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—— Abstract

Bounded context switching (BCS) is an under-approximate method for finding violations to safety
properties in shared-memory concurrent programs. Technically, BCS is a reachability problem
that is known to be NP-complete. Our contribution is a parameterized analysis of BCS.

The first result is an algorithm that solves BCS when parameterized by the number of context
switches (c¢s) and the size of the memory (m) in O*(m® - 2¢%). This is achieved by creating
instances of the easier problem Shuff which we solve via fast subset convolution. We also present
a lower bound for BCS of the form m°(¢s/1°8(¢5) hased on the exponential time hypothesis.
Interestingly, the gap is closely related to a conjecture that has been open since FOCS’07. Further,
we prove that BCS admits no polynomial kernel.

Next, we introduce a measure, called scheduling dimension, that captures the complexity of
schedules. We study BCS parameterized by the scheduling dimension (sdim) and show that it
can be solved in O*((2m)**4"™4t) where t is the number of threads. We consider variants of the
problem for which we obtain (matching) upper and lower bounds.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases Shared memory concurrency, safety verification, fixed-parameter tracta-
bility, exponential time hypothesis, bounded context switching

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.27

1 Introduction

Concurrent programs where several threads interact through a shared memory can be found
essentially everywhere where performance matters, in particular in critical infrastructure like
operating systems and libraries. The asynchronous nature of the communication makes these
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programs prone to programming errors. As a result, substantial effort has been devoted to
developing automatic verification tools. The current trend for shared memory is bug-hunting:
Algorithms that look for misbehavior in an under-approximation of the computations.

The most prominent method in the under-approximate verification of shared-memory
concurrent programs is bounded context switching (BCS) [48]. A context switch occurs
when a thread leaves the processor for another thread to be scheduled. The idea of BCS is
to limit the number of times the threads may switch the processor. Effectively this limits
the communication that can occur between the threads. (Note that there is no bound on
the running time of each thread.) Bounded context switching has received considerable
attention [37, 4, 3, 1, 38, 39, 2, 47| for at least two reasons. First, the under-approximation has
been demonstrated to be useful in numerous experiments, in the sense that synchronization
bugs show up in few context switches [46]. Second, compared to other verification methods,
BCS is algorithmically appealing, with the complexity dropping from PSPACE to NP in the
case of Boolean programs.

The hardness of verification problems, also the NP-hardness of BCS, is in sharp contrast
to the success that verification tools see on industrial instances. This discrepancy between
the worst-case behavior and efficiency in practice has also been observed in other areas
within algorithmics. The response was a line of research that refines the classical worst-case
complexity. Rather than only considering problems where the instance-size determines
the running time, so-called parameterized problems identify further parameters that give
information about the structure of the input or the shape of solutions. The complexity
class of interest consists of the so-called fixed-parameter tractable problems. A problem is
fixed-parameter tractable if the parameter that has been identified is indeed responsible
for the non-polynomial running time or, phrased differently, the running time is f(k)p(n)
where k is the parameter, n is the size of the input, f is a computable function, and p is
a polynomial.

Within fixed-parameter tractability, the recent trend is a fine-grained analysis to under-
stand the precise functions f that are needed to solve a problem. From an algorithmic point
of view, an exponential dependence on k, at best linear so that f(k) = 2%, is particularly
attractive. There are, however, problems where algorithms running in 2°(*1°2(*)) are unlikely
to exist. As common in algorithmics, unconditional lower bounds are hard to achieve, and
none are known that separate 28 and 281°8(F)  Instead, one works with the so-called expo-
nential time hypothesis (ETH): After decades of attempts, n-variable 3-SAT is not believed
to admit an algorithm of running time 2°(™. To derive a lower bound for a problem, one
now shows a reduction from n-variable 3-SAT to the problem such that a running time in
20(klog(k)) means ETH breaks.

The contribution of our work is a fine-grained complexity analysis of the bounded context
switching under-approximation. We propose algorithms as well as matching lower bounds in
the spectrum 2* to k*. This work is not merely motivated by explaining why verification
works in practice. Verification tasks have also been shown to be hard to parallelize. Due to
the memory demand, the current trend in parallel verification is lock-free data structures [6].
So far, GPUs have not received much attention. With an algorithm of running time 2¥p(n),
and for moderate k, say 12, one could run in parallel 4096 threads each solving a problem of
polynomial effort.

When parameterized only by the context switches, BCS is quickly seen to be W[1]-hard
and hence does not admit an FPT-algorithm. Since it is often the case that shared memory
communication is via signaling (flags), the memory requirements are not high. We additionally
parameterize by the memory. Our study can be divided into two parts.
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We first give a parameterization of BCS (in the context switches and the size of the
memory) that is global in the sense that all threads share a budget of ¢s many context
switches. For the upper bound, we show that the problem can be solved in O*(m*®2°%). We
first enumerate the sequences of memory states at which the threads could switch context,
and there are m*® such sequences where m is the size of the memory. For a given such
sequence, we check a problem called Shuff: Do the threads have computations that justify
the sequence (and lead to their accepting state)? Here, we use fast subset convolution to

solve Shuff in O*(2°%). Note that Shuff is a problem that may be interesting in its own right.

