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Abstract
While computational RNA secondary structure prediction is an important tool in RNA research,
it is still fundamentally limited to pseudoknot-free structures (or at best very simple pseudoknots)
in practice. Here, we make the prediction of complex pseudoknots – including kissing hairpin
structures – practically applicable by reducing the originally high space consumption. For this
aim, we apply the technique of sparsification and other space-saving modifications to the recur-
rences of the pseudoknot prediction algorithm by Chen, Condon and Jabbari (CCJ algorithm).
Thus, the theoretical space complexity of free energy minimization is reduced to Θ(n3 + Z), in
the sequence length n and the number of non-optimally decomposable fragments (“candidates”)
Z. The sparsified CCJ algorithm, sparseCCJ, is presented in detail. Moreover, we provide and
compare three generations of CCJ implementations, which continuously improve the space re-
quirements: the original CCJ implementation, our first modified implementation, and our final
sparsified implementation. The two latest implementations implement the established HotKnots
DP09 energy model. In our experiments, using 244GB of RAM, the original CCJ implementation
failed to handle sequences longer than 195 bases; sparseCCJ handles our pseudoknot data set
(up to about length 400 bases) in this space limit. All three CCJ implementations are available
at https://github.com/HosnaJabbari/CCJ.
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1 Introduction

Computational RNA secondary structure prediction has become an indispensable tool in
the research on non-coding RNAs. Such RNAs perform essential roles – most prominently
in regulating gene expression – in all kingdoms of live, in many cases mediated by their
three-dimensional structures [10]. Despite the ubiquity of pseudoknots in these RNAs, most
often only pseudoknot-free structure prediction methods are applied in biological research
– severely limiting the practical capabilities to correctly predict, recognize and compare
pseudoknotted structures.
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A B C

Figure 1 Examples of TGB and CCJ structures. Each arc represents a band of base pairs, which
cross other bands. (A) TGB structure with two left, two right, and four middle bands; (B) TGB
with nested substructure; (C) CCJ structure composed of two TGB structures (see decomposition
of P ).

The fundamental cause of this limitation is the computational complexity of pseudoknot
prediction – an NP-hard problem [1, 7, 8]. Thus, the high complexity of pseudoknot prediction
can be overcome only by either heuristics without optimality-guarantees or restrictions on
the predictable pseudoknot class. In comparison, predicting minimum free energy (MFE)
structures without pseudoknots is easy (due to tree-like dependencies): a pseudoknot-free
secondary structure is either closed by a base pair connecting the first and last base in the
sequence, or can be partitioned into two independent substructures on a prefix and suffix
of the sequence, where energies of substructures add up to the total energy. As a result of
the simple decomposition scheme, the MFE pseudoknot-free secondary structure prediction
problem is solved by dynamic programming in Θ(n3) time and Θ(n2) space for standard
energy loop models [12].

The most general dynamic programming algorithm for MFE prediction of pseudoknotted
structures, Pknots, was proposed by Rivas and Eddy [14]. Pknots is a complex dynamic
programming algorithm with time complexity of Θ(n6), and space complexity of Θ(n4). There
are algorithms for predicting MFE pseudoknotted secondary structures that run in Θ(n5)
time and Θ(n4) space [18, 8]. These algorithms handle a severely limited class compared to
the Rivas and Eddy’s algorithm. All can handle H-type pseudoknots, and some can handle
kissing hairpin structures when these do not have arbitrary nested substructures [18]. There
are also some algorithms that run in Θ(n4) time [13, 8]; these handle classes of structures
that are even more restricted than the Θ(n5) algorithms. However, none of these algorithms
handle kissing hairpin structures with arbitrary nested substructures. This is a serious,
practically relevant limitation, given the biological importance of such structures [4, 9, 19].

We previously proposed a novel MFE-based algorithm, called CCJ [5], which significantly
expands the class of structures that can be handled in O(n5) time. We described a more
general method of formulating the dynamic programming recurrences for prediction of
pseudoknotted RNA secondary structures that cover gapped regions. To improve the time
complexity to O(n5) we introduced two new ideas into the dynamic programming recurrences:
(i) a new class of structures called TGB structures (see Figs. 1A and 1B), with at most
three groups of bands, and (ii) recurrences that handle TGB structures by transferring to
the left, right, middle or the outer bands. By overlaying TGB structures (Fig. 1C), CCJ
covers H-type pseudoknotted structures, kissing hairpins, and chains of four interleaved
stems; moreover it recursively handles nested substructures of these types; we simply called
this class of structures, CCJ structures.

