Sublogarithmic Distributed Algorithms for Lovasz
Local Lemma, and the Complexity Hierarchy*

Manuela Fischer! and Mohsen Ghaffari?

1 ETH Ziirich, Switzerland
manuela.fischer@inf.ethz.ch

2 ETH Ziirich, Switzerland
ghaffari@inf.ethz.ch

—— Abstract

Locally Checkable Labeling (LCL) problems include essentially all the classic problems of LOCAL
distributed algorithms. In a recent enlightening revelation, Chang and Pettie [FOCS’17] showed
that any LCL (on bounded degree graphs) that has an o(logn)-round randomized algorithm can
be solved in Ty 11, (n) rounds, which is the randomized complexity of solving (a relaxed variant of)
the Lovasz Local Lemma (LLL) on bounded degree n-node graphs. Currently, the best known
upper bound on Ty, 11, (n) is O(logn), by Chung, Pettie, and Su [PODC’14], while the best known
lower bound is 2(log log n), by Brandt et al. [STOC’16]. Chang and Pettie conjectured that there
should be an O(loglogn)-round algorithm (on bounded degree graphs).

Making the first step of progress towards this conjecture, and providing a significant improve-
ment on the algorithm of Chung et al. [PODC’14], we prove that Ty p,(n) = 20(V1eglegn)  Thys,
any o(logn)-round randomized distributed algorithm for any LCL problem on bounded degree
graphs can be automatically sped up to run in 20(v1°g1g7) rounds.

Using this improvement and a number of other ideas, we also improve the complexity of a
number of graph coloring problems (in arbitrary degree graphs) from the O(logn)-round results
of Chung, Pettie and Su [PODC’14] to 20(/loglogn) " Thege problems include defective coloring,
frugal coloring, and list vertex-coloring.
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1 Introduction and Related Work

The Lovédsz Local Lemma (LLL), introduced by Erdés and Lovész in 1975 [14], is a beautiful
result which shows that, for a set of “bad events” in a probability space that have certain
sparse dependencies, there is a non-zero probability that none of them happens. This
result has become a central tool in the probabilistic method [2], when proving that certain
combinatorial objects exist. Although the LLL itself does not provide an efficient way for
finding these objects, and that remained open for about 15 years, a number of efficient
centralized algorithms have been developed for it, starting with Beck’s breakthrough in
1991 [7], through [1,13,26,28,33], and leading to the elegant algorithm of Moser and Tardos
in 2010 [29]. See also [9,19,21-24] for some of the related work on that track.

* A full version of the paper is available at https://arxiv.org/abs/1705.04840.
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In contrast, distributed algorithms for LLL and the related complexity are less well-
understood. This question has gained an extraordinary significance recently, due to revelations
that show that LLL is a “complete” problem for sublogarithmic-time problems. Next, we
first overview the concrete statement of the LLL, and then discuss what is known about its
distributed complexity, and what its special significance is for distributed algorithms. Then
we proceed to presenting our contributions.

1.1 The LLL and its Special Role in Distributed Algorithms

The Lovasz Local Lemma. Consider a finite set V of independent random variables, and a
finite family X of n (bad) events on these variables. Each event A € X depends on some subset
vbl(A) C V of variables. Define the dependency graph Gx = (X, {(A, B) | vbl(4A) Nvbl(B) #
@}) that connects any two events which share at least one variable. Let d be the maximum
degree in this graph, i.e., each event A € X shares variables with at most d other events
B € X. Finally, define p = maxacx Pr[A4]. The Lovédsz Local Lemma [14] shows that
Pr[NaexA] > 0, under the LLL criterion that epd < 1. Intuitively, if a local union bound is
satisfied around each node in Gy, with some slack, then there is a positive probability to
avoid all bad events.

What’s Known about Distributed LLL? In the standard distributed formulation of LLL,
we consider LOCAL-model [25,32] algorithms that work on the n-node dependency graph
Gx, where per round each node can send a message to each of its neighbors?.

Moser and Tardos [29] provided an O(log? n)-round randomized distributed algorithm.
Chung, Pettie, and Su [12] presented an O(logn - log? d)-round algorithm, which was later
improved slightly to O(log n-log d) [17]. Perhaps more importantly, under a modestly stronger
criterion that epd?® < 1, which is satisfied in most of the standard applications, they gave an
O(log n)-round algorithm [12]. This remains the best known distributed algorithm. On the
other hand, Brandt et al. [8] showed a lower bound of Q(loglog n) rounds, which holds even if
a much stronger LLL criterion of p2?¢ < 1 is satisfied. Even under this exponentially stronger
criterion, the best known upper bound changed only slightly to O(logn/loglogn) [12].

Completeness of LLL for Sublogarithmic Distributed Algorithms. Chang and Pettie [11]
showed that any o(log n)-round randomized algorithm A for any Locally Checkable Labeling
(LCL) problem P — a problem whose solution can be checked in O(1) rounds [30], which
includes all the classic local problems — on bounded degree graphs can be transformed to an
algorithm with complexity O(Trrr(n)). Here, Trrr(n) denotes the randomized complexity
for solving LLL on n-node bounded-degree graphs, with high probability.

In a nutshell, their idea is to “lie” to the algorithm A and say that the network size is some
much smaller value n* < n. This deceived algorithm 4 may have a substantial probability
to fail, creating an output that violates the requirements of the LCL problem P somewhere.
However, the probability of failure in each local neighborhood is at most 1/n*. Choosing n*
a large enough constant, depending on the complexity of A, the algorithm A provides an
LLL system — where we have one bad event for violation of each local requirement of P —
that satisfies the criterion pd® < 1 for a desirably large constant c. Hence, we can solve this
LLL system and thus obtain a solution for the original LCL problem P in O(TLrr(n)) time.

