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Abstract
In this paper we discuss three results. The first two concern general sets of positive reach: We first
characterize the reach by means of a bound on the metric distortion between the distance in the
ambient Euclidean space and the set of positive reach. Secondly, we prove that the intersection
of a ball with radius less than the reach with the set is geodesically convex, meaning that the
shortest path between any two points in the intersection lies itself in the intersection. For our
third result we focus on manifolds with positive reach and give a bound on the angle between
tangent spaces at two different points in terms of the distance between the points and the reach.
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1 Introduction

Metric distortion quantifies the maximum ratio between geodesic and Euclidean distances
for pairs of points in a set S. The reach of S, defined by H. Federer [15], is the infimum of
distances between points in S and points in its medial axis. Both reach and metric distortion
are central concepts in manifold (re-)construction and have been used to characterize the
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size of topological features. Amenta and Bern [1] introduced a local version of the reach in
order to give conditions for homeomorphic surface reconstruction and this criterion has been
used in many works aiming at topologically faithful reconstruction. See the seminal paper of
Niyogi, Smale and Weinberger [19] and Dey’s book [12] for more context and references. A
direct relation between the reach and the size of topological features is simply illustrated by
the fact that the intersection of a set with reach r > 0 with a ball of radius less than r has
reach at least r and is contractible [3]. In a certain way, metric distortion also characterizes
the size of topological features. This is illustrated by the fact that a compact subset of
Rn with metric distortion less than π/2 is simply connected (Section 1.14 in [16] , see also
appendix A by P. Pansu where sets with a given metric distortion are called quasi convex
sets).

In the first part of this paper, we provide tight bounds on metric distortion for sets of
positive reach and, in a second part, we consider submanifolds of Rd and bound the angle
between tangent spaces at different points. Whenever we mention manifolds we shall tacitly
assume that it is embedded in Euclidean space. Previous versions of the metric distortion
result, restricted to the manifold setting can be found in [19]. A significant amount of
attention has gone to tangent space variation, see [4, 6, 8, 11, 12, 13, 19] to name but a few.

Our paper improves on these bounds, extends the results beyond the case of smooth
manifolds and offers new insights and results. These results have immediate algorithmic
consequences by, on one hand, improving the sampling conditions under which known
reconstruction algorithms are valid and, on the other hand, allowing us to extend the
algorithms to the class of manifolds of positive reach, which is much larger than the usually
considered class of C2 manifolds. Indeed, the metric distortion and tangent variation bounds
for C1,1 manifolds presented in this paper in fact suffice to extend the triangulation result of
C2 manifolds embedded in Euclidean space given in [7] to arbitrary manifolds with positive
reach, albeit with slightly worse constants.

Overview of results. For metric distortion, we extend and tighten the previously known
results so much that our metric distortion result can be regarded as a completely new
characterization of sets of positive reach. In particular, the standard manifold and smoothness
assumptions are no longer necessary. Based on our new characterization of the reach by
metric distortion, we can prove that the intersection of a set of positive reach with a ball
with radius less than the reach is geodesically convex. This result is a far reaching extension
of a result of [9] that has attracted significant attention, stating that, for smooth surfaces,
the intersection is a pseudo-ball. Bounding the metric distortion may be a practical way to
estimate the reach of a set in high ambient dimension.

To study tangent variation along manifolds, we will consider two different settings, namely
the C2 setting, for which the bounds are tight, and the C1,1 setting, where we achieve slightly
weaker bounds.

The exposition for C2 manifolds is based on differential geometry and is a consequence of
combining the work of Niyogi, Smale, and Weinberger [19], and the two dimensional analysis
of Attali, Edelsbrunner, and Mileyko [2] with some observations concerning the reach. We
would like to stress that some effort went into simplifying the exposition, in particular the
part of [19] concerning the second fundamental form.

The second class of manifolds we consider consists of closed C1,1 manifoldsM embedded
in Rd. We restrict ourselves to C1,1 manifolds because it is known that closed manifolds
have positive reach if and only if they are C1,1, see Federer [15, Remarks 4.20 and 4.21] and
Scholtes [20] for a history of this result. Here we do not rely on differential geometry apart
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from simple concepts such as the tangent space. In fact most proofs can be understood in
terms of simple Euclidean geometry. Moreover our proofs are very pictorial. Although the
bounds we attain are slightly weaker than the ones we attain using differential geometry, we
should note that we have sometimes simplified the exposition at the cost of weakening the
bound.

