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Abstract
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17:2 Consistent Sets of Lines with no Colorful Incidence

Figure 1 Three silhouettes that are 2-consistent but not globally consistent for three orthogonal
projections. Each of the first three figures shows a three-dimensional set that projects onto two
of the three silhouettes. The fourth figure illustrates that no set can project simultaneously onto
all three silhouettes: the highlighted red image point cannot be lifted in 3D, since no point that
projects onto it belongs to the pre-images of both the blue and green silhouettes.

1 Introduction

A central problem in computer vision is the reconstruction of a three-dimensional scene from
multiple photographs. Trager et al. [16, Definition 1] defined a set of images as consistent
if they represent the same scene from different points of view. They constructed examples
(like that of Figure 1) of a set of images which is pairwise consistent while being altogether
inconsistent. They also showed [16, Proposition 4] that under a certain convexity hypothesis,
images that are consistent three at a time are globally consistent. In this paper we drop the
convexity condition and consider these affairs from the point of view of incidence geometry.

Problem statement. An incidence is a set of lines that meet at a single point. Let
L = L1 ∪ L2 ∪ . . . ∪ Lm be a set of lines of m colors in Rd (where each Li is a color class).
Given S ⊂ {1, 2 . . .m}, an S-incidence in L is an incidence between lines of every color in S.
This paper focuses on the following notions:

I Definition 1. For 1 ≤ k ≤ m, a k-incidence in L is a S-incidence where |S| = k. A colorful
incidence in L is an incidence that contains lines of every color.

I Definition 2. The set L is k-consistent if for every k-tuple of colors S ⊂ {1, 2 . . .m}, every
line in ∪i∈SLi belongs to an S-incidence. The set L is consistent if every line belongs to (at
least) one colorful incidence.

Instead of wondering if k-consistency implies consistency, we aim for a more modest goal:

I Problem 3. Under which conditions does the k-consistency assumption imply the existence
of a (k + 1)-incidence?
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The main results of this paper are two constructions of (infinite families of) finite sets of lines
which are k-consistent and have no colorful incidence. Thus, consistency does not propagate.
I Remark. Unless indicated otherwise, the set L is assumed to be finite. We also assume
throughout that the lines in L are pairwise distinct. This has no consequence on Problem 3:
repeating a line in a color class is useless, and if two lines of distinct colors coincide, then the
k-consistency assumption trivially implies that this line has a (k + 1)-incidence.

Relation to photograph consistency. Let us explain how our initial image consistency
question relates to Problem 3. Firstly, we ignore color or intensity information, and treat the
scene as a set of opaque objects and the images as their projections onto certain planes. In
this setting, images are consistent if and only if there exists a subset R ⊂ R3 that projects
into each of them. Assuming that light travels along straight lines, the set of 3D points that
are mapped to a given image point is a ray, or more conveniently a line, in R3. Starting with
m photographs, if we let Li denote the lines that are pre-images of the projection on the ith
photograph, then the photographs are consistent if and only if ∪mi=1Li is consistent: R is the
set of points of colorful incidences.

Setting. In the basic set-up for computer vision, all lines used to project the scene onto a
given image plane pass through a “pinhole”. We therefore define a color class Li as concurrent
if it consists of concurrent lines. We consider, however, the problem more generally since it
is possible to build other imaging systems. For example, there are cameras that use the lines
secant to two fixed skew lines; other cameras use the lines secant to an algebraic curve γ and
to a line intersecting γ in deg γ − 1 points. For a discussion of the geometry of families of
lines arising in the modeling of imaging systems, see [2, 17] and the references therein.

We focus in this paper on the consistency of finite sets of lines. This restriction is
technically convenient and remains relevant to the initial motivation on continuous sets of
lines. On the one hand, our constructions for the finite problem turn out to readily extend
to infinite families of lines (see Section 4). On the other hand, the finite problem is already
relevant to 3D reconstruction, when one has to recover the camera parameters (settings or
position) used in the photographs. Indeed, this recovery is typically done by identifying
pixels in different images that are likely to be the projection of the same 3D element, and
using the incidence structure of their inverse images to infer the position of the camera; this
process is called structure from motion [14]. The number of lines required to determine the
cameras is typically 5 to 7 per image. Although pixels are usually matched across pairs of
images, there are good reasons for wanting to match them across more images, firstly for
robustness to noise, but also because this avoids ambiguities in the reconstruction in the
case of degenerate camera configurations (for example, pairwise matches are never sufficient
to reconstruct a scene from images when all the camera pinholes are exactly aligned [12,
Chapter 15.4.2]). Understanding the consistency propagation may simplify the certification
of such matchings.

