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Abstract
In this invited paper, we study the concept of admissible strategies for two player win/lose
infinite sequential games with imperfect information. We show that in stark contrast with the
perfect information variant, admissible strategies are only guaranteed to exist when players have
objectives that are closed sets. As a consequence, we also study decision problems related to the
existence of admissible strategies for regular games as well as finite duration games.
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1 Introduction

Two-player zero-sum perfect information games played on finite (directed) graphs are the
canonical model to formalize the reactive synthesis problem [24, 1]. Unfortunately, this
mathematical model is often a too coarse abstraction of reality. First, realistic systems are
usually made up of several components, each of them with its own objective. These objectives
are not necessarily antagonistic. Hence, the setting of non-zero sum graph games needs to
be investigated, see [9] and additional references therein. Second, in systems made of several
components, each component has usually a partial view on the entire system. Hence it is
natural to study games with imperfect information [25, 13]. In this paper, we investigate the
notion of admissible strategies for infinite duration non-zero sum games played on graphs in
which players have imperfect information.

The objective W of a player in such a game is a set of infinite paths, those that model
behaviors of the system that are regarded as satisfactory by the player. During the course
of the game, players move a token from vertices to adjacent vertices. Each player applies
one strategy which is a function that maps histories of plays that ends in a vertex owned by
the player to adjacent vertices. The strategy instructs the player where to move the token
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2:2 Admissibility in Games with Imperfect Information

according to the prefix of play constructed so far. For a player with objective W , a strategy
σ is said to be dominated by a strategy σ′ if σ′ does as well as σ with respect to W against
all the strategies of the other players and strictly better for some of them. A strategy σ is
admissible for a player if it is not dominated by any other of his strategies. Clearly, playing
a strategy which is not admissible is sub-optimal, and as a consequence a rational player
should favor admissible strategies.

While admissibility is a classical concept for games in normal form, i.e. matrix games,
it was first studied in this context of infinite duration games by Berwanger in [6]. In that
paper, it was shown that admissibility, i.e. the avoidance of dominated strategies, is well-
behaved in infinite duration n-player non-zero sum turn-based games with perfect informa-
tion and Boolean outcomes (two possible payoffs: win or lose). This framework encompasses
games with omega-regular objectives. The main contributions of Berwanger were to show
that:

(i) In all n-player game structures, for all objectives, players have admissible strategies.
Berwanger even shows the existence of strategies that survive the iterated elimination
of dominated strategies.

(ii) Every strategy that is dominated by a strategy is dominated by an admissible strategy.
(iii) For finite game structures, the set of admissible strategies forms a regular set.

Contributions

In this paper, we study the notion of admissible strategies in the more general setting of
infinite duration games with imperfect information. We obtain results that are in stark
contrast with the results obtained by Berwanger:

(i) In a 2-player game with imperfect information, players may have no admissible strategies
at all, even for reachability objectives (Example 9). In particular, there are strategies
that are dominated but not dominated by any admissible strategy.

(ii) Admissible strategies always exist for the class of closed objectives, i.e. safety winning
conditions, and their existence is only guaranteed for this class of objectives (Theo-
rem 10).

(iii) The set of admissible strategies of a player depends on the informedness of the other
players: this set is the largest when the other players are perfectly informed (Theo-
rem 17).

(iv) For the special case of finite duration games, we know by point (ii) that admissible
strategies always exist, but we show that simple queries about this set are NP-complete
(Theorem 28).

(v) For infinite duration 2-player games, we characterize precisely the set of admissible
strategies when the second player is fully informed and we show how to decide the
existence of admissible strategies (Theorem 20). When the second player is not fully
informed but more informed than the first player, then we show how to decide the
existence of admissible strategies for the first player by a reduction to the model-checking
problem of Strategy Logic with (hierarchical) imperfect information (Theorem 32). In
the general case, we show how to decide, given a regular observation-based strategy if
this strategy is admissible or not (Theorem 35). For this last case, we left open the
decidability status of the non-emptiness problem for the set of admissible strategies.
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Related works

The iterated elimination of dominated strategies formalizes a strong notion of rationality [2].
In [18], Faella considers games played on finite graphs and focuses on the vertices from which
one designated player cannot force a win. He compares several criteria for establishing
what is the preferable behavior of this player from those vertices, eventually settling on the
notion of admissible strategy. In [11], starting from the notion of admissible strategy, we
have defined a novel rule for the compositional synthesis of reactive systems, applicable to
systems made of n components which have each their own objective. We have shown that
this synthesis rule leads to solutions which are robust and resilient. In [12], we have shown
how to solve the central algorithmic questions related to admissibility for omega-regular
objectives. In all those works, players are assumed to have perfect information.

In [10], we have studied the notion of admissible strategies for non-zero quantitative
games with perfect information. Similarly to games with imperfect information, in the
quantitative case, admissible strategies may not exist. Nevertheless, in all games where
the adversarial and the cooperative values can be realized, i.e. games in which there exist
worst-case optimal strategies and cooperative optimal profiles, players are guaranteed to
have admissible strategies.

In [4], we have studied the notion of admissibility for concurrent games. Concurrent
games [17] are n-player games played on graphs in which players take moves concurrently:
at each round, all players choose an action at the same time and without informing the other
players. This set of actions determines the next vertex. Because players choose actions
without being informed of the concurrent choices of the other players, concurrent games
are a special case of imperfect information games. In concurrent games, in contrast with
general games with imperfect information studied here, admissible strategies are guaranteed
to exist. While in this paper, we limit our study to deterministic strategies, in [4], we have
also considered the more general case of randomized strategies and the notion of almost-sure
winning.

In [16], Damm and Finkbeiner use the notion of dominant strategy to provide a com-
positional semi-algorithm for the (undecidable) distributed synthesis problem. So while we
use the notion of admissible strategy, they use a notion of dominant strategy. The no-
tion of dominant strategy is strictly stronger : every dominant strategy is admissible but an
admissible strategy is not necessary dominant.

In normal form games it is trivial to decide whether a strategy dominates another one,
or is dominated by an arbitrary strategy. Iterated elimination of dominated strategies does
yield a relevant computational problem here, though. Depending on the type of dominance
used (weak dominance, dominance, strict dominance) and the number of distinct payoffs,
these problems were shown to be complete for L, NL, P or NP in [23, 15, 20, 8]. See [23] for
an overview.

Structure of the paper

In Section 3, we discuss the existence of admissible strategies in two player win/lose infi-
nite sequential games with imperfect information. In Section 4, we discuss the impact of
informedness of the opponent on the set of admissible strategies. In Section 5, we character-
ize the set of admissible strategies when the opponent is perfectly informed. In Section 6,
we consider the special case of games on finite trees. In Section 7, we investigate decision
problems related to dominance in regular games of infinite duration.
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2:4 Admissibility in Games with Imperfect Information

2 Definitions

Games of imperfect information

Given some finite word w, let `(w) denote its last element and |w| its length. For an finite or
infinite word w, if |w| ≥ n, let w≤n denote the prefix of w of length n, and for i, 0 ≤ i < |w|,
let w(i) denote the letter in position i in w. Given an infinite word w, let inf(w) denote the
letters in w that appear infinitely often along w.

I Definition 1. A two player win/lose infinite sequential game with imperfect information
(short: infinite game with imperfect information) between Player 1 (sometimes called the
protagonist) and Player 2 (sometimes called the opponent) G = (d,W,∼=1,∼=2) is given by
the following:
1. a function d : {0, 1}∗ → {1, 2} assigning a player to each vertex in the full infinite binary

tree.
2. a winning condition W ⊆ {0, 1}ω for the first player.
3. equivalence relations ∼=i on {0, 1}∗ for i ∈ {1, 2} satisfying the following properties:

a. v ∼=i u⇒ d(v) = d(u) (knowledge of who is playing is guaranteed).
b. If v �i u, then vb �i ub′ for any b, b′ ∈ {0, 1} (perfect recall).
c. v ∼=i u⇒ |v| = |u| (ability to count moves).

Player i is perfectly informed if ∼=i is the identity noted idi. We only specify an objective
for Player 1 as we will characterize the admissible strategies of this player, and to do this,
the objective of Player 2 is irrelevant.

I Definition 2. Elements of {0, 1}∗ (resp. {0, 1}ω) are called finite plays or histories (resp.
plays). A strategy of Player i is a function σ : d−1(i) → {0, 1}. It is observation-based, if
v ∼=i u implies σ(v) = σ(u). A play p ∈ {0, 1}ω is compatible with a strategy σ of Player i,
if for all n ∈ N, if d(p≤n) = i, then σ(p≤n) = p(n + 1). We write Σ1 (Σ∼=1

1 ) and Σ2 (Σ∼=2
2 )

for the set of all (observation-based) strategies for Player 1 and Player 2 respectively.

