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Abstract
A terrain is an x-monotone polygonal curve, i.e., successive vertices have increasing x-coordinates.
Terrain Guarding can be seen as a special case of the famous art gallery problem where one
has to place at most k guards on a terrain made of n vertices in order to fully see it. In 2010, King
and Krohn showed that Terrain Guarding is NP-complete [SODA ’10, SIAM J. Comput. ’11]
thereby solving a long-standing open question. They observe that their proof does not settle the
complexity of Orthogonal Terrain Guarding where the terrain only consists of horizontal
or vertical segments; those terrains are called rectilinear or orthogonal. Recently, Ashok et al.
[SoCG’17] presented an FPT algorithm running in time kO(k)nO(1) for Dominating Set in the
visibility graphs of rectilinear terrains without 180-degree vertices. They ask if Orthogonal
Terrain Guarding is in P or NP-hard. In the same paper, they give a subexponential-time
algorithm running in nO(

√
n) (actually even nO(

√
k)) for the general Terrain Guarding and

notice that the hardness proof of King and Krohn only disproves a running time 2o(n1/4) under the
ETH. Hence, there is a significant gap between their 2O(n1/2 log n)-algorithm and the no 2o(n1/4)

ETH-hardness implied by King and Krohn’s result.
In this paper, we answer those two remaining questions. We adapt the gadgets of King and

Krohn to rectilinear terrains in order to prove that even Orthogonal Terrain Guarding is
NP-complete. Then, we show how their reduction from Planar 3-SAT (as well as our adaptation
for rectilinear terrains) can actually be made linear (instead of quadratic).
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1 Introduction

Terrain Guarding is a natural restriction of the well-known art gallery problem. It asks,
given an integer k, and an x-monotone polygonal chain or terrain, to guard it by placing
at most k guards at vertices of the terrain. An x-monotone polygonal chain is defined from
a sequence of n points of the real plane R2 p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)
such that x1 6 x2 6 . . . 6 xn as the succession of straight-line edges p1p2, p2p3, . . . , pn−1pn.
Each point pi is called a vertex of the terrain. We can make each coordinate of the vertices
rational without changing the (non-)existence of a solution. We will therefore assume that
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11:2 Orthogonal Terrain Guarding is NP-complete

the input is given as a list of n pairs of rational numbers, together with the integer k. A
point p lying on the terrain is guarded (or seen) by a subset S of guards if there is at least
one guard g ∈ S such that the straight-line segment pg is entirely above the polygonal chain.
The terrain is said guarded if every point lying on the terrain is guarded. The visibility graph
of a terrain has as vertices the geometric vertices of the polygonal chain and as edges every
pair which sees each other. Again two vertices (or points) see each other if the straight-line
segment that they define is above the terrain.

The Orthogonal Terrain Guarding is the same problem restricted to rectilinear
(also called orthogonal) terrains, that is every edge of the terrain is either horizontal or
vertical. In other words, pi and pi+1 share the same x-coordinate or the same y-coordinate.
We say that a rectilinear terrain is strictly rectilinear (or strictly orthogonal) if the horizontal
and vertical edges alternate, that is, there are no two consecutive horizontal (resp. vertical)
edges. Both problems come with two other variants: the continuous variant, where the
guards can be placed anywhere on the edges of the terrain (and not only at the vertices), and
the graphic variant, which consists of Dominating Set in the visibility graphs of (strictly
rectilinear) terrains. The original problem is sometimes called the discrete variant.

It is a folklore observation that for rectilinear terrains, the discrete and continuous
variants coincide. Indeed, it is an easy exercise to show that from any feasible solution using
guards in the interior of edges, one can move those guards to vertices and obtain a feasible
solution of equal cardinality. The only rule to respect is that if an edge, whose interior
contained a guard, links a reflex and a convex vertex, then the guard should be moved to
the reflex vertex. We will therefore only consider Orthogonal Terrain Guarding and
Dominating Set in the visibility graphs of strictly rectilinear terrains. By subdividing
the edges of a strictly rectilinear terrain with an at most quadratic number of 180-degree
vertices (i.e., vertices incident to two horizontal edges or to two vertical edges), one can make
guarding all the vertices equivalent to guarding the whole terrain. Therefore, Orthogonal
Terrain Guarding is not very different from Dominating Set in the visibility graph of
(non necessarily strictly) rectilinear terrains (and Terrain Guarding is not very different
from Dominating Set in the visibility graph of terrains).