We previously compared CCJ’s prediction accuracy versus HotKnots V2.0 [2] and IPknot
[16], and showed that CCJ outperforms these algorithms on some of our data sets [6]. While
CCJ predicts such complex pseudoknotted secondary structures in Θ(n5) time and Θ(n4)
space, which is a significant improvement over the existing MFE-based algorithms [18, 8], in
practice it fails to run on sequences longer than 195 bases even given 244GB of RAM (as in
our experiments).

Here, we apply the technique of sparsification [20, 3] to the CCJ algorithm with the main
goal to reduce its extreme space complexity of Θ(n4). Devising sparsified recurrences of
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CCJ, resulting in the algorithm sparseCCJ, we improve the space complexity to Θ(n3 + Z),
where Z is the total number of candidates. This complexity is the result of replacing all four-
dimensional dynamic programming matrices by (a constant number of) three-dimensional
matrix slices and lists of candidates. This is still sufficient to calculate exactly the same
optimal solutions as before, which can be shown based on inverse triangle inequality. The
number of candidates is expected to be much smaller than the number of replaced matrix
entries; moreover it cannot be larger.

The space-efficient retrieval of the optimal structure from this algorithm is enabled by
implementing our recently presented technique of space-efficient sparse traceback [21]; this
method requires additional space for trace arrows, but keeps the number of trace arrows low
due to techniques like garbage collection.

Previous applications of the sparsification technique to RNA structure prediction discussed
pseudoknot-free methods [20, 3] or used pseudoknotted methods with simplified energy
models (base pair maximization only) [11]. Sparsified RNA–RNA interaction prediction [15]
is the most complex case of structure prediction so far that was implemented for a realistic
interaction energy model. While space-efficient sparsification is discussed in the paper,
the space-efficient variant of the implementation could not recover the optimal interaction
structure by traceback.

Contributions

We present – to the best of our knowledge – the first space-efficient sparsification of any
pseudoknot prediction algorithm that uses a realistic, practically relevant pseudoknot energy
model (with according parametrization). Moreover, we sparsify the particularly powerful
pseudoknot prediction algorithm CCJ that covers the biologically important kissing hairpins.
We implemented – in addition to the original CCJ implementation – a first space-improved
CCJ variant and the resulting sparsified algorithm sparseCCJ, both using the current
HotKnots DP09 energy model [2]. By comparing all three CCJ implementations, we study
the (length-dependent) impact of various space savings and finally show that sparsification
significantly improves the space requirements over non-sparse implementations of CCJ.

2 The original CCJ pseudoknot prediction algorithm

The original CCJ algorithm [5] is a dynamic programming algorithm (DP) that minimizes
the free energy over all CCJ structures for a given input sequence S. As stated in the
introduction, CCJ structures comprise kissing hairpins and chains of four interleaved stems,
which can recursively contain CCJ structures as substructures. The optimal CCJ structure
is then determined by standard traceback through the DP matrices.

Generally, DP algorithms can be described by presenting the recurrences that are used to
calculate the entries of their DP matrices. In the case of RNA structure prediction, the DP
matrices store minimum free energy (MFE) values for sequence fragments (under specific
conditions). The reccurrences correspond to decompositions of these fragments such that the
matrix entries can be recursively inferred from energies of smaller subproblems. For example,
assuming an energy value of −1 for each canonical base pair, i.e. C–G, A–U or G–U, the
MFE structure of an RNA sequence, S, can be found using matrices WN and VN , where the
respective entries WN (i, j) and VN (i, j) are decomposed as follows

VNWN ,WN WN VN WN (1)
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These grammar-rules represent a complete case distinction of possible structures. In the
example of Eq. (1), WN (i, j) corresponds to the MFE structure from base i to base j; this
structure can be decomposed according to Eq. (1), since either j is unpaired (left case) or j

is paired to some inner position (recursion to VN , in which solid arc represent a base pair);
the closed structure corresponding to VN (i, j) is reduced to WN (i + 1, j− 1) (rightmost case).
Moreover, the grammar rules allow – almost mechanically – inferring the recursion equations
for base pair energy minimization. The graphical notation is designed to encode the required
information: red dots on the right side always correspond to red dots on the left side of the
rule, while blue squares mark free position indices. Generally, our recursions marginalize
(i.e. minimize) over the recursion cases and the free indices in their respective range limited
by the fixed indices. Thus, we translate the rules of Eq. (1) to

WN (i, j) = min{WN (i, j − 1), min
i≤k<j

WN (i, k − 1) + VN (k, j)} ,

VN (i, j) = WN (i + 1, j − 1)− 1 if Si–Sj is canonical, VN (i, j) =∞ otherwise.