I Definition 3. Given strategies σ ∈ Σ∼=1
1 , τ ∈ Σ∼=2

2 , we let Out(σ, τ) be the unique p ∈
{0, 1}ω compatible with both σ and τ . A strategy σ ∈ Σ∼=1

1 of Player 1 is an adversarially
winning strategy in G if ∀τ ∈ Σ∼=2

2 : Out(σ, τ) ∈W , we denote this by G, σ |= W . A strategy
σ ∈ Σ∼=1

1 is cooperatively winning if ∃τ ∈ Σ∼=2
2 : Out(σ, τ) ∈W .

I Definition 4. A regular game R(v0) = (V,E, V1, V2,O1,O2,Ω) is given by
1. a finite directed graph (V,E) with a designated starting vertex v0 ∈ V where all vertices

have out-degree 1 or 2, moreover, the successors of each vertex v ∈ V are ordered, and
denoted by s(v, 0) and s(v, 1) (if v has out-degree 1, they are equal).

2. a control partition V = V1 ∪ V2, Vi being the vertices controlled by Player i, v0 is the
starting vertex.

3. two observation partitions V =
⋃
j∈Ii Oij for i ∈ {1, 2} which are both refinements of the

control partition. We denote by Oiturn the set of observations of Player i that contain
vertices that belong to Player i.

4. an ω-regular winning condition Ω ⊆ V ω defined by a parity condition pr : V →
{1, 2, . . . , d} and such that ρ ∈ Ω if and only if min{k | v ∈ inf(ρ) ∧ pr(v) = k} is
even.

I Remark. For convenience, we will give examples of regular games violating the condition
that the out-degree is 1 or 2. In this case, we understand implicitly that the following
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modifications are employed to satisfy this condition: If 2d is an upper bound for the out-
degree, then any non-sink vertex is replaced by a full binary tree of height d, with the
partitions and winning condition being extended accordingly.

I Definition 5. From a regular game R(v0), we obtain an infinite sequential game RU (v0) =
(d,W,∼=0,∼=1) by unfolding as follows:
1. Let ι : {0, 1}∗ → V ∗ be defined via ι(〈〉) = v0 and ι(wb) = ι(w) · s(`(ι(w)), b). Let

d(w) = i if `(ι(w)) ∈ Vi.
2. Let ι̂ : {0, 1}ω → V ω be the limit induced by ι. Let W = ι̂−1(Ω).
3. Let ∼=i be the smallest equivalence relation that satisfies the following constraints:

a. If w ∼=i w
′ and d(w) = 3− i and ∃j `(ι(wb)) ∈ Oij ∧ `(ι(w′b′)) ∈ Oij , then wb ∼=i w

′b′.
b. If w ∼=i w

′ and d(w) = i and ∃j `(ι(wb)) ∈ Oij ∧ `(ι(w′b)) ∈ Oij , then wb ∼=i w
′b.

We also consider the special case in which Player 2 is perfectly informed. In that case, we
do not take into account the partition O2 and RU (v0) = (d,W,∼=1,∼=2) is defined as above
but ∼=2= id2 is the identity relation.

To ease presentation, we make a limited use of computation tree logic (CTL) to state
simple facts on strategies in regular games. We refer the interested reader for instance to [3]
for formal definitions. Recall that for subsets A,B ⊆ V , FA (resp. GA) is the set of plays
that visit A (resp. that always stay in A). We use the following CTL formulas. G, σ |= AFA
means that all plays compatible with σ eventually reach A. Furthermore G, σ |= EFA means
that there exists τ ∈ Σ

∼=3−i
3−i such that ι(Out(σ, τ)) eventually reaches A.

For a subset A ⊆ V of vertices, G(A) denotes the game that starts with nondeterminis-
tically moving to any vertex of A, while both players receive respective observations of the
chosen vertex. Strategy σ is winning from v ∈ V (resp. A ⊆ V ) if it is winning in G({v})
(resp. G(A)).

I Definition 6. We consider a regular game R(v0). Given some finite sequence or infinite
sequence w ∈ {0, 1}≤ω, the derived observation sequence for Player i is Oi(w) = Oij0

Oij1
. . .

where ι(w)(k) ∈ Oijk for all k ≤ |w|. An observation-based strategy for Player i in R(v0) is
equivalent to a function σ : (Oi)∗ · Oiturn → {0, 1}. Now a strategy σ of Player i is regular, if
there exists a finite deterministic automaton A = (QA, qA0 ,Oi, δA, FA), where QA is a finite
set of states, qA0 is the initial state, Oi is the alphabet, δ : QA×Oi → QA, and FA ⊆ QA is
the set of accepting states, and the observation-based strategy σ is encoded by the language
of the automaton as follows: when reading words Oij0

Oij1
. . ., and whenever d(w) = i, then

the automaton accepts the observation sequence Oi(w) induced by w iff σ(Oi(w)) = 0.

I Definition 7. Given a regular game R(v0), the knowledge of Player i playing the obser-
vation-based strategy σ after a sequence of observations ρ = o1o2 . . . on ∈ (Oi)∗, denoted
K(σ, ρ), is the set of vertices v such that there exists w ∈ {0, 1}∗:
1. Oi(ι(w)) = ρ

2. for all j, 1 ≤ j < n, if oj ∈ Oiturn, then σ(ρ≤j) = wj
3. v is equal to `(ι(w)).

Dominance and admissibility

I Definition 8. For σ, σ′ ∈ Σ∼=1
1 , we say that σ′ weakly dominates σ and write σ′ � σ if

∀τ ∈ Σ∼=2
2 , Out(σ, τ) ∈ W ⇒ Out(σ′, τ) ∈ W . If in addition ∃τ ∈ Σ∼=2

2 , Out(σ, τ) /∈ W , and
Out(σ′, τ) ∈ W , then σ′ dominates σ and write σ′ � σ. We say that a strategy σ ∈ Σ∼=1

1 is
admissible if there is no σ′ ∈ Σ∼=1

1 such that σ′ � σ. Note that if σ � σ′ but σ ⊀ σ′, then
σ′ � σ, justifying the notation.
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Figure 1 Player 1 can not differentiate between s1 and s2, and not between t1 and t2. In this
example, no strategy is admissible for Player 1.

3 Existence of Admissible Strategies

A starting observation for our investigation is that the existence of admissible strategies
in infinite sequential games with imperfect information is not guaranteed, even for regular
games and reachability objectives. This is in stark contrast to the case where both players
are perfectly informed [6].

I Example 9. We exhibit a regular game with a reachability objective (to reach the state
marked w) lacking observation-based admissible strategies for Player 1. The graph is de-
picted in Figure 1. Player 1 controls circle vertices, Player 2 controls box vertices. Player
1 wins all plays that eventually enter the vertex w. Player 1 has imperfect information: he
can not differentiate between s1 and s2, and not between t1 and t2. As a consequence, the
observation-based strategies available to Player 1 are essentially the strategies σn, one for
each n ∈ N, which play the action "0" for n consecutive steps followed by the action "1",
and σ∞, which always plays the action "0". Then it is easy to show that σ∞ ≺ σ0 ≺ σ1 . . .,
hence there is no observation-based admissible strategy for Player 1 in this game.

We can characterize exactly the properties of the winning condition W that ensures the
existence of admissible strategies, provided we use colours to define the winning condition.
Let C be a finite set of colours, and c : {0, 1}∗ → C be a colouring function. Let ĉ : {0, 1}ω →
Cω be defined via ĉ(p)(n) = c(p≤n). We say that W ⊆ {0, 1}ω is induced by WC ⊆ Cω if
there exists a colouring function c such that W = ĉ−1(WC). Note that functions of the form
ĉ are exactly the 1-Lipschitz functions from {0, 1}ω to Cω.

I Theorem 10. The following are equivalent for WC ⊆ Cω:
1. WC is closed (i.e. corresponds to a safety condition).
2. All imperfect information games with winning set induced by WC have admissible strate-

gies.

Our proof of this theorem heavily relies on topological arguments. Note that we can
conceive of Σ∼=ii as a metric space by setting d(σ, σ′) = 2−k for the least k ∈ N such that
∃w ∈ {0, 1}k ∩ d−1(i) with σ(w) 6= σ′(w). With this metric, Σ∼=ii is a compact metric
space, hence every sequence of strategies has an accumulation point. Moreover, the map
(σ, τ) 7→ Out(σ, τ) : Σ∼=1

1 × Σ∼=2
2 → {0, 1}ω is continuous. We will write B(σ, k) := {σ′ ∈

Σ∼=ii | d(σ, σ′) < 2−k} and utilize the fact that there are only countably many distinct sets
B(σ, k).