It is an under-approximation that still leaves much freedom for the local computations of the
threads. Indeed, related ideas have been used in testing [33, 12, 24, 31].

For the lower bound, the finding is that the global parameterization of BCS is closely
related to Subgraph Isomorphism (SGl). Whereas the reduction is not surprising, the
relationship is, with SGI being one of the problems whose fine-grained complexity is not fully
understood. Subgraph isomorphism can be solved in O*(n*) where k is the number of edges
in the graph that is to be embedded. The only lower bound, however, is n°*/1°8%) and has,
to the best of our knowledge, not been improved since FOCS’07 [44, 45]. However, the belief
is that the log k-gap in the exponent can be closed. We show how to reduce SGI to the global
version of BCS, and obtain an m°(¢s/1°2¢%) Jower bound. Phrased differently, BCS is harder
than SGI but admits the same upper bound. So once Marx’ conjecture is proven, we obtain
a matching bound. If we proved a lower upper bound, we had disproven Marx’ conjecture.

Our second contribution is a study of BCS where the parameterization is local in the sense

that every thread is given a budget of context switches. Here, our focus is on the scheduling.

We associate with computations so-called scheduling graphs that show how the threads take
turns. We define the scheduling dimension, a measure on scheduling graphs (shown to be
closely related to carving width) that captures the complexity of a schedule. Our main
finding is a fixed-point algorithm that solves the local variant of BCS exponential only in
the scheduling dimension and the number of threads. We study variants where only the
budget of context switches is given, the graph is given, and where we assume round robin as
a schedule. Verification under round robin has received quite some attention [10, 46, 40]. In
that setting, we show that we get rid of the exponential dependence on the number of threads
and obtain an O*(m*¢*) upper bound. We complement this by a matching lower bound.
The following table summarizes our results and highlights the main findings in gray.

’ Problem Upper Bound Lower Bound
Shuff 0*(2%) (2—-¢e)*
Bcs | 0m2) o pely. el
BCS-L-RR O*(m**) 20(eslog(m))
BCS-L-FIX | O*((2m)*sdm) 0(sdimlog(m))
BCS-L O*((2m)*sdim 4t go(sdim log(m))

The organization is by expressiveness, measured in terms of the amount of computations
that an analysis explores. Considering shuffle membership Shuff as an under-approximate
analysis in its own right, Shuff is less expressive than the globally parameterized BCS. BCS
is less expressive than round robin BCS-L-RR; which is an instance of fixing the scheduling
graph BCS-L-FIX. The most liberal parameterization is via the scheduling dimension BCS-L.
In the paper, we present algorithms for the case where the threads are finite state. Our results
also hold for more general classes of programs, notably recursive ones. The only condition
that we require is that the chosen automaton model for the threads has a polynomial time
decision procedure for checking non-emptiness when intersected with a regular language.
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There have been previous efforts in studying fixed-parameter tractable algorithms for
automata and verification-related problems. In [21], the authors introduced the notion of
conflict serializability under TSO and gave an FPT-algorithm for checking serializability.
In [24], the authors studied the complexity of predicting atomicity violation on concurrent
systems and showed that no FPT solution is possible for the same. In [18], various model
checking problems for synchronized executions on parallel components were considered and
proven to be intractable. Parameterized complexity analyses for different problems on finite
automata were given in [25, 26, 50].

Verification of concurrent systems has received considerable attention. The parameterized
verification was studied in [20, 22, 29, 34, 38]. Concurrent shared-memory systems with a
fixed number of threads were also studied in [2, 3, 5].

2 Preliminaries

We define the bounded context switching problem of interest [48] and recall the basics on
fixed-parameter tractability following [19, 27].

Bounded Context Switching. We study the safety verification problem for shared-memory
concurrent programs. To obtain precise complexity results, it is common to assume both the
number of threads and the data domain to be finite. Safety properties partition the states of
a program into unsafe and safe states. Hence, checking safety amounts to checking whether
no unsafe state is reachable. In the following, we develop a language-theoretic formulation of
the reachability problem that will form the basis of our study.

We model the shared memory as a (non-deterministic) finite automaton of the form
M =(Q,%,0m,90,9f). The states @ correspond to the data domain, the set of values that
the memory can be in. The initial state o € @ is the value that the computation starts from.
The final state ¢y € @ reflects the reachability problem. The alphabet ¥ models the set of
operations. Operations have the effect of changing the memory valuation, formalized by the
transition relation dp; C @ X X x Q). We generalize the transition relation to words u € ¥*.
The set of sequences of operations that lead from a state ¢ to another state ¢’ is the language
L(M(q,q)) :={ueX* | ¢ €dm(q,u)}. The language of M is L(M) := L(M(qo,qyf)). The
size of M, denoted | M|, is the number of states.

We also model the threads operating on the shared memory M as finite automata
Aijq = (P,X x {id},4,p0,ps). Note that they use the alphabet ¥ of the shared memory,
indexed by the name of the thread. The index will play a role when we define the notion
of context switches below. The automaton A;; is nothing but the control flow graph of the
thread id. Its language is the set of sequences of operations that the thread could potentially
execute to reach the final state. As the thread language does not take into account the effect
of the operations on the shared memory, not all these sequences will be feasible. Indeed,
the thread may issue a command write(z, 1) followed by read(z,0), which the automaton
for the shared memory will reject. The computations of A that are actually feasible on the
shared memory are given by the intersection L(M) N L(A;4). Here, we silently assume the
intersection to project away the second component of the thread alphabet.

