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Abstract
RCC8 is a set of eight jointly exhaustive and pairwise disjoint binary relations representing
mereotopological relationships between ordered pairs of individuals. Although the RCC8 relations
were originally presented as defined relations of Region Connection Calculus (RCC), virtually all
implementations use the RCC8 Composition Table (CT) rather than the axioms of RCC. This
raises the question of which mereotopology actually underlies the RCC8 composition table. In
this paper, we characterize the algebraic and mereotopological properties of the RCC8 CT based
on the metalogical relationship between the first-order theory that captures the RCC8 CT and
Ground Mereotopology (MT) of Casati and Varzi. In particular, we show that the RCC8 theory
and MT are relatively interpretable in each other. We further show that a nonconservative
extension of the RCC8 theory that captures the intended interpretation of the RCC8 relations is
logically synonymous with MT, and that a conservative extension of MT is logically synonymous
with the RCC8 theory. We also present a characterization of models of MT up to isomorphism,
and explain how such a characterization provides insights for understanding models of the RCC8
theory.
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1 Introduction

Representations of space, and their use in qualitative spatial reasoning, are widely recog-
nized as key aspects in commonsense reasoning, with applications ranging from biology to
geography. The predominant approach to spatial representation within the applied ontology
community has used mereotopologies, which combine topological (expressing connectedness)
with mereological (expressing parthood) relations. A variety of first-order mereotopological
ontologies have been proposed, the most widespread being the Region Connection Calculus
(RCC) [17], the ontology RT [1], and the ontologies introduced by Casati and Varzi [4].
Properties of RCC in particular have been studied extensively; [18, 5] present algebraic
representations for the RCC theory, and [9] describes various mereotopological settings that
satisfy axioms of RCC.

While theoretical work has focused on the first-order theories for mereotopologies, work
within the qualitative spatial reasoning community has primarily used a formalism known
as RCC8, which is a set of eight jointly exhaustive and pairwise disjoint binary relations
representing mereotopological relationships between ordered pairs of individuals. Reasoning
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is supported through the use of a composition table, which specifies all possible mereotopolo-
gical relationships between pairs of elements; deduction is implemented through constraint
propagation algorithms.

Although the RCC8 relations were originally presented as defined relations within RCC,
the theoretical analyses of RCC have not been helpful in understanding properties of
formalisms that use the RCC8 relations. The reason is that virtually all implementations
use the RCC8 composition table rather than the axioms of RCC, and the composition table
has very different mereotopological properties than RCC. Of particular importance is the
widespread use of RCC8 in efforts such as GeoSPARQL, which is an international standard
for the representation of geospatial linked data developed by the Open Geospatial Consortium.
A characterization of all solutions for a set of RCC8 constraints presumes an understanding
of the possible models of some first-order logical theory.

In this paper, we investigate algebraic and mereotopological properties of the RCC8
composition table based on the metalogical relationship between the first-order theory that
captures the RCC8 composition table and Ground Mereotopology (MT) of Casati and Varzi.
After reviewing the basic axiomatizations of the mereotopological theories in Section 2, we
discuss the relationship between the RCC8 theory and MT in Section 3. Our key result is that
a nonconservative extension of the RCC8 theory, we called RCC8*, is logically synonymous
with the MT theory, meaning MT and RCC8* axiomatize the same class of structures. In
other words, MT and RCC8* are semantically equivalent, and only differ in signature (i.e.,
the non-logical symbols). Further, we present a conservative extension of MT which is
logically synonymous with the RCC8 theory. We also show that the RCC8 theory and MT
are relatively interpretable in each other. Finally, in Section 4, we present a characterization
of models of MT up to isomorphism, and explain how such a characterization can be used in
characterizing algebraic properties of models of the RCC8 theory.

2 Preliminaries: Mereotopological Theories

2.1 Region Connection Calculus
The Region Connection Calculus (RCC) is a first-order theory whose signature contains the
single primitive binary relation C(x, y) denoting “x is connected to y”. Parthood is defined
in terms of connection alone, being equivalent to the topological notion of enclosure. Repres-
entation theorems [18] have shown that the models of RCC are equivalent to mathematical
structures known as Boolean contact algebras which consist of a standard Boolean algebra
together with a binary relation C that is reflexive, anti-symmetric, and extensional.