I Lemma 11. Let W be closed. Let (σn)n∈N be a sequence in Σ∼=1
1 with σn � σn+1 for all

n, and let σ be an accumulation point of (σn)n∈N. Then ∀n ∈ N : σn � σ.
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Proof. Assume that for some i ∈ N we have σi � σ. Then there is some τ ∈ Σ∼=2
2 such that

Out(σ, τ) /∈ W and Out(σn, τ) ∈ W . As W is closed, Out(σ, τ) /∈ W depends only on some
finite prefix of σ, i.e. whenever d(σ, σ′) < 2−k for a suitably large k, then also Out(σ′, τ) /∈W .
As σ is an accumulation point of (σn)n∈N, there is some j ≥ i with d(σ, σj) < 2−k.

By assumption and transitivity of �, we find that σi � σj . But Out(σi, τ) ∈W , whereas
Out(σj , τ) /∈W – contradiction. J

I Corollary 12. Let (σn)n∈N be a sequence of protagonist strategies with σn ≺ σn+1 for all
n, and let σ be an accumulation point of (σn)n∈N. Then ∀n ∈ N σn ≺ σ.

I Lemma 13. Let (σβ)β<α be an ordinal-indexed sequence of protagonist strategies such
that σβ ≺ σγ for any β < γ < α. Then α is countable.

Proof. By assumption, pγ � pβ for any γ > β. This is witnessed by some τ ∈ Σ∼=2
2 such

that Out(σγ , τ) ∈ W and Out(σβ , τ) /∈ W . As W is closed, there is some k ∈ N such that
Out(σβ , τ ′) /∈W for all τ ′ ∈ Bβ,γ := B(τ, k).

As there are only countably many distinct sets of the form B(τ, k), if α were uncountable,
there would have to be β < γ < β′ < γ′ with Bβ,γ = Bβ′,γ′ . By construction we have that
∃τ ∈ Bβ,γ : Out(σγ , τ) ∈ W and ∀τ ∈ Bβ′,γ′ : Out(σ′β , τ) /∈ W . But this contradicts that
σγ � σβ′ , hence α has to be countable. J

I Lemma 14. If WC ⊆ Cω is not closed, then there is an imperfect information game with
winning set induced by WC without an admissible strategy.

Proof. This is a generalization of the Example 9. As WC is not closed, we can pick a
sequence (pn)n∈N and path p∞ in Cω such that d(pn, p∞) < 2−2n, pn ∈WC and p∞ /∈WC .

The two players take turns, i.e. d(w) = 1 iff |w| is even. It is unknown to Player 1 which
moves Player 2 has taken, i.e. ∼=1 is the coarsest equivalence relation satisfying the criteria.
The colouring ensures that any sequence of the form 02j+11w1q is mapped to pj+l+1 where
|w| = 2l and w contains no 1 in an odd position, while any other sequence gets mapped to
p∞. The sequence (pn)n∈N and p∞ were chosen in a way to make this possible.

Intuitively, this means that Player 1 wins iff he plays a 1 for the first time at some turn
after Player 2 already has played a 1. As Player 1 cannot observe the moves of Player
2, we find that as in Example 9 the observation based strategies available to Player 1 are
essentially σn, which plays 0 the first n times it is Player 1’s turn and then 1, and σ∞, which
always plays 1. Then again σ∞ ≺ σ0 ≺ σ1 . . ., hence there is no admissible strategy. J

Proof of Theorem 10. If WC is closed, then any W induced by it is closed, too. We can
start with some strategy p0, and if it is dominated, move to some strategy p1 it is dominated
by, etc., and create a strictly increasing sequence (pn)n∈N, unless we hit a non-dominated
strategy. Then pick some accumulation point pω (as the space of strategies is compact).
If pω is dominated, pick a witness dominating strategy pω+1, etc. If we would never reach
a non-dominated strategy, then this would by Lemma 11 create an increasing Ω1-sequence
(where Ω1 is the first uncountable ordinal), but this would contradict Lemma 13.

The second implication is the statement of Lemma 14. J

Some further remarks

I Observation 15. In infinite trees, there are strictly increasing sequences of any countable
length.

CONCUR 2017



2:8 Admissibility in Games with Imperfect Information

Proof. By induction. If T is a tree with a strictly increasing sequence (pβ)β<α of length
α, let opponent choose between playing in T or letting protagonist choose between losing
and winning. Starting with protagonist choosing to lose outside of T , and playing p0 inside
T , he can improve inside T for α steps and then decide to win if outside of T , yielding an
improvement sequence of length α+ 1.

If for each i ∈ N, Ti is a tree with an improvement sequence (piβ)β<αi , then by letting
opponent choose in which tree to play (or non at all), we can obtain an improvement sequence
of length supi∈N αi. J

I Observation 16. The construction in Lemma 14 is sufficiently uniform that the preceding
argument also shows that for some ω-regular winning condition W all imperfect information
games played on finite graphs have admissible strategies iff W is a safety condition.

4 The Impact of the Informedness of the Opponent

The following theorem characterizes how the information available to the opponent (Player
2) impacts dominance between strategies of Player 1. When the second player is less informed
then there are more dominated strategies for Player 1 and so less admissible strategies for
Player 1.

We consider two infinite sequential games with imperfect information that only differ in
the equivalence relation of Player 2, with one having ∼=2 and the other having ∼=′2. The set
of (observation-based) strategies for Player 1 in both games is the same. We assume that ∼=2

is coarser than ∼=′2, i.e. w ∼=′2 w′ ⇒ w ∼=2 w
′. Then Σ

∼=′2
2 ⊇ Σ∼=2

2 . We write σ ≺ σ′ (σ ≺′ σ′)
if σ is dominated by σ′ in the game built with ∼=2 (with ∼=′2).

I Theorem 17. G = (d,W,∼=1,∼=2) and G′ = (d,W,∼=1,∼=′2), where ∼=2 is coarser than ∼=′2,
let ≺ be the dominance ordering in G and ≺′ in G′, for all observation-based strategies σ
and σ′ of Player 1 if σ ≺′ σ′, then σ ≺ σ′.

Proof. By the definition of � and �′, we see that Σ
∼=′2
2 ⊇ Σ∼=2

2 implies that if σ �′ σ′, then
σ � σ′. To extend this to ≺ and ≺′, we need show that if there is some strategy τ ′ ∈ Σ

∼=′2
2

such that Out(σ, τ ′) /∈W but Out(σ′, τ ′) ∈W , then there already is some τ ∈ Σ∼=2
2 with this

property.
Consider only word-strategies played by Player 2, i.e. strategies not depending on the

actions of the opponent at all. If there is a word-strategy obtaining different outcomes
against σ and σ′, which by assumption of σ �′ σ′ can only mean that the outcome of the
word strategy against σ is not in W while the outcome of the word strategy against σ′ is in
W , we would be done – as all word-strategies are in Σ∼=2

2 by the requirement that players
can count the number of moves played so far.

If τ is played against σ, it will act like some particular word strategy (denoted by τσ),
likewise τ acts like the word strategy τσ′ when played against σ′. If τσ = τσ

′ , then this is the
witness we are looking for. Otherwise, τσ = hρ and τσ′ = hρ′ for some maximal common
prefix h, and after playing h against either σ or σ′, Player 2 can distinguish w.r.t. ∼=′2 which
of the two strategies he is playing against. Thus, the following strategy τ ′ is also in Σ

∼=′2
2 :

Play h. If faced against σ, play ρ′, if faced against σ′, play ρ. Now τ ′ behaves like τσ′ if
played against σ, and like τσ if played against σ′. If all word strategies would yield the
same outcomes against σ and σ′, then τ ′ wins against σ′ and loses against σ, a contradiction
to σ ≺′ σ′. Thus, there has to be a word strategy yielding different outcomes, which as
explained above, provides the witness for σ ≺ σ′. J
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I Corollary 18. If a strategy is not admissible w.r.t. perfect information strategies of the
opponent, then it is not admissible w.r.t. observation-based strategies of the opponent.

To conclude this section, we shall demonstrate that Player 2 having imperfect information
can indeed lead to strictly less admissible strategies for Player 1 compared to a perfectly
informed Player 2:

I Example 19. Consider a game where Player 1 moves first and plays a or b. Then Player
2 responds with x, y or z. Player 1 wins with the combinations ax, bx and by. If Player 2
can observe the move of Player 1, then both strategies of Player 1 are admissible. If Player
2 cannot observe the first move, then only playing b is admissible for Player 1.

5 Characterizing Admissibility with Perfectly Informed Opponents

We will provide a characterization of the admissible strategies of Player 1 under the as-
sumption that Player 2 is perfectly informed. Corollary 18 shows that this is in a sense
a conservative information, as any strategy found to be not admissible here will not be
admissible against arbitrary opponents.