A concurrent program consists of multiple threads A; to A; that mutually influence
each other by accessing the same memory M. We mimic this influence by interleaving the
thread languages, formalized with the shuffle operator ITI. Consider languages L; C X7 and
Ly C 3% over disjoint alphabets 31 N3y = (. The shuffle of the languages contains all words
over the union of the alphabets where the corresponding projections (— | —) belong to the
operand languages, L1 ITT Ly := {u € (X1 UX2)* |u | X; € L; U {e},i=1,2}.
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With these definitions in place, a shared-memory concurrent program (SMCP) is a
tuple S = (3, M, (Ai)ien.q). Its language is L(S) := L(M) N ( Mlepy 4 L(4) ). The
safety verification problem induced by the program is to decide whether L(.S) is non-empty.
Note that we use [1..t] to identify the set {1,...,¢}.

We formalize the notion of context switching. Every word in the shuffle of the thread
languages, u € e g L(A;), has a unique decomposition into maximal infixes that are
generated by the same thread. Formally, v = u;...ucsy1 so that there is a function
@ [l.cs+ 1] — [1..t] satisfying u; € (X x {p(i)})" and ¢(i) # p(i+1) for all i € [1..cs]. We
refer to the u; as contexts and to the thread changes between u; to u;41 as context switches.
So u has cs+1 contexts and cs context switches. Let Context(X, ¢, ¢s) denote the set of words
(over ¥ with ¢ threads) that have at most cs-many context switches. The bounded context
switching under-approximation limits the safety verification task to this language.

Bounded Context Switching (BCS)
Input: An SMCP S = (¥, M, (A;i)icp1.4) and a bound c¢s € N.
Question: Is L(S) N Context (X, ¢, ¢s) 0 ?

Fixed Parameter Tractability. BCS is NP-complete, even for unary alphabets [23]. Our
goal is to understand which instances can be solved efficiently and, in turn, what makes an
instance hard. Parameterized complexity addresses these questions.

A parameterized problem L is a subset of ¥* x N. The problem is fized-parameter tractable
(FPT) if there is a deterministic algorithm that, given (z,k) € £* x N, decides (z,k) € L in
time f(k) - |$|O(1). Here, f is a computable function that only depends on the parameter k.
It is common to denote the running time by O*(f(k)) and suppress the polynomial part.

While many parameterizations of NP-hard problems were proven to be fixed-parameter
tractable, there are problems that are unlikely to be FPT. A famous example that we shall
use is k-Clique, the problem of finding a clique of size k in a given graph. k-Clique is complete
for the complexity class W[1], and W[1]-hard problems are believed to lie outside FPT.

A theory of relative hardness needs an appropriate notion of reduction. Given param-
eterized problems L,L’ C ¥* x N, we say that L is reducible to L' via a parameterized
reduction, denoted by L </P* I’  if there is an algorithm that transforms an input (z, k) to
an input (27, ') in time g(k) - n®® so that (z,k) € L if and only if (2, k') € L'. Here, g is
a computable function and %’ is computed by a function only dependent on k.

For BCS, a first result is that a parameterization by the number of context switches and
additionally by the number of threads, denoted by BCS(cs, t), is not sufficient for FPT: The
problem is W[1]-hard. It remains in W[1] if we only parameterize by the context switches.

» Proposition 1. BCS(cs) and BCS(cs, t) are both W[1]-complete.

The running time of an FPT-algorithm is dominated by f. The goal of fine-grained
complexity theory is to give upper and lower bounds on this non-polynomial function. For
lower bounds, the problem that turned out to be hard is n-variable 3-SAT. The Exponential
Time Hypothesis (ETH) is that n-variable 3-SAT does not admit a 2°(-time algorithm [36].
We will prove a number of lower bounds that hold, provided ETH is true.

In the remainder of the paper, we consider parameterizations of BCS that are FPT. Our
contribution is a fine-grained complexity analysis.

27:5
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3 Global Parameterization

Besides the number of context switches c¢s, we now consider the size m of the memory as
a parameter of BCS. This parameterization is practically relevant and, as we will show,
algorithmically appealing. Concerning the relevance, note that communication over the
shared memory is often implemented in terms of flags. Hence, when limiting the size of the
memory we still explore a large part of the computations.

Upper Bounds. The idea of our algorithm is to decompose BCS into exponentially many
instances of the easier problem shuffle membership (Shuff) defined below. Then we solve
Shuff with fast subset convolution. To state the result, let the given instance of BCS be
S = (X, M, (As)ien.)) with bound cs. To each automaton A;, our algorithm will associate
another automaton B; of size polynomial in A;. Let b = max;cp;. 4 |B;|. Moreover, let
Shuff(b, k,t) = O(2% -t - k- (b + k - be(k))) be the complexity of solving the shuffle problem.
The factor be(k) appears as we need to multiply k-bit integers (see below). The currently
best known running time is be(k) = klogk - 20U°g’%) [32, 35],

» Theorem 2. BCS can be solved in O(m®*t - Shuff(b, cs + 1,t) +t-m? - b3).