1.1 Results
We focus on Problem 3 for k ≥ 3 because examples of tricolor sets of lines that are 2-consistent
but without a colorful incidence are relatively easy to build:

I Example 4. Let (~x0, ~x1, ~x2) be a basis of R3. Let p0, p2 . . . , p3n be a set of points where
p0 is arbitrary, pi+1 ∈ pi + R~x(i mod 3) and p3n = p0. For each i ∈ {0, 1, 2} define Li to be
the set of lines in coordinate direction i that are incident to points pj with j ≡ i (mod 3)
and j ≡ i − 1 (mod 3). If desired, we may apply a projective transformation that turns
parallelism into concurrence.

SoCG 2018



17:4 Consistent Sets of Lines with no Colorful Incidence

Constructions from higher-dimensional grids. We present two constructions of arbitrary
large sets of lines in Rd of k + 1 colors that are k-consistent and have no colorful incidence,
for every k ≥ 3 and k + 1 ≥ d ≥ 2. Both constructions are based on selecting subsets of
lines from a regular grid in Rk+1. In one case, the selection is probabilistic (Theorems 5),
while in the other case it uses linear algebra over finite vector spaces (Theorem 6). In both
constructions, every color class is concurrent. The probabilistic argument is asymptotic and
proves the existence of configurations where every line is involved in many k-incidences for
every choice of k − 1 other colors. The algebraic construction is explicit and is minimal in
the sense that removing any line breaks the k-consistency.

Restrictions on higher-dimensional grids. We then test the sharpness and potential of
constructions from higher-dimensional grids. On the one hand, we examine the number of
lines of such constructions. The algebraic selection method picks at least 2k2−k−1 lines of
each color (we leave aside the probabilistic selection method as its analysis is asymptotic).
This construction has the property that the lines meeting at a k-incidence are not “flat”,
in the sense that they are not contained in a k − 1-dimensional subspace. We show, using
the polynomial method [11], that for any construction with this property, the number of
lines must be at least exponential in k (Proposition 7). On the other hand, we examine the
possibility of designing similar constructions for models of cameras in which the lines are not
all concurrent. We observe that when every color class is secant to two fixed lines, lines from
two color classes cannot form a complete bipartite intersection graph (Proposition 8).

Small configurations. We also investigate small-size configurations of lines in R3 with 4
colors that are 3-consistent but have no colorful incidence. The smallest example provided by
our constructions has 32 lines per color, which says little for applications like structure from
motion, where each color class has very few lines. Figure 2 shows two non-planar examples
with 12 lines each. We prove that they are the only non-planar constructions with these
parameters (Theorem 11). We also show that any configuration with these parameters and
concurrent color classes must have at least 24 lines or be planar (Theorem 10).

Figure 2 Two non-planar examples of 12 lines in 4 colors that are 3-consistent and have no
4-incidence. (Left) A variation around Desargues’ configuration. (Right) A subset of the (124163)
configuration of Reye; note that triples of parallel lines intersect at infinity.



B. Bukh, X. Goaoc, A. Hubard, and M. Trager 17:5

1.2 Related work
The study of consistent families of colored lines relates most prominently to classical questions
in computer vision and in discrete geometry.

In computer vision. The simplest and most extensively studied setting for consistency deals
with families where each color class has a single line. The study of n-tuples of lines that are
incident at a point (or “point correspondences”), is central in multi-view geometry [12], that
is the foundation of 3D-reconstructions algorithms. In this setting, consistency propagates
trivially: n lines are concurrent if and only if any three of them are (even better: n lines not
all coplanar are concurrent if and only if every pair of them is). Concurrency constraints are
traditionally expressed algebraically as polynomials in image coordinates (see, e.g. [6]).

A more systematic study of consistency for silhouettes (i.e., for infinite families of lines)
was proposed to design reconstruction methods based on shapes more complex than points
or lines [3, 13]. Pairwise consistency for silhouettes can be encoded in a “generalized epipolar
constraint”, which can be viewed as an extension of the epipolar constraint for points, and
expresses 2-consistency in terms of certain simple tangency conditions [1, 16]. There is no
known similar characterization for k-consistency with k > 2. Consistency propagation is only
known for convex silhouettes: 3-consistency implies consistency [16].

In the dual, consistency expresses conditions for a family of planar sets to be sections of
the same 3D object [16], a question classical in geometric tomography or stereology. We are
not aware of any relevant result on consistency in these directions.

