
we have Y = {yTr(u) : u ∈ Vopt}, and, for each point v ∈ Vopt, the set {yTr(u) : v ∈ Tr(u)} is
a range in R∗.

I Observation 5. (X,R) and (Y,R∗) are isomorphic.

Proof. Since Tr(u) contains v if and only if Tr(v) contains u, we have

{yTr(u) : v ∈ Tr(u)} = {yTr(u) : u ∈ Tr(v)}.

Now, if we set yTr(u) = u, then we obtain that X = Y and

{yTr(u) : v ∈ Tr(u)} = {u ∈ Vopt : v ∈ Tr(u)} = {u ∈ Vopt : u ∈ Tr(v)},

for each v ∈ Vopt. Therefore, for each v ∈ Vopt, the set {u ∈ Vopt : u ∈ Tr(v)} is a range in
R∗, which implies that R∗ = R. J

I Theorem 6. T ∗r contains at least cn vertices, where c is a constant.

Proof. The proof plan is as follows. We show (later in Section 4) that the VC-dimension of
the range space (Vopt, Tr(Gopt)) is 4. Thus, by Observation 5, the VC-dimension of the dual

7 Note that for any ε > 0, it could hold that the Euclidean distance between u and v is 1 + ε but they are
in different connected components of G and hence d(u, v) is not necessarily bounded.
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ui

uj

ui′

uj′

(a) (b)

ui

uj

ui′

uj′

Figure 3 (a) δ(ui, uj) and δ(ui′ , uj′ ) intersect in more than one point, and (b) replacing subpaths
of δ(ui′ , uj′ ) by subpaths of δ(ui, uj) between the intersection points.

range space of (Vopt, Tr(Gopt)) is also 4. Then, we use Corollary 4 to show that there exists
a constant m ≥ 5, such that (Vopt, Tr(Gopt)) satisfies the (m, 5)-property, which means that
at least

(
n
m

)
/
(
n−5
m−5

)
=
(
n
5
)
/
(
m
5
)
subsets of 5 trees of Tr(Gopt) share a common point. Thus,

by Theorem 2, there exists a point that is contained in at least βn trees of Tr(Gopt), and
therefore, there is a tree in Tr(Gopt) that contains at least βn points of Vopt, which proves
that c ≥ β > 0.

Let m be an integer such that log(m−1)−c′

2 log logm + 4 ≥ 6, where c′ is a constant. Let A be
a set of m trees of Tr(Gopt) and let C = {u1, u2, . . . , um} be the centers of the trees of A.
For two points ui, uj ∈ C, let δ(ui, uj) be a shortest path between ui and uj in Gopt, and
let d(ui, uj) be the length of δ(ui, uj). For every four distinct points ui, uj , ui′ , uj′ ∈ C, we
assume that the intersection of the paths δ(ui, uj) and δ(ui′ , uj′) is either empty or a path
(otherwise, we replace every subpath of δ(ui′ , uj′) between every two consecutive intersection
points of the paths by the subpath of δ(ui, uj) between the same points; see Figure 3). Since
d(ui, uj) ≤ 2r, there is at least one point ui,j on δ(ui, uj) that is contained in Tr(ui) and in
Tr(uj).

We now construct a drawing of a complete graph H on the points of C in which
the edges are drawn as the Jordan arcs δ(ui, uj). Notice that, H is not necessarily a
topological graph. However, we can transform it into a topological graph H ′, such that,
for every four distinct points ui, uj , ui′ , uj′ ∈ C, δ(ui, uj) and δ(ui′ , uj′) are crossing in H ′
if and only if they are crossing in H. This transformation is obtained using standard
operations as in [12] and we omit the technical details here. Since H ′ is a complete
topological graph on m vertices, by Corollary 4, H ′ has at least 6 pairwise crossing edges. Let
P = {δ(u1, u1′), δ(u2, u2′), . . . , δ(u6, u6′)} be the set of the corresponding 6 pairwise crossing
paths in H ′.