We decompose BCS along interface sequences. Such an interface sequence is a word
o= (q1,41) - (gx, g;,) over pairs of states of the memory automaton M. The length is k. An
interface sequence is valid if ¢; is the initial state of the memory automaton, ¢j, the final state,
and ¢} = ¢;4+1 for ¢ € [1..k — 1]. Consider a word u € L(S) with contexts u = uj ... Up,. An
interface sequence o = (qo,q1)(q1,42) - - - (@m—1,qm) is induced by wu, if there is an accepting
run of M on u such that for all ¢ € [1..m], ¢; is the state reached by M upon reading u .. . u;.
Note that we only consider the states that occur upon context switches. Moreover, induced
sequences are valid by definition. Finally, note that a word with cs-many context switches
induces an interface sequence of length precisely cs + 1. We define IIF(S) C (Q x Q)* to be
the language of all induced interface sequences.

Induced interface sequences witness non-emptiness of L(S): L(S) # 0 iff IIF(S) # 0.
Since the number of context switches is bounded by cs, we can thus iterate over all sequences
in (Q x Q)=+ and test each of them for being an induced interface sequence, i.e. an
element of ITF(S). Since induced sequences are valid, there are at most m®*! sequences to
test.

Before turning to this test, we do a preprocessing step that removes the dependence on
the memory automaton M. To this end, we define the interface language IF(A;q) of a thread.
It makes visible the state changes on the shared memory that the contexts of this thread may
induce. Formally, the interface language consists of all interface sequences (¢1,¢}) ... (qx,q},)
so that L(A;q) N ( L(M(q1,4})) ... L(M(qx,q))) ) # 0. These sequences do not have to be
valid as the thread may be interrupted by others. Below, we rely on the fact that IF(A;q) is
again a regular language, a representation of which is easy to compute.

» Lemma 3.
(i) We have IIF(S) = I;cpy. 4 IF(A;) N{o € (Q x Q)* | o valid }.
(i) One can compute in time O(|Azq|” - |M|*) an automaton Biq with L(Byg) = IF(Ay).

It remains to check whether a valid sequence o € (Q x Q)**! is included in the shuf-
fle I;¢[1.4)L(B;). This means we address the following problem:
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Shuffle Membership (Shuff)
Input: NFAs (B;);e[1..q over the alphabet T', an integer &, and a word w € rk.
Question: Is w in Wl;c;y. o L(B;) 7

We obtain the following upper bound, with b and be(k) as defined above.
» Theorem 4. Shuff can be solved in time O(2% -t -k - (b> + k - be(k))).

Our algorithm is based on fast subset convolution [7], an algebraic technique for summing
up partitions of a given set. Typically, fast subset convolution is applied to graph problems:
Bjorklund et al. [7] used it to present the first O*(2%)-time algorithm for the Steiner Tree
problem with & terminals and bounded edge weights. Cygan et al. incorporated a generalized
version as a subprocedure in applications of their Cut & Count technique [17]. Variants of
Dominating Set parameterized by treewidth were solved by van Rooij et al. in [49] using fast
subset convolution. We are not aware of an automata-theoretic application.

Let f,g: P(B) — Z be two functions from the powerset of a k-element set B to the ring
of integers. The convolution of f and g is the function f x g : P(B) — Z that maps a subset
S C B to the sum )¢ f(U)g(S \ U). Note that the convolution is associative. There is a
close connection to partitions. For t € N, a t-partition of a set S is a tuple (U, ...,U;) of
subsets of S such that Uy U---UU; = S and U; NU; = () for all i # j. Now it is easy to see
that the convolution of ¢ functions f; : P(B) — Z,i € [1..t], sums up all t-partitions of S:

(frx--x fi)(S) = > fO) - (UL

(U1, Ue)
is a t-parition of S

To apply the convolution, we give a characterization of Shuff in terms of partitions. Let
((Bi)ig[1..4, k,w) be an instance of Shuff. The following observation is crucial. The word
w lies in the shuffle of the L(B;) if and only if there are non-overlapping, possibly empty
(scattered) subwords wy, . .., w; of w that decompose w and that satisfy w; € L(B;) U {e} for
all i € [1..t]. By scattered, we mean that the subwords do not have to form an infix of w. Such
a decomposition induces a t-partition (Uy,...,U;) of the set of positions Pos = {1,...,k} of
w, where each U; holds exactly the positions of w;. In turn, given a t-partition (Uy,...,U;)
of Pos, we can derive a decomposition of w by setting w; = w[U;] for all ¢ € [1..¢]. Here,
w[U;] is the projection of w to the positions in U;. Hence, w lies in the shuffle if and only if
there is a t-partition (Ui, ...,Us) of Pos such that w[U;] € L(B;) U {e} for all i € [1..t].

To express the language membership in L(B;) in terms of functions, we employ the
characteristic functions f; : P(Pos) — Z that map a set S to 1 if w[S] € L(B;) U{e}, and to
0 otherwise. By the above formula, it follows that (f1 * - - * f;)(Pos) > 0 if and only if there
is a t-partition (Uy,...,U;) of Pos such that f;(U;) =1 for i € [1..t]. Altogether, we have
proven the following lemmas:

» Lemma 5. The word w € T* is in W,y L(B;) if and only if (f1 * -+ - = f)(Pos) > 0.