Exponential Time Hypothesis. The Exponential Time Hypothesis (usually referred to as
the ETH) is a stronger assumption than P 6=NP formulated by Impagliazzo and Paturi [14].
A practical (and slightly weaker) statement of ETH is that 3-SAT with n variables cannot
be solved in subexponential-time 2o(n). Although this is not the original statement of the
hypothesis, this version is most commonly used; see also Impagliazzo et al. [15]. The so-called
sparsification lemma even brings the number of clauses in the exponent.

I Theorem 1 (Impagliazzo and Paturi [14]). Under the ETH, there is no algorithm solving
every instance of 3-SAT with n variables and m clauses in time 2o(n+m).

As a direct consequence, unless the ETH fails, even instances with a linear number of
clauses m = Θ(n) cannot be solved in 2o(n). Unlike P 6=NP, the ETH allows to rule out
specific running times. We refer the reader to the survey by Lokshtanov et al. for more
information about ETH and conditional lower bounds [23].

Planar satisfiability. Planar 3-SAT was introduced by Lichtenstein [22] who showed its
NP-hardness. It is a special case of 3-SAT where the variable/clause incidence graph is
planar even if one adds edges between two consecutive variables for a specified ordering of the
variables: x1, x2, . . . , xn; i.e., xixi+1 is an edge (with index i + 1 taken modulo n). This extra
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x1 x2 x3 x4 x5 x6 x7 x8

C+

C−

Figure 1 The bipartition (C+, C−) of a Planar 3-SAT-instance. The three-legged arches
represent the clauses. Here is a removal ordering for C−: remove the clause on x5, x6, x7 and its
middle variable x6, remove the variable x5, remove the clause on x3, x4, x7 and its middle variable
x4, remove the clause on x2, x3, x7 and its middle variable x3, remove the variable x7, remove the
clause x1, x2, x8 and its middle variable x2.

structure makes this problem particularly suitable to reduce to planar or geometric problems.
As a counterpart, the ETH lower bound that one gets from a linear reduction from Planar
3-SAT is worse than with a linear reduction from 3-SAT; it only rules out a running time
2o(
√

n). Indeed, Planar 3-SAT can be solved in time 2O(
√

n) and, unless the ETH fails,
cannot be solved in time 2o(

√
n). A useful property of any Planar 3-SAT-instance is that

its set of clauses C can be partitioned into C+ and C− such that both C+ and C− admit a
removal ordering. A removal ordering is a sequence of the two following deletions:

(a) removing a variable which is not present in any remaining clause
(b) removing a clause on three consecutive remaining variables together with the middle
variable

which ends up with an empty set of clauses. By three consecutive remaining variables,
we mean three variables xi, xj , xk, with i < j < k such that xi+1, xi+2, . . . , xj−1 and
xj+1, xj+2, . . . , xk−1 have all been removed already. The middle variable of the clause is xj .
For an example, see Figure 1.

Order claim. The following visibility property in a terrain made King and Krohn realize
that they will crucially need the extra structure given by the planarity of 3-SAT-instances.

I Lemma 2 (Order Claim, see Figure 2). If a, b, c, d happen in this order from the left
endpoint of the terrain to its right endpoint, a and c see each other, and b and d see each
other, then a and d also see each other.

In particular, this suggests that checking in the terrain if a clause is satisfied can only work
if the encodings of the three variables contained in the clause are consecutive.

Related work and remaining open questions for terrain guarding. Terrain Guarding
was shown NP-hard [18] and can be solved in time nO(

√
k) [1]. This contrasts with the

a

b
cc

d

Figure 2 The order claim.
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11:4 Orthogonal Terrain Guarding is NP-complete

parameterized complexity of the more general art gallery problem where an algorithm
running in time f(k)no(k/ log k) for any computable function f would disprove the ETH,
both for the variant Point Guard Art Gallery where the k guards can be placed
anywhere inside the gallery (polygon with n vertices) and for the variant Vertex Guard
Art Gallery where the k guards can only be placed at the vertices of the polygon [4],
even when the gallery is a simple polygon (i.e., does not have holes). Dominating Set on
the visibility graph of strictly rectilinear terrains can be solved in time kO(k)nO(1) [1], while
it is still not known if (Orthogonal) Terrain Guarding can be solved in FPT time
f(k)nO(1) with respect to the number of guards.