We also prove that the intersection of a C1,1 manifold with a ball of radius less than the
reach of the manifold is a topological ball. This is a generalization of previous results. A
sketch of a proof of the result in the C2 case has been given by Boissonnat and Cazals [5].
Our result also extends a related result of Attali and Lieutier [3]. It is furthermore related to
the convexity result, but certainly not the same. This is because spaces can be geodesically
convex without being topological disks, think for example of the equator of the sphere.

2 Metric distortion and convexity

For a closed set S ⊂ Rd, dS denotes the geodesic distance in S, i.e. dS(a, b) is the infimum
of lengths of paths in S between a and b. If there is at least one path between a and b

with finite length, then it is known that a minimizing geodesic, i.e. a path with minimal
length connecting a to b exists (see the second paragraph of part III, section 1: “Die Existenz
geodätischer Bogen in metrischen Räumen” in [17]).

The next theorem can be read as an alternate definition of the reach, based on metric
distortion. Observe that for fixed |a− b|, the function r 7→ 2r arcsin |a−b|2r is decreasing.

I Theorem 1. If S ⊂ Rd is a closed set, then

rchS = sup
{
r > 0, ∀a, b ∈ S, |a− b| < 2r ⇒ dS(a, b) ≤ 2r arcsin |a− b|2r

}
,

where the sup over the empty set is 0.

Proof. Lemma 5 states that if r′ < rchS then

∀a, b ∈ S, |a− b| < 2r′ ⇒ dS(a, b) ≤ 2r′ arcsin |a− b|2r′ .

This gives us

sup
{
r > 0, ∀a, b ∈ S, |a− b| < 2r ⇒ dS(a, b) ≤ 2r arcsin |a− b|2r

}
≥ rchS.

If rchS =∞, i.e. if S is convex, the theorem holds trivially. We assume now that the
medial axis is non empty, i.e. rchS < ∞. Then by definition of the reach, if r′ > rchS,
there exists x ∈ Rd in the medial axis of S and a, b ∈ S, a 6= b such that r′ > rx =
d(x,S) = d(x, a) = d(x, b). If for at least one of such pairs {a, b} one has dS(a, b) =∞ then
|a− b| ≤ 2rx < 2r′ and:

sup
{
r > 0, ∀a, b ∈ S, |a− b| < 2r ⇒ dS(a, b) ≤ 2r arcsin |a− b|2r

}
< r′

If not, consider a path γ in S between a and b: γ(0) = a, γ(1) = b. Because γ([0, 1]) lies
outside the open ball B(x, rx)◦, its projection on the closed ball B(x, rx) cannot increase
lengths. It follows that, for any r ≥ r′:

dS(a, b) ≥ 2rx arcsin |a− b|2rx
> 2r arcsin |a− b|2r

SoCG 2018
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which gives, for any r′ > rchS,

∃a, b ∈ S,∀r ≥ r′ |a− b| < 2r and dS(a, b) > 2r arcsin |a− b|2r ,

and therefore

sup
{
r > 0, ∀a, b ∈ S, |a− b| < 2r ⇒ dS(a, b) ≤ 2r arcsin |a− b|2r

}
≤ r′. J

I Corollary 2. Let S ⊂ Rd be a closed set with positive reach r = rchS > 0. Then, for any
r′ < rchS and any x ∈ Rd, if B(x, r′) is the closed ball centered at x with radius r′, then
S ∩B(x, r′) is geodesically convex in S.

Proof. First it follows from the theorem that if a, b ∈ S ∩B(x, r′), then dS(a, b) <∞ which
means that there exists a path of finite length in S between a and b. From [17] there is at
least one minimizing geodesic in S between a and b.