Fix some σ ∈ Σ∼=1
1 . We say that M ⊆ {0, 1}∗ is a σ-monochromatic set, if M is maximal

under the two following constraints:
1. For any v, u ∈M we find that v ∼=1 u.
2. Any v ∈M is compatible with σ.

Given some σ-monochromatic set M , we partition M into Mσ
w ]Mσ

c ]Mσ
` such that:

Mσ
w = {v ∈ M | ∀τ ∈ Σ2 : v is compatible with τ ⇒ Out(σ, τ) ∈ W}, i.e. the set of

histories in M from which the strategy σ is adversarially winning;
Mσ
c = {v ∈M ∧ v 6∈Mσ

w | ∃τ ∈ Σ2 : v is compatible with τ ∧ Out∈(σ, τ)W}, i.e. the set
of histories in M from which the strategy σ is cooperatively winning;
Mσ
` = {v ∈ M | ∀τ ∈ Σ2 : v is compatible with τ ⇒ Out(σ, τ) 6∈ W}, i.e. the set of

histories in M from which the strategy σ is losing against all the strategies of Player 2.
Note that in the definition of monochromatic set, we quantify over the entire set of strategies
of Player 2 as Player 2 is assumed to be perfectly informed.

I Theorem 20. An observation-based strategy σ ∈ Σ∼=1
1 of Player 1 is dominated, when

Player 2 is perfectly informed, if and only if there exists a σ-monochromatic set K such
that
1. there exists another strategy σ′ ∈ Σ∼=1

1 such that K is also σ′-monochromatic,
2. the strategies σ and σ′ induce partitions (Kσ

w,K
σ
c ,K

σ
` ) and (Kσ′

w ,K
σ′

c ,K
σ′

` ) of K such
that:
(a) Kσ

w ∪Kσ
c ⊆ Kσ′

w ;
(b) and either

(i) Kσ
` ∩ (Kσ′

w ∪Kσ′

c ) 6= ∅,
(ii) or Kσ

c 6= ∅.

Proof. We first establish the right to left direction. We construct an observation-based
strategy σ′′ that dominates σ when Player 2 is perfectly informed. The strategy σ′′ is
defined as follows. In all histories that are not extensions of those in K, σ′′ plays exactly as
σ. For all histories extending some history in K, then σ′′ plays as σ′. Let us prove that σ′′
has all the required properties to dominate σ:

First, we note that σ′′ is observation-based as σ and σ′ are both observation-based, and
extensions of K cannot be ∼=1-equivalent to non-extensions of K.
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2:10 Admissibility in Games with Imperfect Information

Second, let π be a strategy of Player 2, and assume that Out(σ, π) ∈ W . Then we need
to show that Out(σ′′, π) ∈W . We consider two different cases:
1. If no prefix of Out(σ, π) is in K then we have that Out(σ, π) = Out(σ′′, π) so

Out(σ′′, π) ∈W .
2. If a prefix w of Out(σ, π) is in K, then once we reach this prefix σ′′ is now acting as σ′.

As Out(σ, π) ∈W , w is such that w ∈ Kσ
w ∪Kσ

c , then we can conclude that w ∈ Kσ′

w ,
and so Out(σ′′, π) ∈W .

Third, we need to establish the existence of one strategy π of Player 2 such that
Out(σ′′, π) ∈ W and Out(σ, π) 6∈ W . For that we consider a history w ∈ K such
that either: (i) w ∈ Kσ

c (and so w 6∈ Kσ
w), or (ii) w ∈ Kσ

` ∧ w ∈ Kσ′′

c ∪Kσ′′

w . Such a w
always exists by hypothesis. We design π as follows. First, π plays compatible with w.
As σ and σ′′ disagree at the history w, w.l.o.g. let us consider that σ plays 0 while σ′
plays 1. As Player 2 is perfectly informed, he observes this and behaves in a way that:

if (i) w ∈ Kσ
c and thus w ∈ Kσ′

w , then π does not help σ (this is possible as w 6∈ Kσ
w),

and ensures that the outcome is outside W , while σ′′ behaves like σ′ and is thus
winning from w no matter what π is.
if (ii) w ∈ Kσ

` ∧ w ∈ Kσ′′

c ∪Kσ′′

w , then π helps Player 1 when he plays σ′′ to ensure
that the outcome is inW and as w ∈ Kσ

` , we know that the outcome when σ is played
is not in W .

We now establish the left to right direction. Assume that σ is dominated by some other
strategy σ′′. By definition of dominance, there exists a strategy π of Player 2 such that
Out(σ, π) 6∈ W and Out(σ′′, π) ∈ W . Let w be the longest common prefix of Out(σ, π)
and Out(σ′′, π), and let K be the σ-monochromatic set containing w (K is then also σ′′-
monochromatic). Let us consider the partition of K for σ and σ′′. First, we know that
w 6∈ Kσ

w and w ∈ Kσ′′

c ∪Kσ′′

w . Also, because σ is dominated by σ′′ then we have that:
for all v′ ∈ Kσ

w : v′ ∈ Kσ′′

w ,
for all v′ ∈ Kσ

c : v′ ∈ Kσ′′

w ,
for all v′ ∈ Kσ′′

` : v′ ∈ Kσ
` ,

Otherwise, it is easy to obtain a contradiction with the fact that σ is dominated by σ′′. All
this implies the right properties on the respective partitions. J

I Remark. This characterization of dominance is particularly useful in the case of regular
games. There the question whether for some monochromatic K there exists a strategy σ
inducing a particular partition (Kσ

w,K
σ
c ,K

σ
` ) depends only on the set of last vertices of

the histories of K. This is because winning sets in regular games are defined with parity
conditions that lead to prefix independence. In particular, there are only finitely many cases
to check. We will exploit this algorithmically in Subsection 7.2.

6 Games on Finite Trees

The simplest non-trivial subclass of infinite sequential games with imperfect information are
those with clopen winning sets W . Essentially, this means that whether or not p ∈ W for
some run p only depends on some fixed-length prefix of p. Hence, we can consider these
as finite tree games. Alternatively, we could conceive of these as regular games where the
underlying graph is a tree.

The initial vertex is the root of the tree, and we denote by Leaves(G) the leaves of the
tree, i.e. the finite histories determining membership in W of any run passing through them.
W.l.o.g., we assume that all players know when a leaf is reached, and that both players can
distinguish winning from losing leaves; in other terms, no ∼=i-equivalence class contains both
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a leaf and a non-leaf, and no class contains both a winning and a losing leaf. We denote the
set of winning leaves by ΩT .

In this section, for convenience, we assume that each vertex of Player i has ki successors
for a given ki ≥ 1, and that these successors are labeled with numbers between 0 and ki−1.
We sometimes call these numbers actions, and denote Acti = {0, 1, . . . , ki}, and Act =
(Act1,Act2). For any vertex v ∈ V , and a ∈ Act, let δ(v, a) denote the a-th successor of v.
Games with |Acti| > 2 can be equivalently modeled using two actions by adding intermediate
states (see the remark after Definition 4).

We denote the finitely many ∼=i-equivalence classes that matter (i.e. are not proper
extensions of the leaves) by Oi = {Oij | j ∈ Ii}. An observation-based strategy then is, up
to irrelevant moves, simply a function σ : Oi → Acti, which can be stored in linear space.

6.1 Characterization of Domination
We are going to give an algorithm to decide whether a given strategy is dominated in a finite
tree game. To do so, we are going to simultaneously simulate σ and another strategy that
is to be chosen by Player i, in a product construction. We need the following additional
definition:

I Definition 21 (Switching strategies). For any player i, strategies τ, τ ′ ∈ Σ∼=ii and an
observation o ∈ Oi, we denote τ [o/τ ′] the strategy that plays τ but upon visiting o switches
to τ ′. Formally,

τ [o/τ ′](o1 · · · on) =
{
τ ′(o1 · · · on) if ∃i, oi = o

τ(o1 · · · on) otherwise

Let us consider a finite tree game G = (V,E, V1, V2,O1,O2,ΩT ) and let us note Σ∼=ii (G)
the observation-based strategies of Player i inG. For strategy σ ∈ Σ∼=ii (G), and vertex v ∈ Vi,
let δ∗(v, σ) be the vertex obtained by repeatedly applying σ as long as the vertex stays in Vi.
Thus, δ∗σ(v) is either a leaf, or a vertex of V3−i. For v 6∈ Vi, let δ∗(v, σ) = v. Given action a
and strategy σ, let us define a · σ that plays a in the first step, and then switches to σ.