There has been a succession of approximation algorithms with better and better constant
ratios [16, 7, 2, 13]. Eventually, a PTAS was found for Terrain Guarding (hence for
Orthogonal Terrain Guarding) [20] using local search and an idea developed by Chan
and Har-Peled [6] and Mustafa and Ray [24] which consists of applying the planar separator
theorem to a (planar) graph relating local and global optima. Interestingly, this planar graph
is the starting point of the subexponential algorithm of Ashok et al. [1].

Again the situation is not nearly as good for the art gallery problem. If holes are allowed
in the polygon, the main variants of the art gallery problem are as hard as the Set Cover
problem; hence a o(log n)-approximation cannot exist unless P=NP [11]. Eidenbenz also
showed that a PTAS is unlikely in simple polygons [10]. For simple polygons, there is
a O(log log OPT )-approximation [17, 19] for Vertex Guard Art Gallery, using the
framework of Brönnimann and Goodrich to transform an ε-net finder into an approximation
algorithm, and for Point Guard Art Gallery there is a randomized O(log OPT )-
approximation under some mild assumptions [5], building up on [9, 8]. If a small fraction
of the polygon can be left unguarded there is again a O(log OPT )-approximation [12]. A
constant approximation is known for monotone polygons [21], where a monotone polygon is
made of two terrains sharing the same left and right endpoints and except those two points
the two terrains are never touching nor crossing.

The classical complexity of Orthogonal Terrain Guarding remains the most pressing
open question [1].

I Open question 1. Is Orthogonal Terrain Guarding in P or NP-hard?

In the conclusion of the paper by Ashok et al. [1], the authors observe that the construction
of King and Krohn [18] rules out for Terrain Guarding a running time of 2o(n1/4), under
the ETH. Indeed the reduction from Planar 3-SAT (which is not solvable in time 2o(

√
n)

unless the ETH fails) and its adaptation for Orthogonal Terrain Guarding in the
current paper have a quadratic blow-up: the terrain is made of Θ(m) = Θ(n) chunks
containing each O(n) vertices. On the positive side, the subexponential algorithm of Ashok
et al. runs in time 2O(

√
n log n) [1]. Therefore, there was still a significant gap between the

algorithmic upper and lower bounds.

I Open question 2. Assuming the ETH, what is the provably best asymptotic running time
for Terrain Guarding and Orthogonal Terrain Guarding?

We resolve both open questions. It is remarkable that within the last ten years, know-
ledge on the computational complexity of (Orthogonal) Terrain Guarding has gone
from a handful of constant-approximation algorithms and no lower bound at all to tight
approximability under P 6=NP and almost tight ETH-hardness. Our paper provides the two
missing pieces: the NP-hardness of Orthogonal Terrain Guarding and a versatile
refinement of a quadratic reduction from Planar 3-SAT to a linear reduction.
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Organization. In Section 2, we address Open question 1 by showing that Orthogonal
Terrain Guarding is also NP-hard. We design a rectilinear subterrain with a constant
number of vertices which simulates a triangular pocket surrounded by two horizontal segments.
We can then adapt the reduction of King and Krohn [18] to rectilinear terrains. Our orthogonal
gadgets make an extensive use of the triangular pockets.

In Section 3, we show how to make both reductions from Planar 3-SAT linear instead
of quadratic. This shows that, under the ETH, Terrain Guarding and Orthogonal
Terrain Guarding cannot be solved in 2o(

√
n), and thereby resolve Open question 2. Unless

the ETH fails, the 2O(
√

n log n)-time algorithm of Ashok et al. is optimal up to logarithmic
factors in the exponent.

2 Orthogonal Terrain Guarding is NP-complete

King and Krohn give a reduction with a quadratic blow-up from Planar 3-SAT to Terrain
Guarding [18]. They argue that the order claim entails some critical obstacle against
straightforward hardness attempts. In some sense, the subexponential algorithm running
in time nO(

√
n) of Ashok et al. [1] proves them right: unless the ETH fails, there cannot

be a linear reduction from 3-SAT to Terrain Guarding. It also justifies their idea of
starting from the planar variant of 3-SAT. Indeed, this problem can be solved in time 2O(

√
n).

However, we will see that the quadratic blow-up of their construction is avoidable. In the
next section, we show how to make their reduction (and ours for the orthogonal case) linear.
In this section, we focus on our main result: the NP-hardness of Orthogonal Terrain
Guarding.