I Lemma 7. Let δ(ui, ui′) and δ(uj , uj′) be two crossing paths of P and let x be their
intersection point. Assume, w.l.o.g., that x is between ui,i′ and ui, and between uj,j′ and uj;
see Figure 4. Then, either Tr(ui) contains uj,j′ or Tr(uj) contains ui,i′ .

Proof. We distinguish between two cases.
Case 1: x is a point of Vopt; see Figure 4(a). Assume, w.l.o.g., that d(ui, x) ≤ d(uj , x). Thus,

d(ui, uj,j′) ≤ d(ui, x) + d(x, uj,j′) ≤ d(uj , x) + d(x, uj,j′) = d(uj , uj,j′) ≤ r.

Therefore, uj,j′ is of distance at most r from ui and, hence, is contained in Tr(ui).



A.K. Abu-Affash, P. Carmi, A. Maheshwari, P. Morin, M. Smid, and S. Smorodinsky 2:7

ui

uj

ui′

uj′

x

ui,i′

uj,j′ ui

uj

ui′

uj′

x

ui,i′

uj,j′

a

b c

d

(a) (b)

Figure 4 δ(ui, ui′ ) and δ(uj , uj′ ) intersect at x. (a) x is a point of Vopt, and (b) x is an intersection
point of the edges (a, b) and (c, d).

Case 2: x is not a point of Vopt. Thus, x is an intersection point of two edges (a, b) and
(c, d) of G. Assume, w.l.o.g., that a is between x and u1 and c is between x and u2; see
Figure 4(b).

If d(ui, a) = d(uj , c), then, by Lemma 1, at least one of the edges (a, d) and (b, c) is in
Gopt.

If (a, d) is in Gopt, then d(a, uj,j′) = d(c, uj,j′), and hence,

d(ui, uj,j′) ≤ d(ui, a) + d(a, uj,j′) = d(uj , c) + d(c, uj,j′) = d(uj , uj,j′) ≤ r.

Therefore, uj,j′ is of distance at most r from ui and, hence, is contained in Tr(ui).
If (b, c) is in Gopt, then d(a, ui,i′) = d(c, ui,i′), and hence,

d(uj , ui,i′) ≤ d(uj , c) + d(c, uj,j′) = d(ui, a) + d(a, ui,i′) = d(ui, ui,i′) ≤ r.

Therefore, ui,i′ is of distance at most r from uj and, hence, is contained in Tr(uj).
Otherwise, assume, w.l.o.g., that d(ui, a) < d(uj , c). By Lemma 1, at least one of the
edges (a, c) and (b, d) is in Gopt.

If (a, c) is in Gopt, then d(ui, c) ≤ d(uj , c). Hence,

d(ui, uj,j′) ≤ d(ui, c) + d(c, uj,j′) ≤ d(uj , c) + d(c, uj,j′) = d(uj , uj,j′) ≤ r.

If (b, d) is in Gopt, then d(ui, d) ≤ d(uj , d). Hence,

d(ui, uj,j′) ≤ d(ui, d) + d(d, uj,j′) ≤ d(uj , d) + d(d, uj,j′) = d(uj , uj,j′) ≤ r.

In both cases, uj,j′ is of distance at most r from ui and, hence, is contained in Tr(ui). J

I Lemma 8. (Vopt, Tr(Gopt)) satisfies the (m, 5)-property.

Proof. By Lemma 7, for every two paths δ(ui, ui′) and δ(uj , uj′) in P , either at least one
of the trees Tr(ui) and Tr(ui′) contains uj,j′ or at least one of the trees Tr(uj) and Tr(uj′)
contains ui,i′ . We construct a directed graph on the vertices {u1, u2, . . . , u6}, such that there
is a directed edge from ui to uj if and only if at least one of the trees Tr(ui) and Tr(ui′)
contains uj,j′ . Since we have 6 pairwise crossing paths, there are at least 15 edges in this
graph, which means that there is a vertex ul in this graph, 1 ≤ l ≤ 6, of in-degree at least 3.
Hence, there is a point ul,l′ that is covered by at least 3 other trees, in addition to the trees
Tr(ul) and Tr(ul′). Thus, ul,l′ is contained in at least 5 trees of A. Therefore, (Vopt, Tr(Gopt))
satisfies the (m, 5)-property. J
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Since (Vopt, Tr(Gopt)) satisfies the (m, 5)-property, out of every m trees of Tr(Gopt) there
are 5 trees that share a common point. Thus, there are at least