For a contradiction assume that such a geodesic γ goes outside B(x, r′). In other words
there is at least one non empty open interval (t1, t2) such that γ(t1), γ(t2) ∈ ∂B(x, r′) and
γ((t1, t2)) ∩B(x, r′) = ∅. But then, since the projection on the ball B(x, r′) reduces lengths,
one has:

dS(γ(t1), γ(t2)) > 2r′ arcsin |γ(t1)− γ(t2)|
2r′ ,

a contradiction with the theorem. J

2.1 Projection of the middle point
For a closed set S ⊂ Rd with positive reach r = rchS > 0 and a point m ∈ Rd with
d(m,S) < r, πS(m) denotes the projection of m on S as depicted on Figure 1 on the left.

I Lemma 3. Let S ⊂ Rd be a closed set with reach r = rchS > 0. For a, b ∈ S such that
δ = |a−b|

2 < r and m = a+b
2 one has |πS(m)−m| ≤ ρ, with ρ = r −

√
r2 − δ2.

The disk of center m and radius ρ appears in green in Figure 1 left and right.

Proof. We shall now use a consequence of Theorem 4.8 of [15]. In the following section we shall
discuss this result for the manifold setting, where it generalizes the tubular neighbourhood
results for C2 manifolds from differential geometry and differential topology. For the moment
we restrict ourselves to the following: If πS(m) 6= m claim (12) in Theorem 4.8 of [15] gives
us:

∀λ ∈ [0, r), πS
(
πS(m) + λ

m− πS(m)
|m− πS(m)|

)
= πS(m),

which means that for λ ∈ [0, r):

y(λ) = πS(m) + λ
m− πS(m)
|m− πS(m)|

is closer to πS(m) than both to a and to b (see Figure 1).
Without loss of generality we assume that |a − πS(m)| ≥ |b − πS(m)|. We denote

µ = |πS(m)−m| and want to prove that µ ≤ ρ.
In the plane spanned by a, b, πS(m) we consider the following frame (m, a−m|a−m| , τ), where

m denotes the origin, τ is a unit vector orthogonal to a−m and such that 〈τ, πS(m)−m〉 ≤ 0.
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Figure 1 On the left the projection πS(m) is contained in the disk of center m and radius ρ. The
notation used in the proof of Lemma 3 is also added. From the right figure it is easy to deduce that
ρ = r −

√
r2 − δ2.

For some θ ∈ [0, π/2], the coordinates of πS(m) in the frame are (−µ sin θ,−µ cos θ).
The coordinate of a are (δ, 0) and the coordinates of y(λ) are, as shown in Figure 1,
((λ− µ) sin θ, (λ− µ) cos θ). Since y(λ) is closer to πS(m) than to a, one has

∀λ ∈ [0, r), (δ − (λ− µ) sin θ)2 + (λ− µ)2 cos2 θ > λ2.

This is a degree 2 inequality in µ. One gets, for any λ ∈ [0, r), if ∆ ≥ 0,

µ /∈
[
(λ− δ sin θ)−

√
∆, (λ− δ sin θ) +

√
∆
]
,

with ∆ = (λ−δ sin θ)2− (δ2−2δλ sin θ) = λ2−δ2 +(δ sin θ)2. For λ ≥ δ one has ∆ ≥ λ2−δ2.
Therefore: (λ − δ sin θ) −

√
∆ ≤ λ −

√
λ2 − δ2 and since λ 7→ λ −

√
λ2 − δ2 is continuous,

one has:

inf
λ<r

{
(λ− δ sin θ)−

√
∆
}
≤ r −

√
r2 − δ2 = ρ,

also, when λ ≥ δ one has
√

∆ ≥ δ sin θ and (λ− δ sin θ) +
√

∆ ≥ δ. Since µ ≤ d(m, a) = δ,
one finds that µ ≤ ρ. J

The following simple geometric Lemma is used in the next section.

I Lemma 4. Consider a circle C̃ of radius r and two points a, b ∈ C̃ with |a− b|/2 = δ < r.

Define the middle point m = a+b
2 and consider a point p such that |p−m| ≤ ρ = r−

√
r2 − δ2.

Denote C̃a,b the shortest of the arcs of the circle in C̃ bounded by a and b. Define p̃ ∈ C̃a,b
as the unique point in C̃a,b such that |a−p̃||b−p̃| = |a−p|

|b−p| , then we have |a − p| ≤ |a − p̃| and
|b− p| ≤ |b− p̃|.