From far, King and Krohn’s construction looks like a V -shaped terrain. If one zooms in,
one perceives that the V is made of Θ(n) connected subterrains called chunks. If one zooms
a bit more, one sees that the chunks are made of up to n variable encodings each. Let us
order the chunks from bottom to top; in this order, the chunks alternate between the right
and the left of the V (see Figure 3).

The construction is such that only two consecutive chunks interact. More precisely, a
vertex of a given chunk Ti only sees bits of the terrain contained in Ti−1, Ti, and Ti+1.
Half-way to the top is the chunk T0 that can be seen as the initial one. It contains the

T2 T1

T0

T−1

T−2

Figure 3 The V -shaped terrain and its ordered chunks. The chunk Ti only sees parts of chunks
Ti−1 and Ti+1. The initial chunk T0 contains an encoding of each variable. Below this level (chunks
with a negative index), we will check the clauses of C−. Above this level (chunks with a positive
index), we will deal with the clauses of C+.

SoCG 2018



11:6 Orthogonal Terrain Guarding is NP-complete

encoding of all the variables of the Planar 3-SAT-instance. Concretely, the reasonable
choices to place guards on the chunk T0 are interpreted as setting each variable to either true
or false. Let (C+, C−) be the bipartition of the clauses into two sets with a removal ordering
for the variables ordered as x1, x2, . . . , xn. Let C+

1 , C+
2 , . . . , C+

s (resp. C−1 , C−2 , . . . , C−m−s)
be the order in which the clauses of C+ (resp. C−) disappear in this removal ordering. Every
chunk below T0, i.e., with a negative index, are dedicated to checking the clauses of C− in the
order C−1 , C−2 , . . . , C−m−s, while every chunk above T0, i.e., with a positive index, will check
if the clauses of C+ are satisfied in the order C+

1 , C+
2 , . . . , C+

s . The placement of the chunks
will propagate downward and upward the truth assignment of T0, and simulate the operations
of a removal ordering: checking/removing a clause and its middle variable, removing a useless
variable. Note that for those gadgets, we will have to distinguish if we are going up (C+) or
going down (C−). In addition, the respective position of the positive and negative literals of
a variable appearing in the next clause to check will matter. So, we will require a gadget to
invert those two literals if needed.

To sum up, the reduction comprises the following gadgets: encoding a variable (variable
gadget), propagation of its assignment from one chunk to a consecutive chunk (interaction
of two variable gadgets), inverting its two literals (inverter), checking a clause upward and
removing the henceforth useless middle variable (upward clause gadget), checking a clause
downward and removing the henceforth useless middle variable (downward clause gadget),
removing a variable (upward/downward deletion gadget). Although King and Krohn rather
crucially rely on having different slopes in the terrain, we will mimic their construction gadget
by gadget with an orthogonal terrain. We start by showing how to simulate a restricted form
of a triangular pocket. This will prove to be a useful building block.

The simulation of a right trapezoid pocket giving rise to the right triangular pocket is
depicted on Figure 4. The idea is that the vertex p at the bottom of the pit is only seen
by four vertices (no vertex outside this gadget will be able to see p). Among those four
vertices, u sees a strict superset of what the others see. Hence, we can assume with no loss
of generality that a guard is placed on u. Now, u sees the part of the terrain represented in
bold. Even if vertex u sees a part of the vertical edge incident to a (actually the construction
could avoid it), this information can be discarded since the guard responsible for seeing a

will see this edge entirely. Everything is therefore equivalent to guarding the terrain with the
right trapezoid pocket drawn in the middle of Figure 4 with a budget of guards decreased

a

u

p

→ εa → a

Figure 4 Simulation of a right trapezoid pocket and a right triangular pocket. The right triangular
pocket is obtained from the right trapezoid by making the distance ε sufficiently small.



É. Bonnet and P. Giannopoulos 11:7

uv

→
ε

→

Figure 5 Simulation of a trapezoid pocket and a triangular pocket. The triangular pocket is
obtained from the trapezoid by making the distance ε arbitrary small.

by one. If the length of the horizontal edge incident to a is made small enough, then every
guard seeing a will see the whole edge, thereby simulating the right triangular pocket to the
right of the figure.