2.2 RCC8
RCC8 is a set of eight binary relations representing mereotopological relationships between
(ordered) pairs of individuals. These relations and their intended interpretations are illustrated
in Figure 1. The RCC8 relations have been proven to be jointly exhaustive and pairwise
disjoint (JEPD), that is, every ordered pair of individuals are related by exactly one RCC8
relation.

Originally, RCC8 relations were presented as defined relations of RCC (throughout the
paper, free variables in a displayed formula are assumed to be universally quantified):

DC(x, y) ≡ ¬C(x, y). (1)
EC(x, y) ≡ C(x, y) ∧ ¬O(x, y). (2)
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Figure 1 Illustration of RCC8 relations – DC(a, b) (a is disconnected from b), EC(a, b) (a is
externally connected with b), P O(a, b) (a partially overlaps b), T P P (a, b) (a is a tangential proper
part of b), T P P i(a, b) (b is a tangential proper part of a), NT P P (a, b) (a is a nontangential proper
part of b), NT P P i(a, b) (b is a nontangential proper part of a), a = b (a is identical with b).
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Figure 2 RCC8 Composition Table. “∗” indicates that all RCC8 relations are possible.

PO(x, y) ≡ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x). (3)
(x = y) ≡ P (x, y) ∧ P (y, x). (4)

TPPi(x, y) ≡ TPP (y, x). (5)
NTPPi(x, y) ≡ NTPP (y, x). (6)

TPP (x, y) ≡ PP (x, y) ∧ ¬NTPP (x, y). (7)
NTPP (x, y) ≡ PP (x, y) ∧ ¬(∃z) EC(z, x) ∧ EC(z, y). (8)

In the axioms above, C(x, y) denotes “x is connected to y,” P (x, y) denotes “x is a part of
y,” O(x, y) denotes “x overlaps y,” PP (x, y) denotes “x is a proper part of y”):

O(x, y) ≡ (∃z) P (z, x) ∧ P (z, y). (9)
PP (x, y) ≡ P (x, y) ∧ ¬P (y, x). (10)

Given its origin within RCC, it is interesting to note that RCC8 is typically used inde-
pendently of the RCC theory – the RCC axioms are not considered to be part of the
RCC8 formalism, and in most reasoning tasks even the axiomatic descriptions of RCC8
relations are not explicitly used. Instead, the RCC8 Composition Table (CT) is used. The
RCC8 CT (illustrated in Figure 2) is an 8 × 8 matrix such that for each ordered pair of
RCC8 relations Ri, Rj , the cell CT (Ri, Rj) indicates possible mereotopological relationships
between two individuals a and c assuming that Ri(a, b) and Rj(b, c) holds. For example,
CT (EC, NTPP ) = {PO, TPP, NTPP}, meaning that if EC(a, b) and NTPP (b, c), then a

is related to c by either PO or TPP or NTPP .

COSIT 2017
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2.3 Combined Mereotopology
Even though the RCC8 CT is entailed by the RCC theory, they have very different mereotopo-
logical properties. In fact, the RCC8 CT seems to be closely related to Ground Mereotopology
(also called MT), which is the weakest theory among the mereotopological theories proposed
in [4]. The signature of the MT theory (which we will denote by Tmt) consist of two primitive
binary relations, parthood (P ) and connection (C). The axioms of the theory (Axioms 11
to 16) state that connection is a reflexive and symmetric relation, while parthood is a
reflexive, transitive, and anti-symmetric relation.1 In addition, if one individual is connected
to another, then the first one is also connected to any individual which the second is part of.

C(x, x). (11)
C(x, y) ⊃ C(y, x). (12)
P (x, x). (13)
P (x, y) ∧ P (y, x) ⊃ (x = y). (14)
P (x, y) ∧ P (y, z) ⊃ P (x, z). (15)
P (y, z) ∧ C(x, y) ⊃ C(x, z). (16)

3 Relationship between MT and RCC8

Even though the RCC8 CT has been derived based on the RCC theory, they show very
different mereotopological properties. For instance, while in models of RCC every individual is
atomless (i.e., has a proper part) and externally connected to another individual, individuals
that satisfy the RCC8 CT may have no proper part, or may not be connect to any other
individual. These differences raise the question of which mereotopology actually underlies
the RCC8 composition table.