In our discussion of CCJ and its sparsification, this level of presentation allows us to focus
on the sparsification and avoid distracting details like the exact added energy contributions
in each single step, which is not necessary for understanding the sparsification.

While pseudoknot-free recursions generally use only fragments that are connected at the
sequence level, the CCJ algorithm requires ‘gapped’ fragments, where two subsequences
are disconnected by a gap. Consequently, defining such fragments requires four sequence
positions in total.

The MFE of the CCJ structure for subsequence Si..l is calculated in W (i, l), which is
decomposed as

W W V PW W .

The recurrence for V (i, l) handles different types of loops closed by i and l; P(i, l) is the
minimum free energy of a CCJ pseudoknot for region [i, l].

P(i, l) is decomposed by the rule

P PK

PK
(2)

into two TGB structures (with MFEs in the PK matrix). Representing TGB structures
requires using gapped fragments.

As indicated by the three blue boxes (free indices) in Eq. (2), each entry of P is minimized
over three indices. Thus, already this step bounds the time and space complexity of the CCJ
algorithm to O(n5) and O(n4) respectively.

PK(i, j, k, l) is the MFE over all TGB structures of the gapped fragment [i, j]∪ [k, l]. Note
that such structures have the additional restrictions: the positions i and l must be involved
in some base pairs, which are not part of nested substructures; moreover, some base pair of
a TGB structure must span the gap. The recurrence for PK uses terms PL, PM , PO, and
PR, which (put informally) handle bands on the left, middle and right groups of the TGB
structure, respectively. Both PM and PO are needed to handle bands in the middle group.
The matrix entries PL(i, j, k, l), PM (i, j, k, l), PR(i, j, k, l), PO(i, j, k, l) are decomposed as
illustrated in Fig. 2, in which WP, handles nested substructures in a pseudoloop. (For invalid
index combinations, the matrix entries are set to +∞, and do not have to be stored.)

Each of the matrices PL, PR, PM , and PO requires a base pair between the two ends at
the respective positions left, right, middle, or outer. Each such matrix distinguishes the three
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PK
PK PKWP

WP
PL POPR PM

PM PM,mloop PfromMPM,iloop

PO PO,mloop PfromOPO,iloop

PL PL,mloop PfromLPL,iloop

PR PR,mloop PfromRPR,iloop

Figure 2 Decompositions for PK(i, j, k, l), PL(i, j, k, l), PM (i, j, k, l), PR(i, j, k, l), PO(i, j, k, l) in
grammar-rule like graphical notation.

WP
WP

POPR PM

PfromLPfromL

PfromL

WP
WP

POPMPfromR

PfromR PfromR

WPPfromM

PfromM

PL PR
WP

PfromM

PfromO

PfromO

PL PR

PfromOWP WP

Figure 3 Decompositions of PfromX(i, j, k, l) for X ∈ {L, R, M, O}, which handle transitions
from PX in other matrices PY in graphical notation.

cases that this base pair closes an interior loop or a multi-loop or is the inner border of a
band. In the latter case, the respective terms PfromX (X ∈ {L, R, M, O}) handle transitions
from base pairs in one group to base pairs in some other group (see Fig. 3).

Whenever we change a band via one of the matrices PfromX , we must allow for nested
substructures around the band. This is handled by the first two cases of the respective
recurrence PfromX . Moreover, in PfromX we recurse to matrices PX(i, j, k, l) only if the
requirements of these matrices are met.

Note that in PfromL, it is not possible to transition to PL. This is because the recurrences
are designed so that bands are handled in rounds. Within a round, bands in the left are
handled first, if any, then those on the right, if any, and then those on the middle, with
bands handled by PM (if any) handled before those handled by PO. A middle band must
be handled in each round; otherwise, for example, two “bands” on the left group, added in
different rounds, would collapse into one, causing the recurrences to incorrectly add penalty
terms for band “borders” that are not actually borders. For this reason, no row in PfromL

has a PL term, and so a band on the left group cannot be handled directly after a band
on the right group. Also, PfromO does not have a row with a PM term, to ensure that PM

cannot be used twice on the same round.