The acute angle made by the right triangular pocket and the altitude of the leftmost and
rightmost horizontal edge in this gadget can be set at our convenience. We will represent
triangular pockets in the upcoming gadgets. The reader should keep in mind that they are
actually a shorthand for a rectilinear subterrain.

With the same idea, one can simulate a general triangular pocket as depicted on Figure 5,
with the budget decreased by two guards. Again, the non-reflex angle made by the triangular
pocket and the altitude of the leftmost and rightmost horizontal edges can be freely chosen.
The reason why those triangular pockets do not provide a straightforward reduction from the
general Terrain Guarding problem is that the pocket has to be preceded and succeeded
by horizontal edges.

The variable gadget is depicted on Figure 6. It is made of three right triangular pockets.
Placing a guard on vx (resp. vx) is interpreted as setting the variable x to true (resp. false).

The propagation of a variable assignment from one chunk to the next chunk is represented
on Figure 7. On all the upcoming figures, we adopt the convention that red dashed lines
materialize a blocked visibility (the vertex cannot see anything below this line) and black
dashed lines highlight important visibility which sets apart the vertex from other vertices.

dx,x

vx

vx

dx

dxTi towards Ti−1

towards Ti+1

Figure 6 A variable gadget. We omit superscript i on all the labels. Placing a guard at vertex vx

to see dx corresponds to setting variable x to true, while placing it at vertex vx to see dx corresponds
to setting x to false. Both vi+1

x and vi+1
x

of Ti+1 (not represented on this picture) see dx,x of Ti.

SoCG 2018
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Ti

Ti+1

towards Ti−1

vx

vx
dx

dx

dx,x

vy

vy

dy

dy

vx

dx
vx

dx

vy

vy

dy

dy

Figure 7 Propagating variable assignments upward and downward. Note that the positive literal
alternates being above or below the negative literal. We represent two variables x and y to illustrate
how the corresponding gadgets are not interfering.

Say, one places a guard at vertex vi
x to see (among other things) the vertex di

x. Now, di
x

and di
x,x remain to be seen. The only way of guarding them with one guard is to place it at

vertex vi+1
x . Indeed, only vertices on the chunk Ti+1 can possibly see both. But the vertices

higher than vi+1
x cannot see them because their visibility is blocked by vi+1

x or a vertex to
its right, while the vertices lower than vi+1

x are too low to see the very bottom of those two
triangular pockets. The same mechanism (too high → blocked visibility, too low → too flat
angle) is used to ensure that the different variables do not interfere.

Symmetrically, the only vertex seeing both di
x,x and di

x is vi+1
x . So, placing a guard

at vi
x forces to place the other guard at vi+1

x . The chosen literal goes from being above
(resp. below) in chunk Ti to being below (resp. above) in chunk Ti+1. Each d-vertex (i.e.,
vertex of the form d••) has its visibility dominated in the one of a v-vertex (of the form v••).
Indeed, the visibility of di

x and di
x is contained in the visibilty of vi

x and vi
x, respectively,

while di
x,x has its visibility dominated by the one of vi+1

x or vi+1
x (what a vertex sees from

below in a rectilinear terrain is irrelevant). Each non v-vertex has its visibility contained
in the one of a v-vertex. Seeing the d-vertices with v-vertices is enough to see the entire
subterrain/chunk. Thus, the problem can be seen as a red-blue domination: taking v-vertices
(red) to dominate the d-vertices (blue). The red-blue visibility graph corresponding to the
propagation of variable assignments is shown on Figure 8. The only way of guarding the 3z

d-vertices on chunk T i (corresponding to z variables) with a budget of z guards on T i and z

guards on T i+1 is to place z guards on v-vertices of chunk Ti and z guards on v-vertices of
chunk Ti+1 in a consistent way: the assignment of each variable is preserved.

We also need an alternative way of propagating truth assignments such that the chosen
literal stays above or stays below on its respective chunk. This gadget is called inverter. It
requires an extra guard compared to the usual propagation. The inverter gadget allows us to
position the three literals of the clause to check and delete at the right spots.

It consists of a right triangular pocket whose bottom vertex is di
x,x surrounded by two

rectangular pockets whose bottom vertices ei
x, f i

x and ei
x, f i

x are only seen among the v-vertices
by vi+1

x , vi
x and vi+1

x , vi
x, respectively. On top of the rectangular pockets, gi

x sees both ei
x and
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. . . . . .