We begin this section by describing the logical theory that captures RCC8 CT. We then
show that the closest mereotopology to this theory is MT.

3.1 The First-order Theory of RCC8
We denote the logical theory of RCC8 CT by Trcc8. Following [2], we assume that for each
cell in the RCC8 CT, Trcc8 contains an axiom of the following form

Ri(x, y) ∧Rj(y, z) ⊃ T1(x, z) ∨ ... ∨ Tn(x, z)

where CT (Ri, Rj) = {T1, ..., Tn}. The following sentence, for example, is the axiom of Trcc8
which corresponds with CT (TPP, EC):

TPP (x, y) ∧ EC(y, z) ⊃ DC(x, z) ∨ EC(x, z).

Since RCC8 CT consists of 8× 8 cells, Trcc8 must contain 64 axioms corresponding with the
table. In addition to these axioms, we assume that Trcc8 contains an axiom that specifies
RCC8 relations are jointly exhaustive:

DC(x, y) ∨ EC(x, y) ∨ PO(x, y) ∨NTPP (x, y) ∨ TPP (x, y) ∨ TPPi(x, y)∨
NTPPi(x, y) ∨ (x = y).

1 In this paper, we consider a theory to be a set of first-order sentences closed under logical entailment. A
collection of sentences of a theory which entail all other sentences in the theory are called axioms of the
theory.
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We also assume that for each RCC8 relation R1, Trcc8 contains a sentence of the following
form stating that RCC8 relations are pairwise disjoint (PD):

R1(x, y) ⊃ ¬(R2(x, y) ∨ ... ∨R7(x, y))

where R2, ..., R7 are RCC8 relations other than R1. The following sentence, for example, is
the PD axiom corresponding with DC:

DC(x, y) ⊃ ¬[EC(x, y) ∨ PO(x, y) ∨ TPP (x, y) ∨NTPP (x, y)∨
TPPi(x, y) ∨NTPPi(x, y) ∨ (x = y)].

As there are 8 RCC8 relations, Trcc8 contains 8 PD axioms. All other sentences in Trcc8 are
those which are entailed by the 64 + 1 + 8 above-mentioned axioms.

3.2 MT Theory vs. RCC8 Theory
The RCC8 CT is commonly considered to be related to RCC because RCC8 relations were
originally defined as part of the RCC theory, and the RCC8 CT was proved using the RCC
theory. It turns out, however, that the RCC8 CT can also be deduced from a definitional
extension of MT:

I Definition 1 (adopted from [11]). Let T be a first-order theory and Π be a set containing
sentences of the following form2

R(x1, ..., xn) ≡ Φ(x1, ..., xn)

where R is a predicate which is not in Σ(T ) and Φ is a formula in L(T ) in which at most
variables x1, ..., xn occur free. T ∪Π is called a definitional extension of T .

Notice that Definitions 1 to 10 are defined in terms of C and P , which are primitives of Tmt,
and so if we extend Tmt by Definitions 1 to 10, we get a definitional extension of Tmt. This
extension entails Trcc8.

I Theorem 2. Trcc8 is entailed by a definitional extension of Tmt.

Proof. Suppose Π denotes the set containing Definitions (1) to (10). Using an automated
theorem prover, Prover9 [13], we showed that Tmt∪Π entails axioms of Trcc8. Hence, Tmt∪Π
entails Trcc8. J

Recall that DC, EC, PO, TPP , NTPP , TPPi, NTPPi, and = are primitives of Trcc8.
Using these primitives, one can extend Trcc8 with the following definitions for parthood and
connection:

P (x, y) ≡ TPP (x, y) ∨NTPP (x, y) ∨ (x = y). (17)
C(x, y) ≡ ¬DC(x, y). (18)

A more interesting result is that this definitional extension of Trcc8 actually entails MT:

I Theorem 3. Tmt is entailed by a definitional extension of Trcc8.