Interior loops in the left band are decomposed by the rule PL,iloop

PL

; the
remaining cases (right, middle, outer) are analogous. Note that, while the decomposition of
PL,iloop(i, j) has two free indices, these indices are constraint by setting a constant maximum
size of interior loops (here 30 bases) as it is common practice. For handling interior loops,
the original CCJ algorithm introduced the five-ary function PL,iloop5 and applied a clever
scheme to still use only Θ(n4) space. However, this space consumption could not easily
be reduced further by sparsification. Thus, avoiding PL,iloop5, which is possible due to the
HotKnots energy model, is essential to reduce the space complexity.
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PL,mloop10 PL,mloop00

WB'
WBPL,mloop00

PL,mloop PL,mloop10 PL,mloop01

PL,mloop01 PL,mloop00WB'

PL,mloop00 PL,mloop00

WB
WBPL,mloop00

PL

Figure 4 Decomposition of multi-loops in the left band.

WB WB WB' V PWB'
WB' WB'

Figure 5 Decompositions of WB(i, l) and WB′(i, l).

Moreover, we modify the original handling of multi-loop cases to enable their sparsification.
Fig. 4 shows our multi-loop handling for the left band. We handle multi-loops by passing
through states PL,mloop10, PL,mloop01, and PL,mloop00, which keep track of introduced inner
multi-loop base pairs on the left or on the right. Finally, Fig. 5 shows the decompositions of
WB(i, l) and WB′(i, l). The other “W”-matrices are decomposed analogously.

Further details of the original CCJ recurrences are available in the thesis [6], which also
provides a detailed description of its sparsification.

3 Sparsification of the CCJ algorithm

By and large, “sparsification” allows keeping just the required dynamic programming matrix
cells, which we refer to as candidates, (instead of the whole matrix) to find the MFE value.
By storing a few candidates (as explained below) we avoid storing any four-dimensional CCJ
matrix. (i) In recurrences in which the left-most index, i, does not change, we store the
value of such recurrences in a constant number of three-dimensional matrix slices; we call
the collection of these matrix slices i-slices. In many of these recursion cases, we recurse
to matrix entries of the same i-slice (e.g. when inferring PK from PL or, slightly more
interestingly, PR from PfromR). In other cases, we recurse to the (i + 1)-slice (e.g. PL from
PfromL) or (i + c)-slice, where c is constantly bounded. The latter occurs in the handling
of interior loops (PL,iloop and analogously PO,iloop), where c does not exceed the maximum
interior loop size MLS. (ii) This leaves us with the recursion cases that recurse to some
d-slice, where d− i cannot be constantly bounded. Instead of storing all slices, we store only
certain candidate entries in such slices. These matrix entries (called candidates) are stored
in candidate lists for specific recursion cases together with their corresponding second, third,
and fourth matrix indices, j, k, and l to keep track of band borders. In some cases, candidate
lists can be shared between recursion cases. We presented more details on candidate list
requirements in [11].

Space representation of the four-dimensional matrices by sparseCCJ

Only matrices corresponding to PL and PO occur in interior loops that span a band, and
require to recurse to a different i-slice; for them, we store slices i..i + MLS. For matrices
corresponding to PfromL, PfromO, PL,mloop10, PL,mloop01, PO,mloop10, and PO,mloop01, we
only need to store slices i and i + 1. Matrices corresponding to recurrences of types PX,iloop

and PX,mloop (X ∈ {L, R, M, O}) do not need to be stored and can be computed when
needed. For the remaining matrices, we store only the current i-slice. Note that space is
always reused in the next iteration; in case of ranges of slices, the memory access is ‘rotated’
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without copying in memory. Matrices corresponding to the following recurrence cases require
maintaining candidate lists: PK, PL, PO, PfromL, PfromO, PL,mloop00, and PO,mloop00.

To finalize sparsification, all recursion cases that recurse to these matrices – where the
left-most index is not constantly bound – need to be modified. This affects all recursion
cases, which insert any nested substructure to the left of the gapped region. This occurs
exactly in the decompositions of PK, PfromL, PfromO, PL,mloop10, PL,mloop00, PO,mloop10,
and PO,mloop00. Moreover, this affects the decomposition of P into two PK-fragments, where
the latter is taken from the respective candidate list. We discuss the single modifications on
the three examples of PK, PL,mloop10, and P – the remaining cases are sufficiently similar
to be sparsified analogously.