TiTi−1

vi
x

vi
xvi−1

x

vi−1
x

vi+1
x

vi+1
xdi

x

di
x,x

di
xdi−1

x

di−1
x,x

di−1
x

vi
y

vi
yvi−1

y

vi−1
y

vi+1
y

vi+1
ydi

y

di
y,y

di
ydi−1

y

di−1
y,y

di−1
y

Figure 8 The red-blue domination graph for variable-assignment propagation.

vx

vx

vx

vx

gx

gx dx,xex fx

ex fxTi

towards Ti−1

Ti+1

Figure 9 The inverter gadget. We omit the superscripts i and i + 1. If a guard should be placed
on at least one vertex among v`

x and v`
x (for ` ∈ {i, i + 1}), then the two ways of seeing the four

vertices ei
x, f i

x, ei
x, f i

x with three guards are {vi
x, gi

x, vi+1
x

} and {vi
x, gi

x, vi+1
x }.

f i
x, whereas gi

x sees both ei
x and f i

x. Actually, gi
` is only one of the four vertices seeing both

ei
` and f i

` (which includes ei
` and f i

` themselves). We choose gi
` as a representative of this

class. What matters to us is that the four vertices seeing both ei
` and f i

` do not see anything
more than the rectangular pocket; the other parts of the terrain that they might guard are
seen by any v-vertex on chunk Ti+1 anyway.

The pockets are designed so that vi
x and vi+1

x (resp. vi
x and vi+1

x ) together see the whole
edge ei

xf i
x (resp. ei

xf i
x) and therefore the entire pocket. Again, the only two v-vertices to

see di
x,x are vi+1

x and vi+1
x . The e- and f -vertices are added to the blue vertices and the

g-vertices are added to the red vertices, since the latter sees more than the former, and since
seeing the e- and f -vertices are sufficient to also see the g-vertices. The red-blue domination
graph is depicted on Figure 10.

Guarding di−1
x,x (resp. guarding di

x,x) requires to take one v-vertex among vi
x, vi

x (resp. vi+1
x ,

vi+1
x ). Note that if one makes two inconsistent choices such as placing guards at vi

x and vi+1
x

(or vi
x and vi+1

x ), then it is not possible to see both rectangular pockets with one extra guard.
Whereas, placing three guards at vi

x, gi
x, vi+1

x or vi
x, gi

x, vi+1
x would cover both rectangular

pockets; hence the propagation of the truth assignment.

SoCG 2018
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Ti

vi
x

gi
x

gi
x

vi
x

f i
x

ei
x

di
x,x

ei
x

f i
x

vi+1
x

vi+1
x

Figure 10 The red-blue domination graph for the inverter gadget.

wC

vx

vy

vz

vz

vx

vx

vy

vz

vz

vx

Ti

Ti−1

Figure 11 The downward clause gadget for C = x ∨ y ∨ ¬z. We use the usual propagation for
variables x and z. Variable y disappears from Ti−1 and downward. The inverters have been used to
place, on Ti, the literals of C at positions 1, 4, and 5. Vertex wC is seen only by vi

y, vi
z, and vi−1

x

(circled); hence it is seen if and only if the chosen assignment satisfies C.

So far, the gadgets that we presented can be used going up along the chunks of positive
index as well as going down along the chunks of negative index. For the clause gadgets, we
will have to distinguish the downward clause gadget when we are below T0 (and going down)
and the upward clause gadget when we are above T0 (and going up). The reason we cannot
design a single gadget for both situations is that the middle variable which needs be deleted
is in one case, in the lower chunk, and in the other case, in the higher chunk.

To check a clause downward on three consecutive variables x, y, z, we place on chunk
Ti, thanks to a preliminary use of inverter gadgets, the three literals satisfying the clause
at the relative positions 1, 4, and 5 when the six literals of x, y, z are read from top to
bottom. Figure 11 shows the downward clause gadget for the clause x ∨ y ∨ ¬z. On chunk
Ti−1 just below, we find the usual encoding of variables x and z, which propagates the truth
assignment of those two variables. The variable gadget of y is replaced by the right triangular
pocket whose bottom is di−1

y,y , and a general triangular pocket whose bottom wC is only seen
by the v-vertices vi−1

`1
(on chunk Ti−1), and vi

`2
and vi

`3
(on chunk Ti), with C = `1 ∨ `2 ∨ `3.