2 For a theory T , Σ(T ) denotes the signature of T , i.e., the set of non-logical symbols used in sentences of
T ; L(T ) denotes the language of T , i.e., the set of all first-order formulae generated by symbols in Σ(T );
Mod(T ) denotes the class of all models of T .
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Proof. Suppose ∆ denotes the set containing Definitions (17) and (18). Using Prover9, we
showed that Trcc8 ∪∆ entails Axioms (11) to (16). Since Axioms (11) to (16) axiomatize
Tmt, we can conclude that Trcc8 ∪∆ entails Tmt. J

Using Theorems 2 and 3, it can be shown that Tmt and Trcc8 are relatively interpretable
[7] in each other. Informally, a theory T1 has a relative interpretation in another theory
T2 if every sentence in T1 can be translated into a sentence in T2. In other words, for all
sentences Φ ∈ L(T1), if T1 entails Φ, then T2 entails a translation of Φ into the language of
T2. [10] show that if a definitional extension of T2 entails T1, translations for sentences of T1
is obtained based on the formulas which define predicates of T1 in the definitional extension.
For instance, a translation of Axiom (16) of Tmt into the language of Trcc8 can be obtained
by replacing C and P with the formulas defining them in Definitions (17) and (18). The
result is the following sentence, which provably is a sentence in Trcc8:

¬DC(x, y) ∧ (TPP (y, z) ∨NTPP (y, z) ∨ (y = z))
⊃ ¬DC(x, z).

When T1 is interpretable in T2, every model of T2 defines a model of T1 using the
translation definitions between T1 and T2 [7]. Consider a model M1 of Trcc8 with two
elements a, b that are externally connected:3

ECM1 = {(a, b), (b, a)}.
Now, consider a structure N1 with the same domain but in the signature of Tmt such that
relations between elements are obtained based on M1 and Definitions (17) and (18). By
Definitions (17) and (18), for any pair x, y:

(x, y) ∈ CN1 iff (x, y) /∈ DCM1 ,

(x, y) ∈ PN1 iff
[
(x, y) ∈ TPPM1 or

(x, y) ∈ NTPPM1 or x = y
]

.

So, CN1 = {(a, a), (b, b), (a, b), (b, a)} and PN1 = {(a, a), (b, b)}.
To study models of Trcc8 based on models of Tmt, we need a notion stronger than relative

interpretation:

I Definition 4 ([11]). Two theories T1 and T2 are logically synonymous iff they have a
common definitional extension.

Considering Definition 4, it is easy to see that T1 and T2 are synonymous iff there exist two
sets of translation definitions, ∆ and Π, such that T1 ∪Π is a definitional extension of T1,
T2 ∪∆ is a definitional extension of T2, and T1 ∪Π and T2 ∪∆ are logically equivalent.

Tmt and Trcc8 are not synonymous. In the following part of this section we will explain
why, and present an extension of Trcc8 which is synonymous with Tmt.

3.3 MT and RCC8*
When two theories are synonymous, there is a one-to-one correspondence between their
models such that the corresponding models can be defined based on each other [15]. Such a

3 We denote structures by calligraphic uppercase letters, e.g.M,N ; elements of a structure by boldface
font, e.g., a, b; and the extension of predicate R in a structureM by RM.
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correspondence does not exists between models of Tmt and Trcc8. Consider two modelsM2
andM3 of Trcc8, both with two elements a, b such that

TPPM2 = {(a, b)} , NTPPM3 = {(a, b)} .

BothM2 andM3 define the same model N2 of Tmt:

CN2 = {(a, a), (b, b), (a, b), (b, a)} , PN2 = {(a, a), (b, b), (a, b)} .

M2 and M3 correspond with the same model of Tmt because the only way for MT to
distinguish TPP from NTPP is the existence of a third element that is externally connected
to the inner element (i.e., a). However, such an element does not exists in either ofM2 and
M3.