Our algorithm for Shuff computes the characteristic functions f; and ¢ — 1 convolutions to
obtain f1 % --- % f;. Then it evaluates the convolution at the set Pos. Computing and storing
a value f;(S) for a subset S C Pos takes time O(k - b?) since we have to test membership of
a word of length at most k in B;. Hence, computing all f; takes time O(2% -t -k -b?). Due to
Bjorklund et al. [7], we can compute the convolution of two functions f, g : P(Pos) — Z in
O(2F - k?) multiplications in Z. Furthermore, if the ranges of f and g are bounded by C,
we have to perform these operations on O(klog C)-bit integers [7]. Since the characteristic
functions f; have ranges bounded by a constant, we only need to compute with O(k)-bit
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integers. Hence, the ¢ — 1 convolutions can be carried out in time O(2F - k2 - (t — 1) - be(k)).
Altogether, this proves Theorem 4.

Lower Bound for Bounded Context Switching. We prove a lower bound for the NP-hard
BCS by reducing the subgraph isomorphism problem (SGI) to it. The result is such that it
also applies to BCS(¢s) and BCS(cs,m). We explain why the result is non-trivial.

In fine-grained complexity, lower bounds for W[1]-hard problems are often obtained by
reductions from k-Clique. Chen et al. [13] have shown that k-Clique cannot be solved in time
f(E)n°®) for any computable function f, unless ETH fails. To transport the lower bound
to a problem of interest, one has to construct a parameterized reduction that blows up the
parameter only linearly. In the case of BCS, this fails. We face a well-known problem which
was observed for reductions using edge-selection gadgets [45, 16]: A reduction from k-Clique
would need to select a clique candidate of size k and check whether every two vertices of
the candidate share an edge. This needs O(k?) communications between the chosen vertices,
which translates to O(k?) context switches. Hence, we only obtain n°Vk) as a lower bound.

To overcome this, we follow Marx [45] and give a reduction from SGI. This problem
takes as input two graphs G and H and asks whether G is isomorphic to a subgraph of
H. This means that there is an injective map ¢ : V(G) — V(H) such that for each edge
(u,v) in G, the pair (¢(u),p(v)) is an edge in H. We use V(G) to denote the vertices and
E(G) to denote the edges of a graph G. Marx has shown that SGI cannot be solved in time
f(k)nek/1ogk) " where k is the number of edges of G, unless ETH fails. In our reduction, the
number of edges is mapped linearly to the number of context switches.

» Theorem 6. Assuming ETH, there is no f s.t. BCS can be solved in f(cs)n°(es/108(cs)),

Roughly, the idea is this: The alphabet V(G) x V(H) describes how the vertices of G are
mapped to vertices of H. Now we can use the memory M to output all possible injective
maps from V(G) to V(H). There is one thread A; for each edge of G. Its task is to verify
that the edges of G get mapped to edges of H.

Note that Theorem 6 implies a lower bound for the FPT-problem BCS(cs, m). It cannot
be solved in time m?(¢s/1°8(¢9)) yunless ETH fails.

Lower Bound for Shuffle Membership. We prove it unlikely that Shuff can be solved in
O*((2 — 6)¥) time, for a § > 0. Hence, the O*(2")-time algorithm above may be optimal. We
base our lower bound on a reduction from Set Cover. An instance consists of a family of sets
(Si)iel1..m) over a universe U = [J;e[ ) Sis and an integer ¢ € N. The problem asks for ¢
sets S;,, ..., 5, from the family such that U = Uje[l..t] S

We are interested in a parameterization of the problem by the size n of the universe.
It was shown that this parameterization admits an O*2")-time algorithm [28]. But so
far, no O*((2 — &)™)-time algorithm was found, for an € > 0. Actually, the authors of [15]
conjecture that the existence of such an algorithm would contradict the Strong Ezponential
Time Hypothesis (SETH) [36, 11]. This is the assumption that n-variable SAT cannot be
solved in O*((2 — €)™) time, for an € > 0 (SETH implies ETH). By now, there is a list of
lower bounds based on Set Cover [8, 15]. We add Shuff to this list.

» Proposition 7. If Shuff can be solved in time O*((2 — §)*) for a § > 0, then Set Cover can
be solved in time O*((2 — &)™) for an € > 0.

Lower Bound on the Size of the Kernel. Kernelization is a preprocessing technique for
parameterized problems that transforms a given instance to an equivalent instance of size
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bounded by a function in the parameter. It is well-known that any FPT-problem admits
a kernelization and any kernelization yields an FPT-algorithm [16]. The search for small
problem kernels is ongoing research. A survey can be found in [42].

There is also the opposite approach, disproving the existence of a kernel of polynomial
size [9, 30]. Such a result indicates hardness of the problem at hand, and hence serves as
a lower bound. Technically, the existence of a polynomial kernel is linked to the inclusion
NP C coNP/poly. The latter is unlikely as it would cause a collapse of the polynomial
hierarchy to the third level [51]. Based on this approach, we show that BCS(cs, m) does not
admit a kernel of polynomial size. We introduce the needed notions, following [16].