Discrete geometry. As evidenced by Figure 2, our analysis of small configurations relates
to the classical configurations of Reye and Desargues in projective geometry. Our problem
and results for larger configurations relate to various lines of research in incidence geometry.
Inspired by the Sylvester–Gallai theorem, Erdős [5] asked for the largest number of collinear
k-tuples in a planar point set with no collinear k + 1-tuple. The best construction for k = 3
come from irreducible cubic curves4. For higher k the best constructions were given by
Solymosi and Stojakovíc [15] and are projections of higher-dimensional subsets of the regular
grid (selected, unlike ours, by taking concentric spheres). In the plane, our problem is dual
to a colorful variant of Erdős’s question. An intermediate between Erdős’s problem and
the one treated here would ask for the existence of a set of lines L in which each line is
involved in many (colorless) k-incidences but there are no (colorless) k + 1-incidences. Since
the Solymosi-Stojakovíc construction provides n2− c√

n aligned k tuples of points, it is not
hard to see, using a greedy deletion argument, that this alternative problem is essentially
equivalent to Erdős’s original one.

In higher dimensions, the question of finding sets of lines with many k-rich points (in
the terminology of [10]) is interesting even without the condition of having no (k + 1)rich
point. Much of the recent research around this question has followed the solution to
the joint problem [11] and has been driven by algebraic considerations (see [10] and the
references therein). Here, we also ask for many k-rich points, but our questions are driven
by combinatorial considerations. Our assumptions trade the usual density requirements
(we assume linearly many, rather than polynomially many, k-rich points) for structural
hypotheses in the form of conditions on the colors. We can still use some of the algebraic
methods; the proof of Proposition 7 is, for instance, modeled on the upper bound on the
number of joints of Guth and Katz [11].

4 This case is closely connected with the famous orchard problem recently solved in its asymptotic
version [8]
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17:6 Consistent Sets of Lines with no Colorful Incidence

2 Probabilistic construction

In this section we prove:

I Theorem 5. For any k ≥ 3, k + 1 ≥ d ≥ 2, and arbitrarily large N ∈ N, there exists a
finite set of lines in Rd of k + 1 colors that is k-consistent, has no (k + 1)-incidence, and in
which each color class consists of between N and 3N lines, all concurrent.

We describe our construction in Rk+1 with color classes consisting of parallel lines. We then
apply an adequate projective transform (to turn parallelism into concurrence) and a generic
projection to a d-dimensional space; both transformations preserve incidences and therefore
the properties of the construction.

Construction. Consider the finite subset [n]k+1 = {1, 2, ..., n}k+1 ⊂ Rk+1 of the integer
grid. We make our construction in two stages:

Consider the set L#
i of nk lines that are parallel to the ith coordinate axis and contain

at least one point of our grid. We pick a random subset L′i, where each line from L#
i is

chosen to be in L′i independently with probability p def= 2n−
2

2k−1 (the value of p is chosen
with foresight).
We then delete from L′i all lines that are concurrent with k other lines from ∪j 6=iL′j and
denote the resulting set Li.

We let L denote the colored set of lines L = L1 ∪ L2 ∪ . . . ∪ Lk+1. The second stage of the
construction ensures that L has no (k + 1)-incidence.5 To prove Theorem 5, it thus suffices
to show that with positive probability, L is k-consistent and each Li has the announced size.
Let us clarify that all lines considered in the proof are in ∪k+1

i=1 L
#
i unless stated otherwise.

Consistency. Let us argue that L is k-consistent with high probability. For a set I ⊂ [k+ 1],
let

SI
def= {Q ∈ [n]k+1 : ∀i ∈ I there is a line of Li containing Q},

S′I
def= {Q ∈ [n]k+1 : ∀i ∈ I there is a line of L′i containing Q}.

We say that ` ∈ L#
i is j-bad (for j 6= i) if ` contains no point of S[k+1]\{i,j}. Note that L is

not k-consistent precisely when some ` ∈ L#
i is j-bad and ` ends up in Li.

Let ` ∈ L#
i and let L ⊂ L#

i be any set containing `. Let j 6= i. We shall estimate
P [(` ∈ Li) ∧ (` is j-bad) | L′i = L]. For ease of notation, we may assume that i = k + 1,
j = k and ` is the line {(1, 1, . . . , 1, x) : x ∈ R}. Call a point Q ∈ [n]k+1 regular if Q /∈ `.