A similar issue arises when two individuals overlap, but they do not have a common part.
Consider a modelM4 of Trcc8 with two elements a, b and POM4 = {(a, b), (b, a)}.
M4 defines the following model of Tmt, which is isomorphic to N1 in the previous

subsection:

CN4 = {(a, a), (b, b), (a, b), (b, a)} , PN4 = {(a, a), (b, b)} .

Thus M1 and M4 correspond with the same model of Tmt. This is because within MT,
‘overlap’ is defined based on a third element that is a common part of the overlapping
individuals. If such an element does not exists (as is the case with M4), MT cannot
distinguish PO from EC.

It is interesting to observe that althoughM2 andM4 are models of Trcc8, they do not
satisfy the original (axiomatic) definitions of PO, TPP or O (i.e., Definitions (3), (7), and
(9)); that is definitions which are part of the RCC theory, and the RCC8 CT is derived
based on them. Notice also that no model of Tmt definesM2 andM4 because without the
existence of a third element TPP and O are not definable in MT.

Since a one-to-one correspondence between models of RCC8 and MT does not exists, they
are not synonymous. To get synonymy, we need to extend Trcc8 by axioms that eliminate
those models of Trcc8 which are not definable by any model of Tmt. Based on the examples
we just discussed, undefinable models are those that do not satisfy the axiomatic definitions
of TPP or O: That is, models (likeM2) in which an element is related to another element
by TPP , but there is no other element that externally connects with the inner element; or
models (likeM4) in which two elements are related by O, but they do not have a common
part. To eliminate such models, we extend Trcc8 by the following axioms:

TPP (x, y) ⊃ (∃z)EC(z, x) ∧ EC(z, y) . (19)
O(x, y) ⊃ (∃z) P (z, x) ∧ P (z, y) . (20)

We call the resulting theory RCC8* and denote it by Trcc8∗ .

I Theorem 5. Tmt is logically synonymous with Trcc8∗ .

Proof. Suppose Π contains Definitions (1) to (10); and ∆ contains Definitions (17), (18),
(21), (22).

O(x, y) ≡ ¬DC(x, y) ∧ ¬EC(x, y). (21)
PP (x, y) ≡ TPP (x, y) ∨NTPP (x, y). (22)

COSIT 2017
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Using Prover9, we showed

Tmt ∪Π |= Trcc8∗ ∪∆ and Trcc8∗ ∪∆ |= Tmt ∪Π .

Hence, Tmt ∪Π and Trcc8∗ ∪∆ are logically equivalent. So, by definition, Tmt and Trcc8∗ are
logically synonymous. J

According to [15], synonymous theories axiomatize the same class of structures. Thus, Tmt

and Trcc8∗ are semantically equivalent and only differ in signature.
All relations in RCC8 CT can be deduced from Trcc8∗ as it is an extension of Trcc8.

In addition, for every entry CT (Ri, Rj) of the RCC8 CT and every RCC8 relation S 6∈
CT (Ri, Rj) we proved a sentence of the following form (proofs are done by Prover9):

Ri(x, y) ∧Rj(y, z) ⊃ ¬S(x, z) .

Thus, the additional axioms of RCC8* does not change RCC8 CT, but only eliminate those
models of Trcc8 that do not satisfy the axiomatic definitions of RCC8 relations.

3.4 Extending MT
As we explained in Section 3.3, logical synonymy between MT and RCC8 does not achieved
because of the way NTPP , TPP , PO and EC are defined within the MT theory: The
difference between NTPP and TPP is defined with respect to a third element. Hence,
only models of MT with more than two elements can distinguish between NTPP and TPP .
However, within the RCC8 theory NTPP and TPP are distinguishable even by models of
size two. A similar arguments applies to PO and EC. Thus, a one-to-one correspondence
between models of MT and RCC8 does not exist.

In Section 3.3 we demonstrate how extending Trcc8 to Trcc8∗ gives a one-to-one corres-
pondence between models of Tmt and Trcc8∗, meaning that Tmt and Trcc8∗ are logically
synonymous. Another way of getting logical synonymy is to extend MT with Axioms (23) to
(30), which specify properties of NTPP and O (Axioms (23) to (26) are borrowed from [8]).
We call the resulting theory MTNO and denote it by Tmtno.