The proof of this lemma is fairly straightforward and can be found in the appendix of [10].

2.2 Upper bound on geodesic length
In this section we establish an upper bound on geodesic lengths through the iterative
construction of a sequence of paths.

SoCG 2018
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Figure 2 Left: φ0, φ1, φ2 , Right: φ̃0, φ̃1, φ̃2.

I Lemma 5. Let S ⊂ Rd be a closed set with reach r = rchS > 0. For any a, b ∈ S such
that |a− b| < 2r one has dS(a, b) ≤ 2r arcsin |a−b|2r .

Proof. We build two sequences of PL-functions (see Figure 2). For i ∈ N, φi : [0, 1]→ Rd
and φ̃i : [0, 1]→ R2 are defined as follows.

First we define φ0(t) = a + t(b − a). Denote m = a+b
2 the middle point of [a, b]. Since

d(m,S) ≤ d(m, a) = δ < r, the point p = πS(m) is well defined. Secondly, we define

φ1(t) =
{
a+ 2t(p− a) if t ≤ 1/2
p+ (2t− 1)(b− p) if t ≥ 1/2.

as depicted in Figure 2 on the left.
From Lemma 3, one has |p−m| ≤ ρ = r −

√
r2 − δ2 < r and thus

min (|a− p|, |b− p|) ≥ δ − ρ > 0 max (|a− p|, |b− p|) ≤ δ + ρ

We also fix a circle C̃ in R2 with radius r and we consider ã, b̃ ∈ R2 such that ã, b̃ ∈ C̃
and |ã− b̃| = |a− b| and we define φ̃0(t) = ã+ t(b̃− ã). Denote by C̃ã,b̃ the shortest of the
two arcs of C̃ bounded by ã, b̃ and p̃ as constructed in Lemma 4 i.e. p̃ ∈ C̃ã,b̃ such that
|p̃−ã|
|p̃−b̃| = |p−a|

|p−b| , as shown in Figure 2 on the right, and define

φ̃1(t) =
{
ã+ 2t(p̃− ã) if t ≤ 1/2
p̃+ (2t− 1)(b̃− p̃) if t ≥ 1/2.

Applying Lemma 4 we get |a− p| ≤ |ã− p̃|, |b− p| ≤ |b̃− p̃|, and

length(φ1) = |a− p|+ |b− p| ≤ |ã− p̃|+ |b̃− p̃| = length(φ̃1).

For i ≥ 2, φi and φ̃i are PL functions with 2i intervals. For k ∈ N, 0 ≤ k ≤ 2i,
φi(k/2i) ∈ S, φ̃i(k/2i) ∈ C̃ã,b̃ are defined by applying to each of the 2i−1 segments of
φi−1([0, 1]) and φ̃i−1([0, 1]) the same subdivision process used when defining φ1 and φ̃1.

If k is even we set φi(k/2i) = φi−1(k/2i) and φ̃i(k/2i) = φ̃i−1(k/2i).
If k is odd define:

mk/2i = φi((k − 1)/2i) + φi((k + 1)/2i)
2 and φi(k/2i) = πS

(
mk/2i

)
.

Note that m1/2 corresponds to m defined above.
Let φ̃i(k/2i) ∈ C̃φ̃i−1((k−1)/2i),φ̃i−1((k+1)/2i) ⊂ C̃ã,b̃ be such that:

|φ̃i(k/2i)− φ̃i−1((k − 1)/2i)|
|φ̃i(k/2i)− φ̃i−1((k + 1)/2i)|

= |φi(k/2
i)− φi−1((k − 1)/2i)|

|φi(k/2i)− φi−1((k + 1)/2i)| .
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Figure 2 left shows the curves φ1 and φ2 in blue and yellow respectively.
Applying Lemma 4, since by induction,∣∣φi−1((k + 1)/2i−1)− φi−1(k/2i−1)

∣∣ ≤ ∣∣φ̃i−1((k + 1)/2i−1)− φ̃i−1(k/2i−1)
∣∣

we get that for i ∈ N and p = 0, . . . , 2i − 1:

|φi((k + 1)/2i)− φi(k/2i)| ≤ |φ̃i((k + 1)/2i)− φ̃i(k/2i)|,

and therefore:

length(φi) =
2i−1∑
k=0
|φi((k + 1)/2i)− φi(k/2i)|

≤
2i−1∑
k=0
|φ̃i((k + 1)/2i)− φ̃i(k/2i)|

= length(φ̃i) ≤ length(C̃ã,b̃) = 2r arcsin |a− b|2r . (1)