The randomness in the construction comes from (k + 1)nk random choices, one for each
line in L#

1 ∪ · · · ∪ L
#
k+1. We refer to these random choices as ‘coin flips’ since we can think of

each as being a result of a toss of a (biased) coin.
Let `r,x denote the line {(1, 1, . . . , 1, y, 1, . . . , 1, x) : y ∈ R}, where y is at position r. If a

line `′ /∈ L#
r intersects `r,x in point (1, 1, . . . , 1, y, 1, . . . , 1, x), then all points of `′ have y in

the rth position. Note that a point (1, 1, . . . , 1, y, 1, . . . , 1, x) is regular if y 6= 1. A crucial
observation is that if a line `′ 6∈ L#

k+1 intersects `r,x in a regular point and a line `′′ 6∈ L#
k+1

intersects `r′,x′ in a regular point and (r, x) 6= (r′, x′), then `′ is different from `′′. This
implies that sets of coin flips on which the events of the form

5 Deleting one line per concurrence of size k + 1 would suffice, but deleting all lines as we do simplifies
the analysis and suffices for our purpose.
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“there is a regular Q ∈ `r,x Q ∈ S′[k]\{r}”

are disjoint for distinct (r, x), apart from the flips associated to the lines in L#
k+1.

For a point Q ∈ [n]k+1, let λ(Q) be the line in L#
k+1 containing Q. Hence,

P
[
(` ∈ L′k+1) ∧ (` is k-bad) | L′k+1 = L

]
= P

(` ∈ L′k+1) ∧
∧
x∈[n]

(1, 1, . . . , 1, x) /∈ S[k−1] | L′k+1 = L


= P

(` ∈ L′k+1) ∧
∧
x∈[n]

(∃r ∈ [k − 1] `r,x /∈ Lr) | L′k+1 = L


= P

(` ∈ L′k+1) ∧
∧
x∈[n]

(
∃r ∈ [k − 1] `r,x /∈ L′r ∨ (∃Q ∈ `r,x ∩ S′[k+1])

)
| L′k+1 = L


In this last formula, the point Q can be assumed to be regular because ` ∈ L, by assumption.
Now we may drop ` ∈ L′k+1 to obtain that the above is

≤ P

 ∧
x∈[n]

(
∃r ∈ [k − 1] `r,x /∈ L′r ∨ (∃ reg. Q ∈ `r,x ∩ S′[k+1])

)
| L′k+1 = L


Observe that if `r,x ∈ L′r then Q ∈ `r,x ∩ S′[k+1] holds if and only if Q ∈ `r,x ∩ S′[k]\{r} and
λ(Q) ∈ L. By the observation above, the set of coin flips on which these latter events depend
for different x are disjoint, so this probability is

=
∏
x∈[n]

P
[
∃r ∈ [k − 1] `r,x /∈ L′r ∨ (∃ reg. Q ∈ `r,x ∩ S′[k]\{r} ∧ λ(Q) ∈ L) | L′k+1 = L

]
=
∏
x∈[n]

(
1− P

[
∀r ∈ [k − 1] `r,x ∈ L′r

∧ (∀ reg. Q ∈ `r,xQ /∈ S′[k]\{r} ∨ λ(Q) /∈ L) | L′k+1 = L

])
=
∏
x∈[n]

(
1−

∏
r∈[k−1]

(
p ·

∏
regular Q∈`r,x

λ(Q)∈L

P
[
Q /∈ S′[k]\{r}

]))

Call L ⊂ L#
k+1 unbiased if for every pair (r, x) ∈ [k − 1]× [n] the number of points Q ∈ `r,x

such that λ(Q) ∈ L is at most 2pn. For unbiased L, we obtain that the above is at most

(
1−

(
p · (1− pk−1)2pn)k−1)n ≤ (1−

( 1
2p
)k−1

)n
≤ e
−n
(

1
2p
)k−1

= e−n
1

2k−1

If we pick L uniformly at random, then, for every (r, x) ∈ [k − 1]× [n], the number of points
Q ∈ `r,x such that λ(Q) ∈ L is a binomial random variable. Chernoff’s bound then yields

SoCG 2018



17:8 Consistent Sets of Lines with no Colorful Incidence

P
[
(` ∈ L′k+1) ∧ (` is k-bad)

]
≤ P [Lk+1 is biased] +

∑
unbiased L

P
[
L′k+1 = L

]
P
[
(` ∈ L′k+1) ∧ (` is k-bad) | L′k+1 = L

]
≤

∑
(r,x)∈[k−1]×[n]

e−(pn)2/2n + e−n
1

2k−1 = e−cn
1

2k−1
.