NTPP (x, y) ∧ P (y, z) ⊃ NTPP (x, z). (23)
P (x, y) ∧NTPP (y, z) ⊃ NTPP (x, z). (24)
NTPP (x, y) ⊃ PP (x, y). (25)
C(x, y) ∧NTPP (y, z) ⊃ O(x, z). (26)
O(x, x). (27)
O(x, y) ⊃ O(y, x). (28)
O(x, y) ⊃ C(x, y). (29)
O(x, y) ∧ P (y, z) ⊃ O(x, z). (30)

Since O and NTPP are primitive relations in Tmtno, PO and TPP can be defined based on
them, without introducing a third element:

PO(x, y) ≡ O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x). (31)
TPP (x, y) ≡ P (x, y) ∧ ¬P (y, x) ∧ ¬NTPP (x, y). (32)

Therefore, a one-to-one correspondence between models of Tmtno and Trcc8 should exist, and
it should be possible to show that the two theories are logically synonymous.
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I Theorem 6. Tmtno is logically synonymous with Trcc8.

Proof. To show that Tmtno and Trcc8 are synonymous we need to show that there exist
conservative definitions Π and ∆ for Tmtno and Trcc8 such that Tmtno ∪Π and Trcc8 ∪∆ are
logically equivalent.

Suppose Π contains Definitions (1) to (6) and (31) to (32); and ∆ contains Definitions
(17), (18), (21), (22). Using Prover9, we showed that

Tmtno ∪Π |= Trcc8 ∪∆ and Trcc8 ∪∆ |= Tmtno ∪Π .

Hence, Tmtno ∪Π and Trcc8 ∪∆ are logically equivalent. J

4 Model-Theoretic Characterization of MT

Is the equivalence between RCC8* and MT simply an intellectual curiosity, or does it give us
new insights into RCC8? If we consider that RCC8 is primarily used in constraint satisfaction
problems, in which one constructs a satisfying interpretation of a set of expressions in the
signature of RCC8, then the set of all possible solutions of RCC8 problems, excluding those
eliminated by RCC8*, is equivalent to the set of all possible models of Tmt. In this section,
we provide a characterization of the models of Tmt up to isomorphism, by first specifying
a class of mathematical structures, and then showing that Tmt axiomatizes this class of
structures.

4.1 Representation Theorem for Models of Tmt

We begin by introducing the two classes of mathematical structures that capture the intended
interpretations of the the connection and parthood relations in MT. The connection relation
in Tmt corresponds to a class of graphs:

I Definition 7. A graph with loops is a pair G = 〈V, E〉 of sets such that:
1. E ⊆ V × V .
2. For each v ∈ V , v ∈ N(v), where N(x), x ∈ V , denotes the set of neighbors of x and is

defined as

N(x) = {y : (x, y) ∈ E} .

Mgraph_loops is the class of structures which are graphs with loops.

It is well-known that Ground Mereology, the subtheory of Tmt which describes the parthood
relation, is synonymous with the theory of partial orderings [4]. That is, the parthood
relation in models of Tmt forms a partial ordering:

I Definition 8. A partial ordering is a pair Q = 〈V,�〉 s.t. � is a reflexive, antisymmetric,
and transitive binary relation. For each x ∈ V and each set X ⊆ V the upper set, denoted
by U(x) and U(X) respectively, is defined as

U(x) = {y : x � y} U(X) =
⋃

x∈X

U(x) .

Mpar_orders denotes the class of partial orderings.

We pull all of these ideas together to define the class of mathematical structures which we
will eventually show are equivalent to the models of Tmt:

COSIT 2017
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I Definition 9. Mmt is the following class of structures. M∈Mmt iffM = 〈V, E,�〉 such
that
1. G = 〈V, E〉 and G ∈Mgraph_loops;
2. Q = 〈V,�〉 and Q ∈Mpar_orders;
3. U(N(x)) ⊂ N(x), for each x ∈ V .