We study now the behavior of the sequence φi, i ∈ N. Define δ0 = δ and ρ0 = ρ. Further
define δi as

δi = 1
2 max

0≤k≤2i−1
|φi((k + 1)/2i)− φi(k/2i)|.

i.e. half the max of lengths of all segments of φi([0, 1]) and ρi = r−
√
r2 − δ2

i . We make the
following assertion:

I Claim 6.

lim
i→∞

δi = 0. (2)

The proof of this claim is given in the appendix of [10].
Since for any i ≥ 0 and t ∈ [0, 1], d(φ(t),S) ≤ δi and δi < rchS the curves πS ◦ φi,

(projections of φi on S) are well defined, with πS ◦ φi : [0, 1] → S, πS ◦ φi(0) = a and
πS ◦ φi(1) = b.

Claim (8) in Theorem 4.8 of [15] states that for µ < r = rchS the restriction of πS to the
µ-tubular neighbourhood Sµ is rchS

rchS−µ -Lipschitz. This together with (1) above gives us an
upper bound on the lengths of curves πS ◦ φi:

length(πS ◦ φi) ≤
rchS

rchS − δi
length(φi) ≤

rchS
rchS − δi

2r arcsin |a− b|2r

This together with (2) yields dS(a, b) ≤ 2r arcsin |a−b|2r . J

3 Variation of tangent spaces

In this section we shall first discuss the bound on the variation of tangent spaces in the C2

setting, and then generalize to the C1,1 setting. For this generalization we need a topological
result, which will be presented in Section 3.2.

SoCG 2018
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3.1 Bounds for C2 submanifolds
We shall be using the following result, Theorem 4.8(12) of [15]:

I Theorem 7 (Federer’s tubular neighbourhoods). Let BNpM(r), be the ball of radius r
centred at p in the normal space NpM⊂ Rd of a C1,1 manifoldM with reach rch(M), where
r < rch(M). For every point x ∈ BNpM(r), πM(x) = p.

The fact that such a tubular neighbourhood exists is non-trivial, even for a neighbourhood
of size ε. From Theorem 7 we immediately see that:

I Corollary 8. Let M be a submanifold of Rd and p ∈ M. Any open ball B(c, r) that is
tangent toM at p and whose radius r satisfies r ≤ rch(M) does not intersectM.

Proof. Let r < rch(M). Suppose that the intersection ofM and the open ball is not empty,
then the πM(c) 6= p contradicting Federer’s tubular neighbourhood theorem. The result for
r = rch(M) now follows by taking the limit. J

Here we prove the main result for C2 manifolds. Our exposition is the result of straightfor-
wardly combining the work of Niyogi, Smale, and Weinberger [19], and the two dimensional
analysis of Attali, Edelsbrunner, and Mileyko [2] with some observations concerning the
reach.

We start with the following simple observation:

I Lemma 9. Let γ(t) be a geodesic parametrized according to arc length onM⊂ Rd, then
|γ̈| ≤ 1/rch(M), where we use Newton’s notation, that is we write γ̈ for the second derivative
of γ with respect to t.

Proof. Because γ(t) is a geodesic, γ̈(t) is normal toM at γ(t). Now consider the sphere of
radius rch(M) tangent toM at γ(t), whose centre lies on the line {γ(t) + λγ̈ | λ ∈ R}. If
now |γ̈| were larger than 1/rch(M), the geodesic γ would enter the tangent sphere, which
would contradict Corollary 8. J

Note that |γ̈| is the normal curvature, because γ is a geodesic. Using the terminology of
[19, Section 6], Lemma 9 can also be formulated as follows: 1/rch(M) bounds the principal
curvatures in the normal direction ν, for any unit normal vector ν ∈ NpM. In particular,
1/rch(M) also bounds the principal curvatures ifM has codimension 1.