I Definition 22. Given a finite tree game G(vinit) = (V,E, V1, V2,O1,O2,Ω) with ac-
tions Act, and strategy σ ∈ Σ∼=ii (G), define Gσ(vσinit) = (V σ, Eσ, V σ1 , V σ2 ,O1

σ,

O2
σ,Ωσ) with actions Actσ, where
V σ = V × V , V σi = V × Vi, and V σ3−i = V σ \ V σi ,
vσinit = (δ∗(vinit, σ), vinit),
Actσi = Acti, and Actσ3−i = Act3−i × Act3−i,
Oσi = {V ×Oij | Oj ∈ Oi}, Oσ3−i = {O3−i

j ×O3−i
j′ | O

3−i
j ,O3−i

j′ ∈ O3−i}.
For all (v, v′) ∈ V σi , a ∈ Actσi ,

δσ((v, v′), a) = (v, δ(v′, a)).

For all (v, v′) ∈ V σ3−i with O3−i(v) = O3−i(v′), for all (a, b) ∈ Actσ3−i,

δσ((v, v′), (a, b)) = (δ∗(v, a · σ), δ(v′, a)).

For all (v, v′) ∈ V σ3−i, if O3−i(v) 6= o3−i(v′), for all (a, b) ∈ Actσ3−i,

δσ((v, v′), (a, b)) =


(δ∗(v, a · σ), δ(v′, b)) if v, v′ 6∈ Leaves(G),
(δ∗(v, a · σ), v′) if v 6∈ Leaves(G), v′ ∈ Leaves(G),
(v, δ(v′, b)) if v ∈ Leaves(G), v′ 6∈ Leaves(G),
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2:12 Admissibility in Games with Imperfect Information

Informally, Player i only sees the second component and plays as in G; in fact, the second
component of Gσ reproduces precisely G. The first component always moves according to σ
from Player-i vertices, and according to Player 3−i’s actions otherwise. Player 3−i plays the
same actions in both components as long as her observations match, but can choose different
actions otherwise. Observe that we “accelerate” the transitions in the first component in
Player-i vertices, so we ensure that the first component is always either a Player 3− i vertex,
or a leaf.

Note that Σ∼=ii (G) = Σ∼=ii (Gσ) since the observations and actions for Player i are identical
in both games.

Consider game G, player i, and σ, σ′ ∈ Σ∼=ii (G). For any strategy τ ∈ Σ
∼=3−i
3−i (G), let us

call nσ,σ′τ the smallest integer such that the observation of Player 3− i at the nσ,σ′τ -th step
is different between the plays ρ = ι(OutG(σ, τ)) and ρ′ = ι(OutG(σ′, τ)), that is, nσ,σ′τ =
min{n|O3−i(ρn) 6= O3−i(ρ′n)} when this minimum is finite, and nσ,σ′τ =∞ otherwise. Note
that the lengths of the plays in the latter case must be equal since observations distinguish
leaves from non-leaves. Let distG,τ1 (σ, σ′) = ρ

nσ,σ
′

τ
and distG,τ2 (σ, σ′) = ρ′

nσ,σ
′

τ

be these vertices
where Player 3− i distinguishes both plays for the first time.

I Lemma 23. Consider any game G, player i, σ1, σ2 ∈ Σ∼=ii (G), and τ ∈ Σ
∼=3−i
3−i (Gσ1). If

we write (t1, t2) = `(ι(OutGσ1
(σ2, τ))), there exists τ ∈ Σ

∼=3−i
3−i (G) such that

tj = `(ι(OutG(σj , τ))) for all j ∈ {1, 2}.

Proof. If nσ1,σ2
τ =∞, then Player 3− i receives the same observation in both components.

Let us define τ by τ(o) = a where (a, b) = τ((o, o)). Then choosing τ1 = τ2 = τ yields the
result.

Assume nσ1,σ2
τ <∞, and write (t1, t2) = `(ι(OutGσ1

(σ2, τ))). We define τ(o) as the first
component of τ((o, o)) for all observations o ∈ O3−i such that o 6∈ {distG,τj (σ1, σ2))}j∈{1,2}
or o is not a descendant of these observations. Let (s1, s2) be the nσ1,σ2

τ -th vertex of
ι(OutGσ1

(σ2, τ)). Notice that the run ι(OutG(σj , τ)) visits sj , for each j ∈ {1, 2}. For
each j, in distG,τj (σ1, σ2), there exists strategy τj such that `(ι(OutGsj (σj , τj))) = tj . We
complete the definition of τ as follows: at each distG,τj (σ1, σ2), it switches to τj . J

Let us define Pσ = {(t, t′) ∈ Leaves(G)× Leaves(G) | t ∈ ΩT ⇒ t′ ∈ ΩT }.

I Lemma 24. For any σ′ ∈ Σ∼=ii (G), σ is weakly dominated by σ′ if, and only if Gσ, σ′ |=
AFPσ.

Proof. Assume Gσ, σ′ |= AFPσ. Let τ ∈ Σ
∼=3−i
3−i such that G, σ, τ |= Ω; we will show

that G, σ′, τ |= Ω.
Let τ defined by τ((o, o′)) = (τ(o), τ(o′)) for all o, o′ ∈ O3−i. We have, by assumption,

Gσ, σ
′, τ |= FPσ. Moreover, the projection of this run to the first component is exactly

ι(OutG(σ, τ)). The projection to the second component is ι(OutG(σ′, τ)). By the definition
of Pσ, and since OutG(σ, τ) is in Ω, OutG(σ′, τ) is in Ω too.

Conversely, assume that Gσ, σ′, τ |= G¬Pσ. Let (t, t′) = `(Out(σ′, τ)Gσ), with t ∈ ΩT ,
t′ 6∈ ΩT . Let τ ∈ Σ

∼=3−i
3−i (G) be as given by Lemma 23. We get that ι(OutG(σ, τ)) = t

and ι(OutG(σ′, τ)) = t′, which gives the desired result. J

We let Qσ = {(t, t′) ∈ Leaves(G)× Leaves(G) | t 6∈ ΩT ∧ t′ ∈ ΩT }.

I Lemma 25. For any σ′ ∈ Σ∼=ii (G), σ is dominated by σ′ if, and only if Gσ, σ′ |= AFPσ ∧
EFQσ.
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1 \ 2 x y z
a a 1 0 0
a b 0 1 1
b a 1 1 0
b b 0 0 1

Figure 2 An admissible strategy of a sub-game may not be a part of an admissible strategy of
the whole game.

Proof. Assume Gσ, σ′ |= AFPσ ∧ EFQσ. The previous lemma shows that σ′ weakly dom-
inates σ. Let τ such that Gσ, σ′, τ ends in (t, t′) ∈ Qσ. Let τ given by Lemma 23. We get
that ι(OutG(σ, τ)) = t and ι(OutG(σ′, τ)) = t′, which means that σ is dominated by σ′. J

I Lemma 26. Given a game G, player i, and subsets P,Q ⊆ Leaves(G), one can decide in
polynomial time if there is a strategy σ ∈ Σ∼=ii (G) such that G, σ |= AFP ∧EFQ.

Proof. We first show that there exist maximally permissive strategies for objectives of the
type AFP . In fact, define

Safe = {(o, a) ∈ Oi × Acti | ∃σ ∈ Σ∼=ii , G, σ |= AFP ∧EFo, σ(o) = a}.

This is the set of pairs of observation-actions (o, a) such that some Player-i strategy that is
winning forAFP is compatible with o, and chooses a from o. We claim that any σ ∈ Σ∼=ii (G)
such that ∀o ∈ Oi, (o, σ(o)) ∈ Safe is winning for objective AFP . This can be proved by
induction on the length of plays, and using perfect recall.

Now, the set Safe can be computed bottom-up. Let G′ be the game G where we only keep
Player-i actions that conform to Safe. There exists a strategy in G winning for AFP ∧EFQ
if, and only if some vertex of Q is reachable in G′. J

I Theorem 27. Given game G on a finite tree, player i and strategy σ ∈ Σ∼=ii (G), one can
decide in polynomial time whether σ is admissible.

6.2 Hardness
Let us start with a remark showing that one cannot hope to prune some actions of the
game locally, to obtain a description of the admissible plays as it is the case in the perfect-
information setting, see section on safety games in [12]. In fact, a strategy that only uses
actions that appear in (the reachable part of) some admissible strategy may not be admissible
itself.

Consider the game in normal form in Figure 2. It is easy to encode it as a game on a tree
by ensuring that Player 2 is blind (i.e. all states in V2 leads to the same observation) and
players have perfect recall (in particular, they remember which actions they have played).
Player 1 starts choosing a or b, then Player 2 plays (x, y or z), and Player 1 plays again. We
have that ab is admissible, so there is an admissible strategy playing a in the first vertex.
Furthermore, in the subgame where Player 1 has already played a, playing a is admissible
(to see this, compare the first two lines in the figure). However strategy aa is dominated by
ba.