By taking the union bound over all i, j and ` we obtain that

P [L is not k-consistent] ≤ P
[
∃i, j ∃` ∈ L#

i

(
(` ∈ L′i) ∧ (` is j-bad)

)]
≤ (k + 1)2nke−cn

1
2k−1 ≤ e−c

′n
1

2k−1
.

Size. We now analyze the probability that L1 is large (the bound will hold for each Li).
Let us write L′ = ∪k+1

i=1 L′i and label `1, `2, . . . , `nk the lines parallel to the 1st coordinate axis
that intersect our grid. Put Xi = 1`i∈L1 and let X = |L1| = X1 +X2 + . . .+Xnk . We have

E [Xi] = P [Xi = 1] = P [`i ∈ L′] P [`i ∈ L | `i ∈ L′] = p(1− pk)n, and

E [X] = nkp(1− pk)n =
(

1− n−
2k

2k−1

)n
nk−

2
2k−1 ≥

(
1− 1

n

)n
nk−

2
2k−1 ≥ 1

4n
k− 2

2k−1 .

Thus E [X] = N ∈ [ 1
4n

k− 2
2k−1 , nk−

2
2k−1 ]. We next use a concentration inequality to pass from

E [X] to an estimate on the probability that X is large. The second step introduces some
dependency between some of the variables Xi, so we use Chebychev’s inequality:

P
[
|X − E [X] | > 1

2E [X]
]
≤ 4Var [X]

E [X]2
≤ 64Var [X]n−(2k− 4

2k−1 ).

Recall that

Var [X] =
nk∑
i=1

Var [Xi] +
∑

1≤i<j≤nk

Cov [Xi, Xj ] .

Since Xi takes values in {0, 1}, the first sum in the right-hand term is bounded by nk.
Moreover, there are O(nk+1) pairs of variables Xi and Xj with non-zero covariance, since
this requires the two lines `i and `j to belong to a common axis-aligned 2-plane. Again, each
non-zero covariance is at most 1. Altogether, Var [X] = O(nk+1), so

P
[
|X − E [X] | > 1

2E [X]
]

= O
(
n

2k+3
2k−1−k

)
.

For k ≥ 3, the probability that X is in
[

1
8n

k− 2
2k−1 , 3

2n
k− 2

2k−1

]
goes to 1 as n goes to infinity.

3 Algebraic construction

In this section we prove:

I Theorem 6. For any k ≥ 3, k + 1 ≥ d ≥ 2, and arbitrarily large N , there exists a finite
set of lines in Rd with k + 1 colors that is k-consistent, has no (k + 1)-incidence, and in
which each color class consists of N lines, all concurrent.
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Figure 3 A projection to R3 of our construction for k = 3 and p = 2 (reprojected to the plane).

As in Section 2, we describe our construction in Rk+1 with parallel families of lines, and
obtain the desired configuration by an adequate projective transformation and a projection.
We again consider the finite portion of the integer grid [n]k+1 ⊂ Rk+1 and the axis-aligned
lines that intersects it. Unlike in Section 2, we give an explicit way to select some of these
lines to achieve the desired configuration.

Construction. We work with axis-aligned lines that intersect in points of our grid. Hence,
identifying each line with the subset of the grid that it contains does not affect incidences. We
fix a prime number p and parameterize [n] by the vector space V = (Z/pZ)k−1; this restricts
the choice of n to certain prime powers, but still allows to make it arbitrarily large. We use
this parameterization to describe the lines in our configuration as solutions of well-chosen
linear equations.

Let v1, v2, . . . , vk ∈ V such that v1 + v2 + . . .+ vk = 0 and any proper subset of them are
linearly independent. Let · denote the inner product of the vector space V. For i = 1 . . . k,
our set Li consist of all the lines parallel to the ith coordinates and passing through a point
with parameters (X1, . . . , Xk+1) ∈ Vk+1 such that

vi−1 ·X1 + vi−1 ·X2 + . . .+ vi−1 ·Xi−1 + vi ·Xi+1 + . . .+ vi ·Xk+1 = 0. (1)

(Keep in mind that each Xi is a vector in (Z/pZ)k−1.) We define Lk+1 similarly but replace
Equation (1) by

vk ·X1 + vk ·X2 + . . .+ vk ·Xk = 1. (2)