(
n
m

)
/
(
n−5
m−5

)
=
(
n
5
)
/
(
m
5
)
sets

containing 5 trees that share a common point. Moreover, in Theorem 12 (Section 4), we show
that the VC-diminsion of the range space (Vopt, Tr(Gopt)) is 4. Thus, by Observation 5, the
VC-dimension of the dual range space of (V, Tr(G)) is also 4 and therefore, by Theorem 2,
the fractional Helly number of (Vopt, Tr(Gopt)) is 5. Now, by setting α = 1/

(
m
5
)
(in the

fractional Helly theorem), we have a point u ∈ Vopt that is contained in at least βn trees of
Tr(Gopt), which means that Tr(u) contains at least βn points of Vopt, where β > 0. Therefore,
c ≥ β > 0, which completes the proof of the theorem. J

I Corollary 9. For any even d ≥ 2, every d-club in any unit disk graph can be covered by a
constant-number of trees of radius d

2 .

Proof. To prove the corollary, we show that there exists a constant ρ, such that Gopt can be
covered by at most ρ trees of Tr(Gopt). By Theorem 12, the VC-dimension of the dual range
space of (Vopt, Tr(Gopt)) is 4, and, by Lemma 8, (Vopt, Tr(Gopt)) satisfies the (m, 5)-property.
Therefore, by Theorem 3, there exists a set of at most t trees of Tr(Gopt) that cover all
vertices of Vopt, which proves that ρ ≤ t. J

Upper bound on c

We show, in Figure 5, a unit disk graph G on n vertices for which the tree computed by
our algorithm does not contain more than n

3 . G contains n = 16r points and its diameter is
d = 2r. Each tree of radius r in G covers at most 6r points. This proves that c ≤ 3

8 . To
show that c ≤ 1

3 , we locate six cliques of size n−16r
6 on the points a, b, c, a′, b′, and c′. Now,

each tree of radiuns r can cover at most 2 cliques. Therefore, for sufficiently large n, we have
c ≤ 1

3 .

r
3

r
3

r
3

r
3

r
3

r
3

2r
3

2r
3

2r
3

r
3

r
3

r
3

r
3

r
3

r
3

2r
3

2r
3

2r
3

r
3

r
3

r
3

r
3

r
3

r
3

r
3

r
3

r
3

r
3

r
3

r
3

2r
3

2r
3

2r
3

2r
3

2r
3

2r
3

a

bc

a′ b′

c′

Figure 5 G contains 16r points and its diameter is d = 2r Each tree of radius r covers at most
6r points.
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Generalization for odd d

In this section, we extend our algorithm to approximate MaxDBS for odd d’s. Given a
unit disk graph G of a set V of points in the plane and an odd integer d ≥ 3, let Gd be a
maximum d-club and let Gd+1 be a maximum (d+ 1)-club of G. Let nd and nd+1 be the
sizes of Gd and Gd+1, respectively, and observe that nd+1 ≥ nd. We set r = d+1

2 and we
use our algorithm to compute a tree Tr(u) of size at least cnd+1 ≥ cnd. Notice that Tr(u)
is a (d+ 1)-club but may not be a d-club. In the following lemma, we show that there is a
subtree of Tr(u) of diameter d− 1 that contains at least 1/12 of the vertices of Tr(u).

I Lemma 10. The vertices of tree Tr(u) can be covered by at most 12 trees of radius r − 1.