1 One can imagine a few alternative graph formulations, all of which turn out to be essentially equivalent
in the LOCAL model, up to an O(1) overhead in complexity.
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This result implies that LLL is important not only for a few special problems, but in
fact for essentially all sublogarithmic-time distributed problems. Due to this remarkable
role, Chang and Pettie state that “understanding the distributed complexity of the LLL is a
significant open problem.” Furthermore, although a wide gap between the best upper bound
O(logn) [12] and lower bound Q(loglogn) [8] persists, they conjecture the latter to be tight:

» Conjecture (Chang, Pettie [11]). There exists a sufficiently large constant ¢ such that the
distributed LLL problem can be solved in O(loglogn) time on bounded degree graphs, under
the symmetric LLL criterion pd® < 1.2

1.2 Qur Contributions

Faster Distributed LLL. We make a significant step of progress towards this conjecture:

» Theorem 1. There is a 20V1°8198 ™) _round randomized distributed algorithm that, with
high probability®, solves the LLL problem with degree at most d = O(logl/5 logn), under a
symmetric polynomial LLL criterion p(ed)3? < 1.4

This improves over the O(logn)-round algorithm of Chung et al. [12]. We note that even
under a significantly stronger exponential LLL criterion — formally requiring 4ep2¢d* < 1 —
the best known round complexity was O(logn/loglogn) [12]. Furthermore, we note that
a key ingredient in developing Theorem 1 is a deterministic distributed algorithm for LLL,
which we present in Theorem 11. To the best of our knowledge, this is the first (non-trivial)
deterministic distributed LLL algorithm. In fact, we believe that any conceivable future
improvements on Theorem 1 may have to improve on this deterministic part.

Moreover, our method provides some further supporting evidence for the conjecture of
Chang and Pettie. In particular, if one finds a poly log n-round deterministic algorithm for
(O(logn), O(log n)) network decomposition [31] — a central problem that has remained open
for a quarter century, but is often perceived as likely to be true — then, combining that with
our method would prove T7,1,1.(n) = poly(loglogn).

A Gap in the Randomized Distributed Complexity Hierarchy. Putting Theorem 1 with [11,
Theorem 6], we get the following automatic speedup result:

» Corollary 2. Let A be a randomized LOCAL algorithm that solves some LCL problem P
on bounded degree graphs, w.h.p., in o(logn) rounds. Then, it is possible to transform A into

a new randomized LOCAL algorithm A’ that solves P, w.h.p., in 20V1081987) royn s,

Using a similar method, and our deterministic LLL algorithm (Theorem 11), we obtain
the following corollary, the proof of which is deferred to the full version [15]. This corollary
shows that any o(loglogn)-round randomized algorithm for an LCL problem on bounded
degree graphs can be improved to a deterministic O(log* n)-round algorithm. This result
seems to be implicit in the recent work of Chang, Kopelowitz, and Pettie [10], though with a
quite different proof, and it can be derived from [10, Corollary 3] and [10, Theorem 3].

2 This statement, as is, has a small imprecision: one should assume either that d > 2, in which case
pd® < 1 can be replaced with p(ed)c/ < 1 for some other constant ¢’, or that pd® < 1/2. Otherwise, two
events of head or tail for a fair coin have p = 1/2 and d = 1, thus pd® < 1, but one cannot avoid both.

3 As standard, the phrase with high probability (w.h.p.) indicates that an event has probability at least
1 —n"¢, for a sufficiently large constant c.

4 We remark that we did not try to optimize the constants.
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» Corollary 3. Let A be a randomized LOCAL algorithm that solves some LCL problem P
on bounded degree graphs, w.h.p., in o(loglogn) rounds. Then, it is possible to transform A
into a new deterministic LOCAL algorithm A’ that solves P in O(log* n) rounds.

Faster Distributed Algorithms for Graph Colorings via LLL. For some distributed graph
problems on bounded degree graphs, we can immediately get faster algorithms by applying
Theorem 1. However, there are two quantifiers which appear to limit the applicability
of Theorem 1: (L1) it requires a stronger form of the LLL criterion, concretely needing
p(ed)3? < 1 instead of epd < 1; (L2) it applies mainly to bounded degree graphs.

We explain how to overcome these two limitations in most of the LLL-based problems
studied by Chung, Pettie, and Su [12]. Regarding limitation (L1), we show that even though
in many coloring problems the direct LLL formulation would not satisfy the polynomial
criterion p(ed)3? < 1, we can still solve the problem, through a number of iterations of partial
colorings, each satisfying this stronger LLL criterion. Regarding limitation (L2), we explain
how in many problems, the first step of our LLL algorithm, which is its only part that relies
on bounded degrees, can be replaced by a faster randomized step for that coloring.

The end results of our method include algorithms with round complexity 20(Vloglogn) for
a number of coloring problems, improving on the corresponding O(logn)-round algorithms
of Chung, Pettie, and Su [12]: defective coloring, frugal coloring, and list vertex-coloring.
The first two are presented respectively, in Section 4, Section 5. The third coloring result, as
well as some of the proofs, are deferred to the full version of this article [15].