Condition (3) constrains how the two graph and partial ordering substructures are related
to each other – the neighborhood of a vertex in the graph is closed under upper sets in the
partial ordering. An example of a structure in Mmt can be seen in the graph of Figure 3(i)
and the corresponding partial ordering in Figure 3(ii); note that the vertices in the graph are
the elements of the partial ordering.

The following theorem shows that there is a one-to-one correspondence between the
models of Tmt and class of structures Mmt that capture the intended semantics of the
mereotopology of MT.

I Theorem 10. There exists a bijection

ϕ : Mod(Tmt)→Mmt

such that
1. the domain ofM and ϕ(M) are the same;
2. (x, y) ∈ CM iff (x, y) ∈ Eϕ(M);
3. (x, y) ∈ PM iff x �ϕ(M) y.

SupposeM ∈Mod(Tmt) and N = ϕ(M). Then N ∈Mmt, and the domain ofM and
N are the same. For each element x in M and N , the neighbors of x in the graph (i.e.,
N(x)) in N are those which are connected to x inM. Also, U(x) contains those elements
which x is part of them inM. Thus, Condition (3) in Definition 9 basically captures the
monotonicity axiom in Tmt (Axiom 16) which says that every element that has a part which
is connected to x is also connected to x.

Theorem 10 gives a characterization of the models of Tmt up to isomorphism. Furthermore,
since Tmt and Trcc8∗ are synonymous, this provides a characterization of the models of Trcc8∗ .

4.2 Characterization of Mmt

Although Definition 9 gives us a precise specification of the models of Tmt, it only provides an
implicit characterization; we now outline an explicit characterization that gives us a complete
understanding of the possible structures in Mmt, and so models of Tmt. The key to the
characterization of Mmt lies in understanding the graphs. In particular, we identify three
distinct subgraphs in any structure in Mmt. The first graph is an instance of the following
class:

I Definition 11. Suppose Q ∈Mpar_orders and Q = 〈V,�〉. UQ = 〈V, E〉 is the lower bound
graph for Q iff : (x, y) ∈ E iff exists z ∈ V s.t. z � x, z � y.

The lower bound graph for the partial ordering in Figure 3(ii) can be seen in Figure 3(iii).
Note that the upper sets of elements form cliques in the graph. Lower bound graphs are
well-understood within graph theory [14, 12, 3], with two different characterizations. The
first is to consider them strictly from a graph-theoretic perspective: G = 〈V, E〉 is a lower
bound graph iff its vertex clique cover number is equal to its edge clique cover number, where
the vertex clique cover number of G is the minimum number of cliques needed to cover V

and the edge clique cover number of G is the minimum number of cliques needed to cover E.
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Figure 3 Examples structures and substructures of Mmt. The loops for each vertex in a graph
are suppressed to enhance readability.

The second way to look at lower bound graphs is that they are isomorphic to the extension of
the “overlaps” relation O. The other two subgraphs within a structure in Mmt will be used
to characterize the relationship between nonoverlapping (externally connected) elements.

We first need to define a few other classes of graphs before we get to the characterization
theorem.

I Definition 12. Let P = 〈V,≤〉 be a poset. The graph GP = (V, EP ) is the comparability
graph for P iff (x, y) ∈ EP whenever x < y or y < x. G = (V, E) is a comparability graph iff
there is a poset P such that G ∼= GP .

I Definition 13. A graph G is a permutation graph iff G and G are comparability graphs.

This definition is actually the statement of a characterization theorem from [6]; the
original definition of permutation graphs with respect to the representation of the elements
of a permutation can be found in [16].

I Definition 14. Suppose Q ∈Mpar_orders. A graph H is an upper bipartite permutation
graph for Q iff H = (V1 ∪ V2, E) is a bipartite permutation graph such that V1, V2 are upper
sets in Q.

The first subgraph in Figure 3(iv) is an upper bipartite permutation graph for the partial
ordering in Figure 3(ii), in which the upper sets are V1 = {d, f} and V2 = {m, k}.

The third subgraph is not an instance of any special class of graphs, but rather can be
an arbitrary graph, the only condition being that the vertices are all maximal elements in Q.