A kernelization for a parameterized problem @ is an algorithm that, given an instance
(I, k), returns an equivalent instance (I’, k') in polynomial time such that |I'| + k' < g(k) for
some computable function g. If g is a polynomial, @ is said to admit a polynomial kernel.

We also need polynomial equivalence relations. These are equivalence relations on >*,
with 3 some alphabet, such that: (1) There is an algorithm that, given z,y € ¥*, decides
whether (z,y) € R in time polynomial in |z| + |y|. (2) For every n, R restricted to =" has
at most polynomially (in n) many equivalence classes.

To relate parameterized and unparameterized problems, we employ cross-compositions.
Consider a language L C ¥* and a parameterized language @@ C ¥* x N. Then L cross-
composes into @ if there is a polynomial equivalence relation R and an algorithm A, referred
to as the cross-composition, with: A takes as input a sequence x1,...,x; € X* of strings
that are equivalent with respect to R, runs in time polynomial in 3!_; |z;|, and outputs an
instance (y, k) of Q such that & < p(max;e. 4 |7;| + log(t)) for a polynomial p. Moreover,
(y,k) € Q if and only if there is an i € [1..t] such that x; € L. Cross-compositions are the
key to lower bounds for kernels:

» Theorem 8 ([16]). Assume that an NP-hard language cross-composes into a parameterized
language Q. Then Q does not admit a polynomial kernel, unless NP C coNP/poly.

To show that BCS(cs, m) does not admit a polynomial kernel, we cross-compose 3-SAT
into BCS(¢s, m). Then Theorem 8 yields the following:

» Theorem 9. BCS(cs, m) does not admit a polynomial kernel, unless NP C coNP /poly.

Proof Idea. For the cross-composition, we first need a polynomial equivalence relation R.
Assume some standard encoding of 3-SAT-instances over a finite alphabet I". We let two
encodings ¢, 1) be equivalent with respect to R if both are proper 3-SAT-instances and have
the same number of clauses and variables.

Let 1, ..., be instances of 3-SAT that are equivalent with respect to R. Then each ¢;
has exactly ¢ clauses and k variables. We can assume that the set of variables is {z1,...,zx}.
To handle the evaluation of these, we introduce the NFAs A;,i € [1..k], each storing the
value of z;. We further construct an automaton B that picks one out of the ¢ formulas ¢;.
Automaton B tries to satisfy ¢; by iterating through the ¢ clauses. To satisfy a clause, B
chooses one out of the three variables and requests the corresponding value.

The request by B is synchronized with the memory M. After every such request, M either
ensures that the sent variable x; actually has the requested value or stops the computation.
This is achieved by a synchronization with the corresponding variable automaton A;, which
keeps the value of x;. The number of context switches lies in O(¢) and the size of the memory
in O(k). Hence, all conditions for a cross-composition are met. <
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4 Local Parameterization

In the previous section, we considered a parameterization of BCS that was global in the sense
that the threads shared the number of context switches. We now study a parameterization
that is local in that every thread is given a budget of context switches.

We would like to have a measure for the amount of communication between processes
and consider only those computations in which heavily interacting processes are scheduled
adjacent to each other. The idea relates to [43], where it is observed that a majority of
concurrency bugs already occur between a few interacting processes.

Given a word u € T;¢ (4 L(A4;), we associate with it a graph that reflects the order
in which the threads take turns. This scheduling graph of u is the directed multigraph
G(u) = (V, E) with one node per thread that participates in u, V' C [1..t], and edge weights
E:V xV — N defined as follows. Value E(i,j) is the number of times the context switches
from thread ¢ to thread j in u. Formally, this is the number of different decompositions
u = uy.a.b.ug of u so that a is in the alphabet of A; and b is in the alphabet of A;. Note that

E(i,i) =0 for all ¢ € [1..t]. In the following we refer to directed multigraphs simply as graphs.

In the scheduling graph, the degree of a node corresponds to the number of times the
thread has the processor. The degree of a node n in G = (V, E) is the maximum over the
outdegree and the indegree, deg(n) = maxz{indeg(n), outdeg(n)}. As usual, the outdegree of a
node n is the number of edges leaving the node, outdeg(n) =3 .\ £(n,n’), the indegree is
defined similarly. To see the correspondence, observe that a scheduling graph can have three
kinds of nodes. The initial node is the only node where the indegree equals the outdegree
minus 1, and the thread has the processor outdegree many times. For the final node, the
outdegree equals the indegree minus 1, and the thread computes for indegree many contexts.
For all other (usual) nodes, indegree and outdegree coincide. Any scheduling graph either
has one initial, one final, and only usual nodes or, if the computation starts and ends in the
same thread, only consists of usual nodes. The degree of the graph is the maximum among
the node degrees, deg(G) = maz{deg(n) | n € V}.

Our goal is to measure the complexity of schedules. Intuitively, a schedule is simple if
the threads take turns following some pattern, say round robin where they are scheduled in
a cyclic way. To formalize the idea of scheduling patterns, we iteratively contract scheduling
graphs to a single node and measure the degrees of the intermediary graphs. If always the
same threads follow each other, we will be able to merge the nodes of such neighboring
threads without increasing the degree of the resulting graph. This discussion leads to a
notion of scheduling dimension that we define in the following paragraph. In the full version
of the paper [14], we elaborate on the relation to an established measure: The carving-width.