No (k + 1)-incidence. Any (k + 1)-incidence is a point of the grid whose parameters
(X1, . . . , Xk+1) satisfy the system:

v1 ·X2 + v1 ·X3 + . . . + v1 ·Xk + v1 ·Xk+1 = 0
v1 ·X1 + v2 ·X3 + . . . + v2 ·Xk + v2 ·Xk+1 = 0
v2 ·X1 + v2 ·X2 + . . . + v3 ·Xk + v3 ·Xk+1 = 0
v3 ·X1 + v3 ·X2 + v3 ·X3 + . . . + v4 ·Xk + v4 ·Xk+1 = 0
. . .

vk−1 ·X1 + vk−1 ·X2 + vk−1 ·X3 + . . . + vk ·Xk+1 = 0
vk ·X1 + vk ·X2 + vk ·X3 + . . . + vk ·Xk = 1

SoCG 2018



17:10 Consistent Sets of Lines with no Colorful Incidence

Summing all these conditions yields(
k∑
i=1

vi

)
·

(
k+1∑
i=1

Xi

)
= 1,

which contradicts v1 + v2 + . . .+ vk = 0. So there is no (k + 1)-incidence.

k-consistency. Fix a line ` ∈ L1. It corresponds to some solution (X∗2 , . . . , X∗k+1) of
Equation (1). The grid points on ` are precisely the points of the form (X1, X

∗
2 , X

∗
3 , . . . , X

∗
k+1)

and are parameterized byX1. Each equation in the system above reduces to vj ·X1 = cj , where
cj is some constant vector (computed from the vj ’s and the X∗j ’s). Since X1 ∈ (Z/pZ)k−1

and any k− 1 of the vj are linearly independent, any choice of k− 1 equations has a solution.
This means that for any i, the line ` is concurrent with lines from all Lj with j ∈ [k+ 1] \ {i}.
The same goes with the lines of L2, . . . ,Lk+1 so the configuration is consistent.

Size. In this construction, the size of Li is the number of (X1, . . . , Xi−1, Xi+1, . . . , Xk+1)
in Vk satisfying Equation (1) – or (2) if i = k + 1. Hence |Li| = pk

2−k−1 for every i. The
smallest configuration built in this way thus has 2k2−k−1 lines per set (which is 32 for k = 3);
refer to Figure 3.

4 More on grid-like examples

Both Theorems 5 and 6 construct examples as projections of subsets of a regular grid in
higher dimension. We discuss here the properties of such constructions.

Number of lines. Consider a colored set of lines L = L1 ∪ L2 ∪ . . . ∪ Lk+1 in Rd. We say
that a t-incidence of L is flat if the lines meeting there are contained in an affine subspace of
dimension at most min(d, t)− 1. In any grid-like construction such as those in Theorems 5
and 6, every k-incidence is non-flat.

I Proposition 7. Let L = L1 ∪ L2 ∪ . . . ∪ Lm be a k-consistent colored set of lines in Rk

with no (k + 1)-incidence. If no k-incidence of L is flat, then

m∑
i=1
|Li| ≥

((m−1
k−1 )+k−1

k

)(
m−1
k−1

) .

The proof essentially follows the argument of Guth and Katz [11] for bounding the number
of joint among n lines; the main difference is that the consistency assumption makes their
initial pruning step unnecessary. We spell out the details in [4, Proposition 7]. For m = k+ 1,
the bound of Proposition 7 is 1

k

(2k
k

)
, so the number of lines required grows exponentially

with k.

Non-concurrent colors. Theorems 5 and 6 both use a grid in Rk+1 to start with k + 1
color classes, each of size nk, where every line is involved in n colorful incidences. Recall
that in this setup, every color class is concurrent (it consists of parallel lines). This is
in fact important, perhaps essential. To see this, note that any two of our starting color
classes contain arbitrarily large subsets whose intersection graph is dense. This is impossible,
generically, if we try to work with families of lines that are secant to two skew lines in R3. 6

6 This choice is motivated by the design of two-slit cameras [17, 2].
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I Proposition 8. For i = 1, 2, let Γi denote the set of lines secant to two fixed lines si and
s′i in R3. Let A and B be two sets of n lines from Γ1 and Γ2, respectively. If the lines s1, s′1,
s2 and s′2 are in generic position then the intersection graph of A and B has O

(
n4/3) edges.

Proof. First, note that the intersection graph of A and B is semi-algebraic: parameterizing
Γi by si × s′i ' R2 makes the incidence an algebraic relation, as can be deduced from the
bilinearity of incidence in Plücker coordinates. Next, remark that if this graph contains
a complete bipartite subgraph K3,3, then the lines {s1, s

′
1, s2, s

′
2} are in a special position.