I Definition 15. Suppose Q ∈Mpar_orders. A crown for Q is a graph G = (V, E) such that
all vertices in V are maximal elements of Q and which are not externally connected to proper
parts of any other element.

The second subgraph in Figure 3(iv) is a crown, since its vertices consist entirely of
elements {e, g, h} that are maximal in Q.

The lower bound graph, the upper bipartite permutation graphs, and the crowns must
be combined to form a graph that satisfies the conditions in Definition 9.
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2:12 A New Perspective on the Mereotopology of RCC8

I Definition 16. A graph G = 〈V, E〉 is edge-decomposable into a set of graphs H iff
1. Hi ⊂ G, for each Hi ∈ H;
2. Ei ∩ Ej = ∅, for each Hi = 〈Vi, Ei〉 and Hj = 〈Vj , Ej〉;
3. E =

⋃
i Ei.

Thus, a graph G is edge-decomposable into a set of subgraphs iff the set of edges in
G can be partitioned. We will use the notation G = H1 ∪· ... ∪· Hn to indicate that G is
edge-decomposable into H1, ...,Hn.

I Theorem 17. M∈Mmt iffM = 〈V, E,�〉 such that
1. Q = 〈V,�〉 and Q ∈Mpar_orders;
2. G = 〈V, E〉 and G ∈Mgraph_loops;
3. G = UQ ∪· Gu ∪· Gm such that

(a) UQ is the lower bound graph for Q;
(b) Gu is decomposable into a set of upper bipartite permutation graphs for Q;
(c) Gm is a crown for Q.

Suppose a structureM∈Mmt is composed of the graph G depicted in Figure 3(i) and the
corresponding partial ordering Q depicted in Figure 3(ii). The graph G is edge-decomposable
into UQ, Gu, and Gm, where UQ is the lower bound graph depicted in Figure 3(iii), while Gu

and Gm are depicted in Figure 3(iv). Suppose N ∈Mod(Tmt) is the model corresponding
withM. Intuitively speaking, UQ is the subgraph of G in which two vertices x, y are neighbors
whenever x and y overlap in N . That is, UQ captures the connection relation between
overlapping elements of N . Gu ∪ Gm represents (externally) connected non-overlapping
elements of N ; that is, x and y are neighbours in Gu whenever in N they are connected but
do not overlap.

Theorem 17 is a characterization theorem for Mod(Tmt) because it tells us how to
construct all possible models of Tmt up to isomorphism. We can take an arbitrary lower
bound graph, together with a set of upper bipartite permutation graphs, and an arbitrary
graph, and combine these graphs together to yield a model of Tmt. Given the synonymy
of Tmt and Trcc8∗, this Theorem also characterizes all possible solutions of a set of RCC8
constraints; by synonymy, any solution is isomorphic to a mereology together with a graph
that is decomposable into the three subgraphs specified in Theorem 17.

5 Summary

Constraint satisfaction with spatial calculi such as RCC8 has been the predominant application
of mereotopology within commonsense reasoning. Yet in some way, this has diminished the
role played by the different mereotopology ontologies that were the original sources. It has
long been known that the first-order theory of RCC8 is interpretable by the mereotopology
ontologies, not only RCC, but also including the rather weak ontology Tmt. This perspective
has been considered sufficient for showing that RCC8 was in some sense sound with respect to
its mereotopological foundations. On the other hand, it has been thought that the first-order
theory of RCC8 was too weak to be considered to be a mereotopological ontology in its own
right. In this paper, we have shown that indeed the RCC8 theory is mutually interpretable
with Tmt. Furthermore, by extending the RCC8 theory with sentences that fully capture
the intended interpretations of the RCC8 relations, we obtain a theory that is logically
synonymous with Tmt. Finally, we have provided a characterization of the models of Tmt

up to isomorphism, by first specifying a class of mathematical structures, and then showing
that Tmt axiomatizes this class of structures. This characterization gives us insights into the
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set of all possible solutions for a set of RCC8 constraints. The characterization also lays the
groundwork for a new approach to location ontologies, in which we embed the models of a
mereotopology of physical objects in a mereotopology of abstract spatial regions.
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