On chunk Ti−1 and below, no v-vertex corresponding to variable y can be found.
Hence, vertex wC is only guarded if the choices of the guards at the v-vertices correspond

to an assignment satisfying C. The terrain visible to wC is also covered by vi−1
`1

, hence it is a
blue vertex. The red-blue domination graph associated to a downward clause is represented
on Figure 12.

To check a clause upward on three consecutive variables x, y, z, we place on chunk Ti,
thanks to a preliminary use of inverter gadgets, the three literals satisfying the clause at the
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TiTi−1

vi
z

vi
z

vi
y

vi
y

vi
x

vi
x

wC

di−1
y,y

vi−1
z

vi−1
z

vi−1
x

vi−1
x

Figure 12 The red-blue domination graph for the downward clause gadget for C = x ∨ y ∨ ¬z.
The double arcs symbolize that, due to the propagator, the variable-assignment of x and z should
be the same between Ti and Ti−1. The only assignment that does not dominate wC is x, y, z, as it
should.

vx

vy

vz

vz

vx

vx

vy

vz

vz

vx

wC

Ti

Ti+1

Figure 13 The upward clause gadget for C = x ∨ ¬y ∨ z. We use the usual propagation for
variables x and z. Variable y disappears from Ti+1 and upward. The inverters have been used to
place, on Ti, the literals of C at positions 1, 3, and 6. Vertex wC is seen only by vi

y, vi+1
x , and vi+1

z

(circled); hence it is seen if and only if the chosen assignment satisfies C.

relative positions 1, 3, and 6 when the six literals of x, y, z are read from top to bottom. We
exclude the three right triangular pockets for the encoding of the middle variable y. At the
same altitude as the v-vertex corresponding to the literal of y satisfying the clause, we have
a designated vertex wC . On the chunk Ti+1, we find the usual encoding of variables x and z,
which propagates the truth assignment of those two variables, but the encoding of variable y

is no longer present (in this chunk and in all the chunks above). Figure 13 shows the upward
clause gadget for the clause x ∨ ¬y ∨ z.

Vertex wC is only seen by the v-vertices vi
`2

(on chunk Ti) and vi+1
`1

and vi+1
`3

(on chunk
Ti+1), where C = `1 ∨ `2 ∨ `3. The particularity of two consecutive chunks encoding an
upward clause gadget is that Ti is not entirely below Ti+1. In fact, all the encodings of
variables above y on chunk Ti+1 are above all the encodings of variables above y on chunk
Ti. The latter are above all the encodings of variables below y on chunk Ti+1, which are, in
turn, above all the encodings of variables below y on chunk Ti. Again, vertex wC is only
guarded if the choices of the guards at the v-vertices correspond to an assignment satisfying
C, as depicted in Figure 14.

Finally, we design upward and downward variable deletion gadgets; the description of
these gadgets can be found in the full version [3]. The reader can just think of them as
simplifications of the clause gadgets where vertex wc is suppressed. This ends the list of
gadgets.

SoCG 2018
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Ti Ti+1

vi
z

vi
z

vi
y

vi
y

vi
x

vi
x

wC

vi+1
z

vi+1
z

vi+1
x

vi+1
x

Figure 14 The red-blue domination graph for the upward clause gadget for C = x ∨ ¬y ∨ z. The
double arcs symbolize that, due to the propagator, the variable-assignment of x and z should be the
same between Ti and Ti+1. The only assignment that does not dominate wC is x, y, z, as it should.

The gadgets are assembled as in the reduction of King and Krohn. From the initial
chunk T0 and going up (resp. going down), one realizes step by step (chunk by chunk) the
elementary operations to check the clauses of C+ (resp. C−) in the order C+

1 , C+
2 , . . . C+

s

(resp. C−1 , C−2 , . . . C−m−s) including propagation, inversion of literals, upward clause checking
(resp. downward clause checking), and upward variable deletion (resp. downward variable
deletion). Each chunk has O(n) vertices. Each clause takes O(1) chunks to be checked. So
the total number of chunks is O(m) = O(n) and the total number of vertices is O(n2).

We call total budget the total number of guards allowed. The total budget is fixed as one
per right triangular pocket, two per general triangular pocket, one per variable encoding
(including the slightly different one at inverters and the one just before an upward deletion),
and one extra per inverter. Note that the lone d•x,x in a downward clause gadget or a
downward deletion gadget does not count as a variable gadget and does not increase the
budget. To give an unambiguous definition of the number of variable encodings, we count
the number of pairs i, x such that the vertices vi

x and vi
x exist.