2 Preliminaries

2.1 Network Decompositions

Roughly speaking, a network decomposition [4,31] partitions the nodes into a few blocks,
each of which is made of a number of low-diameter connected components. More formally,
the definition is as follows:

» Definition 4 (Network Decomposition). Given a graph G = (V, E), a partition of the nodes
V into C vertex-disjoint blocks Vi, Vo, ..., Vo is a (C, D) network decomposition if in each
block’s induced subgraph G[V;] each connected component has diameter at most D.

» Lemma 5 (The Network Decomposition Algorithm). Given an n-node network G = (V, E),
there is a deterministic distributed algorithm that computes a (A,n'/* -logn) network decom-

position of G in X -nt/* . 20W1087) rounds.

The proof of Lemma 5 is deferred to the full version; it works mainly by putting together
some ideas of Awerbuch and Peleg [5], Panconesi and Srinivasan [31], and Awerbuch et al. [3].
However, we are not aware of this result appearing in prior work.

2.2 Shattering

In a number of our algorithms, we make use of the following lemma which, roughly speaking,
shows that if each node of the graph remains with some small probability and we have
certain independence between these events, the remaining connected components are “small”.
We remark that this lemma or its variants are key ingredients in Beck’s LLL method
[7], sometimes referred to as the shattering lemma, and analogues of it appear in the
literature [1,6,17,18,20,26,27]. The proof of this lemma is deferred to the full version.
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» Lemma 6 (The Shattering Lemma). Let G = (V, E) be a graph with mazimum degree A.

Consider a process which generates a random subset B C V where P(v € B) < A~ for

some constant c; > 1, and that the random variables 1(v € B) depend only on the randomness

of nodes within at most co hops from v, for all v € V, for some constant co > 1. Moreover,

let H = GRe2tb4e242] pe the graph which contains an edge between u and v iff their distance

in G is between 2co + 1 and 4co + 2. Then with probability at least 1 —n~3, for any constant

c3 < ¢1 — 4co — 2, we have the following three properties:

(P1) H[B] has no connected component U with |U| > log n.

(P2) G[B] has size at most O(logan - A%°).

(P3) Each connected component of G[B] admits a (A, O(log*’* n - log?logn)) network de-
composition, for any integer X\ > 1, which can be computed in X - loglp‘ n - 20(Vloglogn)
rounds, deterministically.

3  Our General Algorithm for Lovasz Local Lemma

In this section, we explain our sublogarithmic-time LLL algorithm of Theorem 1, which solves
LLL in 20(V1o8198") rounds on bounded degree graphs, given the condition that pled)®? < 1.

The Lovasz Local Lemma Setting. We consider a finite set V of independent random
variables, and a finite family & of n bad events on these variables. Each event A € X depends
on some subset vbl(4) C V of variables. In fact, essentially without loss of generality, we
assume that each random variable in V is a fair random bit. We note that in practically all
settings of interest, we can rewrite the basic random variables as a function of at most poly(n)
independent random bits, hence transitioning from arbitrary set of random variables to
another space of random variables with just fair random bits. The number of random bits will
impact only the local computations and as such, since we are working in the local model which
does not assume a limited computational power, we can allow the number of random bits to
be arbitrarily large. The distributed algorithms that we describe work on the dependency
graph of the events, defined as Gy = (X, {(4, B) | vbl(A) Nvbl(B) # (}). That is, this
graph has one vertex for each event and that connects any two events which share at least
one variable. Then, d denotes the maximum degree in this graph, and p = maxacx Pr[A].

Our General LLL Algorithm. The algorithm is developed in two stages, as we overview
next. In the first stage, presented in Section 3.1, we explain a randomized algorithm with
complexity - log!/* n - 20(V1oglogn) " given that an LLL criterion p(ed)** < 1 is satisfied.
In the main regime of interest, the best LLL criterion exponent that we will assume is
A = O(1), and thus this (X - log"/* n - 20(V1e810gm))_round algorithm, on its own, would not
get us to our target complexity of 20(V1°g19g7) "although still being an improvement on the
O(log n)-round algorithm of [12].

In the second stage, presented in Section 3.2, we improve this complexity to 20(v/1oglogn),

That improvement works mainly by viewing the sublogarithmic-time local algorithm of
Section 3.1 as setting up a new LLL, with a much larger exponent \ in its LLL criterion,
hence allowing us get to a much smaller complexity by (recursively) applying the same
scheme. This speed up is inspired by the ideas of Chung and Pettie [11] which showed that
LLL can be used to speed up sublogarithmic-time local algorithms.?

5 Though, we find this recursive application of the idea to speed up the complexity of LLL itself, through
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3.1 The Base LLL Algorithm

» Theorem 7. For any integer \ > 8, there is a randomized distributed algorithm solving the
LLL problem under the symmetric criterion p(ed)** < 1, in O(d?) + X -log'/* n - 20(Vleglogn)
rounds, with high probability.

This algorithm consists of two parts: (1) a randomized algorithm, explained in Sec-
tion 3.1.1, which performs some partial sampling in the LLL space, thus setting some of the
variables, in a manner that shatters the graph, hence leaving small connected components
among the unset variables; (2) a deterministic LLL algorithm, explained in Section 3.1.2,
which we use to solve the remaining small connected components. To the best of our know-
ledge, this is the first non-trival deterministic distributed LLL algorithm. In Section 3.1.3,
we combine these two parts, concluding the proof of Theorem 7.

This general shattering style for randomized algorithms — which first performs some
randomized steps to break the graph into small remaining connected components, and then
uses deterministically solves these remaining components — is rooted in the breakthrough
LLL algorithm of Beck [7], and has been used extensively before [1,6,17,18,20,26,27].