1. Consider the case of the PfromL recurrence:

min
i<d≤j

WP(i, d− 1) + PK(d, j, k, l).

It suffices to minimize only over certain candidates PK(d, j, k, l) that are not optimally
decomposable in the following sense:

6 ∃e > d : PK(d, j, k, l) = WP(d, e− 1) + PK(e, j, k, l). (3)

It can be shown easily that whenever PK(i, j, k, l) is optimally decomposable, there is a
candidate (i.e. a smaller, not optimally decomposable fragment) which yields the same
minimum value. Remarkably, the candidate criterion can be efficiently checked by the
dynamic programming algorithm. This is more directly seen from the equivalent candidate
criterion

PK(d, j, k, l) < mind<e≤jWP(d, e− 1) + PK(e, j, k, l).

Also this minimum can be computed by running only over candidates; moreover it must
be calculated by the dynamic programming algorithm for computing PK(d, j, k, l), such
that the check is performed without additional overhead. This idea holds analogously for
the other candidate checks.

2. Similarly, the minimization

min
i<d≤j

WB′(i, d− 1) + PL,mloop00(d, j, k, l)

that occurs in the recurrence of PL,mloop10 is restricted to candidates that satisfy

6 ∃e : PL,mloop00(d, j, k, l) = WB(d, e− 1) + PL,mloop00(e, j, k, l). (4)

We can even strengthen the criterion, such that candidates must further satisfy

6 ∃e : PL,mloop00(d, j, k, l) = PL,mloop00(d, e, k, l) + WB(e + 1, j). (5)

3. In the minimization calculating P (i, l), i.e.

min
i<j<d<k<l

PK(i, j − 1, d + 1, k − 1) + PK(j, d, k, l),

it suffices to consider only candidates PK(j, d, k, l). Entries PK(j, d, k, l) are candidates
if and only if they are not optimally decomposable in the following sense:

6 ∃e(j ≤ e < d) : PK(j, d, k, l) = PK(j, e, k, l) + WP(e + 1, d). (6)

WABI 2017
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We emphasize that certain cases share the same candidates (allowing space savings). For
example, the candidate criterion for decomposing PL,mloop10 into WB′ and PL, mloop00 is
identical to the one of decomposing PL,mloop00 into WB′ and PL, mloop00. Similarly, we
share the candidate lists of PO,mloop10 and PO,mloop00.

Finally, the sparsified CCJ recurrences can be computed based on the (constantly bounded)
matrix slices and the candidates alone. Their correctness is a consequence of inverse triangle
inequalities; for example in case of W we have ∀x < y ≤ z : W (x, z) ≤W (x, y− 1) + W (y, z),
which follows from the definition of W . Analogous inequalities hold for WP, WB, and WB.

I Theorem 1 (Correctness of the CCJ sparsification). The sparsified CCJ recurrences are
equivalent to the non-sparsified CCJ recurrences.

Proof. We show for fragments i, l and i, j, k, l by simultaneous induction on the fragment
size (respectively, l − i and j − i + l − k) that all changes in the definition of sparseCCJ
(from the original to the sparsified recurrences of CCJ) are equivalent, in particular the
values of the CCJ recursions and their corresponding sparsified versions are identical for each
fragment.

It suffices to show the equivalence of the changes of the minimization cases explicitly.
Moreover in each case, it suffices to show that there exists a minimum that is a candidate.
By the induction hypothesis, the sparsified recursion for all smaller fragments do not have
to be distinguished from the non-sparsified ones. We prove the three example cases PK,
PL,mloop10, and P explicitly; the remaining cases can be shown analogously.

1. Choose the largest d, i < d ≤ j, s.t. WP(i, d− 1) + PK(d, j, k, l) is minimal. We show –
by contradiction – that PK(d, j, k, l) is a candidate, i.e. it satisfies Eq. (3). Assume Eq. (3)
does not hold and choose e (e > d) such that PK(d, j, k, l) = WP(d, e−1) + PK(e, j, k, l).
Now, WP(i, d− 1) + PK(d, j, k, l) = WP(i, d− 1) + WP(d, e− 1) + PK(e, j, k, l) ≥
WP(i, e−1) + PK(e, j, k, l) (using the inverse triangle inequality forWP). This contradicts
the choice of d; thus PK(d, j, k, l) must be a candidate.