We explained why the guards inside the triangular pockets can be placed (and the budget
reduced). The correctness of the reduction is similar to King and Krohn’s. The d-vertices
force the placement of at least one guard in each variable encoding. We argued this to be
sufficient to see all the right triangular and rectangular pockets if and only if the variable
assignments are consistent between two consecutive chunks (by completing with guards gi

` at
each inverter where ` is the literal chosen to be true). The terrain is entirely seen whenever
the m general triangular pockets corresponding to the m clauses are all guarded, which
happens if and only if the truth assignment chosen on chunk T0 satisfies all the clauses.

This shows that Orthogonal Terrain Guarding and Dominating Set on visibility
graph of rectilinear terrains are NP-hard. Recall that the continuous variant of Orthogonal
Terrain Guarding is equivalent to its discrete counterpart. Membership in NP of all those
variants is therefore trivial. What is left to prove is that Dominating Set on the visibility
graph of strictly rectilinear terrains is NP-hard. Our reduction almost directly extends to this
variant. The only issue is with the general triangular pocket gadget. Indeed, when the two
guards are placed inside the pocket, all the internal vertices are guarded. In Orthogonal
Terrain Guarding, one still needed to see the interior of the tiny top horizontal edge.
This is no longer required in Dominating Set. Observe that the general triangular pocket
is only used in the downward clause gadget. In the full version [3], we explain how we can
make the downward clause gadget without the general triangular pocket.
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3 ETH-Hardness of (Orthogonal) Terrain Guarding

We now explain how to turn those quadratic reductions into linear reductions by taking a
step back. This step back is the reduction from 3-SAT to Planar 3-SAT by Lichtenstein
[22], or rather, the instances of Planar 3-SAT it produces. The idea of Lichtenstein in this
classic paper is to replace each intersection of a pair of edges in the incidence graph of the
formula by a constant-size planar gadget, called crossover gadget. Using the sparsification of
Impagliazzo et al. [15], even instances of 3-SAT with a linear number of clauses cannot be
solved in subexponential time, under the ETH. Hence, the number of edges in the incidence
graph of the formula can be assumed to be linear in the number N of variables. Thus there
are at most a quadratic number n = Θ(N2) of intersections; which implies a replacement
of the intersections by a quadratic number n of constant-size crossover gadgets. We cannot
expect to improve over the reduction of Lichtenstein since there is a matching algorithm
solving Planar 3-SAT in time 2O(

√
n).

What we will do instead is to reduce the number of chunks that we actually need and
to get a better upper bound of the number of vertices in a large fraction of the chunks. In
the reduction by King and Krohn, each single clause incurs a constant number of chunks:
to place the literals at the right position and to check the clause. The only requirement for
a clause to be checked is that it operates on consecutive variables (discarding the deleted
variables of the linear order). Therefore, nothing prevents us from checking several clauses in
parallel if they happen to be on disjoint and consecutive variables.

A first observation is that the Θ(n) clauses of the crossover gadgets can be checked in
parallel with only O(1) chunks. Indeed, the constant number of clauses within each crossover
gadget operates on pairwise-disjoint sets of variables. A second observation is that in all
the remaining chunks only Θ(N) variables and Θ(N) clauses are left to be checked: they
correspond to the original variables and clauses of the sparse 3-SAT instances. Therefore,
the total number of vertices needed for the terrain is O(1) × Θ(n) + Θ(N) × Θ(N) =
Θ(n) + Θ(N2) = Θ(n).

Thus, assuming the ETH, the 2O(
√

n log n) algorithm for guarding terrains [1] is optimal
up to the logarithmic factor in the exponent for both Orthogonal Terrain Guarding
and Terrain Guarding.

4 Perspectives

We have shown that Orthogonal Terrain Guarding is NP-complete, as well as its
variants. We have presented a generic way of tightening quadratic reductions from Planar 3-
SAT to linear. This applies to Terrain Guarding and Orthogonal Terrain Guarding
and establishes that the existing 2Õ(

√
n)-time algorithm is essentially optimal under the ETH,

up to logarithmic factors in the exponent.
The principal remaining open questions concern the parameterized complexity of terrain

guarding.
(1) Is Terrain Guarding FPT parameterized by the number of guards?
(2) Is Orthogonal Terrain Guarding FPT parameterized by the number of guards?
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