3.1.1 The Randomized Part

We now explain the randomized component of our LLL algorithm for bounded degree graphs,
which performs a partial sampling in the LLL space, thus setting some of the variables,; in a
manner that guarantees the following two properties: (1) the conditional probabilities of the
bad events, conditioned on the already set variables, satisfy a polynomial LLL criterion, (2)
the connected components of the events on variables that remain unset are “small” (e.g., for
bounded degree graphs, they have size at most O(logn)), with high probability.

These two properties together will allow us to invoke the deterministic LLL algorithm that
we present later in Section 3.1.2 on the remaining components of variables that remain unset.
In particular, (1) means that the bad events X form another LLL problem on the variables
that remain unset, where each new bad event has probability at most ,/p. Furthermore, (2)
ensures that the components are small enough to make the deterministic algorithm efficient.

Our partial sampling is inspired by a sequential LLL algorithm of Molloy and Reed [26].

» Lemma 8 (Random Partial Setting for the LLL Variables). There is a randomized distributed

algorithm that computes, w.h.p., in O(d? +log* n) rounds, a partial assignment of values to

variables — setting the values of the variables in a set V* CV, hence leaving the variables in

V' =V \ V* unset — of an LLL satisfying p(ed)* < 1, for any integer A\ > 8, such that

(i) PriA|V*] < /b forall Ac X, and

(i) w.h.p. each connected component of G%[V'] admits a (X, O(log* n-log?logn)) network
decomposition, which can be computed in X\ - logl/A n - 20Wleglogn) rounds  determinist-
ically.

Proof. We first compute a (d? + 1)-coloring of the square graph G% on the events, which
can be done even deterministically in O(d) + O(log™ n) rounds [16]. Suppose X is the set of

events colored with color i, for i € {1,...,d? + 1}. We process the color classes one by one.
During the process, some variables may get frozen, as we discuss soon. The process
assigns values for all non-frozen variables, as follows: For each color i € {1,...,d? + 1}, and

for each node A € X} in parallel, we make node A sample values for its (so far non-frozen)

strengthening the corresponding LLL criterion, somewhat amusing.
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variables locally, one by one. Notice that since we are using a coloring of G%, for each color
i, each event B € X shares variables with at most one event A € &;. Hence, during this
iteration, at most one node A is sampling variables of event B. Consider a node A that is
choosing values for some random variables. Each time, when A is choosing a value for a
variable v € vbl(A), it checks whether this setting makes one of the events B € X involving
variable v dangerous. We call an event B dangerous if Pr[B[Vg] > \/p/2, where V5 denotes
the already set variables of B up to this point in the sampling process. If the recently set
variable v leads to a dangerous event B, then node A freezes variable v as well as all the
remaining variables of event B. We do not assign values to frozen variables in the remainder
of the randomized sampling process. We have two key observations regarding this process:

» Observation 9. At the end of each iteration, for each event A € X, the conditional
probability of event A, conditioned on the already made assignments V}, is at most \/p.

Proof Sketch. The first time that an event A becomes dangerous, all of its remaining
variables get frozen and no other assignment gets made for its variables. By definition, before
A becoming dangerous, the conditional probability of event A, conditioned on the already
made assignments V7, is at most \/p/2. If A becomes dangerous, that’s because of setting
of one last random variable. Since we have assumed that the random variables are all fair
random bits, at the time of setting one last bit, the conditional probability of event A can
increase by at most a 2 factor. Hence, once A becomes dangerous and all of its remaining
variables get frozen, its conditional probability is at most ,/p. |

» Observation 10. For each event A € X, the probability of A having at least one unset
variable is at most 2(d + 1),/p. Furthermore, this is independent of events that are further
than 2 hops from A.

Proof Sketch. We first claim that for each B € X, the probability that B ever becomes
dangerous is at most 2,/p. This is because otherwise the total probability of B happening
would exceed p. Notice that during the process, some variables get a value assigned to them,

and some variables get frozen, because of B or some other adjacent event becoming dangerous.

More concretely, to focus on just one event B, let us consider two processes for revealing
the samples values for variables of B. In the first process, we sample all the variables in one
shot. Clearly, in this process, Pr[B] < p. The second process has two phases: in the first
phase, we examine the variables of B sequentially, one by one, and each time sample a value
for each variable, with one exception: at each time, an adversary might call some variables
that have not been revealed so-far "frozen”and moves them to the second phase; any such
frozen variable will not be sampled in the first phase. This adversary can take into account

all the possibilities of neighboring LLL-events making a random variable of B become frozen.

Now in this process, if the conditional probability of event B given the already assigned
variables exceeds /p/2, or if we run out of non-frozen variables, the first phase ends. In the
second phase, we simultaneously sample all the variables that have been moved to the second
phase. Now, notice that the probability of event B happening is exactly the same in the
two processes; the second process is just a different order of revealing the sampled values of
the first process. Hence, also in the second process, we have Pr[B] < p. Now, in the second
process, let B’ be the event that the conditional probability of event B at the end of the

first phase (given its assignments variables) exceeds \/p/2. By definition, Pr[B’|B] > ,/p/2.

Since Pr[B] < p, we have Pr[B'] < ﬁ = 2,/p. Thus, in our LLL sampling process, the

probability that each event B € A" ever becomes dangerous is at most 2,/p.