Indeed, in the generic case, these two triples of lines come from the two families of rulings
of a quadric surface [18, §10]; the lines s1, s′1, s2 and s′2 are also rulings of that quadric,
so both s1 and s′1 intersect both s2 and s′2. In the non-generic cases, the six lines must be
coplanar with s1 and s2. Now, we apply the semi-algebraic version of the Kővári –Sós–Turán
theorem [7], and obtain that the number of edges of our graph is O

(
n4/3). J

We see the previous result as an indication that a straightforward adaptation of our probab-
ilistic construction to the case of two-slits is unlikely. Can the bound in Proposition 8 be
improved from O

(
n4/3) to O(n)?

I Remark. Note that the genericity assumption in Proposition 8 is on the sets Γi, not on
their subsets. The analogue for concurrent sets of lines would be to require that the centers
of concurrence are in generic position; this clearly does not prevent finding arbitrarily large
subsets with dense intersection graphs.

Extension to continuous sets of lines. The constructions of Theorems 5 and 6 can be
turned into continuous families of lines as follows.

First, we follow either construction up to the point where we have a family L of lines of
k + 1 colors in Rk+1 that is k-consistent, without colorful incidence, and where each color
class is parallel. Consider a parameter ε > 0, to be fixed later. For every i, we build a set
Li(ε) by considering every line ` ∈ Li in turn, and adding to Li every line `′ parallel to `
such that the distance between ` and `′ is most ε. Note that for ε < 1/2 the family L(ε) is
k-consistent and without colorful incidence.

Now, consider a generic projection f : Rk+1 → Rd for the desired d. For any ε > 0
the family L(ε) is k-consistent. We observe that for ε > 0 small enough, it also remains
without colorful incidence. Let τ denote the minimum distance, in the projection, between a
k-incidence and a line (of any color) not involved in that incidence. Every k-incidence in L
gives rise, in L(ε), to k tubes that intersect in a bounded convex set B of size O(ε). Choosing
ε > 0 such that the diameter of f(B) is less than τ/2 ensures that the corresponding family
f(L(ε)) has no colorful incidence.

For a given family of colored lines L define the set PS to be the set of points incident to
at least one line of each of the color classes in S; see Figure 1. Notice that in our examples,
for each set S of k colors the set PS is highly disconnected. As mentioned in the introduction,
Trager et al. [16] showed that if a family of sets of lines is 3-consistent and for each S of size
3, the set PS is convex, then the whole family is consistent. An interesting open question is
whether an analogue theorem holds if instead of convexity, we assume that for every set S of
size k, the set PS is sufficiently connected.

5 Constructions with few lines

The configurations constructed in Sections 2 and 3 have at least 32 lines per color. This is
considerably larger than the sets of lines involved in some of the questions around consistency
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that arise in computer vision. In the example of structure-from-motion mentioned in
introduction, when the camera is central, every color class has only 5 to 7 lines. It turns out
that for sufficiently small configurations, k-consistency does imply some colorful incidences:

I Lemma 9. Any 3-consistent colored set of lines L = L1 ∪ L2 ∪ L3 ∪ L4 in Rd with
|L1| = |L2| = |L3| = |L4| = 2 contains a colorful incidence.

Proof. Let us prove the case where d = 2; the general case follows by projecting onto a
generic 2-plane. Let Pi denote the dual of Li, and let P = P1 ∪ P2 ∪ P3 ∪ P4. Assume, by
contradiction, that L contains no colorful incidence, i.e. that no line intersects every Pi. Let
P ′ = P2 ∪ P3 ∪ P4 and let us apply a projective transform to map the points of P1 to the
horizontal and vertical directions, respectively. We call a line that contains a point of each of
P2, P3 and P4 a rainbow line.

Since L is 3-consistent, for any point x ∈ P and any choice of 2 other colors, there is a
line through x that contains a point of each of these colors. Since L has no colorful incidence,
there must exist three horizontal lines and three vertical lines that intersect P ′, and each
must contain exactly two points of P ′ of distinct colors. Moreover, no rainbow line can be
horizontal or vertical. But this implies that out of the 9 intersections between horizontal and
vertical lines, only 5 (the corners and the center) can be on a rainbow line. This contradicts
|P ′| = 6. J

We prove here a slightly stronger lower bound:

I Theorem 10. Let L = L1 ∪ L2 ∪ L3 ∪ L4 be a 3-consistent colored set of lines in R3 with
no colorful incidence and concurrent colors. If |L| < 24, then L is contained in a 2-plane.

Sketch of proof. We only outline our proof here and refer to [4] for the details. Assume, by
contradiction, that L is a configuration with all required properties and |L| < 24.