2. Choose the largest d s.t. WB′(i, d− 1) + PL,mloop00(d, j, k, l) is minimal. We show – by
contradiction – that the candidate criterion, i.e. Eqs. (4) and (5), hold.

Assume Eq. (4) does not hold, then there exists some e s.t.
WB′(i, d−1)+PL,mloop00(d, j, k, l) = WB′(i, d−1)+WB(d, e−1)+PL,mloop00(e, j, k, l) ≥
WB′(i, e− 1) + PL,mloop00(e, j, k, l); the latter inequality holds due to the definition of
WB′.
Assume Eq. (5) does not hold, then there exists some e s.t.
PL,mloop00(d, j, k, l) = PL,mloop00(d, e, k, l) + WB(e + 1, j). Consequently, the corre-
sponding case of PL,mloop10(i, j, k, l) yields a smaller or equal value, since WB′(i, d−
1) + PL,mloop00(d, j, k, l) = WB′(i, d − 1) + PL,mloop00(d, e, k, l) + WB(e + 1, j) ≥
PL,mloop10(i, e, k, l) + WB(e + 1, j).

3. For fixed i < j < k < l, choose the smallest d (j < d < k) s.t. PK(i, j − 1, d + 1, k −
1) + PK(j, d, k, l) is minimal. Assume Eq. (6) is violated, then there is some e > d, s.t.
PK(i, j−1, d+ 1, k−1) +PK(j, d, k, l) = PK(i, j−1, d+ 1, k−1) +PK(j, e, k, l) +WP(e+
1, d) ≥(∗∗) PK(i, j − 1, e + 1, k − 1) + PK(j, e, k, l), which contradicts the choice of d.

For inequality (**), we observe that PK(i, j − 1, d + 1, k − 1) + WP(e + 1, d) ≤ PK(i, j −
1, e + 1, k − 1) by definition of PK. J

Note that the presented sparsification would not have been possible for the multi-
loop handling of the original CCJ algorithm (Fig. 6), which required us to modify these
decompositions. In the original decomposition of PL,mloop, the unbound access to d-slices
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PL,mloop0 PLWB

PL,mloop

WB'
PL,mloop0

WB
PL,mloop1

PL,mloop1 PLWB'

Figure 6 Decomposition of multi-loops in the left band by the original CCJ algorithm.

cannot easily be replaced by candidates – note the index offsets in the graphical notation,
indicating that in the recurrence of PL,mloop(i, j, k, l), the WB′ and WB fragments both
start at i + 1; similarly, there is a shift to j − 1 in the recurrences of PL,mloop0(i, j, k, l) and
PL,mloop1(i, j, k, l).

4 Space Complexity Analysis

In the previous sections, we sparsified all four-dimensional matrices of the CCJ algorithm
with the goal of reducing its space complexity. As explained before, our sparsification allows
us to replace all four-dimensional matrices by three-dimensional matrix slices. In seven
recursion cases, we needed to rewrite minimizations, such that they compute equivalent
results by recursing only to candidates (or entries of the same i-slice). In two of these cases,
candidate lists can be shared.

Even if only a small fraction of the respective four-dimensional fragments are optimally
decomposable (i.e. are not candidates), these changes will save space over the non-sparsified
version. However, experience from previous sparsification (and our results) show that a large
number of fragments is optimally decomposable, such that number of candidates is small.

We define Z as the total number of candidates. For traceback, we store a number of trace
arrows, dynamically limiting their number; denote their maximum number by T . Then, the
total space complexity of sparseCCJ is O(n3 + Z + T ).

5 Results

In this section we provide implementation and data set details, and show a comparison of
sparseCCJ in terms of time and memory usage to its predecessors, original CCJ and modified
CCJ.