Similarly there is an admissible strategy of Player 1 playing b in the first step. Playing
b is admissible in the subgame that starts with history b, but the strategy bb is dominated
by ab.
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2:14 Admissibility in Games with Imperfect Information

We now show that deciding the existence of an admissible strategy choosing a particular
action at a given state is NP-complete.

I Theorem 28. Given two-player game G on a finite tree, and an action a, deciding whether
there is an admissible strategy σ with σ(sinit) = a is NP-complete.

Proof. NP-membership holds because strategies of Player 1 can be represented in polynomial
size, and having guessed some strategy σ1 which uses a, whether σ1 is admissible can be
verified in polynomial time by Corollary 27.

For NP-hardness, we encode an instance of the 3-SAT problem of the following form

ψ = ∃x1, . . . , xn. C1 ∧ · · · ∧ Cm,

where Ci = `i,1∨`i,2∨`i3 and `i,j ∈ {xk,¬xk | k ∈ [1, n]}, for each 1 ≤ i ≤ m, and 1 ≤ j ≤ 3.
We define a game GΩ as follows. From the initial vertex Player 1 either chooses a clause

among C1, . . . , Cm, or goes to a special vertex C0. Then Player 2 blindly selects a literal ` in
{xk,¬xk | k ∈ [1, n]}. At this point, Player 1 only sees the index k such that ` ∈ {xk,¬xk}.
Let us write oi,k for this observation, where i is the index of the clause, or 0, and k is the
index of the variable chosen by Player 2.

From o0,k, Player 1 chooses T or F meaning, intuitively, that xk is evaluated to true
and false respectively. All other observations oi,k with i > 0 are leaves. The reachability
condition Ω is satisfied when either Player 1 selects Ci with i > 0 and ` is a literal which
does not appear in Ci or Player 1 selected C0 and the valuation chosen in the last vertex is
such that ` is evaluated to true.

Assume there is a strategy σ1 choosing C0 which is not dominated by any strategy not
choosing C0. Now, define the valuation v as follows. For each variable xk, we set v(xk) to
true if, and only σ1(o0,k) = T . Let σ′1 be any strategy of Player 1 choosing some clause Ci
with i > 0. Because σ1 is not dominated by σ′1, either: (A) there is a strategy τ i of Player 2
which makes σ1 win but not σ′1; or (B) for all strategies τ of Player 2, σ′1, τ wins implies
σ1, τ wins.

Let us first show that case (B) cannot happen. Recall that σ′1, τ is winning when τ

selects a literal outside Ci. If there are more than 2 variables (n > 2), which we can assume
without loss of generality, then there is one variable xk and its negation that do not appear
in Ci. Consider the strategies τ and τ ′ that select xk and ¬xk respectively. Since they make
σ′1 win, they must also make σ1 win, which means that the valuation defined by σ1 makes
both xk and ¬xk true, which is a contradiction.

Thus, only the case (A) is possible. For each 1 ≤ i ≤ m, let σ′i be the strategy that
chooses Ci. Let τ i be a Player-2 strategy such that σ1, τ

i wins and σ′i, τ
i loses. Let us

fix 1 ≤ i ≤ m, and let ` denote the literal chosen by τ i. The run of σ′1, τ i is losing, which
means that ` ∈ Ci. Since σ1, τ

i wins, ` is satisfied by v. Since ` ∈ Ci, Ci is satisfied by v.
Since i was arbitrary, all clauses Ci are satisfied. Hence ψ is satisfiable.

In the other direction, assume the formula is satisfiable. Let v be a valuation satisfying
the formula, and σv be the strategy that first plays C0, and then plays according to the
valuation v. Let σ′1 be any strategy that first plays Ci for any i ∈ [1, n]. As v satisfies the
formula, there is a literal ` in Ci such that v(`) = T . Let τ` be the strategy of Player 2 that
chooses this literal. As ` ∈ Ci, τ` makes σ′1 lose, and as v(`) = T , τ` makes σ1 win. So σ1 is
not dominated by σ′1. J J
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7 Decision problems for dominance in regular games

In this section, we study decision problems related to admissible strategies for regular infinite
sequential games with imperfect information. We have seen in Theorem 17 that a strategy
of Player 1 that is dominated when Player 2 is perfectly informed is also dominated when
Player 2 is imperfectly informed. The special case of a perfectly informed Player 2 is thus
important. In this section, we start by considering this case, exploiting the characterization
obtained in Theorem 20. Then we turn to the case when Player 2 is not perfectly informed.
Before presenting our results, we need to recall some notions related to infinite trees and
automata on infinite trees.

7.1 Automata on infinite trees and tree encodings of strategies
Infinite trees

Following e.g. [21], given a finite set D, a D-tree is a prefix closed language T ⊆ D∗. When
D is clear from the context, we call T a tree. Elements of T are called nodes, and the empty
word ε is the root of the tree. For every x ∈ T , the nodes x ·d ∈ T for d ∈ D are the children
of x, the children x · d is called the child of direction d of x. A D-tree is a full infinite tree
if T = D∗. A branch b of T is a set b ⊆ T such that ε ∈ b and for every x ∈ b there exists
a unique d ∈ D such that x · d ∈ b. Given two sets D and L, a L-labelled D-tree is a pair
〈T, L〉 where T is a D-tree and L : T → L labels each node of T with an element of L.

Tree encoding of observation-based strategies

We encode observation-based strategies σ ∈ Σ∼=1
1 , i.e. σ : (O1)∗ · O1

turn → {0, 1}, as full
infinite {0, 1, ∗}-labelled O1-trees with the convention that:

the root node is always labelled with ∗;
every node that follows an observation o ∈ O1

turn is labeled with 0 or 1 according to σ:
if the node is reached with a sequence of directions ρ = o1o2 . . . on that corresponds to
observations in Oi and on ∈ O1

turn, then the node is labelled by σ(ρ);
every node that follows an observation o ∈ O1 \ O1

turn is labelled with ∗ as in that case,
it is the turn of Player 2 to play and the choice of Player 2 is not visible for Player 1.

Alternating tree automata

We use alternating tree automata (AT) to recognize regular sets of infinite trees that encode
observation-based strategies. A AT P = (Q, q0,∆,Ψ) that operates on L-labelled D-trees
is defined by:

its finite non-empty set of states Q;
its initial state q0;
its transition function ∆ : Q×L → B+(Q×D), where B+(Q×D) is the set of (positive)
Boolean formula built from elements in Q×D using ∨ and ∧. For a set E ⊆ Q×D and
a formula ψ ∈ B+(Q×D), we say that E satisfies ψ iff assigning true to elements in E
and assigning false to elements in (Q×D) \ E makes ψ true;
Ψ is the acceptance condition which is a set of infinite sequences of states in Q that are
accepting. Typically, we consider either parity functions, giving alternating parity tree
automata (APT), or Muller conditions (that subsume Boolean combinations of parity
conditions), giving alternating Muller tree automata (AMT), to define Ψ.
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2:16 Admissibility in Games with Imperfect Information

A run of P = (Q, q0,∆,Ψ) on a L-labelled D-tree 〈T, L〉 is Q×D∗-labelled tree 〈Tr, r〉 such
that:
1. ε ∈ Tr and r(ε) = (q0, ε);
2. Let y ∈ Tr with r(y) = (q, x) and ∆(q, L(x)) = ψ. Then there exists a (possibly empty)

set E = {(q0, d0), (q1, d1), . . . , (qn, dn)} ⊆ Q×D and:
a. E satisfies ψ;
b. for all i, 0 ≤ i ≤ n, we have y · i ∈ Tr and r(y · i) = (qi, x · di).

A run is accepting iff all its infinite branches b∞ are such that b∞ ∈ Ψ, i.e. they satisfy the
acceptance condition.

7.2 Player 2 perfectly informed
As we mentioned following Theorem 20, in regular games the validity of the condition in the
theorem depends only on the set of last vertices in the histories forming a monochromatic
set. In slight abuse of notation, we call a set of vertices arising in this way a monochromatic
set, too.

I Lemma 29. Let M = Mw ] Mc ] M` be a monochromatic set. We can construct in
PTime an APT that recognizes the set of trees that encode observation-based strategies σ :
(O1)∗ · O1

turn → {0, 1} of Player 1 and such that Mw = Mσ
w, Mc = Mσ

c , and M` = Mσ
` .