18:7
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Now, an event A € X can have frozen variables only if at least one of its neighboring
events B, or event A itself, becomes dangerous. Since A has at most d neighboring events,
by a union bound, the latter has probability at most 2(d + 1),/p. |

Observation 9 implies property (i) of Lemma 8. We use Observation 10 to conclude
that the events with at least one unset variable comprise “small” connected components. In
particular, we apply Lemma 6 to G3 with the random partial setting process generating
a set B C X of the events that have at least one variable unset. By Observation 10, each
event remains with probability at most 2(d+ 1)/p < 2(d+1)-e 2} - d=2* < d~'°. These
events depend only on events within at most 1 hop in G% and hence 2 hops in Gx. Thus,
Lemma 6 (P3) shows that with probability at least 1 — n~3 property (ii) holds. <

3.1.2 The Deterministic Part

» Theorem 11. For any integer A > 1, the distributed LLL problem can be solved determin-
istically in \-nt/> - 90(+/logn) rounds, under the symmetric LLL criterion p(ed)® < 1. If the
algorithm is provided a (\,7) network decomposition of the square graph G%, then the LLL
algorithm runs in just O(X - (v + 1)) rounds.

We make a black-box invocation to the distributed algorithm stated in Lemma 5 for computing
a (A, n'/* -logn) network decomposition, and then solve the LLL problem on top of this
decomposition, by going through its blocks one by one.

The running time of our deterministic LLL algorithm hence directly depends on the
network decomposition it works with. In particular, if there is a poly log n-round deterministic
distributed algorithm that computes a (polylogn, poly logn) network decomposition, then
this algorithm solves any LLL problem satisfying the criterion p(ed)* < 1 (with A = polylogn)
deterministically in poly logn rounds. This would then directly improve the running time
of the randomized LLL algorithm of Theorem 7 to poly(loglogn), proving that Tprr(n) =
poly(loglogn), thus almost confirming the conjecture of Chang and Pettie [11].

In fact, we believe that a conceivable future improvement of our LLL algorithm may
need to improve this deterministic component, ideally to complexity O(logn) for proving the
Trrr(n) = O(loglogn) conjecture of Chang and Pettie [11].

Proof of Theorem 11. We first compute a (\,n'/* - logn) network decomposition of G3%,
which decomposes its nodes into A disjoint blocks &7, ..., &), such that each connected
component of G%[X;] has diameter at most n'/* .logn. This decomposition can be computed
in \-nl/* . 20(/logn) rounds, using Lemma, 5.

Then, iteratively for i = 1,..., )\, we assign values to all variables of events in X; that
have remained unset. The values are chosen is such a way that, after ¢ steps, the conditional
probability of any event in X, conditioned on all the assignments in variables of events
in U;‘:1 X;, is at most p(ed)’ < 1. Once i = A, since the conditional failure probability is
p(ed)® < 1 but all the variables are already assigned, we know that none of the events occurs.

The base case ¢ = 0 is trivial. In the following, we explain how to set the values for
variables involved in events of X; in n'/* . logn rounds. Let V; be the set of variables
in events of X; that remain with no assigned value. We form a new LLL problem, as
follows: For each bad event A € X, we introduce an event B4 ; on the space of values of
V;. This is the event that the values of V; get chosen such that the conditional probability
of the event A, conditioned on the variables in U;':1 V), is larger than p(ed)’. Notice that

Pr(Ba, | U;;ll V<t ;(2‘21;1 = L. This is because, the variables U;;Ql V; are set such that
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the conditional probability of B4 ; given these set values is at most p(ed)’~!, and thus, the
probability that the values of V;_1 get chosen that the conditional probability given the
set values in U;;ll V; exceeds p(ed)’ is at most Z if(iz;):l = i Moreover, each event By ;
depends on at most d other events B4/ ;. Hence, the family of events B4 ; on the variable
set V; satisfies the conditions of the tight (symmetric) LLL. Therefore, by the Lovész local
lemma, we know that there exists an assignment to variables of V; which makes no event
By ; happen. That is, an assignment such that the conditional probability of each event A,

conditioned on the assignments in U;’:l V), is bounded by at most p(ed)".

Given the existence, we find such an assignment in n'/* - logn rounds, as follows: each
component of G%[X;] first gathers the whole topology of this component (as well as its

incident events and the current assignments to any of their variables), in O(n'/*logn) rounds.

Then, it decides about an assignment for its own variables in V;, by locally brute-forcing all
possibilities. Different components can decide independently as there is no event that shares
variables with two of them, since they are non-adjacent in G3. |

3.1.3 Wrap-Up: Base LLL Algorithm

Proof of Theorem 7. We run the randomized algorithm of Lemma 8 for computing a partial
setting of the variables, in O(d? + log" n) rounds. Then, by Lemma 8 (i), the remaining
events X’ (those which have at least one unset variable) form a new LLL system on the
unset variables, where each bad event has probability at most ,/p.

Moreover, by Lemma 8 (ii), each connected component of the square graph G%[X’] of
these remaining events X’ has a (), O(logl/’\ n - log?logn)) network decomposition, which
we can compute in A - logl/ A . 20((loglogn) rounds, deterministically. From now on, we
handle the remaining events in different connected components of G%[X’] independently.