Proof. Let Vr(u) be the set of vertices of Tr(u) and let D2(u) = {v ∈ Vr(u) : d(u, v) = 2},
i.e., the set of all vertices of Vr(u) of distance two from u. Let I be a maximal independent
set of D2(u). By the packing argument in unit disk graphs, we have |I| ≤ 12. Let v be a
vertex in Vr(u), and let δ(u, v) be a shortest path between u and v in Tr(u). Since d(u, v) ≤ r,
there is at least one vertex u′ ∈ D2(u), such that every vertex in δ(u, v) is of distance at
most r− 2 from u′. Hence, there is at least one vertex x ∈ I, such that every vertex in δ(u, v)
is of distance at most r − 1 from x. Thus, every vertex in Vr(u) is contained in Tr−1(x), for
some x ∈ I, and therefore, Vr(u) is covered by

⋃
x∈I Tr−1(x). J

By Lemma 10, we can find a tree T ∗r−1(x) that contains at least 1/12 of the vertices
of Tr(u). Since r = d+1

2 , the diameter of T ∗r−1(x) is at most 2(r − 1) = d − 1. Therefore,
T ∗r−1(x) is a d-club of G and its size is at least c

12nd.
The following theorem summarizes the result of this section.

I Theorem 11. Given a unit disk graph G in the plane and an integer d ≥ 2, one can find
in polynomial time a d-club of G of size at least c

12 the size of a maximum d-club of G, where
0 < c ≤ 1

3 .

4 The VC-Dimension of (Vopt, Tr(Gopt))

In this section, we prove the following theorem.

I Theorem 12. The range space (Vopt, Tr(Gopt)) has VC-dimension 4.

Proof. We first prove that the VC-dimension of Tr(Gopt) is at most 4. For the sake of
contradiction, suppose that there exist a set of points P and a subset S = {u1, u2, u3, u4, u5}
of Vopt, such that S is shattered by Tr(Gopt). Thus, for each 1 ≤ i < j ≤ 5, there is a tree
Tr(ci,j) in Tr(Gopt), such that Tr(ci,j) ∩ S = {ui, uj}. Let Pi,j be the path between ui and
uj in Tr(ci,j). Note that Pi,j ∩ S = {ui, uj}. Moreover, since S contains five points, by
planarity constraints, at least two paths Pi,j and Pk,l, for distinct two pairs (i, j) and (k, l),
intersect. Assume, w.l.o.g., that P1,3 and P2,4 intersect and let x be their intersection point.
Assume also that x is between u1 and c1,3, and between u2 and c2,4; see Figure 6.

I Lemma 13. Either u1 is contained in Tr(c2,4) or u2 is contained in Tr(c1,3).

Proof. The proof is similar to the proof of Lemma 7. We distinguish between two cases.
Case 1: x is a point of Vopt; see Figure 6(a). Assume, w.l.o.g., that d(x, u1) ≤ d(x, u2).

Thus,

d(c2,4, u1) ≤ d(c2,4, x) + d(x, u1) ≤ d(c2,4, x) + d(x, u2) = d(c2,4, u2) ≤ r.
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u1 u2 u3u4

x

c1,3c2,4

(a) (b)

a

b

c

d

u1 u2 u3u4

x

c1,3c2,4

Figure 6 P1,3 and P2,4 intersect at x. (a) x is a point of Vopt, and (b) x is an intersection point
of the edges (a, b) and (c, d).

Therefore, u1 is of distance at most r from c2,4 and, hence, is contained in Tr(c2,4).

Case 2: x is not a point of Vopt. Thus, x is an intersection point of two edges (a, b) and
(c, d) of G. Assume, w.l.o.g., that a is between x and u1 and c is between x and u2; see
Figure 6(b).

If d(a, u1) = d(c, u2), then, by Lemma 1, at least one of the edges (a, d) and (b, c) is in
Gopt. If (a, d) is in Gopt, then d(c2,4, a) = d(c2,4, c), and hence,

d(c2,4, u1) ≤ d(c2,4, a) + d(a, u1) = d(c2,4, c) + d(c, u2) = d(c2,4, u2) ≤ r.