We now have the following, which is a straightforward extension of an observation in [2]
to general dimension:

I Lemma 10. Let γ(t) be a geodesic parametrized according to arc length, with t ∈ [0, `] on
M⊂ Rd, then:

∠γ̇(0)γ̇(`) ≤ dM(γ(0), γ(`))
rch(M) .

Proof. Because γ is parametrized according to arc length |γ̇| = 1 and γ̇(t) can be seen as
a curve on the sphere Sd−1. Moreover γ̈ can be seen as tangent to this sphere. The angle
between two tangent vectors γ̇(0) and γ̇(`) equals the geodesic distance on the sphere. The
geodesic distance between any two points is smaller or equal to the length of any curve
connecting these points, and {γ̇(t) | t ∈ [0, `]} is such a curve. We therefore have

∠γ̇(0)γ̇(`) ≤
∫ `

0

∣∣∣∣ ddt γ̇
∣∣∣∣dt =

∫ `

0
|γ̈|dt ≤ `

rch(M) ≤
dM(γ(0), γ(`))

rch(M) , (3)

where we used Lemma 9. J
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We can now turn our attention to the variation of tangent spaces. Here we mainly follow
Niyogi, Smale, and Weinberger [19], but use one useful observation of [2]. We shall be using
the second fundamental form, which we assume the reader to be familiar with. We refer to
[14] as a standard reference.

The second fundamental form IIp(u, v) has the geometric interpretation of the normal
part of the covariant derivative, where we assume now that u, v are vector fields. In particular
II(u, v) = ∇̄uv−∇uv, where ∇̄ is the connection in the ambient space, in this case Euclidean
space, and ∇ the connection with respect to the induced metric on the manifoldM. The
second fundamental form IIp : TpM× TpM→ NpM is a symmetric bi-linear form, see for
example Section 6.2 of [14] for a proof. This means that we only need to consider vectors in
the tangent space and not vector fields, when we consider IIp(u, v).

We can now restrict our attention to u, v lying on the unit sphere Sn−1
TpM in the tangent

space and ask for which of these vectors |IIp(u, v)| is maximized. Let us assume that the
IIp(u, v) for which the maximum1 is attained lies in the direction of η ∈ NpM where η is
assumed to have unit length.

We can now identify 〈IIp(·, ·), η〉, with a symmetric matrix. Because of this 〈IIp(u, v), η〉,
with u, v ∈ Sn−1

TpM, attains its maximum for u, v both lying in the direction of the unit
eigenvector w of 〈IIp(·, ·), η〉 with the largest2 eigenvalue. In other words the maximum is
assumed for u = v = w. Let us now consider a geodesic γw onM parametrized by arclength
such that γw(0) = p and γ̇w(0) = w. Now, because γw is a geodesic and the ambient space is
Euclidean,

IIp(w,w) = IIp(γ̇w, γ̇w) = ∇̄γ̇w
γ̇w −∇γ̇w

γ̇w = ∇̄γ̇w
γ̇w − 0 = γ̈w.

Due to Lemma 9 and by definition of the maximum, we now see that |IIp(u, v)| ≤ |IIp(w,w)|
≤ 1/rchM, for all u, v of length one.

Having discussed the second fundamental form, we can give the following lemma:

I Lemma 11. Let p, q ∈M, then

∠(TpM, TqM) ≤ dM(p, q)
rch(M) .

Proof. Let γ be a geodesic connecting p and q, parametrized by arc length. We consider
an arbitrary unit vector u and parallel transport this unit vector along γ, getting the unit
vectors u(t) in the tangent spaces Tγ(t)M. The maximal angle between u(0) and u(`), for all
u bounds the angle between TpM and TqM. Now

du

dt
= ∇̄γ̇u(t) = IIγ(t)(γ̇, u(t)) +∇γ̇u(t) = IIγ(t)(γ̇, u(t)) + 0,

where we used that u(t) is parallel and thus by definition ∇γ̇u(t) = 0. So using our discussion
above |dudt | ≤ 1/rch(M). Now we note that, similarly to what we have seen in the proof of
Lemma 10, u(t) can be seen as a curve on the sphere and thus ∠(u(0), u(`)) ≤

∫ `
0 |

du
dt |dt ≤

`/rch(M). J

This bound is tight as it is attained for a sphere.
Combining Theorems 1 and 11 we find that

1 If there is more than one direction we simply pick one.
2 We can assume positivity without loss of generality, and, again, if there is more than one direction, we

pick one.