Proof. The main idea of the construction is as follows. The APT has four parts:
1. one that checks that σ ensures a win from all vertices in Mw no matter what are the

choices made by Player 2;
2. one that checks that σ can cooperate with Player 2 to win from all vertices in Mc;
3. one that checks that σ can cooperate with Player 2 to lose from all the vertices in Mc;
4. one that checks that all outcomes that are compatible with σ are losing from all the

vertices in M` no matter what are the choices made by Player 2.
Accordingly, its state space is defined as Q = {q0} ∪ V × {w, cw, c`, `}. The transitions are
defined as follows:

for states in V × {w}. If a node n of the tree is reached by a run of the APT that ends
up in state (v, w) then we must verify that the strategy encoded in the tree ensures to
win no matter what are the choices of Player 2. So, the automaton follows the choices
prescribed by the strategy for nodes annotated by i ∈ {0, 1} and branches universally on
the choices of Player 2 for nodes annotated by ∗. Accordingly:

for i ∈ {0, 1}: ∆((v, w), i) = ((s(v, i), w),O1(s(v, i)))
for ∗: ∆((v, w), ∗) = ((s(v, 0), w),O1(s(v, 0))) ∧ ((s(v, 1), w),O1(s(v, 1)))

for states in V × {cw}. If a node n of the tree is reached by a run of the APT that
ends up in state (v, cw) then the automaton must verify that the strategy σ encoded in
the tree ensures that at least one outcome is winning. So, the automaton follows the
choices of Player 1 as encoded in the tree and for nodes labelled with ∗ that denote
choices of Player 2, the automaton nondeterministically chooses one choice for Player 2.
Accordingly:

for i ∈ {0, 1}: ∆((v, cw), i) = ((s(v, i), cw),O1(s(v, i)))
for ∗: ∆((v, cw), ∗) = ((s(v, 0), cw),O1(s(v, 0))) ∨ ((s(v, 1), cw),O1(s(v, 1)))

for states in V × {c`}. The approach is similar. If a node n of the tree is reached by a
run of the APT that ends up in state (v, c`) then the automaton must verify that the
strategy σ encoded in the tree ensures that at least one outcome compatible with σ is
losing. So, the automaton follows the choices of Player 1 as encoded in the tree and for
nodes labelled with ∗ that denote choices of Player 2, the automaton nondeterministically
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chooses one choice for Player 2. The difference with the previous case (cw) is handled
by the acceptance condition. Accordingly:

for i ∈ {0, 1}: ∆((v, c`), i) = ((s(v, i), c`),O1(s(v, i)))
for ∗: ∆((v, c`), ∗) = ((s(v, 0), c`),O1(s(v, 0))) ∨ ((s(v, 1), c`),O1(s(v, 1)))

for states in V × {`}. If a node n of the tree is reached by a run of the APT that ends
up in state (v, `) then we must verify that the strategy σ encoded in the tree cannot win
no matter what Player 2 chooses. So, the automaton follows the choices prescribed by
the strategy σ for nodes annotated by i ∈ {0, 1} and branches universally on the choices
of Player 2 for nodes annotated by ∗. The difference with the first case (w) is handled
by the acceptance condition. Accordingly:

for i ∈ {0, 1}: ∆((v, `), i) = ((s(v, i), `),O1(s(v, i)))
for ∗: ∆((v, `), ∗) = ((s(v, 0), `),O1(s(v, 0))) ∧ ((s(v, 1), `),O1(s(v, 1)))

It remains now to define the acceptance condition. First, we remark that a run of the
APT directly jump from its initial state q0 to one of the four parts whose transitions have
been described above. When entering one of those parts, the run will stay in that part
of the state space for ever. The runs that have have entered the part associated to w

and to cw must simulate paths in the game graph that are in W , those that are in the
part associated to c` and to ` must simulate paths that are outside W . W is defined
by a parity condition pr. We thus define the party condition pr′ of our automaton as
follows: for all v ∈ V , pr′(v, w) = pr′(v, cw) = pr(v) (the parity condition is preserved) and
pr′(v, c`) = pr′(v, `) = pr(v) + 1 (the parity condition is inverted). J

As the emptiness problem for APT is solvable in ExpTime, we deduce the following corol-
lary:

I Corollary 30. Given a partition M = Mw ]Mc ]M` of a monochromatic set, we can
decide in ExpTime if there exists an observation-based strategy σ : (O1)∗ · O1

turn → {0, 1}
that induces this partition.

I Lemma 31. We can construct in ExpTime an APT P that accepts the {0, 1, ∗}-labelled
O1-trees that are the tree encodings of the observation-based strategies σ ∈ Σ∼=1

1 that are
dominated in RU (v0) where Player 2 is perfectly informed.

Proof. Let R(v0) be a regular game. First, we note that Lemma 29 allows us to compute, for
all monochromatic sets K, all the partitions Kw]Kc]K` that are witnessed by observation-
based strategies of Player 1. Among those, we can extract all the partitionsKw]Kc]K` that
correspond to strategies that are dominated following Theorem 20. There are at most an
exponential number of them in the size of the regular game. We note B all those partitions.

Our APT will first guess a finite observation history ρ and compute the knowledge
associated to ρ while following the strategy σ encoded in the tree. Let K be the resulting
monochromatic set of vertices. This set is stored in the state of the APT and then the
APT nondeterministically chooses a partition Kw ] Kc ] K` of K in B. Then the APT
verifies that the strategy in the tree induces that partition. This is done as in the proof of
Lemma 29. J

As APT are closed under all Boolean operations, see e.g. [19], the set of admissible
observation-based strategies of Player 1 is effectively omega-regular:

I Theorem 32. When Player 2 is perfectly informed, the set of admissible observation-
based strategies of Player 1 in RU (v0) is effectively ω-regular and the emptiness of this set
is decidable in 2ExpTime.
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7.3 Player 2 imperfectly informed
The hierarchical case

We start by considering the case in which both players have imperfect information but
Player 2 is more informed than Player 1. In this case, the informedness of players is hier-
archical in the sense of [7]. For the hierarchical case, we can decide if the set of admissible
observation-based strategies of Player 1 is empty or not. We obtain this result by a reduc-
tion to the model-checking problem of Strategy Logic with Imperfect Information [5], SLiifor
short.

We only recall here informally the syntax and semantics of SLii formulas and refer the
interested reader to [5] for formal definitions. We start with the case where the players are
perfectly informed. Strategy Logic (SL) extends the linear temporal logic (LTL [3]) and
treats strategies x as first-order objects that can be quantified: 〈〈x〉〉 reads "there exists a
strategy x" while [[x]] reads "for all strategies x". In SL, strategies can be bound to players:
(x, 1) reads "Player 1 uses strategy x". As an example, let φ be an LTL formula, and
consider the following SL formula 〈〈x〉〉[[y]](x, 1)(y, 2)φ. This formula expresses that there
exists a strategy x for Player 1 such that for all strategies y of Player 2, when the two
players play their respective strategies x and y then the outcome from the initial vertex
of the game arena is a path that satisfies φ. So, this formula expresses the existence of a
winning strategy for Player 1 in a two-player zero sum game with objective φ for Player 1 and
¬φ for Player 2. SL can express many interesting game properties such as the existence of
Nash equilibria, the existence of dominating strategies, etc., see [14, 22] for more examples.

When strategy logic is interpreted over a game in which players have imperfect infor-
mation, then the strategy quantifier explicitly limits the quantification to observation-based
strategies: 〈〈x〉〉O reads "there exists an O-observation-based strategy x". However, to obtain
the decidability of the model-checking problem for SLii, quantifiers must respect constraints
that ensure "hierarchical instances".

Intuitively, a formula of SLii is hierarchical if, as one goes down the syntactic tree of the
formula, the observations annotating strategy quantifications can only become finer. So, for
example, if in the syntactic tree, quantification 〈〈x〉〉O1 is followed by 〈〈y〉〉O2 then it must be
the case that O2 is finer than O1 meaning that for all v1, v2 ∈ V , if O2 does not distinguish
v1 and v2, i.e. O2(v1) = O2(v2), then it is also the case for O1, i.e. O1(v1) = O1(v2).

Let us now consider a regular game R(v0) = (V,E, V1, V2,O1,O2) such that O2 is finer
than O2 that induces the infinite sequential game with imperfect information RU (v0) =
(d,W,∼=1,∼=2). Let φ1 be a LTL specification for the objective of Player 1 then the following
SLii is hierarchical and evaluates to true in v0, if and only if, Player 1 has admissible O1-
observation-based strategies when Player 2 plays O2-observation-based strategies:

〈〈x〉〉O1 [[x′]]O1 〈〈y〉〉
O2(x, 1)(y, 2)φ1 ∧ (x′, 1)(y, 2)¬φ1

∨[[y]]O2(x′, 1)(y, 2)φ1 → (x, 1)(y, 2)φ1

I Theorem 33. Let R(v0) = (V,E, V1, V2,O1,O2) be a regular game such that O2 is finer
than O1 and that induces RU (v0) = (d,W,∼=1,∼=2). The existence of admissible strategies
for Player 1 in RU (v0) is decidable.