Since \/ﬁ(ed)A < 1, we can now invoke the deterministic LLL algorithm of Theorem 11
on top of the network decomposition of each component. Our deterministic LLL then runs in
A logl/ An - log? log n additional rounds, and finds assignments for these remaining variables,
without any of the events occurring, hence solving the overall LLL problem. The overall
round complexity is O(d?) + X - logl/)‘ n - 20(Vloglogn), <

3.2 Improving the Base LLL Algorithm via Bootstrapping

Proof of Theorem 1. In Theorem 7, we saw an algorithm A that solves any n-event LLL
under the criterion p(ed)?? < 1 in T}, g = O(d? + log'/* n) rounds. We now explain how to

bootstrap this algorithm to run in 20(vV1°81°27) rounds, on bounded degree graphs.
Inspired by the idea of Chang and Pettie [11], we will lie to .4 and say that the LLL
graph has n* < n nodes, for a value of n* to be fixed later. Then, A,- runs in Ty« g =
O(d? + log"* n*) rounds. In this algorithm, the probability of any local failure (i.e., a bad
event of LLL happening) is at most 1/n*. We can view this as a new system of bad events
which satisfies a much stronger LLL criterion. In particular, we consider each of the previous
bad LLL events as a bad event of the new LLL system, on the space of the random values

used by A,-, but now we connect two bad events if their distance is at most 275~ 4 + 1.

Notice that if two events are not connected in this new LLL, then in algorithm A, « 4, they
depend on disjoint sets of random variables and thus they are independent.

The degree of the new LLL system is d' = d2Tn+.a+1l = gO(d+log"*n") " Oy the other
hand, the probability of the bad events of the new system is at most p’ = 1/n*. Hence,

oo L
98q T We choose

the polynomial LLL criterion is satisfied with exponent A\ = B g Ty
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n* = logn, which, for d = O((loglogn)'/®), means X' = Q(y/Toglogn). Hence, this new LLL
system can be solved using the LLL algorithm of Theorem 7 in time

(dl)Z + N logl/)\/ n- 20(\/loglogn) —
dO(d2+(loglogn)1/4) + loglogn . (logn)l/ﬂ(\/loglogn) . 20(\/log10gn) — 20(\/10glogn).

We should note that these are rounds on the new LLL system, but each of them can be
performed in 27« 4+ 1 = O(d* + log'/* n*) = O(v/Ioglogn) rounds on the original graph.
Hence, the overall complexity is still 20(V1eglogn), <

We next state another result obtained via this speedup method, targeting higher degree
graphs, which we will use in our coloring algorithms. The proof is deferred to the full version.

» Lemma 12. Let A be a randomized LOCAL algorithm that solves some LCL problem P
on n-node graphs with maximum degree d < 20(log!*logn) 4, O(log1/4 n) rounds. Then, it is
possible to transform A into a new randomized LOCAL algorithm A’ that solves P, w.h.p.,

in 20(Wloglogn) vy ds.

4 Defective Coloring

An f-defective coloring is a (not necessarily proper) coloring of nodes, where each node has
at most f neighbors with the same color. In other words, in an f-defective coloring, each
color class induces a subgraph with maximum degree f. Chung, Pettie, and Su [12] gave
an O(logn)-round distributed algorithm for computing an f-defective coloring with O(A/f)

colors. We here improve this complexity to 20 (Vieglorn) 1

» Theorem 13. There is a 20< vies logn) -round randomized distributed algorithm that com-
putes an f-defective O(A/ f)-coloring in an n-node graph with mazimum degree A, w.h.p.,
for any integer f > 0.

Direct LLL Formulation of Defective Coloring. Chung, Pettie, and Su [12] give a formula-
tion of f-defective [2A/ f]-coloring as LLL as follows. Each node picks a color uniformly at
random. For each node v, there is a bad event D,, that v has more than f neighbors assigned
the same color as v. The probability of a neighbor u having the same color as v is f/(2A).
Hence, the expected number of neighbors of v with the same color as v is at most f/2. By
a Chernoff bound, the probability of v having more than f neighbors with the same color
is at most e—f/6. Moreover, the dependency degree between the bad events D, is d < AZ2.
Therefore, p(ed)?? < e~ /6132464108 & 1 for f = Q(log A).

We are unable to directly apply our LLL algorithm of Theorem 1 to this formulation,
because: (A) For f = o(log A), this LLL formulation does not satisfy the polynomial criterion
p(ed)3? < 1, (B) even if this criterion is satisfied, the dependency degree d may be larger
than what Theorem 1 can handle.

Iterative LLL Formulation of Defective Coloring via Bucketing. Instead of directly finding
an f-defective O(A/ f)-coloring with one LLL problem — i.e., a partition of G into O(A/f)
buckets with maximum degree f each — we gradually approach this goal by iteratively
partitioning the graph into buckets, until they have maximum degree f. In other words,
we slow down the process of partitioning. We gradually decrease the degree, moving from
maximum degree z to log® z in one iteration. We can see each of these bucketing steps — that
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is, the partitioning into subgraphs — as a partial coloring, which fixes some bits of the final
color. Each of these slower partitioning steps can be formulated as an LLL. The function
z — log® z is chosen large enough for the corresponding LLL to satisfy the polynomial
criterion, and small enough so that decreasing the degree from A to f does not take too
many iterations, namely O(log™ A) iterations only.

We now explain how a defective coloring problem can be solved using iterated bucketing.
We first formulate the bucketing as an LLL problem satisfying the polynomial LLL criterion,
and present ways for solving this LLL for different ranges of A. Then, we explain how
iterated application of solving these bucketing LLLs leads to a partition of the graph into
O(A/f) many degree-f buckets.

One Iteration of Bucketing. In one bucketing step, we would like to partition our graph with
degree A into roughly A/A’ buckets, each with maximum degree A’, for a A’ = Q(log® A).
Notice that we can achieve the defective coloring of Theorem 13, by repeating this bucketing
procedure, iteratively. See the proof of Theorem 13, which appears in the full version, for
details of iterative bucketing. Each iteration of bucketing can be formulated as an LLL as
follows.