Given a graph G = (V, E), two nodes ni,ns € V, and n ¢ V, we define the operation of
contracting nq and ns into the fresh node n by adding up the incoming and outgoing edges.
Formally, the graph G[ny,ns — n] = (V/, E’) contains the vertices V' = (V' \ {n1,n2}) U {n}
and has the edge weights E'(n/,n) = E(n’,n1) + E(n/,n3), E'(n,n') = E(ny,n’) + E(na,n'),
and E'(m, m') = E(m,m’) for all other nodes. Using iterated contraction, we can reduce a
graph to only one node. Formally, a contraction process of G is a sequence m = Gy, ..., Gy
of graphs, where Gy = G, Ggy1 = Gi[ni,n2 — n] for some ny,ns € V(Gy) and n ¢ V(Gy),
k€ [1..][V]—1], and G}y consists of a single node. The degree of a contraction process is the
maximum of the degrees of the graphs in that process, deg(m) = maz{deg(G;) | i € [1..|V]]}.
The scheduling dimension of G is sdim(G) = min{deg(w) | m a contraction process of G}.

We study the complexity of BCS when parameterized by the scheduling dimension. To
this end, we define the language of all words where the scheduling dimension is bounded by
the parameter sdim € N: SDL(X,t, sdim) = {u € (2 x [1..t])* | sdim(G(u)) < sdim}.
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Bounded Context Switching — Local Parameterization (BCS-L)
Input: S = (%, M, (A)ien..q) and bound sdim € N on the scheduling dimension.
Question: Is L(S)NSDL(X, ¢, sdim) # ( ?

» Theorem 10. BCS-L can be solved in time O*((2m)*sdm4t),

We present a fixed-point iteration that mimics the definition of contraction processes
by iteratively joining the interface sequences of neighboring threads. Towards the defi-
nition of a suitable composition operation, let the product of two interface sequences o
and 7 be 0 @ 7 = U, comm,
by summarizing subsequences in p. Summarizing (ry,7])...(r,,r),) where rj = ry up to

p 1. Language p | consists of all interface sequences p’ obtained

r! | =7, means to contract the sequence to (r1,7/,). We write ¢ ®* 7 for the variant of the
product that only returns interface sequences of length at most k > 1, (¢ ® 7) N (Q x Q)=F.

Our algorithm computes a fixed point over the powerset lattice (ordered by inclusion)
P((QxQ)=5%™ xP([1..1]) ). The elements are generalized interface sequences, pairs consisting
of an interface sequence together with the set of threads that has been used to construct it. We
generalize ®* to this domain. For the definition, consider (o1, T}) and (o9, T»). If the sets of
threads are not disjoint, 73 NT5 # (), the sequences cannot be merged and we obtain (o1, 7T1)®
(09, T5) = . If the sets are disjoint, we define (o, T1) @ (09, Ts) = (01 @F 79) x {T} UTs}.
The fixed-point iteration is given by L1 = U,y 4 IF(Ai) x {{i}} and Liy1 = L; U (L; @sdim
L;). The following lemma states that it solves BCS-L. We elaborate on the complexity in
the full version of the paper [14].

» Lemma 11. BCS-L holds iff the least fized point contains ((qinit, Gfinar), ') for some T.

Problem BCS-L can be generalized and can be restricted in natural ways. We discuss both
options and show that variants of the above algorithm still apply.

Let BCS-L-ANY be the variant of BCS-L where each thread is given a budget of running cs
times, but where we do not make any assumption on the scheduling. Still, the scheduling di-
mension is bounded by ¢- cs. The above algorithm solves BCS-L-ANY in time O*((2m)*t-¢54?).

Fixing the Scheduling Graph. We consider BCS-L-FIX, a variant of BCS-L where we fix
a scheduling graph together with a contraction process of degree bounded by sdim. We
are interested in finding an accepting computation that switches contexts as depicted by
the fixed graph. Formally, BCS-L-FIX takes as input an SMCP S = (X, M, (A;)ic[1..4)), @
scheduling graph G, and a contraction process m of G of degree at most sdim. The task is to
find a word u € L(S) such that G(u) = G. Our main observation is that a variant of the
above algorithm applies and yields a running time polynomial in t.

» Theorem 12. BCS-L-FIX can be solved in time O*((2m)*sdim).

Fixing the scheduling graph G = (V, E) and contraction process 7 has two crucial
implications on the above algorithm. First, we need to contract interface sequences according
to the structure of G. To this end, we introduce a new product. Secondly, instead of a fixed
point we can now compute the required products iteratively along 7. Hence, we do not have
to maintain the set of threads in the domain but can compute on P((Q x Q)=5%m™).

Towards obtaining the algorithm, we first describe the new product that summarizes
interface sequences along the graph structure. Let ¢ and 7 be interface sequences. Further,
let p € ocllIT. We call a position in p an out-contraction if it is of the form (¢, q")(p,p’) so
that (g,q’) belongs to o, (p,p’) belongs to 7, and ¢’ = p. Similarly, we define in-contractions.
These are positions where a pair of states of 7 is followed by a pair of 0. The directed product
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of o and 7 is defined as: o O ;) 7 = Upegmfp d,5)- The language p |(;, ;) contains all
interface sequences p’ obtained by summarizing subsequences of p, in total containing exactly
i out-contractions and j in-contractions. Note that for o € (Q x Q)" and 7 € (Q x Q)*, the
directed product contracts at i + j positions and yields: o ©; ;) 7 C (Q x Q)"*‘k_(i'*‘j).