The general case

This case is more involved and so far we did not succeed to obtain a general characterization
of dominated strategies in the form of Theorem 20. Nevertheless, we are able to characterize
all the observation-based strategies of Player 1 that dominate a regular observation-based
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strategy given as a finite automaton A (as in Definition 6). Our characterization is effective:
we can construct from a regular game R and a finite automaton A, an APT P that accepts
the tree encodings of all the observation-based strategies σ that dominate the regular strategy
σA defined A. The construction of the APT is given in the proof of the following lemma:

I Lemma 34. Let R(v0) be a regular game that induces RU (v0) = (d,W,∼=1,∼=2), and let
A be a finite automaton that encodes a regular observation-based strategy σA ∈ Σ∼=1

1 . We
can construct in PTime an AMT P that accepts all the tree encodings of observation-based
strategies σ ∈ Σ∼=1

1 that dominates σA when Player 2 plays strategies in Σ∼=2
2 .

Proof. Remember that the strategy σA is dominated by a strategy σ when Player 2 plays
observation-based strategies if and only if:
1. ∀π ∈ Σ∼=2

2 : Out(σA, π) ∈W → Out(σ, π) ∈W
2. ∃π ∈ Σ∼=2

2 : Out(σA, π) 6∈W ∧ Out(σ, π) ∈W
Here the strategy σA is encoded by the automaton A = (QA, qA0 ,O1, δA, FA), and the
strategy σ is the strategy encoded in the tree. We use a AMT to check those two properties:
its state space is structured in two disjunct parts plus an initial state q0: Q = {q0}∪Q1∪Q2.
States in Q1 are used to check the first property, and in Q2 the second property. We now
give a detailed description of those sets of states: Qi = {i}×V ×V ×{0, 1}×QA, i ∈ {1, 2}.
Intuitively, a state (i, v1, v2, dist, q) is reached when:

if i = 1, the ATP is checking the first condition, and if i = 2, the AMT is checking the
second condition;
the interaction of the strategy π played by Player 2 against σA leads to vertex v1;
the interaction of the strategy π played by Player 2 against σ leads to vertex v2;
dist is true if and only if Player 2 has been able to distinguish, based on its observation
O2, between the history generated by strategy σ against π and the history generated by
the strategy σA against π, and false otherwise;
q is the state reached by the automaton A, that encodes σA on the current sequence of
O1-observations.

In the part Q1 of the AMT, the automaton branches universally on the choices of Player 2
in order to consider all possible strategies π that Player 2 can play and it verifies that, for all
of them, if the outcome against σA is winning then the outcome against σ is also winning.
In the part Q2 of the AMT, the automaton branches existentially on the choices of Player 2
in order to guess a strategy of Player 2 that forces an outcome in the complement of W
against σA and in W against σ. This is realized by the following transition relation and
acceptance condition:

Transition function. Let (i, v1, v2, dist, qA), and we distinguish between the universal
(i = 1) and existential (i = 2) cases:

in the universal part:
∗ if the label of the current node in the tree is ∗ then it is the turn of Player 2 to

play. Then either Player 2 has already distinguished the histories that ends up in
v1 and v2 respectively, i.e. dist = 1 and so he can possibly play differently in the
two cases:

∆((1, v1, v2, 1, qA), ∗)
=∧
j1,j2∈{0,1}

(
(1, s(v1, j1), s(v2, j2), 1, δA(qA,O1(s(v1, j1)))),O1(s(v2, j2))

)
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or Player 2 has not yet distinguished the histories that ends up in v1 and v2 respec-
tively, i.e. dist = 0, and so Player 2 makes the same choices in the two branches:

∆((1, v1, v2, 0, qA), ∗)
=∧
j∈{0,1}

(
(1, s(v1, j), s(v2, j), dist′(j), δA(qA,O1(s(v1, j)))),O1(s(v2, j))

)
where dist′(j) = (O2(s(v1, j)) 6= O2(s(v2, j))), i.e. the new value of dist is set to 1
only if Player 2 received two different observations for s(v1, j) and s(v2, j), in that
case, he can now distinguish between the two branches.

∗ If the label of the current node in the tree is c ∈ {0, 1} then it is the turn of Player 1
to play and c is the choice made by σ, while the choice d made by σA is equal to 0
if qA ∈ FA otherwise it is equal to 1:

∆((1, v1, v2, dist, qA), c)
=(
(1, s(v1, d), s(v2, c), dist′(j), δA(qA,O1(s(v1, d)))),O1(s(v2, c))

)
where dist′(j) = dist ∨ (O2(s(v1, d)) 6= O2(s(v2, c))), i.e. the two histories are
distinguishable if they were before or if Player 2 gets two different observations in
this round.

in the existential part:
∗ If the label of the current node in the tree is ∗ then it is the turn of Player 2 to

play. Then either Player 2 has already distinguished the histories that ends up in
v1 and v2 respectively, i.e. dist = 1:

∆((1, v1, v2, 1, qA), ∗)
=∨
j1,j2∈{0,1}

(
(1, s(v1, j1), s(v2, j2), 1, δA(qA,O1(s(v1, j1)))),O1(s(v2, j2))

)
or Player 2 has not already distinguished the histories that ends up in v1 and v2
respectively, i.e. dist = 0, so Player 2 makes the same choices in the two branches:

∆((1, v1, v2, 0, qA), ∗)
=∨
j∈{0,1}

(
(1, s(v1, j), s(v2, j), dist′(j), δA(qA,O1(s(v1, j)))),O1(s(v2, j))

)
where dist′(j) = (O2(s(v1, j)) 6= O2(s(v2, j))), i.e. the new value of dist becomes
equal to 1 only if Player 2 received two different observations for s(v1, j) and s(v2, j),
if so, he can now distinguish between the two branches. Note that those formulas
are the same as the one for the universal part but with the conjunction replaced
by a disjunction.

∗ If the label of the current node in the tree is d ∈ {0, 1} then it is the turn of Player 1
to play and d is the choice made by σ, while the choice c made by σA is equal to 0
if qA ∈ FA otherwise it is equal to 1, and then we have that:

∆((1, v1, v2, 1, qA), c)
=(
(1, s(v1, c), s(v2, d), dist′(j), δA(qA,O1(s(v1, c)))),O1(s(v2, d))

)
where dist′(j) = dist ∨ (O2(s(v1, c)) 6= O2(s(v2, d))), i.e. the two histories are
distinguishable if they were before or if Player 2 gets two different observations
now.
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Acceptance condition. Again, we distinguish between the universal and existential parts:
Let r be a run of the AMT in the universal part and let inf(r) be the set of states
that repeats infinitely often along r . Let Pr be the set of pairs of vertices (v1, v2)
that appear in states of the automaton in inf(r), i.e. pairs of vertices that appear
infinitely often along the run r. We declare the set of states inf(r) to be accepting
when we verify that: if min(v1,v2)∈Pr p(v1) is even then min(v1,v2)∈Pr p(v2) is even, i.e.
a run is good if the run simulates an execution in which Player 2 plays a strategy π,
and if the outcome of σA and π is winning for the parity condition pr, then it is also
the case for the outcome of σ and π. This is a valid Muller condition.
Let r be a run of the AMT in the existential part and let inf(r) be the set of states that
repeats infinitely often along r . Let Pr be the set of pairs of vertices (v1, v2) that are in
inf(r), i.e. the pairs of vertices that appear infinitely often along the run r. We declare
the set of state inf(r) to be accepting when we verify that: min(v1,v2)∈Pr p(v1) is odd
and min(v1,v2)∈Pr p(v2) is even, i.e. a run is good if the run simulates an execution
in which Player 2 plays a strategy π, and the outcome of σA and π is losing for the
parity condition pr, and the outcome of σ and π is winning for the parity condition
pr. This is a valid Muller condition. J

As a consequence, we obtain:

I Theorem 35. Let R(v0) be a regular game that induces RU (v0) = (d,W,∼=1,∼=2), and let
A be a finite automaton that encodes a regular observation-based strategy σA ∈ Σ∼=1

1 . The
problem to decide if σA is dominated when Player 2 plays strategies in Σ∼=2

2 is ExpTime-C.

Proof. We can solve the problem in ExpTime thanks to the AMT construction of polyno-
mial size given in lemma 34 and the fact that emptiness of AMT is solvable in ExpTime.
For hardness, it is easy to reduce the problem of deciding the winner in a zero-sum reach-
ability game with imperfect information to our problem, and this problem is complete for
ExpTime [13]. J
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