5.1 Implementation
We implemented three versions of CCJ algorithm in C++; the first version is strictly based
on the original CCJ recurrences, but the energy values are similar to that of DP09 energy
model in HotKnots V2.0 [2]; we refer to this version as “original”. There are few energy
functions in the original CCJ energy model that are not explicitly in the DP09 model. We
have set values of these functions to 0, in order to make the models as similar as possible. The
second version has modified recurrences to match the energy model of HotKnots V2.0, and is
referred to as “modified”. The main difference between this version and the original version
is in calculating energy of interior loops that span the band. The energy of an interior loop
or multi-loop depends on whether or not the external base pair of the loop is pseudoknotted.
If it is not, we call the loop ordinary, and otherwise say that the loop spans a band. If the
external base pair of an ordinary interior loop, not including stacks, is i.l and the other
closing base pair is d.e, then similar to the DP09 energy model, the energy of the interior
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Table 1 Summary of data sets used in this work.

Name # of sequences Structure Type sequence lengths Reference
HK-PK 88 pseudoknotted 26–400 test set of [2]

HK-PK-free 337 pseudoknot-free 10–194 test set of [2]
IP-pk168 168 pseudoknotted 21–137 test set of [16]
DK-pk16 16 pseudoknotted 34–377 test set of [17]

loop is calculated by a call to the function eint(i, d, e, l). If the internal loop spans a band we
call the function eintP (i, d, e, l) instead. The third version uses the sparsification technique,
and is referred to as “sparse” (sparseCCJ). Similar to [21], we utilize trace arrows to keep
track of accessible cells and employ a garbage collection technique to remove trace arrows
from unreachable cells. Using these techniques in sparseCCJ required extensions like trace
arrows between different matrices, which were only briefly mentioned in [21]; otherwise it
demonstrates the generality of this approach.

5.2 Data sets

We use a large data set of over 600 RNA strands of length between 10–400 bases to analyze
the performance of our algorithm. This data set was compiled from three non-overlapping
data sets with various pseudoknotted and pseudoknot-free structures. Table 1 provides a
summary of these data sets.

5.3 Benchmark Results

We ran all three versions of CCJ implementations on Amazon Cloud (r4.8xlarge instance
consisting of 32 Xeon E5-2686 Broadwell 2.3 GHz CPUs, and 244GB of DDR3 RAM) and
compared their time and memory requirements for instances of our data set. First, we
verified that the two versions that implement DP09 energy model of HotKnots V2.0, i.e. the
modified CCJ and the sparse CCJ implementation, indeed produced exactly the same results.
This equivalence must hold in correct implementations due to Theorem 1. We focus on (run
time and space) performance of sparse CCJ, in this work. Fig. 7 shows – in log scale – the
memory consumption (left), our main objective in this work, and run times (right), both
as functions of sequence length. We observe significant improvements in space from the
original implementation over the modified one to the sparse implementation. At the same
time, one observes a comparably small run time penalty in our (little run time-optimized)
sparse implementation. However, given today’s heavily parallel computation platforms (with
comparably costly main memory), differences in run-time are generally less relevant than
space improvements.

We further investigated whether a specific class of structures (i.e. pseudoknotted vs.
pseudoknot-free) would benefit stronger than the other from sparsification, and found out
that both classes benefit equally from sparsification (see Fig. 8); in general longer sequences
benefit more (as seen in Fig. 7). Closer look at Fig. 7 shows that while sparseCCJ has
variation in memory usage within the same length, these variations are minimal. We looked
at numbers of candidates and trace arrows (9) in sparse CCJ, which together explain the
space requirements.
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Figure 7 Memory usage (left, presented as log of maximum resident set size in GB) and run time
(right, presented as log of time in second) vs. length for the three CCJ implementations.

Figure 8 Performance comparison (memory usage) of sparse CCJ in different class of structures.

Figure 9 Total number of candidates (measured as log(total number of candidates)) and trace
arrows (measured as log(maximum number of trace arrows)) used in SparseCCJ versus sequence
length.
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6 Conclusion

We have presented the first application of the sparsification to a complex pseudoknot structure
prediction algorithm – supporting kissing hairpins with arbitrarily nested substructures – with
a realistic energy model. While previous applications of the sparsification technique mainly
focused on speed improvements, we solely aimed at reducing the space requirements, which is
the main factor limiting the practical applicability of complex RNA pseudoknotted secondary
structure prediction. Our comparison to two previous CCJ variants provides interesting
insights into general potentials for space improvements of complex RNA-related algorithms.
Finally, our space savings in sparseCCJ open the door for large scale biologically-relevant
application of pseudoknot structure prediction covering all important pseudoknot classes.

Acknowledgements. We thank Anne Condon for discussing details of the CCJ algorithm
and first ideas on space savings.
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