Now we describe the iteration. First, we may assume that V = [1..¢]. Otherwise, the
non-participating threads in S can be deleted. We distinguishes two cases.

In the first case, we assume that G has a designated initial vertex vy and final ver-
tex vy. Let m = G4,...,G;. The iteration starts by assigning to each v € V the set
S, = IF(A,) N (Q x Q)49 For S,,, we further require the first component of the first pair
occurring in an interface sequence to be g,;;. Similarly, for S,, we require that the second
component of the last pair is gpnai-

Now we iterate along m: For each contraction G411 = Gj [n1,n2 — n], we compute
Sn = (Sny @i k) Sny), Where i = E(ny,n2) and k = E(na,ny). Then S, C (Q x Q)49
where deg(n) is the degree of n in Gj11. Let V(G¢) = {w}. Then the algorithm terminates
after S, has been computed.

For the second case, suppose that no initial vertex is given. This means that initial and
final vertex coincide. Then we iterate through all vertices in V', designate any to be initial
(and final), and run the above algorithm. The correctness is shown in the following lemma.

» Lemma 13. BCS-L-FIX holds iff (qinit, 4final) € Sw-

Round Robin. We consider an application of BCS-L-FIX. We define BCS-L-RR to be the
round-robin version of BCS-L. Again, each thread is given cs contexts, but now we schedule
the threads in a fixed order: First thread A; has the processor, then As, followed by A3 up
to A;. For a new round, the processor is given back to A;. The computation ends in Ay.

» Proposition 14. BCS-L-RR can be solved in time O*(m**).

The problem BCS-L-RR can be understood as fixing the scheduling graph to a cycle where
every node 4 is connected to ¢ + 1 by an edge of weight ¢s for ¢ € [1..t — 1] and the nodes
t and 1 are connected by an edge of weight c¢s — 1. We can easily describe a contraction
process: Contract the vertices 1 and 2, then the result with vertex 3 and up to t. We refer to
this as . Then we have deg(m) = cs. Hence, we have constructed an instance of BCS-L-FIX.

An application of the algorithm for BCS-L-FIX takes time at most O*(m*°*) in this
case: Let G411 = Gj[ni,n2 — n] be a contraction in m with j < ¢ — 1. Note that
SnysSn, C(Q x Q). We have E(ny,n2) = ¢s and E(ng,n1) = 0. Hence, the corresponding
set S, is given by (Sn; O(es,0) Sny) € (Q x Q)°°. The directed product o ® .40y 7 can be
computed in linear time: Any sequence p’ in 0 ® (. ) 7 is obtained from a sequence p € oIllT
by summarizing cs many out-contractions. Since o and 7 both have length c¢s, p has to be
the sequence where pairs of states of o and 7 alternatively take turns. Hence, o ©(cs0) T
either only consists of p’ and it is a linear-time procedure to find it, or is empty. For the last
contraction Gy = Gy_1[n},nb — n’] we have S, = (Sny O(es,es—1) Sny)- Similar to o ©O(cs.0) T,
one can compute o O(cs cs—1) 7 i linear time. This avoids the cost of the product, the factor
24¢s_in the complexity estimation.

Lower Bound for Round Robin. We prove the optimality of the algorithm for BCS-L-RR by
giving a reduction from k x k Clique. This variant of the classical clique problem asks for a
clique of size k in a graph whose vertices are the elements of a k X k matrix. Furthermore, the
clique must contain exactly one vertex from each row. The problem was introduced as a part
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of the framework in [41]. It was shown that the brute-force approach is optimal: k x k Clique
cannot be solved in 2°(F1°g%) time, unless ETH fails. We transport this to BCS-L-RR.

» Lemma 15. Assuming ETH, BCS-L-RR cannot be solved in time 2°(¢s1og(m))

5 Discussion

Our main motivation was to find bugs in shared-memory concurrent programs. We restricted
our analysis to under-approximations and considered behaviors that are bounded in the
number of context switches, the memory size, or the scheduling. While this is enough to find
bugs, there are cases where we need to check correctness of a program. We shortly outline
an FPT upper bound, as well as a matching lower bound for the problem.

The reachability problem on a shared-memory concurrent program in full generality is
PSPACE-complete. However, in real-world scenarios, it is often the case that only few (a fixed
number of) threads execute in parallel with unbounded interaction. Thus, a first attempt is
to parameterize the system by the number of threads ¢. But this yields a hardness result.
Indeed, the problem with ¢ as a parameter is hard for any level of the W-hierarchy.

We suggest a parameterization by the number of threads ¢ and by a, the maximal size of
the thread automata A;4. We obtain an FPT-algorithm by constructing a product automaton.
The complexity is O*(a'). However, there is not much hope for improvement: By a reduction
from k x k Clique, we can show that the algorithm is indeed optimal.
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