LLL Formulation of Bucketing. Let k = (14 ¢)A/A’ for ¢ = log? A/v/A’. We consider
the random variables assigning each node a bucket number in [k]. Then, we introduce a bad
event D, for node v if more than A’ neighbors of v are assigned the same number as v. In
expectation, the number of neighbors of a node in the same bucket is at most A’/(1+¢). By
a Chernoff bound, the probability of having more than A’ neighbors in the same bucket is
at most p = e~ UEA) = o—Q(log" &) Moreover, the dependency degree between these bad
events is d < A2. Hence, this LLL satisfies the polynomial criterion.

IfA< O(logl/10 logn), then d = O(log1/5 logn), and thus we can directly apply the LLL
algorithm of Theorem 1 to compute such a bucketing in 2°(V1°g1°8™) rounds. For larger
values of A, however, we cannot apply Theorem 1. The following lemma discusses how we
handle this range by sacrificing a 2-factor in the number of buckets. In a nutshell, the idea is
to just perform one sampling step of bucketing, and then to deal with nodes with too large
degree separately, by setting up another bucketing LLL. While the first LLL on the whole
graph could not be solved directly, the second LLL is formulated only for a “small” subset of
nodes, which allows an efficient solution. Because of the two trials of solving an LLL, we lose
a 2-factor in the total number of buckets.

» Lemma 14. For A > Q(log'/* logn), there is a 20V1°81°8 ™) _round randomized distributed
algorithm that computes a bucketing into 2k buckets with maximum degree A’ each, for
A" = Q(log’ A), e =log A/VA, and k = (1 +&)A/A’, with high probability.

5  Frugal coloring

A B-frugal coloring is a proper coloring in which no color appears more than 5 times in the
neighborhood of any node. We improve the complexity of -frugal O(A'+1/#)-coloring from

O(logn) by Chung, Pettie, and Su [12] to 20(VIeglogn),

» Theorem 15. There is a 2°0(V1°81°6™) _round randomized distributed algorithm that com-
putes a B-frugal (120 - AHl/B)—coloringG in a n-node graph with mazimum degree A, w.h.p.,
for any integer 5 > 1.

6 We remark that we have not tried to optimize this constant 120.
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Direct LLL Formulation of Frugal Coloring. Molloy and Reed [27, Theorem 19.3] formu-
lated frugal coloring as an LLL problem in the following straight-forward way: Each node
picks a color uniformly at random. There are two types of bad events: On the one hand, we
have the properness condition, i.e., a bad event M, ,, for each {u,v} € E, which happens if
u and v have the same color. On the other hand, the frugality condition — requiring that
no node has more than S neighbors of the same color. That is, we have one bad event
Fu,,..us,, for each set uy, ... ugyq € N (v) of nodes in the neighborhood of some node v,
which happens if all these nodes u1,...,ug41 are assigned the same color. For palettes of
size C, the probability of a bad event is at most 1/C for type 1 and at most 1/C? for type 2.
Each event depends on at most (8 4 1)A type 1 and at most (8 + 1)A(§) type 2 events.

Iterated LLL Formulation of Frugal Coloring via Partial Frugal Coloring. While the above
formulation is enough to satisfy the asymmetric tight LLL criterion for C' = O(A'1/#) it
does not satisfy the (symmetric) polynomial LLL. Therefore, the algorithm of Theorem 1
is not directly applicable. We show how to break down the frugal coloring problem into a
sequence of few partial coloring problems, coloring only some of the nodes that have remained
uncolored, each of them satisfying the polynomial LLL criterion.

Roadmap. In Section 5.1, we formalize our notion of partial frugal colorings and present
a method for sampling them. Then, in Section 5.2, we show how to use this sampling to
formulate the problem of finding a partial frugal coloring guaranteeing progress (to be made
precise) as a polynomial LLL and how to solve it. In Section 5.3, we explain how — after
several iterations of setting up and solving these “progress-guaranteeing” LLLs, gradually
extending the partial frugal coloring — we can set up and solve one final polynomial LLL for
completing the partial coloring, also based on the sampling method presented in Section 5.1.

5.1 Sampling a Partial Frugal Coloring

» Definition 16 (Partial Frugal Coloring). A partial 5-frugal coloring of G = (V, E) is an
assignment of colors to a subset V* C V such that it is proper in G[V*] and no node in V'
has more than S neighbors with the same color. In other words, it is a S-frugal coloring of
G[V*] with the additional condition that no uncolored node in V' := V' \ V* has more than
B neighbors in V* with the same color.

A partial coloring naturally splits the base graph G into two parts: G[V*] induced by
colored nodes and G[V’] induced by uncolored nodes. However, the problem of extending or
completing a partial frugal coloring does not only depend on G[V'], but also on the base
graph G. That is why we introduce the notion of base-graph degree, a property of the
uncolored set V'’ with respect to the base graph G.

» Definition 17 (Base-Graph Degree of a Partial (Frugal) Coloring). Given a partial coloring,
we call the number d(v, V') of neighboring uncolored nodes of a node v € V' its base-graph
degree into the uncolored set V'. Moreover, we call the maximum base-graph degree A’ of a
node v € V into V' the base-graph degree of V'.

In the following, we show how one can sample a partial frugal coloring, thus randomly assign
some of the nodes in a set V' of uncolored nodes a color. The main idea of our sampling
process is to pick a color uniformly at random, and then discard it if this choice would lead
to a violation (in terms of properness and frugality). In order to increase the chances of
a node being colored, instead of just sampling one color, each node v samples x different
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colors from z different palettes at the same time, for some parameter x > 1, and then picks
the first color that does not lead to a violation. If v has no such violation-free among its x
choices, then v remains uncolored.