Therefore, u1 is of distance at most r from c2,4 and, hence, is contained in Tr(c2,4). If
(b, c) is in Gopt, then d(c1,3, a) = d(c1,3, c), and hence,

d(c1,3, u2) ≤ d(c1,3, c) + d(c, u2) = d(c1,3, a) + d(a, u1) = d(c1,3, u1) ≤ r.

Therefore, u2 is of distance at most r from c1,3 and, hence, is contained in Tr(c1,3).
Otherwise, assume, w.l.o.g., that d(a, u1) < d(c, u2). By Lemma 1, at least one of the
edges (a, c) and (b, d) is in Gopt. If (b, d) is in Gopt, then d(c2,4, b) ≤ d(c2,4, c) and
d(b, u1) ≤ d(c, u2). Hence,

d(c2,4, u1) ≤ d(c2,4, b) + d(b, u1) ≤ d(c2,4, c) + d(c, u2) = d(c2,4, u2) ≤ r.

If (a, c) is in Gopt, then d(c, u1) ≤ d(c, u2). Thus,

d(c2,4, u1) ≤ d(c2,4, c) + d(c, u1) ≤ d(c2,4, c) + d(c, u2) = d(c2,4, u2) ≤ r.

In both cases, u1 is of distance at most r from c2,4 and, hence, is contained in Tr(c2,4). J
Since Tr(c2,4)∩S = {u2, u4} and Tr(c1,3)∩S = {u1, u3}, we have a contradiction. Therefore,
the VC-dimension of (Vopt, Tr(Gopt)) is at most 4.

To prove that the VC-dimension of (Vopt, Tr(Gopt)) is at least 4, we show in Figure 7 a
unit disk graph on a set of points V of diameter 2r and a subset S = {a, b, c, d} of V , such
that S can be shattered by Tr(Gopt). The distance between every two points of S is r. For
each subset S′ ⊂ S, S ∩ Tr(vS′) = S′, and S ∩ Tr(a) = S. J

5 Concluding remarks

In this paper, we consider the problem of computing a maximum subgraph of diameter d.
We present the first constant-factor approximation algorithm for the problem in unit disk
graphs, for any d ≥ 2.
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Figure 7 Shattering the points a, b, c, and d. S∩Tr(vS′ ) = S′, for each S′ ⊂ S, and S∩Tr(a) = S.

Our algorithm is simple and efficient, however, its analysis is not trivial and based on
tools from the theory of hypergraphs with bounded VC-dimension, k-quasi planar graphs,
fractional Helly theorems and several geometric properties of unit disk graphs. Unfortunately,
the constant obtained is rather large. On the other hand, the most important feature of
our algorithm is that its approximation factor is a constant independent of the diameter d.
It is very easy to obtain an O(d2) approximation factor. Indeed, by a packing argument,
any graph of diameter d can be covered by O(d2) cliques and as mentioned already the
max-clique problem is in P .

Moreover, our algorithm works also for an abstract input of the unit disk graph without
the geometric representation. It remains an open problem to determine whether MaxDBS
for unit disk graphs is in P for d ≥ 2.

Another interesting fact to note is that the shortest path metric on unit disk graphs does
not have the so-called constant doubling dimension. It is easily seen that our algorithm has a
constant factor approximation for graph families with constant doubling dimension.

Recall that a d-clique of a graph G is a set S of vertices of G, such that, for every
two vertices in S, the shortest distance between them in G is at most d. Finding the
maximum d-clique problem is closely related to MaxDBS. Unfortunately, our algorithm can
not be directly extended to the maximum d-clique problem. Except for the 1

2 -approximation
algorithm of Pattillo et al. [19], for d = 2, there is no related work discussing the maximum
d-clique problem in unit disk graphs. Hence, approximating the maximum d-clique problem
in unit disk graphs is also an interesting open problem.
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