We first argue that L decomposes into a disjoint union of two colored sets of lines, each of
which has 4 colors, is 3-consistent, has no colorful incidence, and has concurrent color classes.
To do so, we consider the planes spanned by a line from the smallest color class, say L1, and
the center of concurrence of another color class, say L2. The assumptions force every line
of a color to intersect the lines of any other color in at least two points. This means that
any such plane contains at least two lines of L1, so there are at most two planes. The same
reason forces all lines from L2 to be contained in one plane or the other, and eventually the
same goes for L3 and L4.

We then conclude by arguing that each of the subsets has at least 12 lines, forcing L to
have at least 24 lines. This is straightforward if every color class has size at least 3. We argue
that if a color class has size two, then all other color classes must have size at least 4. J

Classification. We also provide a characterization of 3-consistent, 4-colored sets of lines in
R3 with no colorful incidence and 3 lines per color. Forgetting for a moment about colors,
any such configuration must consist of 12 lines and 12 points, every point on 3 lines and
every line through 3 points; in the classical tabulation of projective configurations, they are
called (123) configurations. It turns out that there are 229 possible incidence structures
meeting this description, and that every single one of them is realizable in R3 [9]. To analyze
what happens when we add back the colors and the consistency assumption, we consider two
special (123) configurations:
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A Reye-type configuration7 is a configuration obtained by selecting 12 out of the 16 lines
supporting the 12 edges and four long diagonals of a cube, in a way that produces a (12)3
configuration.
A Desargues-type configuration is defined from six planes Π1,Π2, . . . ,Π6 in R3 where (i)
each of {Π1,Π2, . . . ,Π5} and {Π1,Π2,Π3,Π6} is in general position, and (ii) Π4,Π5 and
Π6 intersect in a line. The configuration consists of all lines that are contained in exactly
two planes.

Here is our classification:

I Theorem 11. Let L = L1 ∪ L2 ∪ L3 ∪ L4 be a 3-consistent colored set of lines in R3 with
no colorful incidence. If every color class has size 3, and L is not contained in a 2-plane,
then it is a Desargues-type or a Reye-type configuration colored as in Figure 2.

Sketch of proof. We only outline our proof here, and refer to [4] for the details. The
hypothesis imply that every line must intersect the lines of any other color in at least two
points. This essentially allows us to establish that every color class consists of lines that are
either pairwise skew, or concurrent and not coplanar. This geometric restriction implies, in
turn, that for i 6= j, every line of Li intersects exactly two lines of Lj , and for any two lines
of Lj , there is exactly one line of Li that intersects them both.

We use these two observations to reduce the sets of candidates for the incidence structure
of the 12 lines. We fix a color class, say A = L1, and build a graph whose vertices are the
3-incidences involving a line of A, and where two vertices form an edge if the corresponding
incidences have a line in common. This graph can be checked to be one of two candidates:
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a2

a3

a1

a2

a3

b 3

c
2

c 1

c3 b 1

b
2

d
1

d
2

d 3

c 3 b 3

b
2

b
1c

1

c
2

d 3

d
1

d
2

This already determines all 3-incidences that involve L1. The rest follows by observing that
if the lines of L1 are pairwise skew (resp. concurrent and not coplanar) then two lines in
L2 ∪L3 ∪L4 that intersect the same pair (resp. different pairs) of lines of L1 cannot intersect
outside of L1. We end up with only two possible incidence structures (up to isomorphism,
and possibly relabeling):

(I) :
a1b2c3 a1b3d2 a1c2d3 b1c3d2
a2b3c1 a2b1d3 a2c3d1 b2c1d3
a3b1c2 a3b2d1 a3c1d2 b3c2d1

or (II) :
a1b2c3 a1b3d2 a1c2d3 b1c1d1
a2b3c1 a2b1d3 a2c3d1 b2c2d2
a3b1c2 a3b2d1 a3c1d2 b3c3d3.

Figure 2 gives non-planar realizations of both set of incidences. We argue that these are
essentially the only realizations by choosing a particular subset of points of incidence, and
showing that their coordinates determines the whole geometric realization. This last step
amounts, in each case, to an incidence theorem in projective geometry similar to the classic
theorems of Reye or Desargues. J

7 The (124163) configuration of Reye consists of 12 points and 16 lines in R3 such that every point is
on 4 lines and every line contains 3 points; its realizations are projectively equivalent to the 16 lines
supporting the 12 edges and four long diagonals of a cube, together with that cube’s vertices and center
and the 3 points at infinity in the directions of its edges
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