SoCG 2018
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I Corollary 12.

sin
(
∠(TpM, TqM)

2

)
≤ |p− q|

2rch(M) .

The proof is almost immediate, but has been added to the appendix of [10] for completeness.
With the bound on the angles between the tangent spaces it is not difficult to prove that

the projection map onto the tangent space is locally a diffeomorphism, as has been done in
[19]. Although the results were given in terms of the (global) reach to simplify the exposition,
the results can be easily formulated in terms of the local feature size.

3.2 A topological result

We shall now give a full proof of a statement by Boissonnat and Cazals [5, Proposition 12] in
the more general C1,1 setting:

I Proposition 13. Let B be a closed ball that intersects a C1,1 manifoldM. If B does not
contain a point of the medial axis (ax(M)) ofM then B ∩M is a topological ball.

The proof uses some results from topology, namely variations of [18, Theorem 3.1 and
Theorem 3.2]:

I Lemma 14. Consider the distance function from c: dc : Rd → R, dc(x) = |x− c| restricted
toM. Let a = dc(x′) and b = r and suppose that the set d−1

c [a, b], consisting of all p ∈M
with a ≤ dc(p) ≤ b, contains no critical points of dc (that is, no point q ofM where B(c, q)
is tangent to M). Then Ma = {x ∈ M, dc ≤ a} =M∩ B(c, a) is homeomorphic (if dc is
C1,1) toMb = {x ∈M, dc ≤ b}. Furthermore Ma is a deformation retract of M b.

I Lemma 15. Let dc|M be the C1,1 function onM defined, as in Lemma 14, as the restriction
toM of dc : Rd → R, dc(x) = |x− c|. Assume that y is a global isolated minimum of dc|M
and let rc be the second critical value of dc|M. Then for all 0 < η < rc − |c− y|,Mrc−η is a
topological ball.

The proofs of these lemmas can be found in the appendix of [10].

Proof of Proposition 13. Write r for the radius of B and c for its center. The result is
trivial if c belongs to the medial axis ofM. Therefore assume that c 6∈ axis(M).

Let y be the (unique) point ofM closest to c. We denote by By the closed ball centered
at c with radius |c− y| (see Figure 3). By Corollary 8, the interior of By does not intersect
M and By ∩M = {y}. This means that the conditions of Lemma 15 are satisfied and
B(c, rc − η) ∩M is a topological ball for all 0 < η < rc − |c − y|, where rc is the second
critical value of the distance function to c restricted toM. In other words rc is the radius
for which the ball centred on c is tangent toM for the second time.

Let us now assume that there exists a point z 6= y ofM such that rc = |c− z| > |c− y|
where the ball B(c, rc) is tangent to M. We consider the set Bz of closed balls that are
tangent toM at z and are centred on the line segment [zc]. The balls in Bz can be ordered
according to their radius. Note that B(c, rc) is the ball of Bz centered at c. Since the interior
of B(c, rc) contains y and therefore intersectsM, there must exist a largest ball Bz ∈ Bz,
whose interior does not intersectM. The center of Bz belongs to both ax(M) and B since
Bz ⊂ B(c, rc) ⊂ B. J
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c

z

y

M

B

By
B(c, rc)

Bz

Figure 3 For the proof of Proposition 13.

3.3 Bounds for C1,1 submanifolds
We shall now give an elementary exposition, in the sense that we do not rely on differential
geometry, for the result of the previous section.

3.3.1 From manifold to tangent space and back
We start with the following lemma, which is due to Federer. It bounds the distance of a
point q ∈M to the tangent space of a point that is not too far away.

I Lemma 16 (Distance to tangent space, Theorem 4.8(7) of [15]). Let p, q ∈M ⊂ Rd such
that |p− q| < rch(M). We have

sin∠([pq], TpM) ≤ |p− q|
2 rch(M) , (4)

and

dE(q, TpM) ≤ |p− q|2

2 rch(M) . (5)

We also have the converse statement of the distance bounds in Lemma 16. The following
lemma is an improved version of Lemma B.2 in [6]. This result too can be traced back to
Federer [15], in a slightly different guise. Before we give the lemma we first introduce the
following notation. Let C(TpM, r1, r2) denote the ‘filled cylinder’ given by all points that
project orthogonally onto a ball of radius r1 in TpM and whose distance to this ball is less
than r2.