The next lemma, the proof of which is deferred to the full version, analyzes the probability
of two kinds of events: Event (E1) that a node is uncolored. This event is important if we
aim to color all the nodes in V’. Event (E2) that the base-graph degree of a node into the
set of uncolored nodes in V' is too large. This event is important if we do not aim at a
full coloring of all the nodes in V', but we want to ensure that we make enough progress in
decreasing the base-graph degree of the uncolored set.

» Lemma 18. Let G = (V, E) be a graph with mazimum degree A, V' CV an uncolored set

with base-graph degree A', § € [A], and x > 1. Then there is an O(1)-round randomized

distributed algorithm that computes a partial S-frugal (20 - z - A’ - AV/B)-coloring of some of

the nodes in V' such that

(i) the probability that a node in V' is uncolored is at most 1077,

(ii) the probability that the base-graph degree of a node v € V' into the uncolored subset of
V' is larger than 5% - A’ is at most =5 A",

5.2 Iterated Partial Frugal Coloring

In the following, we first show how a “progress-guaranteeing” partial coloring — that is, a
coloring that decreases the base-graph degree of every node quickly enough — can be found
based on the sampling process presented in Section 5.1. Then, we prove that by iterating this
algorithm for O(log™ A) repetitions, using different palettes in each iteration, the base-graph
degree reduces to O(v/A).

In one iteration, given a set V' of uncolored nodes, we want to color a subset V* C V'
such that the uncolored nodes V" := V' \ V* have a base-graph degree A” that is sufficiently
smaller than the base-graph degree A’ of V’'. Note that the sampling of Section 5.1 only
provides us with a partial coloring where every node is likely to have a decrease in the
base-graph degree. Here, however, we want to enforce that for every node in V' there is such
a decrease. To this end, we set up an LLL as follows.

LLL Formulation for “Progress-Guaranteeing” Coloring. Performing the sampling of
Lemma 18, we have a bad event D, for every node v € V that its base-graph degree
into V" is larger than A” =57% - A’. By Lemma 18 (ii), we know that the probability of D,
is at most e~ "2 Moreover, the dependency degree is at most d < A2. This LLL thus
satisfies the polynomial criterion.

However, as d might be large, we cannot directly apply the LLL algorithm of Theorem 1.

In the following, we present an alternative way of finding a partial coloring ensuring a
drop in the base-graph degree of every node. In a nutshell, the idea is to just perform one
sampling step of a partial frugal coloring, as described in Section 5.1, and then deal with
nodes associated with bad events (to be made precise) separately, by setting up another
“progress-guaranteeing” LLL. While the first LLL on the whole graph could not be solved
directly, the second LLL is formulated only for a “small” subset of nodes, which allows an
efficient solution. Because of the two trials of solving an LLL, we lose a 2-factor in the total
number of colors. The proof of the next lemma appears in the full version.

» Lemma 19. Given a partial 5-frugal coloring with uncolored set V' with base-graph degree
A" and a parameter x > 1 such that 5% - A’ = Q(VA), there is a 200V1°8187) _roynd
randomized distributed algorithm that computes a partial B-frugal (40 -z - A’ - AY/B)-coloring
such that the uncolored set has base-graph degree at most A" =57 . A/,
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The next lemma describes how through iterated application of finding partial colorings,
as supplied by Lemma 19, the base-graph degree of the uncolored set decreases to O(\/Z)
after O(log* A) rounds and using O(A'*1/8) colors. The proof appears in the full version.

» Lemma 20. There is a 2°V1°8198™) round randomized algorithm that computes a partial
B-frugal (80 - AT/ F)_coloring such that the uncolored set V' has base-graph degree O(vVA).

5.3 Completing a Partial Frugal Coloring

In this section, we describe how, once the base-graph degree is O(\/Z), all the remaining
uncolored nodes can be colored, hence completing the partial frugal coloring. We first give a
general formulation for the completion of partial frugal colorings.

LLL Formulation for Completion of Partial Frugal Coloring. Performing the sampling of
Lemma 18, we have a bad event U, for every node v € V that it is uncolored. By Lemma 18
(i), the probability of U, is at most 10~%. Moreover, the dependency degree d is at most AZ.
This LLL satisfies the polynomial criterion if x = Q(log A).

In the following lemma, the proof of which appears in the full version, we show to solve
this LLL. The idea is to first perform one sampling step (of Lemma 18), which shatters the
graph into “small” components of uncolored nodes, then to set up an LLL for completing
the partial coloring, and finally to solve it by employing our deterministic LLL algorithm, on
each of the components.

» Lemma 21. Given a partial 5-frugal coloring and a set V' of uncolored nodes with base
degree A = O(\/K), there is a 2°0V1°81°8 M) _round randomized algorithm that completes this
B-frugal coloring, by assigning colors to all nodes in V', using 40 - AYt1/8 additional colors.

A wrap-up of these results about iterated partial colorings and completing a partial
coloring immediately leads to a proof of Theorem 15.

Proof of Theorem 15. We first apply the iterated coloring algorithm of Lemma 20 with
80 - A1T1/B colors, in 20(V1°8187) rounds. Then, we run the algorithms of Lemma 21 to
complete this partial coloring with 40 - A1*1/# additional colors, in 20(V1°819e7) rounds.
This yields a A-frugal (120 - A'+1/#)-coloring, in 20(V1°g108™) rounds. <
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