In the following lemma we prove for all points v ∈ TpM, such that |v− p| is not too large,
that a pre-image onM, if it exists, under the projection to TpM cannot be too far from
TpM. The existence of such a point onM is proven below.

I Lemma 17 (Distance to Manifold). Suppose that v ∈ TpM and |v − p| < rch(M). Let
q = π−1

(M→TpM)(v) be the inverse of the (restricted) projection πTpM from the intersection
M∩ C(TpM, rch(M), rch(M)) to TpM of v, if it exists. Then

|q − v| ≤

1−

√
1−

(
|v − p|
rch(M)

)2
 rch(M) ≤ 1

2
|v − p|2

rch(M) + 1
2
|v − p|4

rch(M)3 .

SoCG 2018
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pv

q1

q2

TpM
π−1
TpM(v) = q

M
C(TpM, r1, r̃(r1))

B1

B2

r1 = |v − p|

r̃(r1)

Figure 4 The set of all tangent balls to the tangent space of radius rch(M) bounds the region in
whichM can lie. Here we depict the 2 dimensional analogue.

I Remark 18. It follows immediately that M∩ C(TpM, r1, rch(M)) ⊂ C(TpM, r1, r̃(r1)),
with

r̃(r1) =

1−

√
1−

(
r1

rch(M)

)2
 rch(M). (6)

This cylinder is indicated in green in Figure 4. Let Ctop/bottom(TpM, r1, r̃(r1)) denote the
subset of C(TpM, r1, r̃(r1)) that projects orthogonally onto the open ball of radius r1 in
TpM and lies a distance r̃(r1) away. We also see thatM∩ Ctop/bottom(TpM, r1, r̃(r1)) = ∅
and thatM∩ C(TpM, r1, rch(M)) ∩NpM = {p}. We write

Cside rim(TpM, r1, r̃(r1)) = ∂C(TpM, r1, r̃(r1)) \ Ctop/bottom(TpM, r1, r̃(r1)).

3.3.2 The angle bound
This section revolves around the following observation: If r1 roughly the distance between p
and q, there is a significant part ofM that is contained in the intersection C(TpM, r1, r̃) ∩
C(TqM, r1, r̃). In particular any line segment, whose length is denoted by `, connecting
two points in M∩ C(TpM, r1, r̃) ∩ C(TqM, r1, r̃) is contained in both C(TpM, r1, r̃) and
C(TqM, r1, r̃). If this line segment is long, the angle with both TpM and TqM is small.
This bounds the angle between TpM and TqM, see Figure 5.

Figure 5 The tangent spaces TpM and TqM are drawn in yellow. The cylinders C(TpM, r1, r̃)
and C(TqM, r1, r̃) are indicated in green. The red line segment lies in both cylinders and therefore
its angle with both TpM and TqM is small.
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For the existence of the line segment that is contained in both C(TpM, r1, r̃) and
C(TqM, r1, r̃) we need the following corollary of Proposition 13:

I Corollary 19. For each v ∈ TpM such that |v − p| <
√

3
2 rch(M) there exists at least one

original π−1
TpM

(v).

The proof of this statement can be found in the appendix of [10].

I Theorem 20. Let |p−q| ≤ rch(M)/3, then the angle ϕ between TpM and TqM is bounded
by

sin ϕ2 ≤
(
1−
√

1− α2
)√

α2

4 − (α2

2 + 1−
√

1− α2)2

' α+ 9α3/4,

where α = |p− q|/rch(M).

The proof of this result follows the lines as sketched in the overview, and can be found in full
in the appendix [10].

I Remark 21. The bound we presented above can be tightened by further geometric analysis,
in particular by splitting TpM into the span of πTpM(q) − p and its orthocomplement.
However we chose to preserve the elementary character of the argument.

With the bound on the angles between the tangent spaces it is not difficult to prove that
the projection map is locally a diffeomorphism, as has been done in [19].
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